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The addition of electronic promoters chemically (chemical promotion) or electrochemically

(electrochemical promotion or EPOC) induces very significant and similar effects on cata-

lytic hydrogen production reactions such as CH4 and CH3OH conversion reactions, water-

gas shift or ammonia decomposition. Both kinds of promotional phenomena follow the

same general mechanism but the usefulness of the latter is highlighted. In this paper, the

most important and recent contributions of the electrochemical promotion in different

hydrogen production reactions are reviewed and compared to those based on conventional

chemical promotion methods, mostly focusing on alkali promoters. The functional simi-

larities and operational differences between both promotion ways are pointed out, and

their impact on the hydrogen production technology is discussed. By this way the possi-

bility of in-situ controlling the promoter coverage on the catalyst under working conditions

and the in-situ catalyst regeneration from carbon deposition, among other novel contri-

butions, lead EPOC to new opportunities for both: development of tailored effective cata-

lysts and operation of hydrogen catalytic processes.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Hydrogen is a very important feedstock in the chemical in-

dustry and a promising energy carrier with main application

in internal combustion engines and in fuel cell technology, as

clean and efficient alternative to the massive consumption of

fossil fuels [1e4]. There are many possible ways to produce

hydrogen. For instance, it can be obtained from electro-

oxidation of water [5e7] or alcohols [8e11], biomass thermo-

chemical conversion processes [12,13] or photocatalytic water

splitting [13,14]. However, H2 ismainly obtained from catalytic

steam reforming of methane [15e17] due to its advanced
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technological development degree, the high availability of the

feedstock and its high H/C ratio. Other methane conversion

reactions for H2 production are the partial oxidation, the

autothermal reforming (i.e., with both O2 and H2O) and the dry

reforming (i.e., with CO2). All these reactions are typically

catalysed by nickel or noblemetals (e.g. Pt or Rh) supported on

different metal oxides [15,16], and are usually followed by

additional H2 purification steps through preferential oxidation

of CO or water-gas shift reaction [18]. The use of liquid

hydrogen carriers such as alcohols is also acquiring increasing

interest mainly due its easier transport, handle and storage at

ambient conditions. For instance, hydrogen may be obtained

from decomposition, steam reforming or partial oxidation of
gra).
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methanol by using catalysts based on Cu or groups 8e10

metals [16,19,20]. The main difficulties found when carrying

out catalytic reactions for H2 production from carbon feed-

stocks are related to metal particles sintering and catalyst

deactivation by carbon deposition or sulphur poisoning.

Hence, a high catalytic activity, a low CO selectivity and a high

stability of the catalyst are always themain targets. In order to

improve the behaviour of these catalysts two kinds of pro-

moters have been widely studied in literature: structural and

electronic ones. The use of structural promoters such asmetal

oxide supports, e.g. Al2O3 or CeO2 [15,16,19,20], allows to

improve the dispersion and the catalyst stability against sin-

tering of the active phase. On the other hand, the use of

electronic promoters allows to enhance the catalytic proper-

ties of the active phase itself, for instance by using alkali

dopants [21,22]. This second kind of promotion is of great

scientific and technological important since it allows to

introduce several achievements on the catalytic performance,

as well as to overcome some of the typical limitations in cat-

alytic H2 production processes such as the low catalytic

selectivity and the carbon deposition in reforming reactions

[23e29]. The doping of heterogeneous catalysts with elec-

tronic promoters, also known as chemical, classical or con-

ventional promotion, is typically carried out by the chemical

addition of oxide or hydroxide compounds onto the catalyst

support together with the active phase. In this way, one can

highlight the recent studies onmethanol steam reforming and

water-gas shift (WGS) reactions carried out by the groups of

prof. Wasserscheid [30e32] and Davis [33e36], where different

Pt-based catalysts were doped by alkali metals such as Li, Na

or K. These chemical promoters are typically added during the
Fig. 1 e Schematic illustration of catalyst doping

procedures by (a) chemical and (b) electrochemical

promotion.
catalysts preparation steps (e.g. by the incipient wetness

impregnation method) as schematized in Fig. 1a. In this case,

the promoter coverage on the active phase cannot be exactly

controlled since part of the promoter is deposited on catalyt-

ically inert support areas. In addition, the amount of promoter

is fixed before catalyst exposure to reaction conditions and it

cannot be modified afterwards.

In the last years a new tool has been developed for intro-

ducing chemical promoters on catalyst surfaces through the

use of solid electrolytes as electro-active catalyst supports by

the phenomenon of electrochemical promotion of catalysis

(EPOC). In this case, the coupling of catalysis and electro-

chemistry has opened a newway to promote and improve the

catalytic activity/selectivity of catalysts under working reac-

tion conditions [37]. This technique consists of the electro-

chemical pumping of promoter ions to a catalyst film from the

electro-active catalyst support which is a solid electrolyte

material (Fig. 1b). For example, in the case of alkaline solid

electrolyte materials (e.g., Naþ- or Kþ- conductor) the appli-

cation of a cathodic polarization (negative electric polariza-

tion) between the catalyst-working electrode and an inert

counter electrode deposited at the opposite side of the solid

electrolyte induces the migration (back-spillover) of the pro-

moter ions to the catalyst film. Hence, the electrochemical

potential driving force allows to modify the promoter

coverage directly on the active phase in a reversible and

controllable way [37,38]. However, it should bementioned that

the origin and fundamentals of this way of promotion (EPOC)

is essentially the same as the origin of the chemical promotion

in heterogeneous catalysis which consists on themodification

of the chemisorption properties of the catalyst in the presence

of the electronic promoter [39]. In fact, both kinds of promo-

tion methods, chemical and electrochemical, are functionally

identical and only operationally different [37]. In contrast to

chemical promotion, the electrochemical promotion allows

the in-situ modification of the promoter amount under

working reaction conditions. Such an advantageous feature of

EPOC vs. chemical promotion has been applied in the past in

numerous catalytic reactions as reviewed in detail elsewhere

[37,40]. For instance, chemical and electrochemical promotion

mechanisms by sodium have been extensively compared for

NO reduction by hydrocarbons [41,42]. Concerning the H2

production reactions, Tsiplakides and Balomenou [43] criti-

cally analysed the key role that the EPOC concept could play in

this field. In this way, the EPOC phenomena has been applied

in some of the most important H2 production reactions such

as methane [44e46] and methanol [47e53] conversion via

steam reforming and partial oxidation reactions, the water-

gas shift process [54,55] and ammonia [56] decomposition re-

actions. In these studies different metal catalysts and solid

electrolyte materials (ionic conductors) were employed as

summarized in Table 1. This table also shows the maximum

hydrogen production rate enhancement ratio (induced by

EPOC) reported in each work.

The aim of this paper is to review and describe some of

these previous works showing the most relevant achieve-

ments in the field. In this way we tend to analyse the common

features between chemical and electrochemical promotion of

catalysis in hydrogen production reactions in order to bring

closer this novel and fascinating phenomenon to the catalysis
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Table 1 e Electrochemical Promotion studies published in literature on H2 production catalytic reactions.

Reactants Gaseous products Solid electrolyte Catalyst Maximum H2 production
rate enhancement ratio

Ref.

CH4, H2O H2, CO, CO2 YSZ Ni 2 [44]

Pt-YSZ 4 [45]

CH4, H2O, O2 H2, CO, CO2 Na-bAl2O3 Pt-YSZ ∞ (regeneration of

deactivated catalyst)

[46]

CH3OH H2, CO, H2CO, CH4 K-bAl2O3 Ni 5 [47]

YSZ Ag Not quantified [48]

CH3OH, H2O H2, CO, CO2 K-bAl2O3 Ni 2 [47]

Pt 5 [49]

CH3OH, O2 H2, CO, CO2, H2CO, HCOOCH3 K-bAl2O3 Pt 6 [50]

NieC 2 [51]

Au-YSZ 9 [52]

Cu 3 [53]

CO, H2O H2, CO2 YSZ Pt 3 [54]

K-bAl2O3 Ni 3 [55]

NH3 H2, N2 K2YZr(PO4)3 Fe <2 [56]
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scientific community, specially into the hydrogen production

field.
Fig. 2 e Effect of K/Ni ratio on (a) steady-state CO2 and CH4

conversion and (b) amount of coke deposited after 6 h

reaction at 700 �C. Catalysts: Ni/Al2O3 doped with K2O

(0e5 wt.%). Methane dry reforming conditions: CH4/CO2

composition of 50%/50%, space velocity of 22500 h¡1.

Reprinted with permission from Ref. [25].
Chemical and electrochemical promotion of CH4

conversion reactions

Catalysts employed in methane conversion reactions for H2

production (e.g., steam reforming, autothermal reforming or

dry reforming) are typically based on nickel [16] supported on

Al2O3 and/or other oxides of transitionmetals (e.g. Zr) and rare

earth elements (e.g. Ce, La), thus improving the dispersion and

stability of the Ni particles [24e27,57]. As mentioned below,

alkali and alkaline-earth promoters are also commonly used

to improve the activity and/or selectivity of reforming cata-

lysts [15,16]. A typical preparation method consists of the

impregnation of the catalyst support with an aqueous solu-

tion of metal precursors such as nitrates [23e25,27]. For

instance, a common promoter is MgO which has shown to

enhance the catalytic activity in the different CH4 conversion

reactions since its presence causes water adsorption activa-

tion [16,23,26]. On the other hand, in the steam reforming of

mixtures of CH4 and C2H6, chemical promotion with potas-

sium increases the catalyst selectivity toward the reforming of

the former [58,59]. However, potassium addition usually cau-

ses the decrease of the overall methane conversion due to the

blockage of catalyst active sites [23e27,58,59]. It is important

to note that in all cases the stability of the catalysts is

enhanced by the addition of alkali and alkaline-earth metals

[23e27,58,59]. This kind of promoters is of particular interest

in the case of Ni-based catalysts, which are especially prone to

deactivation by deposition of carbon fibres or filaments [16,60].

In the presence of steam, i.e., in methane steam reforming

and autothermal reforming, the increase in the catalyst sta-

bility is mainly attributed to the strengthening of water

chemisorption on the catalyst surface and, thus, to the pro-

motion of the gasification of the carbonaceous species

[23,24,58,59]. Furthermore, the suppression of carbon deposi-

tion is observed even in methane dry reforming (with CO2)

over K-promoted catalysts, due to the fact that alkali pro-

moters firstly block the most active sites responsible for both
methane reaction and carbon deposition [25,27]. For instance,

Fig. 2 (directly obtained from Ref. [25]) shows the influence of

potassium loading on the catalytic activity of a Ni/Al2O3

catalyst in methane dry reforming (Fig. 2a) and on the carbon

deposition (Fig. 2b). It is clear that the addition of fairly low

amounts of K2O (c.a. 0.2 wt.%) did not significantly reduce the

methane conversion while it caused a sharp decrease in the

http://dx.doi.org/10.1016/j.ijhydene.2017.03.085
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formation of carbon deposits which leads to a better catalyst

stability.

One can find in literature an equivalent promotional effect

in alkali electrochemically promoted catalysts. In this case the

possibility of in-situ controlling the amount of alkali promoter

on the catalyst allows not only the prevention of the catalyst

deactivation by carbon deposition during methane reforming

reactions, but also the catalyst activation and regeneration in

the course of the catalytic reaction, as previously reported by

our group [46]. In this study it was shown that a Pt-based

catalyst film, which also behaved as working electrode, was

electro-promoted under different methane reaction atmo-

spheres by the electrochemical supply of Naþ ions from the

Na-bAl2O3 electroactive catalyst support (i.e., Naþ conductor).
Fig. 3 e (a) Dynamic response of H2 production rate to step

changes in applied electric potential (Vcell) under methane

autothermal reforming (ATR, CH4/H2O/O2 composition of

1%/4%/0.2%) and methane partial oxidation (MPO, CH4/O2

composition of 1%/0.2%) conditions at 500 �C. Catalyst: Pt-
YSZ/Na-bAl2O3 (Naþ ions conductor). (b) TPO analysis of

catalyst after exposure to ATR conditions and two different

polarization sequences: application of þ2 V (4 h); and

application of þ2 V followed by ¡1 V (4 h each). Reprinted

with permission from Ref. [46].
Fig. 3a shows the variation of the H2 production rate from

methane partial oxidation (denoted as MPO) and autothermal

reforming (denoted as ATR) under different applied potentials

(VWR) between the Pt catalyst-working electrode and the Au

counter electrode located in opposite sides of the solid elec-

trolyte (as previously shown on Fig. 1b). In this kind of elec-

trochemical promotion studies that use alkaline conductors

(such as Kþ- or Naþ- conducting supports), a positive potential

(e.g.þ2 V) is usually applied at the beginning and at the end of

each experiment in order to remove the possible alkali ions

located on the catalyst surface and hence to define a reference

catalyst state (un-promoted state). It can be observed that

under both reaction atmospheres a strong catalyst deactiva-

tion took place from the first polarization which was attrib-

uted to the carbon deposition. However, it can be observed

that the catalyst could be regenerated during the negative

polarizations steps (under conditions of electrochemical

pumping of ions) since the initial H2 production rates were

restored in the last positive polarization at 2 V. As in the

example of classical chemical promotion shown on Fig. 2, the

alkali promotional effect can be explained in terms of modi-

fication of the chemisorption bond strength of the different

reactants [39,61]. The back-spillover of electropositive ions

onto the Pt active sites under negative polarization would lead

to the decrease of the catalyst work function. Both the

migration (back-spillover) of alkali promoter ions via EPOC

and the concomitant modification of catalyst work function

have been confirmed by means of different surface analysis

techniques, as recently reviewed [26]. In this way, the chem-

isorption of electron acceptormolecules (i.e., H2O and,mainly,

O2) would be strengthened under negative polarization

favouring the removal of the carbon deposits. This hypothesis

was confirmed by the successive temperature-programmed

oxidation (TPO) experiments (Fig. 3b) carried out after

exposing the catalyst to ATR conditions under two different

polarization sequences: þ2 V (i.e., un-promoted state), and

þ2 V followed by�1 V (i.e., after electrochemical supply of Naþ

ions) [46]. In the latter case, a significant decrease in the car-

bon deposits was also found in good agreement with the re-

sults of chemical promotion shown on Fig. 2. These results

demonstrate the interest of EPOC (Fig. 3) vs. classical promo-

tion (Fig. 2). In both cases the same kind of alkali-derived

promotional effect is observed but EPOC allows the catalyst

activation (under promoter-free conditions) and regeneration

(in the presence of alkali promoter) in a controllable and cyclic

manner via the applied electric polarization.

In 1995, the group of prof. Vayenas already applied the

EPOC concept to the methane steam reforming reaction [44].

In this case, a Ni-based catalyst film was supported on yttria-

stabilized zirconia, i.e., ZrO2(Y2O3) (also denoted as YSZ), as

solid electrolyte (i.e., as O2�- conductor) as shown in Fig. 4a.

Fig. 4b shows the dynamic response of reactor outlet stream

composition to a potentiostatic transient from the open-

circuit potential, VWR
0 (i.e., at current cero) which is the un-

promoted state in this case, to VWR ¼ þ1 V. In this study, the

positive polarization of the electrochemical catalyst led to the

supply of O2� ions from the solid electrolyte support to the

catalyst film. This caused a decrease in the carbon deposition,

leading to an increase in both methane conversion and CO

production rate. The catalyst regeneration took place, in

http://dx.doi.org/10.1016/j.ijhydene.2017.03.085
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contrast to the previously mentioned work using a Naþ-

conductor electrolyte, upon anodic polarization because the

carbon deposits were electrocatalytically oxidized (directly)

by the O2� ions. Nevertheless, the CO production rate was
Fig. 4 e (a) Schematic illustration of the oxide fuel cell

reactor configuration. (b) Dynamic response of cell current

and mole fractions of H2O, CH4 and CO in the cell reactor

effluent to the application of an electric potential, VWR, of

þ1 V at 800 �C. Catalyst: Ni/YSZ (O2¡ conductor). Methane

steam reforming conditions: H2O/CH4 ratio of 0.6, 205

ccSTP min¡1. Reprinted with permission from Ref. [44].
enhanced 57 times during this anodic polarization (vs. open-

circuit conditions) and the rate increase was 15 times higher

than that of the steady-state rate of O2� ions supply (i.e., the

faradaic maximum possible electrocatalytic CO oxidation

rate), showing the promotional effect of the electrochemically

supplied O2� ions. One can find in literature other similar

study of EPOC for the H2 production from methane reforming

by depositing Pt nanoparticles onto a YSZ matrix [45].

In addition, it should be mentioned that a new way of

electrochemical promotion, denoted as self-sustained elec-

trochemical promotion (SSEP), has also been developed and

applied in H2 production reactions via the partial oxidation of

methane [62,63] and other heavy hydrocarbons [63e65]. In

contrast to conventional EPOC studies, the SSEP concept does

not require any external connections and electric polariza-

tion. This advantage also implies that it becomes more diffi-

cult to in-situ control the promoter coverage on the catalyst

(as via external polarization). SSEP is based on the use of

microscopic electrochemical galvanic cells composed by

the following four components (schematized in Fig. 5a):

microscopic selective anodic (NieCueCeO2) and cathodic

(La0.9Sr0.1MnO3) phases, alongwith electronic conduction (Nie

Cu) and microscopic oxygen ion conduction (YSZ) phases be-

tween both electrodes. In this configuration, once the hydro-

carbons and oxygen mixture is fed into the reactor, O2� ions

are produced at the perovskite-like cathode andmigrate to the

anode through the oxygen ion conductor material due to the

different electrochemical potentials between both electrodes.

The O2� ions participate in the hydrocarbon oxidation reac-

tion at the anode and the electrons derived from the reaction

are driven to the cathode through the electronic conductor.

For instance, Fig. 5b shows the CH4 conversion (via partial

oxidation) obtained at different reaction temperatures with

the self-sustained electrochemically promoted catalyst

(denoted as YLNCCe). The results obtained were compared

with those obtained with a similar catalyst lacking the cath-

ode (YNCCe), a catalyst lacking the O2� ion conductor (LNCCe)

and two commercial catalysts (PteCeO2 and NieCueCeO2)

[62]. It was found that above 400 �C, the SSEP catalyst pre-

sented the highest CH4 conversion as well as the highest H2

selectivity [62]. Then, all the studies mentioned above clearly

demonstrated the interest of using electronic promoters on

methane reforming and partial oxidation catalysts regardless

the way of introducing them: chemically (classical promotion)

or electrochemically via an applied electric current or poten-

tial (electrochemical promotion) or without any external po-

larization (SSEP mechanism).
Chemical and electrochemical promotion of
CH3OH conversion reactions

As in the case of methane conversion reactions, different

metal oxide supports and alkali and alkaline-earth dopants

are commonly employed to enhance the performance of the

catalysts employed in the alcohols reforming reactions, e.g.

methanol [19,20,66] and ethanol steam reforming [28,67,68].

For instance, Kusche et al. investigated the promotional effect

of potassium hydroxide [31] and potassium acetate [30]

molten salts added to Pt/Al2O3 catalysts for the steam

http://dx.doi.org/10.1016/j.ijhydene.2017.03.085
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Fig. 5 e (a) Schematic illustration of the concept of self-

sustained electrochemical promotion (SSEP) catalysts for

hydrocarbons partial oxidation. The catalysts consist of

four coupled microscopic components: NieCueCeO2 as

selective anodic phase, La0.9Sr0.1MnO3 as selective cathodic

phase, YSZ as O2¡ ions conductor and CueNi as electronic

conductor. (b) CH4 conversion variation with temperature

over the SSEP catalyst (YLNNCe), similar catalysts lacking

the cathode (YNCCe) or the O2¡ ion conductor (LNCCe) and

PteCeO2 and NieCueCeO2 catalysts. Methane partial

oxidation conditions: CH4/CO2 ratio of 1.9, space velocity of

42000 h¡1. Reprinted with permission from Refs. [65] and

[62].
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reforming of methanol. It was reported that the Pt catalytic

activity strongly depended on the KOH coverage, being the

maximum methanol conversion obtained with an optimum

KOH loading of 7.5 wt.% under given reaction conditions [31].

The detrimental effect of an excess of KOH was attributed to

the mass transfer barrier introduced into the system by the

progressive filling of the catalyst pores [31]. Regarding the

promotional effect of certain potassium salts loadings, the

authors attributed the enhancement in catalyst activity, at

least in part, to the hygroscopic nature and basicity of these
salts, which allowed increasing water availability at the cat-

alytic active sites and promoting the water-gas shift reaction

step [30,31]. Furthermore, it has been demonstrated by spec-

troscopic studies that alkali doping weakens the CeH bond of

methoxy and formate intermediate species in the methanol

reforming reaction [30,33].

In 1989, S. Neophytides and C.G. Vayenas applied, for the

first time, the electrochemical promotion to the methanol

dehydrogenation reactions to produce H2, H2CO and CO by

using a Pt/YSZ solid electrolyte cell [48]. In this study, a pro-

motional effect was found upon decreasing the applied po-

tential (i.e., upon removing O2� ions from the Pt catalyst

surface). This was explained on the basis of the decrease of

catalyst work function whichwould favour the chemisorption

of electron acceptor molecules. Hence, the methanol dehy-

drogenation mechanism would be favoured due to the elec-

tron acceptor character of the methoxy group (CH3O) and the

successive intermediate species (CHxO, x ¼ 0e2) versus the

intramolecularly bonded H [48] which is in good agreement

with the previous discussion derived from classical chemical

promotion studies [30,33]. More recently, our group have

carried out several studies related to the electrochemical

promotion of methanol conversion reactions for H2 produc-

tion by using alkaline conductors. In the first study the cata-

lytic activity of a Pt catalyst film was enhanced by the in-situ

electrochemical pumping of Kþ ions from a K-bAl2O3 solid

electrolyte (i.e., Kþ-conductor) in the methanol steam

reforming reaction [49]. The EPOC concept was also applied in

further studies under methanol decomposition [47], steam

reforming [47], and partial oxidation [50e53] reaction condi-

tions. In order to explore the different opportunities provided

by this phenomenon and its possible practical utility in this

kind of catalytic processes, several thin films prepared by

physical vapour deposition of different metals such as Pt [50],

Au [52], Cu [53] or Ni [47,51] were used. As an example of these

studies, Fig. 6 shows the influence of the electrochemical

promotion under methanol partial oxidation conditions on

the activity and H2 selectivity of a Pt catalyst film [50]. In this

study, the decrease in the applied potential and, hence, the

electrochemical supply of Kþ promoter ions to the Pt catalyst

led to a clear increase in the catalytic activity in the studied

temperature range. This can be attributed to the alkali-derived

promotional effect on the methanol dehydrogenation mech-

anism, as previously mentioned, but also to the strengthening

of the oxygen chemisorption upon decreasing the catalyst

work function since the methanol partial oxidation reaction

rate typically exhibits a positive order with respect to oxygen

partial pressure for certain (low) O2-to-CH3OH ratios [69,70].

However, the most interesting feature from this figure is the

fact that an increase in the potassium coverage improved not

only the catalytic activity but also the selectivity toward the

methanol partial oxidation instead of the total oxidation

mechanism leading to an increase of the H2 selectivity by a

factor of four. This study shows that the electrochemical

promotion, in contrast to classical chemical promotion, al-

lows to in-situ enhance the catalytic activity and selectivity of

a catalyst used in the hydrogen production frommethanol, by

means of the controlled pumping of alkali promoter ions. This

operational advantage of the EPOC phenomenon was also

pointed out with a catalyst composed of gold nanoparticles

http://dx.doi.org/10.1016/j.ijhydene.2017.03.085
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Fig. 6 e Effect of the applied potential (VWR) on the steady-

state variation of (a) H2 selectivity and (d) CH3OH

conversion at different temperatures. Catalyst: Pt/K-bAl2O3

(Kþ ions conductor). Methanol partial oxidation conditions:

CH3OH/O2 composition of 7.2%/4.6%, 6 Ndm3 h¡1.

Reprinted with permission from Ref. [50].

Fig. 7 e Effect of Kþ coverage on H2 selectivity at different

temperatures. Catalyst: NieC/K-bAl2O3 (K
þ ions conductor).

Methanol partial oxidation conditions: CH3OH/O2

composition of 4.4%/0.33%, 6 Ndm3 h¡1. Reprinted with

permission from Ref. [51].
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[52], which were successfully electrochemically activated by

Kþ ions. In this case hydrogen production rate was multiplied

by up to 9 under optimumpromotional conditions, butmethyl

formate was selectively obtained and H2 selectivity remained

still low after Kþ-induced enhancement.

One can find in literature other related studies of EPOC for

the H2 production frommethanol using non noble metals. For

instance, a Cu catalyst film prepared on a K-bAl2O3 solid

electrolyte by the physical vapour oblique angle deposition

technique (PV-OAD), also called glancing angle deposition

(GLAD), was electrochemically promoted for the methanol

partial oxidation [53]. This catalyst was formed by Cu nano-

columns which provided higher porosity and surface area

than the catalysts commonly employed in EPOC studies

deposited, for instance, by calcination of an organometallic

paste or impregnation of a precursor solution [40]. It should be

noted that most of the EPOC studies in literature are generally

focused on the use of catalyst films based on pure precious

metals of low dispersion (<5%). This feature, along with the

typically low surface area provided by the EPOC catalysts in

three-electrodes configuration, makes it difficult for these

catalysts to compete with conventional supported ones. In

this sense, the development of catalyst films such as this Cu

nanocolumnar film aims to overcome these obstacles. The

obtained enhancement of Cu catalytic activity was even

higher than that obtained with Pt-based catalyst films under

similar reaction conditions [53]. The possible applications of

the EPOC phenomenon were also evaluated with Ni-based

catalyst films for methanol decomposition, steam reforming

and partial oxidation reactions [47,51]. Fig. 7 shows the influ-

ence of the Kþ coverage on the H2 selectivity under methanol
partial oxidation conditions using a dispersed Ni catalyst [51].

It can be clearly observed that there is an optimum concen-

tration of promoter ions on the Ni catalyst which maximizes

the H2 selectivity at each reaction temperature. For example,

at 250 �C one could obtain a selectivity increase of 135% by

means of the in-situ electrochemical supply of Kþ ions to

reach a promoter loading of only c.a. 10%, which is of the same

order of magnitude as the optimum promoter loading values

reported in classical promotion studies [30,31]. Moreover,

depending on the Kþ coverage on the Ni catalyst surface and

on the reaction atmosphere, different promotional effects

were observed, apart from those related to the enhancement

of the Ni catalytic activity and themodification of the catalytic

selectivity, such as the attenuation of catalyst deactivation by

carbon deposition or the in-stu alkali-induced nickel partial

oxidation [47,51]. Furthermore, against other H2 production

technologies based on purely electrocatalytic systems, e.g.

direct methanol electro-oxidation [8,9], the EPOC studies

reviewed herein show a negligible electric energy consump-

tion since the electric current applied in all these studies is of

the order of only few microamperes.

Besides the aforementioned studies related to the electro-

chemical promotion of methanol conversion processes, a

recent contribution of alkaline electrochemical catalystsmust

be highlighted, which consists on the simultaneous H2 pro-

duction and storage and its subsequent release under fixed

mild operation conditions by only varying the applied electric

current or potential [71]. This milestone was achieved with a

nanocolumnar Ni catalyst film that was electrochemically

promoted by Kþ ions under methanol steam reforming
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conditions leading to a hydrogen storage capacity of 19 wt.%

with respect to Ni. It is noteworthy the interest of this kind of

electrocatalytic configurations for catalyst activation in

methanol conversion processes but also for the in-situ sepa-

ration and storage of the produced hydrogen which is one of

the main hot topics in the hydrogen technology field nowa-

days [72,73].
Fig. 8 e Effect of K2CO3 loading on (a) CO conversion and

CH4 selectivity over a Ru/C catalyst at different

temperatures. Water-gas shift conditions: CO/H2O

composition of 1%/2%. Reprinted with permission from

Ref. [75].

Fig. 9 e Effect of positive and negative polarization on CO2

production rate and CO conversion at 350 �C. Catalyst: Pt/
YSZ (O2¡ conductor). Water-gas shift conditions: CO partial

pressure of 0.28 kPa and different H2O partial pressures,

120 cm3 min¡1. Reprinted with permission from Ref. [54].
Chemical and electrochemical promotion of
other catalytic reactions for H2 production

Other important catalytic reaction for H2 production and

purification is the water-gas shift reaction (WGS), which is

usually included in hydrocarbons and alcohols reforming

processes in order to increase the overall hydrogen produc-

tion yield and suppress the CO concentration in the outlet

stream since this compound can severely poison the anode of

the fuel cells particularly at low-temperature operation [74].

There is an extensive literature related to the chemical pro-

motion of supported catalysts for the water-gas shift reaction

[32e36,75]. Similarly to the methanol steam reforming pro-

motion, in the water-gas shift reaction the alkali promotional

effect is attributed to the hygroscopic nature of the alkaline

salts, which increases the water availability to the catalytic

active sites [32,75] and to the alkali-induced weakening of the

formate CeH bond, being this cleavage considered the rate-

limiting step in most cases [33e36]. Fig. 8 compares the

variation of CO conversion and catalyst selectivity toward

methane formation (which is a side product) with Ru/C cat-

alysts prepared by the ethylene glycol reduced method

(denoted as Ru/C-EG) and impregnated with different con-

centrations of K2CO3 solution [75]. It is clearly observed that

water-gas shift reaction rate is enhanced with the increase of

the promoter coverage in the whole temperature range and

that the methanation reaction is fully suppressed below

300 �C with the 10 wt.% K2CO3 catalyst.

Similar effects have been found in previous EPOC studies

carried out with Ni [55] and Pt [54] catalyst films by using Kþ

andO2� ionic conductors supports, respectively. In both cases,

an electrophilic EPOC behaviour was found, since the CO

conversion was enhanced upon cathodic polarization, i.e.,

upon pumping/removal of Kþ/O2� ions to/from the catalyst

film. In this way, the consequent strengthening of the chem-

isorption bond of electron acceptor molecules such as hy-

droxyl groups and the weakening of that of electron donors

such as CO would cause the increase in the overall catalytic

activity. An example of this effect can be observed in Fig. 9 for

the case of a Pt/YSZ solid electrolyte cell [54]. The positive

order of thewater-gas shift reaction rate foundwith respect to

steam partial pressure is in good agreement with the promo-

tional effect based onwater chemisorption strengthening (i.e.,

induced under cathodic polarization). The authors also

attributed the enhancement of the water dissociation to the

increase in surface concentration of oxygen ion vacancies

near the Pt-YSZ-gas three-phase boundaries upon cathodic

polarization [54]. On the other hand, the electrochemical

promotion of theWGS reaction in a PEM fuel cell configuration

with nafion membrane, Pt cathode and Pt or PtCu anodes

[76,77] was also investigated in view of the practical
application of the EPOC phenomenon for the in-situ treatment

of CO-containing methanol reformate streams. However, the

non-faradaic increase of CO consumption rate observed in

fuel cell and oxygen bleeding operation modes was rather
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Fig. 10 e Effect of the applied potential (VWR) and the Kþ

coverage (qKþ) on NH3 decomposition reaction rate at

different temperatures. Catalyst: Fe/K2YZr(PO4)3 (Kþ

conductor). Reprinted with permission from Ref. [56].
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attributed to the O2 crossover through the membrane and the

subsequent CO oxidation increase.

The phenomenon of the electrochemical promotion of

catalysis has also been applied in other hydrogen production

reactions, such as liquid-phase hydrazine decomposition in

fuel cell configuration with NieCo anodes [78] and ammonia

decomposition with Fe catalyst supported on K2YZr(PO4)3 (i.e.,

Kþ-conductor) [56]. In fact, this latter case is an example of a

typical industrial alkali-promoted catalytic process [79,80].

Fig. 10 shows the variation of the ammonia decomposition

reaction rate by using the Fe/K2YZr(PO4)3 electrochemical

catalyst with the decrease of the applied potential (VWR) and

the corresponding increase of the potassium coverage (qKþ) on
the catalyst surface [56]. It can be observed that at tempera-

tures below 550 �C the electrochemical supply of low amounts

of potassium ions caused a 50% enhancement of the ammonia

decomposition rate. The K-promotional effect can be attrib-

uted to the strengthening of nitrogen (i.e., electron acceptor)

and the weakening of ammonia and hydrogen (i.e., electron

donors). In particular, an optimum Kþ coverage of c.a. 0.1 was

found to maximize the ammonia conversion under the stud-

ied reaction conditions [56]. In this case themain advantage of

the EPOC phenomenon against the classical promotion of

ammonia decomposition is, again, the in-situ control of the

promoter coverage and, thus, of the catalytic reaction rate.
Conclusions and prospects

This paper collects several examples found in literature

related to the chemical promotion and electrochemical pro-

motion (EPOC) of different catalytic hydrogen production
reactions. Strong similarities can be observed between both

kinds of promotion techniques. In all the cases, the nature and

magnitude of the promotional effect depends on the nature

and concentration of the electronic promoter, the reactants,

the characteristics of the catalyst employed and the reaction

conditions. However, chemical and electrochemical pro-

motions are very different from the operational point of view.

In the former, the amount of promoter is fixed from the

catalyst preparation step; in the latter, the promoters are ions

which are electrochemically supplied to the catalyst from a

solid electrolyte support in the course of the catalytic reaction.

Hence, the EPOC phenomenon is a useful tool for the in-situ

optimization of the catalytic performance under changing

reaction conditions, for instance, to maximize the catalytic

selectivity toward a particular reaction product or to in-situ

regenerate a catalyst deactivated by carbon deposition. This

opens new possibilities of improving catalytic processes for

the H2 production and new ways of operating catalytic sys-

tems by, for example, inducing catalytic activation and

regeneration cycles. Hence, although the performance of the

state-of-the-art EPOC catalysts, in terms of catalytic conver-

sion, is still far from that of commercial catalysts, the elec-

trochemical promotion provides a number of possibilities for

in-situ action and a control over catalytic processes that,

otherwise, would require the modification of the initial cata-

lyst formulation or the operation conditions. Moreover, in

contrast to conventional H2 production technologies based on

direct water or alcohol electrocatalytic oxidation, in the case

of EPOC the applied current is of the order of few microam-

peres, thus requiring negligible electric energy consumption

for its operation.

Regarding the future, beyond expanding the study of the

EPOC phenomenon to H2 production reactions with other

hydrogen sources as raw materials, different metal catalysts

or ion conductors, increasing efforts must be done for scaling-

up reactors suitable for EPOC application such as tubular or

monolithic catalyst configurations, where higher catalytic

active surface areas will be provided while keeping the three-

electrodes cell configuration. More competitive catalyst films

configurations and catalyst preparation techniques should be

also developed leading to systems based on non-noble metals

with higher metal particle dispersions, i.e., more similar to

commercial catalysts. It would also be interesting to focus on

other new different applications of EPOC in hydrogen field. For

instance, the possible activation, separation and storage of

the H2 produced would open new opportunities that may

contribute to the development of the technology for hydrogen

production. The reversible and in-situ controllable nature of

the electrochemical promotion could be further exploited by

developing electrocatalytic systems where different catalytic

processesmay simultaneously take place and be enhanced on

catalyst-electrodes deposited on both sides of the solid elec-

trolyte. This way, coupled processes such as H2 production/

catalyst regeneration or H2 storage/release could be cyclically

operated by only switching the applied electric polarization.

Moreover, the ease of operation, versatility and in-situ per-

formance of the electrochemically promoted catalysts make

them an ideal tool to optimize the promoter dose to be applied

in these catalytic processes and in any other, with a view to
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designing the most efficient catalytic formulations for the

given application.
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