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ABSTRACT 27 

Alzheimer´s disease (AD) is an irreversible neurodegenerative disorder and one of the 28 

main aging-dependent maladies of the 21st century. Currently, around of 46 million of 29 

people suffer from AD worldwide, and these data will be duplicate in 20 years. Due to 30 

the progressive aging of the population and to the prediction of an increase in the 31 

incidence of this disease, AD constitutes a serious familiar and socio-sanitary problem. 32 

Therefore, it is essential to find therapeutic strategies which are addressed to prevent, 33 

delay the onset, slow the progression and /or improve the symptoms of AD. Nowadays, 34 

the research lines focus on finding and identifying new drugs for reaching these 35 

improvements. In this article we have focused on review thoroughly the neuroprotective 36 

role, in AD of the antibiotics rifampicin, rapamycin and minocycline, because they reach 37 

quickly the brain and are very cheap. Likewise, we have found evidences both “in vitro” 38 

and “in vivo” studies, even some clinical trials about it, but minority. In a general view, 39 

all the antibiotics reviewed exert neuroprotection, because they act as an anti-40 

inflammatory and anti-amyloidogenic agents.  41 

42 



1. INTRODUCTION 43 

Alzheimer´s disease (AD) is a multifactorial disease, which induces progressive memory 44 

loss and cognitive decline, exacerbated by neurotransmitter deficits. The “amyloid 45 

theory”, which is based on the overexpression and aggregation of amyloid beta peptide 46 

(Aβ), is believed to be one of the main causes of its etiology. The presence of extracellular 47 

senile plaques containing Aβ and intracellular neurofibrillary tangles of 48 

hyperphosphorylated tau protein are neuropathologically characteristic in brain from AD 49 

patients [1]. The Aβ peptide is formed from amyloid protein precursor (APP) by 50 

sequential enzymatic processing, in which different β-secretase and γ-secretase are 51 

involved [2]. Moreover, Aβ aggregations are also tightly linked to increased oxidative 52 

stress, which is accompanied by mitochondrial dysfunction, pronounced inflammation, 53 

gliosis, axonal degeneration, and impairment of synaptic transmission induced by the 54 

deregulated cellular proteostasis [3] which ultimately ends a in progressive neuronal loss 55 

predominantly by apoptosis [4]. Even the impaired phagocytic activity of microglia 56 

favours the Aβ deposition, exacerbating memory loss [5].  57 

It is note to consider that AD is an irreversible neurodegenerative disorder and one of the 58 

main aging-dependent maladies of the 21st century. Currently, around of 46 million 59 

people suffer from AD worldwide, and these data will be duplicate in 20 years. The global 60 

demographic trend indicates that population aging is quickly increasing. The WHO 61 

estimates that, by 2040, the proportion of world population aged ≥65 is reached to 1.3 62 

billion 14 % of the total).  Due to the progressive aging of the population and to the 63 

prediction of an increase in the incidence of this disease, AD constitutes a serious familiar 64 

and socio-sanitary problem. In 2015, direct medical costs, social cost and the cost of 65 

informal care added up a total of US$ 818 billion at global level. Therefore, it is essential 66 

to find therapeutic strategies which are addressed to prevent, delay the onset, slow the 67 

progression and /or improve the symptoms of AD. Nowadays, the research lines focus on 68 

finding and identifying new drugs for reaching these improvements.  69 

Inside drugs there are a wide range of components with different nature and therapeutic 70 

purposes, such as antibiotic, antipsychotic, antihypertensive that exert assorted 71 

neuroprotective effects in AD. In the literature there many studies both pre-clinical and 72 

clinical that demonstrate that these candidates may interact with AD-associated 73 

pathophysiological mechanisms, inducing beneficial effects. Even recent studies have 74 

attributed neuroprotective properties to some foods as extra virgin olive oil 75 



(hydroxytyrosol) [6], grapes (resveratrol) [7], fresh fish (omega 3 fatty acids) [8] and 76 

beverages as green tea [9] and coffee [10]. In this article, we review the known 77 

neuroprotective effects of some antibiotics on AD development, because these 78 

inexpensive and interesting candidates, are able to penetrate the blood-brain barrier and 79 

so reach the brain, target organ of this disorder [11, 12].  Currently the rifampicin, 80 

rapamycin and minocycline are the antibiotics more used both in preclinical and clinical 81 

studies, so in this review, we will bring up date the neuroprotective role of these 82 

antibiotics on the AD. Also we will update briefly the actions of other antibiotics less 83 

researched. 84 

2. ANTIBITOTICS 85 

2.1. RIFAMPICIN 86 

Rifampicin is an antibiotic with a very broad spectrum of activity, used in the 87 

treatment of mycobacterium infections, including tuberculosis and leprosy. Several “in 88 

vitro” and “in vivo” studies have described the multifunctional properties of rifampicin 89 

and it is proposed as a promising medicine for the prevention of AD and other 90 

neurodegenerative diseases. 91 

Tomiyama et al [13] demonstrated, in cultured cells, that rifampicin had the strongest 92 

activity against the accumulation and toxicity of intracellular Aβ oligomers.  This 93 

protective effect may be achieved by scavenging ROS as well as by inhibiting Aβ 94 

oligomerization and/or the oligomer–membrane interaction. Rifampicin and its 95 

analogues, p-benzoquinone and hydroquinone, inhibited the toxicity of preformed 96 

aggregates of human islet amyloid polypeptide by binding to peptide fibrils, by 97 

recognizing a certain conformation, preventing amyloid-cell interaction. So that, this 98 

antibiotic, may mediate the conversion of plaque Aβ from toxic oligomers to non-toxic 99 

fibrils via monomers. [14-17].  100 

Furthermore, rifampicin may promote the efflux of amyloidogenic proteins from the brain 101 

into the periphery by upregulating the expression of low density lipoprotein receptor-102 

related protein-1 and P-glycoprotein  (P-gp) at the blood–brain barrier and such clearance 103 

may be more efficient for protein monomers than for oligomers [18, 19].  104 

Finally, this antibiotic has anti-inflammatory properties by inhibiting microglial 105 

activation and improves neural survival against inflammation [20]. 106 



All those mechanisms may synergistically work to protect neuron from toxic oligomers.  107 

Rifampicin is lipid-soluble, and following oral administration it is rapidly absorbed and 108 

diffuses well to most body tissues and fluids, as well as to the brain by crossing the blood–109 

brain barrier. These pharmacokinetic properties make this antibiotic a suitable medicine 110 

to treat neurodegenerative diseases that show extracellular and intracellular protein 111 

aggregates in the CNS as AD [21-23].  112 

 Umeda et al [24] showed that, rifampicin orally administered to different mouse models 113 

of AD and tauopathy, reduces the accumulation of Aβ oligomers as well as tau 114 

hyperphosphorylation, synapse loss, microglial activation in a dose-dependent manner, 115 

inhibits cytochrome c release from the mitochondria and caspase 3 activation in the 116 

hippocampus and improved the memory of the mice. Besides, these authors suggest that 117 

this antibiotic restores autophagy-lysosomal function by preventing abnormal protein 118 

accumulation beyond the capacity of the protein-degrading system. 119 

 In contrast to the numerous pre-clinical studies, only a few clinical studies have analyzed 120 

the neuroprotective effects of rifampicin in patients with AD.  121 

An epidemiological study shown that, in Japan, a group of rifampicin-treated patients 122 

with leprosy had a significantly lower incidence of dementia compared with an untreated 123 

group [25]. Histological analyses indicated that elderly no-demented leprosy patients in 124 

Japan showed significantly lower levels of senile plaques in the brain than non-demented 125 

non-leprosy subjects [26, 27]. 126 

Loeb et al. [28] developed a pilot study where oral daily doses of doxycycline 200 mg 127 

and rifampicin 300 mg for 3 months have a therapeutic role in patients with mild to 128 

moderate AD, improving their cognitive function measured with the Standardized 129 

Alzheimer Disease Assessment Scale-Cognitive subscale (SADAScog score). However, 130 

a later clinical trial, designed to confirm or refute this promising pilot results did not show 131 

any beneficial effect on cognition or function of either rifampicin or doxycycline alone 132 

or in combination after twelve months of treatment in AD patients [29]. 133 

Recently, Izuka et al. [30] examined whether rifampicin has a preventive effects in 134 

humans. These authors retrospectively reviewed 18F-FDG-PET findings of elderly 135 

patients with Mycobacterium infection treated with rifampicin. Forty non-demented 136 

elderly patients treated with rifampicin for mycobacterium infections who showed AD-137 



type hypometabolism were enrolled. The results showed that the preventive effect of 138 

rifampicin depended on the dose and the treatment duration, and the effect needs at least 139 

450 mg daily for 1 year. 140 

On the whole, despite the strong evidence on the beneficial effects of rifampicin in cells 141 

and animal models of AD, there is not an agreement about its role in humans. So that, 142 

further studies are necessary to confirm the neuroprotective effect of rifampicin alone or 143 

in combination with other antibiotics as doxycycline and to evaluate their clinical 144 

relevance.  145 

Recently, two clinical trials in phase 3 have already finished. First, the goal of the study 146 

NCT00439166, was to determine if biomarkers  Aβ(1-40) and Aβ(1-42), P-tau and T-tau, 147 

matrix metalloproteinases (MMP-2, MMP-9), pro-inflammatory cytokines (IL-1beta, 148 

TNF-alpha), and anti-inflammatory cytokines (IL-4 and IL-10) present in the 149 

cerebrospinal fluid of people with AD were affected by treatment with doxycycline and 150 

rifampicin at the start and one year after treatment. Secondly, the clinical trial 151 

NCT00692588, a larger scale study, aimed to analyze the changes in brain structure and 152 

function using MRI scans in patients treated for AD with antibiotics in order to provide a 153 

more definitive information about the promising benefit of using antibiotics as a 154 

treatment. However, no results have been yet published. 155 

2.2 RAPAMYCIN 156 

Rapamycin, produced by Streptomyces hygroscopicus, was firstly described as a 157 

fungi growth inhibitor without any effect on bacteria [31]. However, it exerted 158 

immunosuppressive effects, so the eventual use in humans as an antifungal was early 159 

discarded. However, scientific attention was focused on its immunosuppressive effects 160 

and as a result of this research in 1999 the FDA approved its use to prevent organ 161 

transplant rejection [32]. Although this is a considerable application, it has been 162 

demonstrated that this compound increases lifespan and healthspan in species as different 163 

such Caenorhabditis elengans, Drosophila melanogaster or rodents [33-35]. The data 164 

obtained in mice supposed a great impact because the positive effect of rapamycin on 165 

lifespan was evidenced when the drug was administered in late life [35].  166 

The binding activity of this compound to the serine/threonine kinase “mammal Target of 167 

Rapamycin” (mTOR) constitutes the basis of the molecular mechanism responsible of its 168 



effects. Two mTOR complexes have been described, one of them is mTORC1 which 169 

exerts multiple actions including autophagy or cell growth and protein synthesis decrease 170 

[36], and all of them are inhibited by rapamycin. The effect of mTORC1 on protein 171 

translation is mainly exerted by controlling the activity of eukaryotic initiation factor 4E-172 

binding protein (4EBP1) and ribosomal protein S6 kinase-1 (S6K1) [37]. 173 

The mTOR signaling upregulation has been related to the development of AD both in 174 

animal models and in humans [38]. The inhibition of mTORC1 by Rapamycin reduces 175 

inflammation but also the formation of A plaques and neurofibrillary tangles [39-41]. 176 

mTOR and A presented a complex relationship and when A is used in physiological 177 

concentrations, mTOR is upregulated in different cell types including mouse 178 

neuroblastoma cells or Chinese hamster ovary [42, 40]. This effect has also been 179 

demonstrated when A oligomers are administered in hippocampus of mice in vivo. 180 

Finally, it is important to highlight the negative effect of mTORC1 on autophagy and is 181 

due to a reduction in the Unc-51-like kinase1 (ULK1) phosphorylation. This kinase 182 

initiates the autophagosome formation [43] and rapamycin potentiates this mechanism 183 

blocking mTORC1.  184 

 185 

Finally, many studies have described a positive effect of rapamycin or its analogs on 186 

cognition and behaviour, not only in some AD models in mice [39-41], but also in humans 187 

[44]. In this study, Lang et al described an improvement in cognition exerted by 188 

Everolimus in humans after four weeks of treatment [44]. However, the effect of 189 

rapamycin analogs on memory remains unsolved due to some data obtained by 190 

Tischmeyer et al in Mongolian gerbils, in which mTOR signalling pathway in cortex 191 

contributes to long term memory consolidation [45].  192 

Therefore, mTOR inhibition by rapamycin or its derivatives are potential therapeutic 193 

drugs for the prevention or treatment of AD, although there is not yet any clinical trial 194 

about it. 195 

 196 

2.3 MINOCYCLINE 197 

Minocycline is a semisynthetic second-generation tetracycline which is used 198 

clinically as an antimicrobial agent, being active against a wide range of gram-positive 199 

and gram-negative bacteria. Numerous evidences have reported that minocycline exerts 200 



non-antibiotic neuroprotective effects on different animal models of neurodegenerative 201 

diseases due to its anti-inflammatory activity, by reducing microglial activation and the 202 

cytokine expression levels. Likewise, minocycline treatment exerts anti-amyloidogenic 203 

activity and reduces deficits in learning and memory by improving the receptor–effector 204 

system from some neurotransmitters  205 

AD- associated neuroinflammation involves a vicious circle, since Aβ induces microglial 206 

activation producing pro-inflammatory cytokines which favour the Aβ formation and 207 

aggregation at the same time [46]. However, Yrjänheikki et al., granted anti-inflammatory 208 

properties to minocycline in an ischemia cerebral rat model [47]. Later, different in vitro 209 

studies demonstrated that minocycline blocked LPS-stimulated inflammatory cytokine 210 

secretion in BV2 microglia-derived cell line and on microglia isolated from the brains 211 

mice [48-50]. In 2004, using an experimental model of AD in mice, Hunter described for 212 

the first time that minocycline reduces cholinergic fibre loss in hippocampus, ameliorates 213 

microglial and astrocytic activation induced by toxin and attenuates the pro-inflammatory 214 

cytokines secretion as well as cognitive impairment [51]. Nevertheless, many studies 215 

have followed corroborating the anti-inflammatory role of minocycline in AD. A recent 216 

article has reported that minocycline reduces inflammatory parameters in different brain 217 

areas and serum as well as reverses cognitive decline induced by the administration of Aβ 218 

(1-42) in mice [52].  219 

Minocycline is also considered an anti-amiloidogenic agent. Several studies have 220 

reported that minocycline administration affects to Aβ deposits in APP transgenic mice 221 

[53]. In addition, this antibiotic inhibits Aβ fibrils formation in post-mortem brains from 222 

patients with AD [54]. Even it has been showed that minocycline decreases the Aβ 223 

production by inhibiting of β-secretase (BACE 1), main enzyme responsible for 224 

amyloidogenic processing of APP [55]. With respect to Aβ clearance, neprilysin 225 

expression, a Aβ-degrading enzyme, was increased by minocycline in brain from Aβ-226 

treated rats, preventing appearance of the senile plaques [56]. In this same line, microglial 227 

phagocytic activity plays an important role in Aβ degradation, being reduced during 228 

aging. Initial studies described that minocycline does not modify to phagocytic capacity 229 

from microglial cells [57]. Conversely, a study has demonstrated that minocycline 230 

enhances Aβ fibrils phagocytosis in primary microglial cells [58]. Therefore, it is 231 

necessary to carry out more studies in order to clarify the effect of minocycline on Aβ-232 

phagocytosis. 233 



Aβ accumulation also provokes harmful effects on some neurotransmitters involved to 234 

learning and memory such as somatostatin and dopamine. The expression levels of both 235 

neurotransmitters are decreased in brain with AD [59, 60]. Minocycline prevents Aβ-236 

induced reduction of somatostatin [56] and protects the somatostatin receptor-effector 237 

system from Aβ-induced alterations in an experimental model of AD [61]. With respect 238 

to dopamine several studies have been described that minocycline prevents dopaminergic 239 

neurodegeneration typical of Parkinson´s disease and closely related to memory loss and 240 

mood in patients with AD [62-64].  241 

Considering neurofibrillary tangles of hyperphosphorylated tau protein, this tetracycline 242 

decreases production of abnormal tau species in “in vitro” and “in vivo” animal models 243 

of AD [65]. At the same time, studies carried out in transgenic mouse model for AD have 244 

shown that minocycline restores hippocampus, cortex and amygdala-dependent learning 245 

and memory deficits [66, 67], adding another cognitive effect to this tetracycline. 246 

In summary, so far all pre-clinical findings indicate that minocycline exerts a great 247 

range of neuroprotective effects in AD. However, there is no clinical trial to test these 248 

properties in patients with AD currently, only there is one clinical trial registered 249 

(NCT01463384) but the results have not been communicated up to now. 250 

 251 

3. OTHERS ANTIBIOTICS 252 

Included at great antibiotics family, the macrolides are another antibiotic group with 253 

therapeutic properties on AD, such as azithromycin and erythromycin. Both modify the 254 

APP processing in mice models of this neuropathology, reducing Aβ production and so 255 

cognitive decline. Particularly azithromycin reduces cerebral levels of Aβ (1-42) [68] and 256 

erythromycin induces the expression of APP fragments which may increase activation of 257 

neuroprotective target genes. [69]. Also it has been demonstrated that, amphotericin may 258 

delay the formation of Aβ, preventing cognitive deficit [70]. 259 

 260 

 261 

 262 

 263 



4. GENERAL CONCLUSION  264 

All evidences seem to point in the same direction, confirming that antibiotics could be 265 

sufficiently efficient candidates to prevent or treat AD because they can cross blood 266 

barrier brain exerting beneficial effects, and are cheap drugs. Moreover, all of them have 267 

similar neuroprotective properties, such as anti-inflammatory and anti-amyloidogenic 268 

ones.  However, it is still necessary to increase properly-executed clinical trials in order 269 

to demonstrate the cited properties on these antibiotics in patients with AD. 270 

 271 

 272 
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