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An enhanced detection system against routing
attacks in mobile ad-hoc network

Mahendra Prasad · Sachin Tripathi ·
Keshav Dahal

Abstract Mobile ad-hoc network is a dynamic wireless network that transfers
information through neighbor nodes with a temporary configuration. Due to
its dynamic nature, it is exposed to attacks and intrusions. Routing disruption
attack is the main problem of this network where intermediate nodes act mali-
ciously. An encryption-based security mechanism is a first-line defense system
that is efficient. It is still not compatible with the mobile ad-hoc network en-
vironment. Malicious nodes can drop encrypted data packets in this network.
The lightweight technique analyzes a few parameters that consume few re-
sources and provide comparatively low detection rates. However, an intrusion
detection system is a reliable second-line security mechanism. In this paper,
we have proposed a detection method that classifies malicious and benign
information. The proposed intrusion detection method is based on learning
techniques that initially require a dataset to determine mobile nodes’ behav-
ior. Subsequently, we perform this work in an order such as mobile ad-hoc
network simulation with some malicious nodes, features selection, and data
collection using packet captured files. This work is executed through extensive
simulations in the NS-3. The proposed method learns the system for informa-
tion classification, and experimental results that show the proposed method
performs better than existing schemes. Moreover, the obtained performance
confirms that the suggested feature set is suitable for the intrusion detection
system in mobile ad-hoc networks.
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1 Introduction

A mobile ad-hoc network (MANET) is an easily installable and temporary
network. It is composed of many mobile nodes, and an infrastructure-less net-
work whose random mobility frequently changes the network topology. These
nodes have a radio range, and they communicate over wireless link [1, 2, 3].
Due to the node’s limited radio range, it fails to transfer data to more than
one hop nodes. Then, it transmits a data packet through the message relay.
In MANET, a routing table has possible paths that select the best specific
route from source to destination, and it requires legitimate support of nodes
in the communication path. In recent years, the ad-hoc network has preserved
worldwide applications. This network is mainly employed in military services
[4], traffic control, rescue operations [2], and others. One of the main appli-
cations of this network is in military services [4], where information security
is more important. An army unit consisting of infantry squads for battlefields
and search operations. Each infantry squad has a wireless mobile device to
transfer information to the destination. Sometimes, it is also used for mili-
tary search operations that need to function in dense population areas. There
are many devices and intruders in the wireless range. The proposed method
detects malicious behavior information that disrupts MANETs and misuse
information.

The MANET characteristics such as self-structuring, mobility of nodes,
without central monitoring, and message relay [2, 3]. It is more vulnerable
to attacks that effective defense mechanism is not publicly available or de-
signed. Many types of attacks harm network resources, and an attacker can
be either internal or external. One of them, a routing disruption attack, is a
Denial of Service (DoS) attack [5] of the network layer. It uses the vulnerabil-
ity of insecure routing protocol. A malicious node advertises itself as a part
of the destination route and acts maliciously. We have considered two routing
disruption attacks in this proposed detection method, such as blackhole and
wormhole attacks. They affect the route selection process and routing table,
while the routing table also continuously updates due to the dynamic nature
of active nodes. The cryptographic or key management-based techniques are
first-line defense mechanisms that work efficiently; however, these methods are
not compatible with the MANETs environment [6, 7]. Blackhole attack drops
the packets [8], and the wormhole attack tunnels the packets [9]; whenever
they also drop or tunnel the encrypted packets. These attacks are not easy
to handle using cryptography techniques. Therefore, we have applied machine
learning techniques to mitigate these attacks. This method is as lightweight
technique in resource consumption and obtained a better detection rate than
deep learning mechanism [3], M-DelPHI [10], DAWA [11], and lightweight tech-
niques.
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An Intrusion Detection System (IDS) detects malicious behavior’s nodes
that learn or computes nodes’ behavior from the training dataset [2, 12, 13].
However, it is not easy to apply in MANETs due to the limited memory
and energy capacities of mobile nodes. Therefore, we have collected signifi-
cant samples and formed lightweight datasets. There are two main categories
of IDS, namely the misuse and anomaly detection system. The misuse detec-
tion system detects only those signatures are present in the database, whereas
the anomaly detection system detects those samples deviate from the baseline
[13]. The primary purpose of IDS to increase the detection rate and decrease
the false alarm rate; when the system detects malicious information [1, 2, 3],
then send an alert to the network administrator. In the IDS dataset, the data
collection to real-world-enterprise networks is not an easy task. Many IDS
datasets are publicly available, which are generated through testbeds or simu-
lated [14, 15]. Existing traditional wired IDSs are executed on KDDcup’99
(65%), DARPA (13%), NSL-KDD (12%), ISCX (2%), UCI (4%), UNSW-
NB’15 (2%), and GNOME (2%) using fuzzy based machine learning techniques
[15]. There is still no dataset available for MANETs. Therefore, we have simu-
lated IDS datasets for MANET (IDS-MANET) in Network Simulator (NS-3).
Data generation, feature selection, data collection, and classification into nor-
mal and malicious are necessary steps to execute IDS. Experimental results
show the proposed method performs better than existing methods of intrusion
detections in MANETs. The main contribution of our work is enumerated
below.

1. We have simulated two routing disruption attacks in the MANET envi-
ronment, namely blackhole and wormhole attack in NS-3, and generated
packet captured (*.pcap) files for further steps.

2. A subset of significant features increases classification accuracy. In this
work, we have analyzed 20 features and collected data for the system as
the training set. This work is executed on different datasets, which differ
in their size and characteristics.

3. This work has been executed on different classifiers such as Naive Bayes,
Bayes Net, Radial Basis Function (RBF) Network, Multi-Layer Percep-
tron (MLP), Random Forest, and compared their performances. Finally,
we provide the performance comparison of these classification methods to
existing approaches.

The rest of this paper is arranged as follows. Section 2 provides detail of
existing works. Section 3 describes the attacking nature of blackhole and worm-
hole attacks, while Section 4 introduces machine learning techniques and their
working principles. We provide detailed descriptions of the proposed method
in Section 5. Section 6 describes simulation details, experimental results, and
performance comparisons to existing techniques. We conclude the proposed
work in Section 7.



4 Mahendra Prasad et al.

2 Related work

The IDS is an active monitoring system that generates an alert when it finds
abnormal behavior of nodes. This section presents a literature review of IDSs
in MANETs; we have found some Machine Learning (ML) algorithm-based
IDSs and analyzed these works.

Table 1: Comparison of related works

Work Simulator Attack ML Limitation

Feng et al. [3] NS-2 DoS yes

System adopted 24 features
of KDD’99 dataset. Deep
learning model has achieved
approx 98.5% detection rate.

Alappatt et al. [6] NS-2
Blackhole,
Greayhole

no

Cluster heads as additional
nodes that store keys of
corresponding members. Node
mobility affect key exchange.

Qazi et al. [10] NS-2 Wormhole no
Above 90% detection rate and
false positive rate almost 20%.

Jamali et al. [11] NS-2 Wormhole yes Low detection rate.

Assia et al. [16] Java Blackhole no
Attack identifies based on
acknowledgment packets.

Pragya et al. [17] NS-2 Collusion no
Threshold-based collusion
detection that allows 30%
packets drop.

Panos et al. [18] NS-3 Blackhole no

Blackhole intensity is based
on SQN where malicious node
generates high-value fake
source SQN.

Geetha et al. [19] MatLab Wormhole no
Node behavior identifies based
on the consumption of energy
and resource utilization.

Kaur et al. [20] NS-2 Wormhole no Delay based detection.

Sankara et al. [21] NS-2 Wormhole yes
Data interpretation risk
is not considered.

Arthur et al. [22] NS-2 Blackhole yes Small training and test sets.

Subba et al. [23] NS-2 Blackhole yes
Front-runner nodes consume
more energy.

Elwahsh et al. [24] C# multiple yes
Algorithm suggests only
better classification method
executed on KDD’99 dataset.

Islabudeen et al. [25] NS-3 multiple yes
Designed for MANET and
tested on KDD’99 dataset.

Jamali et al. [11] proposed three parameters: residual energy, the distance
between source to destination, and hop-count based fuzzy logic system. They
showed that the detection rate is decreased when the misbehaving node ratio
increases; however, the detection rate is increased when the simulation time is
increased. Alappatt [6] hybridized the key exchange method of Diffie-Hellman
and elliptic curve cryptography (HDHECC) using clustering nodes of MANET.
This method provides centralized keys of corresponding members at the cluster
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head that store all public keys. The cluster head as an additional node that acts
as a router. Due to the dynamic nature of mobile nodes, these may frequently
change their clusters. Then, these face the problem in key management and
increase the overhead of cluster heads. Assia et al. [16] have assumed as the
system generates one ack packet when non-attack for m hop route, while m-1
ack packets generate in case of attacks. In this system, each node maintains two
tables named as TrustTable and PostTable. These tables storage requirements
are about 6 KBytes of TrustTable and 125 KBytes of PostTable for 1000
nodes when 100 message transfer simultaneously. They have shown a better
detection rate, and their system presented no storage constraint. Sankara et al.
[21] analyzed seven features and suggested a detection method for wormhole
attacks. They used RTT based threshold and applied Modified Secure AODV.

Pragya et al. [17] proposed threshold-based collusion attack detection.
They compute the threshold as difference of sent packets and received packets
by nodes. Their system allows packet loss by 30% as a normal node. Qazi
et al. [10] computed Multi-rate Delay Per Hop Indication (M-DelPHI) such
as processing time, queuing, channel access delay, and neighbor monitoring
for wormhole attack detection. Their method performs better than DelPHI
approach. Panos et al. [18] provided a new attack parameter as blackhole
intensity, which quantified by a sequence number (SQN). They utilized a dy-
namic threshold cumulative sum to detect changes in the AODV sequence
number’s normal behavior. As their assumption, the malicious node generates
and transmits an RREQ message, including an arbitrary high-value of fake
source SQN. Geetha et al. [19] discussed malicious nodes are more active and
consume higher energy when exchanging routing information. They assumed
as faster communication requires security and developed a secure routing pro-
tocol. Kaur et al. [20] proposed a wormhole attack detection method that
detects attack by computing end to end maximum delay between two nodes
in the communication range. The source node decides the maximum delay of
the threshold between two legitimate nodes.

Arthur et al. [22] designed an anomaly detection scheme for multi-cast
communication based on distributed cross-layer. Their method extracts 75
features from two different collection modes that are 52 attributes from the
routing layer and 23 from the MAC layer. They conclude 70% packet drops
in the routing layer and remaining 30% packet drops due to retransmissions.
Subba et al. [23] proposed a hybrid IDS based on cluster leader election. It
comprises a threshold-based lightweight IDS and heavyweight IDS. Their re-
sults show that it maintains high performance and reduces IDS traffic; when-
ever cluster leaders consume more energy. Feng et al. [3] proposed a deep
learning model and adopted 24 features of the KDD’99 dataset to detect at-
tacks. Their method collect 196,000 XSS (160,000 normal and 36,000 attack)
samples and 292,490 SQL (204,542 normal and 87,948 attack) samples for
training the model. Conclusively, they reported that their method achieved
approx 98.5% detection rate, 99.8% precision, and 99.8% accuracy. Elwahsh
et al. [24] designed a hybrid framework to detect unknown attacks and utilized
self-organized features maps and Genetic Algorithms (GA). They defined neu-
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trosophic conditional variables and validated their experimental results on the
KDD’99 dataset. Islabudeen et al [25] proposed Smart Approach for Intrusion
Detection and Prevention System (SA-IDPS) and analyzed seven features of
packets for intrusion detection. They used BOAT with ANN to enhance results
and validated performance on the KDD’99 dataset.

We have extended detection schemes [8, 9] with many changes such as
compress the datasets, machine learning techniques, reduce self signal from
the dataset, different numbers of normal and malicious nodes, etc. Table 1
shows the related works that detect blackhole, wormhole, and other attacks
in MANETs. Many are lightweight techniques that analyzed few network pa-
rameters such as acknowledgments, hop-counts, sequence number, message
transfer mode, message counts, etc. These are not powerful enough to detect
blackhole and wormhole attacks. A few works have applied the ML technique,
which shown lower detection rates. There is still no unique method that gen-
erates datasets and efficiently applies ML techniques in MANETs to detect
blackhole and wormhole attacks.

3 Problem definition

Routing disruption attacks affect the route selection and data transmission
process in the network. Malicious nodes easily enter into a wireless network
and attract routing packets during route creation by false information. These
nodes advertise themself as a part of the destination and route reply through
the reverse path to the sender node. Attacker nodes are dynamic that mainly
modify hop count, sequence number and also send acknowledgment packets.
Figure 1 shows the attacking nature of malicious node (M) in the network.

K

L

M

IH

G

F
E

E

B

A

C

D

N

J

S

Fig. 1: MANET structure

The MANET contains a source (S) and destination (D) with many normal
nodes. This network has many legitimate routes as SAEFLND, SCEHIJD, and
others; whenever a malicious node attracts route request packets and replies,
that deviates path selection towards malicious information. The sender node
selects the shortest path as SAEFMD or SCEGMD, which does not exist.
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A malicious node receives the packets and also sends false acknowledgment
packets. Two or more malicious nodes can create a tunnel where data packets
enter at one end and replay at another end. We have worked with two routing
disruption attacks, which are the following.

3.1 Blackhole attack

A malicious node advertises itself having a valid route to the destination node
by violating a routing property; then, it drops received packets without for-
warding them [8]. A reactive protocol Ad-hoc On-demand Distance Vector
(AODV), provides an on-demand route in MANETs. This routing protocol
broadcast Route REQuest (RREQ) from a source node to a destination node
containing information such as destination sequence number, a destination
address, hop count, neighbors of the node, and their tables accordingly. This
process iterates until RREQ reaches the destination node; then, it proceeds
backward and reestablishes the reverse route send back Route REPly (RREP)
to the sender node [16]. Finally, the source node receives more RREPs, and it
chooses the best possible path as min hop count and max sequence number.
The malicious node activities as blackhole attack are summarized below.

1. When a malicious node receives RREQ; then, it considers destination node
information. It is set to the spoof destination address and prepares RREP.

2. The malicious node sends prepared RREP through the intermediate nodes
or actual route.

3. When intermediate nodes receive RREP; then, it relays in the network and
sends it to the source node through the reverse path.

4. The source node updates its routing table and uses received RREPs as min
hop count and max sequence number.

5. Malicious nodes exploit or drop data [18], when they receive.

In this process, malicious nodes deviate to the source node; they spoof
the destination address relatively smaller hop count and a higher sequence
number. Hence, the malicious path is more probable to assigns routes by the
source node.

3.2 Wormhole attack

A wormhole attack is the most dominant MANETs security threat that can not
immune to traditional security mechanisms. This attack performs whenever
the network provides authenticity and confidentiality. In many models, a high-
speed communication medium or directional antenna use for tunneling from
one malicious node to another malicious node [11, 19]. However, the deployed
network has the same functional nodes with the same radio range. In these
attacks, a malicious AODV protocol defines attack behaviors for malicious
nodes, and AODV protocol for normal nodes [20]. Two attackers in the network
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try to maintain their locations strategically. They capture the RREQ packets
and send RREP to the sender with min hop count [9, 10] and max sequence
numbers. A malicious node attracts data packets and tunnels them other-end.
This attack is dangerous for MANETs that disrupt the routing table and
attract data packets by false information. The malicious node activities as a
wormhole attack are summarized below.

1. When the malicious node receives RREQ; then, it includes false information
of the destination by modifies hop count and sequence numbers.

2. Malicious node prepares RREP and sends it through intermediate nodes.
3. Then, intermediate nodes send received RREPs to the sender through a

reverse path.
4. The source node updates the routing table and decides the data packet

path based on the received RREPs or the routing table.
5. When the malicious node received data packets tunnel them, then replay at

other-end [10, 11]. These packets may exploit by malicious nodes or move
into the tunnel loop.

In this process, malicious nodes can disrupt routing tables, exploit data
packets, misuse information, and move data packets into a loop route. They
create a tunnel whenever another malicious node in the radio range. When
the other malicious node is not in the radio range, it behaves as a blackhole
attack.

Source Destination

Normal node

Malicious node

(a) Blackhole attack

Source
Destination

Normal node

Malicious node

Tunnel

(b) Wormhole attack

Fig. 2: Representation of attacks in the network

Fig. 2 represents the nature of attacks in the network as blackhole and
wormhole attacks. It comprises malicious and normal nodes with their bidirec-
tional communications. The node communicates to nodes (or neighbor nodes)
that are in the radio range. Malicious nodes are in the Fig. 2a behave as
blackhole attack. These nodes capture maximum data packets by spoofing
routing packets and drop them. We have observed that minimum malicious
nodes captured maximum routing and data packets. However, malicious nodes
that behave as a wormhole attack create a tunnel. These malicious nodes (in
Fig. 2b) tunnel the data packets and replay at other ends without addressing
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them-self as a part of the path [9]. When multiple malicious nodes are not in
the range; then, it does not create a tunnel, only dropping the data packets.

4 Classification mechanisms

4.1 Naive Bayes

A naive Bayes classifier is a probabilistic approach [26] that predicts network
packet behavior. It also works for an unknown sample and predicts the most
probable output. This classifier considers the discrete value of available X
= {X1, X2, X3, ...., Xm} attributes and finite set C = {normal, malicious}
behaviors of network packets.

P (c|x1, x2, ..., xm) = P (x1, x2, ..., xm|c)P (c) = P (c)

m∏
j=1

P (xj |c), (1)

where xi ∈ Xj and c ∈ C, Eq. 1 computes probabilities of classes that
attributes are conditionally independent. It observes the sample probabilities,
where the conjunction of the product of the probability of each attribute.

4.2 Bayes Net

The Bayesian network creates a Directed Acyclic Graph (DAG), G=(V, E),
where V = {X1, X2, ..., Xm} is a set of attributes as vertices and directed
edges E between vertices [26]. It is also called Tree Augmented Naive Bayes
(TANB) classifier.

I(Xi, Xj |C) =
∑

xi∈Xi

∑
xj∈Xj

∑
c∈C

P (xi, xj , c) log2

P (xi, xj |c)
P (xi|c)P (xj |c)

. (2)

Eq. 2 computes edge weight between each possible attributes (Xi, Xj).
The Maximum Weight Spanning Tree (MWST) method selects and assigns
the direction of edges.

P (X1, X2, . . . , Xm) =

m∏
j=1

P (Xj |Paj), (3)

where Paj denotes the parent set of Xj and P (Xj |Paj) is conditional
distribution of attribute Xj . Eq. 3 computes the conditional probability of
attributes which can learn by maximum estimation.

Bayesian network classifier is the supervised mode of training method,
where each attribute is conditionally dependent on the class or label. Fig. 3
shows the attribute set {packet size, duration, header length, flag, hop count,
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Class

duration

packet 
size

header 
length

hop count

flag

protocol

Naive Bayes edges

Tree augmented edges

Fig. 3: Bayesian Network

protocol}, and edges between attributes. Naive Bayes edges are directed dotted
line edges between class and attribute, and tree augmented edges are solid
line edges between attributes that form MWST. It shows the conditionally
dependent attribute among attributes.

4.3 Radial Basis Function Neural Network

Radial Basis Function (RBF) neural network consists of three-layer, namely
input, hidden, and output layer. We provide input vector x={x1, x2, ..., xm} to
input layer, where m is a number of attributes. In this model, the hidden layer
maps the input layer to high dimensional data with RBF, where the Gauss
basis function is adopted as RBF [27].

h(x) = exp
(
− (x− µ)2

2σ2

)
, (4)

f(x) =

m∑
j=1

wjhj(x), (5)

where, σ > 0, x ∈ X is input, µ is the mean of inputs, σ is standard
deviation, and w denotes weight vector.

Fig. 4 shows the computational model for information processing of RBF
network, where Eq. 4 is computed on hidden layer and Eq. 5 is computed on
output layer.
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f(x)

x1

x2

xm

h1(x1)

h2(x2)

hm(xm)

Input layer Output layerHidden layer

w1

w2

wm

Fig. 4: RBF Network

4.4 Multilayer Perceptron

A multilayer artificial neural network is an interconnected group of artificial
neurons that provides a computational model [28]. In this study, we have also
considered a multilayer perceptron for predicting packet behavior in MANET,
which consists of interconnected neurons as input layer and an output layer
with a single hidden layer. The MLP is flexible regarding noisy data and able
to generalize patterns from the training set for intrusion detection [29].

x2 f(x)

xm

x1

zp

z2

z1

+1+1

b
w1

w2

wp

wmp

wm2

wm1

w2p

w1p

w11

w12

w22

w21

m
 fe

at
ur

es

p hidden 
neurons

Input layer Output layer

Fig. 5: Multi-layer Neural Network with single hidden layer

Fig. 5 shows a neuron model that x input signal received by input layer
neurons. These inputs are weighted and summed together by the next layer
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neurons. Finally, the threshold is treated as extra connection weight, and it is
applied as an activation function at the output layer of this neuron model.

y =
∑
j=1

wjxj + b, (6)

where, w denotes the weight vectors, x is the input vector, and b is biased.
The MLP is used as a classifier, the number of attributes as the number of
inputs, and hidden neurons are computed using input and output neurons.
This network provides outputs equal to the number of classes.

4.5 Random Forest

Random forest tree is also a popular classification technique that is a super-
vised learning algorithm. It creates decision trees on randomly selected data
and provides a prediction of each tree, where the system selects the best deci-
sion by a majority of results [30].

Majority 
voting

Final class

Training 
subset 1

Training 
subset 2

Training 
subset n

Decision
Tree 1

Decision
Tree 2

Decision
Tree n

Training set

Fig. 6: Random Forest

Fig. 6 is the diagrammatic representation of a random forest method. Ini-
tially, it selects random samples as a training subset from a given dataset.
Subsequently, this method constructs a decision tree for each training subset
and predicts each decision tree’s prediction result. Then, the next step per-
forms voting for each predicted outcome. Finally, this selects the prediction
result with the most votes as the final prediction. It has various applications
such as recommendation systems, network packet behavior classification, fea-
ture selection, fraud detection, and disease prediction.
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5 Proposed method

An IDS is a fast responding system that sends a warning when it finds any ab-
normality. This work applies classification techniques that classifies behaviors
of received packets as normal or abnormal. The previous Section 4 describes
detail procedures of classification techniques such as Naive Bayes, Bayesian
Network, RBF, MLP, and Random Forest.

Algorithm 1 Malicious behavior detection
Input: nodes initial data
Output: confusion matrix

1: input data
2: simulate attack in MANET.
3: each node capture *.pcap file.
4: export *.pcap data
5: select essential features.
6: store data into the database and label them.
7: apply classification methods (in Section 4) to analyze packet behavior.
8: store outcome into the confusion matrix Cm,m.
9: if testpacket behavior = predicated behavior then

10: increment Cr,r

11: else
12: increment Cr,t

13: end if
14: return Cm,m

Algorithm 1 defines the classification model in MANET, which starts with
input the node information as nodes initial position, number of normal and
malicious nodes, node movement, radio range, etc. We simulate attacks in the
MANET environment and capture *.pcap files at every node. Then, export
packet data and analyzed them. The subsequent step selects a feature set that
contains basic and derived features. After that, we store data into the database
and label them based on transferring identification specifications. This work
applies ML techniques to detect attack behaviors on the generated dataset in
MANET environments. The working principles of classification mechanisms
on the generated dataset are enumerated below in steps.

1. Initially, we generate the dataset to train learning algorithms, which detail
the data generation process in Section 6.1. It also contains the extracted
features (in Table 3). We have computed the efforts of feature generation
and labeling efforts of datasets. In this work, we have generated eight dif-
ferent datasets (in Table 4) on different parameters and variations of nodes.

2. Data normalization is the foremost step for transferring string data into
numeric data, and each feature data value scale into a proportionate range.
We have applied the label encoding method to transfer symbolic values to
distinct numeric values and normalized them into 0 to 1.
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3. This step divides the dataset into training and testing sets. We have used
the 10-cross validation method. It repeatedly trains and tests the whole
sample into ten rounds.

4. The next step applies ML techniques, namely Naive Bayes, Bayesian net-
work, RBF, MLP, and Random Forest, to detect malicious activities that
detail working principles are described in Section 4.

5. Finally, it stores the outcome of classification mechanisms into confusion
matrix and analyzes their results.

The malicious behavior detection model deploys at the node of the ad-
hoc network that monitors neighbor nodes. When the node receives packet
information from neighbor nodes, then analyzed data of both types (basic and
derived) features, and classification method predicts the behavior of received
data. Whenever the new node enters into the network; then, neighbors re-
ceive only basic features information. The proposed method is also suitable
for computing the necessary information and predicting similar behavior to
complete details. The MANET includes mobile nodes such as smartphones,
laptops, tablets, cameras, sensors, and other network devices. When mobile
nodes have insufficient memory space (i.e., sensors), we can deploy the clas-
sification model as agent-based intrusion detection (IDS nodes) [31] and the
plug-and-play method [3]. In the first approach, some nodes work as agent-
based intrusion detection that has sufficient memory space. These nodes (or
IDS nodes) strategically maintain them-self in the network. In the plug-and-
play approach, the classification model trains and transfers the function values
or input weights. Nodes need memory space only for a test sample, calculative
functions, and input weights. This approach consumes less memory space.

6 Experiments

6.1 Data preparation

The proposed method aims to learn the system using a generated training
set; then, the node analyzes receiving packets in the system. These training
sets are lightweight that consume less memory space and better computational
complexities. We have tested the performance of the system’s 10-fold cross-
validation method. This approach simulates attacks in NS-3, where some nodes
accommodate attack and data collection behaviors as a training set.

We have simulated blackhole and wormhole attacks and applied the pro-
posed approach to detect packets behavior, which simulation parameters are
shown in Table 2.

Fig. 7 shows the process of attack simulation and data collection in the
database. Firstly, we define malicious and normal nodes in a MANET envi-
ronment, where malicious nodes behave as attackers in a network that accom-
modates the attack’s behaviors. Subsequently, the system gathers *.pcap files
at every node and export data for feature selection. Then, it selects a set of



An enhanced detection system against routing attacks in mobile ad-hoc network 15

Featuring

Dataset

Packet capture 
(*.pcap) file

Attack simulation

Fig. 7: Data preparation process

Table 2: Simulation parameters

Parameter Values
Network Simulator NS-3.25
Routing protocol AODV
Channel Wireless
Simulation area 1000x1000 meter2

Number of nodes 20/30/40/50
Network topology IEEE 802.11
Addressing mode IPV4
Simulation time 100 seconds
Range of node 250 meters
Mobility of node Random way point
Speed of node 2 m/s

features that is a combination of basic and derived features. Finally, we store
the collected data in the database.

Table 3 contains a set of selected features, their data types, and generation
efforts (Eff). A feature generation effort is computed as a simple inspection
from the header file, comparison, and transforming data into other forms [32].
This feature set contains the maximum number of features that generation
efforts are small (9 features) whenever medium (8 features), and high (3 fea-
tures). However, the labeling efforts of the dataset are high that increases the
labeling costs. The feature set generation effort and its performance confirm
that it is suitable for detection systems. This feature set has twelve basic, and
eight derived features are computed from the basic features. Initially, the ba-
sic features briefly introduce as duration is a time difference of the received
packet. This network uses protocol as AODV, ICMP, etc. The flag shows the
status of the message in the binary digit. Packet size and its header length are
two different features. Hop count defines the number of intermediate nodes is
a member of the path between the current node and destination, and sender to
the current node as a request or response condition. Lifetime relates to node
energy and message types define as RREQ, RREP, RERR, ACK. Destination
sequence numbers show possible destination paths in the routing table that
avoid the loop and unreachable destination. The message sequence number is
generated by the sender and incremented by each receiver nodes. The sender
node transfers the same message to neighbors that have the same stream in-
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Table 3: Feature set

S.No. Feature name Type Eff
1 duration real medium
2 protocol string small
3 packet size integer small
4 flag integer small
5 header length integer small
6 hop count integer medium
7 life time integer medium
8 message type string small
9 destination sequence number integer small
10 message sequence number integer small
11 stream index integer small
12 message transfer mode binary small
13 land integer medium
14 number of neighbors integer medium
15 highest flow integer medium
16 average flow real high
17 lowest flow integer medium
18 average hop count real high
19 number of failed connection integer medium
20 failed connection rate real high
21 label string high

dex. Message broadcast and unicast are two main message transfer modes that
are represented in the binary digit.

Subsequently, the derived features as land when the sender and originator
nodes are the same, different, and unknown represented by three different
integer numbers. Many neighbors as several nodes in the radio range of the
node. There are three features, such as the highest flow, average flow, and
lowest flow show the activeness or dense region nodes by computing their
transferring messages. An average hop count can calculate as the total hop
count and amount of transferring the node’s message. The node maintains a
total number of moving messages and message types that also compute the
failed connection rate.

Table 4: Dataset details

Dataset
Number of nodes Number of samples Memory

spaceNormal Malicious Normal Attack Total
Blackholeds1 16 4 804 72 876 75.1 KB
Blackholeds2 24 6 1412 123 1535 131.9 KB
Blackholeds3 32 8 7878 1078 8956 800.7 KB
Blackholeds4 40 10 8661 1166 9827 875.6 KB
Wormholeds1 16 4 7631 33141 40772 3.2 MB
Wormholeds2 26 4 17251 60898 78149 6.3 MB
Wormholeds3 36 4 18062 64298 82360 6.9 MB
Wormholeds4 46 4 31565 86509 118074 9.7 MB
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We have generated eight datasets or four sets from each attack model
that details are shown in Table 4. These datasets have different combinations
of malicious and normal nodes. The random movement of nodes made their
position unpredictable - a packet signal stores as a sample in the dataset,
which the node sends to neighbors. Here, the dense neighbors and packet
signal frequency increase the size of the dataset. We exclude self signals, or
those signals contain the same sender and destination. Malicious nodes of the
wormhole attack are more active compared to blackhole attack. They have
generated more signals and shown profound changes in datasets. The last
column shows occupied memory space by respective datasets in the range of
75.1 KB to 9.7 MB. The proposed system provides better results on small
datasets or similar to large size datasets.

6.2 Performance metrics

The performance of the detection system evaluates using the confusion matrix.
It computes statistical parameters and corresponding equations, which are the
following.

TPR =
TP

TP + FN
, (7)

FPR =
FP

FP + TN
, (8)

Precision =
TP

TP + FP
, (9)

F −measure =
2 ∗ TPR ∗ Precision
TPR+ Precision

, (10)

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

where, True Positive (TP) and True Negative (TN) are correct predictions
of the detection system, while False Positive (FP) and False Negative (FN)
are the wrong predictions. TP rate (TPR) is the correct detection rate, and
the FP rate (FPR) is the system’s incorrect detection rate. The system’s high
performance determines the higher value of TPR, Precision, F-measure, and
a lower amount of FPR. F-measure is the harmonic mean of TPR and pre-
cision that evaluates the average performance; accuracy evaluates the overall
performance.
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Table 5: Statistical parameters of Blackhole dataset

Dataset Classifier Class TP TN FP FN

B
la

ck
h

o
le

d
s1

Naive Bayes
normal 699 69 3 105
attack 69 699 105 3

Bayes Net
normal 798 55 17 6
attack 55 798 6 17

RBF
normal 799 64 8 5
attack 64 799 5 8

MLP
normal 804 72 0 0
attack 72 804 0 0

Random Forest
normal 804 72 0 0
attack 72 804 0 0

B
la

ck
h

o
le

d
s2

Naive Bayes
normal 1256 110 13 156
attack 110 1256 156 13

Bayes Net
normal 1334 105 18 78
attack 105 1334 78 18

RBF
normal 1397 57 66 15
attack 57 1397 15 66

MLP
normal 1404 104 19 8
attack 104 1404 8 19

Random Forest
normal 1407 104 19 5
attack 104 1407 5 19

B
la

ck
h

o
le

d
s3

Naive Bayes
normal 7571 744 334 307
attack 744 7571 307 334

Bayes Net
normal 7685 751 327 193
attack 751 7685 193 327

RBF
normal 7727 652 426 151
attack 652 7727 151 426

MLP
normal 7841 941 137 37
attack 941 7841 37 137

Random Forest
normal 7868 977 101 10
attack 977 7868 10 101

B
la

ck
h

o
le

d
s4

Naive Bayes
normal 8010 696 470 651
attack 696 8010 651 470

Bayes Net
normal 8062 838 328 599
attack 838 8062 599 328

RBF
normal 8248 639 527 413
attack 639 8248 413 527

MLP
normal 8462 855 311 199
attack 855 8462 199 311

Random Forest
normal 8598 989 177 63
attack 989 8598 63 177

6.3 Experimental results

This subsection presents the experimental results of the proposed method
for attack detection. Table 5 and Table 6 represent statistical parameters of
blackhole and wormhole attacks as TP, TN, FP, FN which are computed us-
ing confusion matrix. Further, Table 7 represents experimental results as TPR,
FPR, Precision, and F-measure. We have executed the proposed system with
five classifiers and tabled their results. These tables have shown the compara-
tive results of different classifiers and shown statistical measures that present
the classifiers’ accurate performance for each sample. The normal category’s
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Table 6: Statistical parameters of Wormhole dataset

Dataset Classifier Class TP TN FP FN
W

o
rm

h
o
le

d
s1

Naive Bayes
normal 7620 32546 595 11
attack 32546 7620 11 595

Bayes Net
normal 7631 32952 189 0
attack 32952 7631 0 189

RBF
normal 7513 32907 234 118
attack 32907 7513 118 234

MLP
normal 7631 33140 1 0
attack 33140 7631 0 1

Random Forest
normal 7631 33141 0 0
attack 33141 7631 0 0

W
o
rm

h
o
le

d
s2

Naive Bayes
normal 17150 59572 1326 101
attack 59572 17150 101 1326

Bayes Net
normal 17247 60108 790 4
attack 60108 17247 4 790

RBF
normal 16671 59754 1144 580
attack 59754 16671 580 1144

MLP
normal 17242 60861 37 9
attack 60861 17242 9 37

Random Forest
normal 17246 60879 19 5
attack 60879 17246 5 19

W
o
rm

h
o
le

d
s3

Naive Bayes
normal 18062 63174 1124 0
attack 63174 18062 0 1124

Bayes Net
normal 18061 63785 513 1
attack 63785 18061 1 513

RBF
normal 17780 63286 1012 282
attack 63286 17780 282 1012

MLP
normal 18062 64289 9 0
attack 64289 18062 0 9

Random Forest
normal 18062 64295 3 0
attack 64295 18062 0 3

W
o
rm

h
o
le

d
s4

Naive Bayes
normal 31323 84096 2413 242
attack 84096 31323 242 2413

Bayes Net
normal 31553 84797 1712 12
attack 84797 31553 12 1712

RBF
normal 10045 28982 423 695
attack 28982 10045 695 423

MLP
normal 31527 86277 232 38
attack 86277 31527 38 232

Random Forest
normal 31541 86433 76 24
attack 86433 31541 24 76

FP value indicates the number of attack samples that bypasses the detection
system whenever FN increases overhead. Therefore, the higher TP and lower
FP indicates a better detection system.

The evaluation finds that the wormhole attack achieves approx full positive
detection rate that can not depend on the dataset size. Random forest classi-
fier performs better than other classifiers, whereas MLP also provides similar
performance as Random forest. As blackhole attack detection, the system per-
forms better on the small training set that is a favorable sign for the ad-hoc
networks. Experimental results have also shown that the MLP and Random
Forest classification methods are more suitable to detect attacks or intrusions
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Table 7: Comparative results of classifiers and best result is shown in boldface.

Dataset Classifier TPR FPR Precision F-measure

Blackholeds1

Naive Bayes 0.877 0.049 0.946 0.928
Bayes Net 0.974 0.217 0.973 0.973
RBF 0.985 0.102 0.985 0.985
MLP 1.000 0.000 1.000 1.000
Random Forest 1.000 0.000 1.000 1.000

Blackholeds2

Naive Bayes 0.890 0.106 0.944 0.916
Bayes Net 0.937 0.139 0.954 0.943
RBF 0.947 0.494 0.942 0.944
MLP 0.982 0.143 0.982 0.982
Random Forest 0.984 0.142 0.984 0.984

Blackholeds3

Naive Bayes 0.928 0.277 0.928 0.928
Bayes Net 0.942 0.270 0.939 0.940
RBF 0.936 0.350 0.931 0.933
MLP 0.981 0.112 0.980 0.980
Random Forest 0.988 0.083 0.988 0.988

Blackholeds4

Naive Bayes 0.866 0.364 0.894 0.889
Bayes Net 0.906 0.256 0.916 0.910
RBF 0.904 0.404 0.900 0.902
MLP 0.948 0.238 0.946 0.947
Random Forest 0.976 0.135 0.975 0.975

Wormholeds1

Naive Bayes 0.985 0.005 0.986 0.985
Bayes Net 0.995 0.001 0.995 0.995
RBF 0.991 0.014 0.991 0.991
MLP 1.000 0.000 1.000 1.000
Random Forest 1.000 0.000 1.000 1.000

Wormholeds2

Naive Bayes 0.982 0.009 0.983 0.982
Bayes Net 0.990 0.003 0.990 0.990
RBF 0.978 0.030 0.978 0.978
MLP 0.999 0.001 0.999 0.999
Random Forest 1.000 0.000 1.000 1.000

Wormholeds3

Naive Bayes 0.986 0.004 0.987 0.986
Bayes Net 0.994 0.002 0.994 0.994
RBF 0.984 0.016 0.985 0.984
MLP 1.000 0.000 1.000 1.000
Random Forest 1.000 0.000 1.000 1.000

Wormholeds4

Naive Bayes 0.978 0.013 0.979 0.978
Bayes Net 0.985 0.006 0.986 0.986
RBF 0.972 0.051 0.972 0.972
MLP 0.998 0.002 0.998 0.998
Random Forest 0.999 0.001 0.999 0.999

in MANETs. These two classifiers have not predicted any false prediction on
some datasets, or few samples are falsely predicted. A set of selected features
(maximum features) took less effort to generate data and achieve a better de-
tection rate. It is also observed that the feature set captures the maximum
activities of nodes in networks. Moreover, the proposed work describes the
enhanced mechanism for attack detection in MANET that shows the better
detection rates.

Fig. 8 shows the classifier’s average detection rates with its deviation. It
presents the detection rates of Naive Bayes, Bayes Net, RBF, MLP, and Ran-
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(a) Detection of Blackhole attack (b) Detection of Wormhole attack

Fig. 8: Performance of classifiers

dom Forest classifiers of blackhole attack (Fig. 8a) and wormhole attack (Fig.
8b). The proposed classification model evaluates the performance, such as
consistency in performance, efficiently detects active malicious node samples,
and is suitable for various size datasets. The experimental results show that
wormhole attackers are more productive than blackhole attackers. They gen-
erate huge signals in a few seconds. Therefore, the wormhole dataset size is
larger than the blockhole dataset; whenever the number of normal and ma-
licious nodes is the same, and also the same simulation time. The deviation
graph shows the minimum deviation of MLP and Random Forest classifiers. It
confirms that these are better than other classifiers. Wormhole attack detec-
tion rates have achieved a peak position with a few deviations than blackhole
attack.

6.4 Complexity analysis

The effect of the machine learning techniques in training and testing is ana-
lyzed in time and space complexities [13, 33]. We can compute the time com-
plexity and space complexities using equations; where, the number of samples
and features measures complexities. The number of comparisons defines time
complexity.

Time Complexity(all training) = TTR ∗ TTn, (12)

where, TTR is the number of training samples and TTn is number of test
samples. It computes the time complexity of the training set for all test sam-
ples.

Space Complexity = TTR ∗ nFeatures, (13)
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Table 8: Comparative complexities

Dataset TTR TTn
Time
complexity

Space
complexity

Memory size
(in MB)

Blackholeds1 788 88 69344 1760 0.0067
Blackholeds2 1382 153 211446 3060 0.012
Blackholeds3 8060 896 7221760 17920 0.068
Blackholeds4 8844 983 8693652 19660 0.075
Wormholeds1 36695 4077 149605515 81540 0.311
Wormholeds2 70334 7815 549660210 156300 0.596
Wormholeds3 74124 8236 610485264 164720 0.628
Wormholeds4 106267 11807 1254694469 236140 0.901

where, nFeatures represents number of features, Eq. 13 computes the space
complexity of the training set.

Space Complexity(NaiveBayes function) = nClass ∗ nFeatures, (14)

where, nClass is number of classes or labels in training set, Eq. 14 computes
the space complexity of probabilistic functions of Naive Bayes classifier.

Space Complexity(BayesNet function) = nClass ∗ nFeatures+ ϕ, (15)

where, ϕ represents the link of nodes (directed Edges); these directed edges
are represented using a matrix or linked list. Eq. 15 computes the space com-
plexity of probabilistic functions of the Bayesian Network for a test sample.

Space Complexity(RandomForest) = nTree ∗ nFeatures+ ε, (16)

where, nTree is number of tree constructed during the execution and ε is an
extra space which takes during voting and decision. Eq. 16 computes the space
complexity of functional values of features of the Random Forest classifier.

Space Complexity(NN weight) = nHidden ∗ nFeatures+ ε, (17)

where, nHidden is the number of hidden layer of Neural Network (NN),
Eq. 17 computes the space complexity of input weights of Artificial NN.

MemorySize(inMB) =
4 ∗ nSamples ∗ nFeatures

10242
, (18)

where, nSample is number of samples, Eq. 18 computes the memory size of
the dataset. We have assumed that a single (cell) value of the dataset consumes
4-byte memory.

We have applied 10-fold cross validation method; therefore, TTR (90%)
and TTn (10%). Table 8 presents TTR, TTn, Time and space complexities,
and memory size (in MB) of training set . Table 9 shows the approx space
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Table 9: Complexities of functions or input weights of classifiers

Classifier Space complexity (approx)
Naive Bayes 2*20 = 40 (Eq. 14), 40*4 (Eq. 18) = 160 byte
Bayes Net 2*20 + 20 = 60 (Eq. 15), 60*4 (Eq. 18) = 240 byte
RBF 1*20 + 2 = 22 (Eq. 17), 22*4 (Eq. 18) = 88 byte
MLP 1*20 + 2 = 22 (Eq. 17), 22*4 (Eq. 18) = 88 byte
Random Forest 5*20 + 5 = 105 (16), 105*4 (18) = 420 byte

complexity of function or input weights of the classifiers that compute using
equations. It is computed using nHidden = 1, nFeatures = 20, nClass = 2, ϕ
= nFeatures, nTree = 5, ε = 2 (for NN) and ε = 5 (for Random Forest). This
computation shows the RBF and MLP consumes less memory for function or
input weights.

6.5 Performance comparison

The proposed method is different from cryptographic and traditional wired
IDSs that is compatible with node mobility. In the cryptographic technique,
the main difficulties of key exchange from intermediate nodes when continually
changing their positions. Some methods cluster the nodes and store keys of
corresponding members at cluster heads, while these heads act as the router
for their clusters. When the nodes move into other clusters, then increase the
overhead of cluster heads and key management. An attacker can easily mod-
ify or provide false acknowledgments; then, acknowledgments based attack
prevention techniques [16] may not mitigate attacks. Whenever lightweight
methods analyze a few network parameters [10, 11]; therefore, these are not
powerful enough to prevent attacks. Some IDSs datasets are publicly available
for a wired network whenever there is no such dataset available for MANETs.
Therefore, we have generated lightweight datasets for the MANET environ-
ment. These have collected data with 20 extracted features and labeled for the
supervised mode of training methods. This work simulates routing attacks as
blackhole and wormhole that can drop or tunnel the encrypted packets. Most
of the existing techniques are executed in NS-2 and others, whenever we have
executed the proposed work in NS-3. This work is not used any additional
hardware such as directional antennas, timer, and high-speed communication
medium. It consumes the minimum network resources and provides better
performance than existing methods.

We have analyzed the packet behaviors based on multiple characteristics
rather than only acknowledgment signals, energy of packets, delay of pack-
ets, round trip time, message sequence number, and hop count. This work
has also analyzed the characteristics of MANETs and suggested a significant
feature set, which leads to organizing the training set. It overcomes the limita-
tions of detection mechanisms (in Table 1) and increases detection accuracy.
In MANET, DAWA is a defending approach using fuzzy logic and an artificial
immune system that defends a wormhole attack. DAWA is lightweight IDS
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Table 10: Comparative performance

Algorithm Accuracy (%) FPR (%)
C4.5 [24] 93.23 1.65
SVM [24] 87.18 3.20
C4.5 + ACO [24] 95.06 0.87
SVM + ACO [24] 90.82 2.42
C4.5 + PSO [24] 95.37 0.72
SVM + PSO [24] 91.57 1.94
EDADT [24] 98.12 0.18
Neutrosophic GA [24] 99.36 0.09
SA-IDPS [25] 99.74 0.14
Proposed (MLP-IDS) 99.83 0.20

that shows a low detection rate [11]. M-DelPHI detection mechanism achieved
90% TPR and 20% FPR that resists a wormhole attack [10]. The deep learn-
ing algorithm [3] is executed on 24 features and achieved 98.5% detection rate.
There is no dataset online available for intrusion detection in MANETs. There-
fore, many authors validate their works on the KDD’99 dataset [3, 24, 25]. We
have also executed the MLP on the KDD’99 dataset and tabled (in Table 10)
comparative results. The dataset has been divided into equal training and test
sets that are labeled as normal and abnormal. We have shown the comparative
results and evaluated the complexities of five classifiers such as Naive Bayes,
Bayes Net, RBF, MLP, and Random Forest. These results show better perfor-
mances and lesser complexities of the MLP. It also achieves a better detection
accuracy than existing methods.

6.6 Analysis of variance (ANOVA)

We have evaluated this scheme through a statistical ANOVA test. It is used
to test differences between two or more means, and computes test statistic (F
value). This test obtains probability (P value) that assume the null hypothesis
when the means of different populations are equal [34]. The work assumes five
different populations and mathematically defines null hypothesis as H0: µ1 =
µ2 = µ3 = µ4 = µ5. Here, it also defines an alternate hypothesis when at
least one mean is different. We have conducted ANOVA with our simulations

Table 11: Data summary of classification mechanisms in terms of F-measure

Methods
Blackhole attack Wormhole attack

Mean Std. Dev. Std. Error Mean Std. Dev. Std. Error
Naive Bayes 0.9153 0.0184 0.0092 0.9828 0.0036 0.0018
Bayes Net 0.9415 0.0257 0.0129 0.9913 0.0041 0.0021
RBF 0.9410 0.0343 0.0172 0.9813 0.0081 0.0041
MLP 0.9773 0.0221 0.0110 0.9993 0.0010 0.0005
Random Forest 0.9868 0.0104 0.0052 0.9998 0.0005 0.0003
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Table 12: Comparison of statistical values in terms of F-measure for Blackhole
attack detection

Source SS DF MS F value P value F critical
Between groups 0.0137 4 0.0034 6.184 0.0038 3.056
Within groups 0.0083 15 0.0006
Total 0.0220 19
Note: Sum of square (SS), Degrees of freedom (DF), and Mean square (MS).

Table 13: Comparison of statistical values in terms of F-measure for Wormhole
attack detection

Source SS DF MS F value P value F critical
Between groups 0.0012 4 0.0003 15.9216 0 3.056
Within groups 0.0003 15 0
Total 0.0015 19
Note: Sum of square (SS), Degrees of freedom (DF), and Mean square (MS).

against attack detection with five different techniques outcome on F-measure
for both types of attacks. This statistical test confirms the significance of the
proposed scheme, that significance level αANOV A is 0.05, and the results of
ANOVA are shown in Tables 11, 12, and 13. These tables visualize the ANOVA
test for all performance Fvalue > Fcritical that rejects the null hypothesis.
Table 11 shows that all means are different due to this fact Pvalue < 0.05.

Table 11 contains the data summary of the statistical test as Mean, Stan-
dard Deviation (Std. Dev.), Standard (Std.) Error of Blackhole and Worm-
hole attacks detection for five classification mechanisms. It shows the different
means for all performance with minimum deviations and errors. Whenever,
Tables 12 and 13 show statistical values of the ANOVA test for both rout-
ing attack detection mechanisms. We have performed the statistical test on
F-measure that is the harmonic mean of Recall and Precision of the system
performance; thus, it also confirms the system performance as Recall and Pre-
cision.

7 Conclusion

The research work proposed a novel method of intrusion detection in MANETs.
It selects a set of significant features that covers the maximum characteristics
of nodes in networks. We have simulated two different routing disruption at-
tacks in NS-3 and collected adequate data for the training set. Then, the
classification technique classifies receiving packet signals. This work consid-
ers the maximum characteristics of networks and provides a higher detection
rate than existing algorithms without using any external hardware or network
resources.

Overall, the experimental result has shown the best performance of the
proposed method to actively detect malicious packets. In this system, we have
characterized significant features that increased the detection capacity. The
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proposed method can be applied in military services, social area security,
search operations, where wireless intruders are more active. This work can
inspire researchers from the area of MANET security, wireless network secu-
rity, or intrusion detection in any wireless network, which can also deal with
many challenging tasks. The proposed method’s performance encourages us
to extend this method using unsupervised learning techniques that remove
labeling costs.
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