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ABSTRACT

The human brain is able to quickly and accurately identify objects in a dynamic visual world. Objects evoke different patterns of neural activity in the visual system,
which reflect object category memberships. However, the underlying dimensions of object representations in the brain remain unclear. Recent research suggests
that objects similarity to humans is one of the main dimensions used by the brain to organise objects, but the nature of the human-similarity features driving
this organisation are still unknown. Here, we investigate the relative contributions of perceptual and conceptual features of humanness to the representational
organisation of objects in the human visual system. We collected behavioural judgements of human-similarity of various objects, which were compared with time-
resolved neuroimaging responses to the same objects. The behavioural judgement tasks targeted either perceptual or conceptual humanness features to determine
their respective contribution to perceived human-similarity. Behavioural and neuroimaging data revealed significant and unique contributions of both perceptual
and conceptual features of humanness, each explaining unique variance in neuroimaging data. Furthermore, our results showed distinct spatio-temporal dynamics
in the processing of conceptual and perceptual humanness features, with later and more lateralised brain responses to conceptual features. This study highlights the

critical importance of social requirements in information processing and organisation in the human brain.

1. Introduction

Successful object recognition is critically important for a wide ar-
ray of human activities, from selecting food and tools to recognising
faces and interacting with others. Objects encountered every day, in-
cluding those never seen before, are recognised by the human brain
within hundred milliseconds, enabling timely decision-making and flexi-
ble behavioural responses. To understand how the human brain achieves
such performance, it is necessary to elucidate how object representations
emerge from the retinal input and are organised in the visual system.
Object recognition is achieved in the “ventral visual stream”, a hier-
archically structured pathway from striate cortex to the ventral tem-
poral cortex, which responds selectively to different object categories.
The organisation of object representations in ventral temporal cortex
underpins how humans make sense of the world and adapt to their
environment. While previous research has revealed distinct represen-
tations for several object categories, such as animals (Caramazza and
Shelton, 1998; Cichy et al., 2014), body parts (Downing et al., 2001;
Downing and Peelen, 2016), tools, and faces (Kanwisher et al., 1997), it
remains unclear what drives the organisation of these object represen-
tations in the human visual system. The representational organisation
of objects can be construed as a multi-dimensional space where indi-
vidual dimensions code for different object features (Bao et al., 2020;
Clarke, 2015; Hebart et al., 2020; Huth et al., 2012; Mitchell et al.,
2008).

Growing evidence suggests that humanness features are one of the
driving forces of such representational organisation, which is believed to
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have developed through evolution to support effective interaction with
others and the survival of the specie (cf. Caramazza and Shelton, 1998).
Previous research has revealed a continuum of biological classes in the
ventral temporal cortex where object representations are distributed in
the visual system, with inanimate objects on one side, and animate ob-
jects on the other, with humans and non-human primates standing out
from other animate objects (Connolly et al., 2012; Sha et al., 2015).
Recent research also showed that the presence of faces or face-like fea-
tures, as well as the attributed capacity to think or feel like a human,
further explain the representational organisation of objects in the ven-
tral temporal cortex (Contini et al., 2020; Proklova and Goodale, 2022;
Ritchie et al., 2021; Thorat et al., 2019), which has been argued to re-
flect the importance of conceptual (i.e., agency) features of humanness
(Contini et al., 2020; Gobbini et al., 2007; Proklova and Goodale, 2022;
Thorat et al., 2019). As such, humanness seems to be an important di-
mension of object representations in the ventral temporal cortex, but it
remains unclear whether it represents either perceptual features (e.g.,
faces or limbs), conceptual features (e.g., agency/intelligence), or both.

The respective contribution of conceptual features of humanness
(i.e., thinks or feels like a human) and perceptual features of human-
ness (i.e., looks like a human) to the representational organisation of
objects in the human visual system remains an open question because
these two levels have not been fully disentangled yet. Judgements of ob-
ject agency used in previous research might not necessarily reflect the
contribution of conceptual features but rather that of perceptual features
such as human face-like or body-like shapes, as object shape has been
shown to play a large role in object representations (Bracci et al., 2019;
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Bracci and Op de Beeck, 2016; Grootswagers et al., 2019b; Long et al.,
2018; Proklova et al., 2016, 2019). Moreover, humanness has com-
monly been measured using rating scales (e.g., Contini et al. 2020)
which may not reveal subtle differences between objects. Here we ad-
dress these issues by testing separately the contribution of perceptual
and conceptual features of humanness to the organisation of object
representations in the human visual system, using a two-alternative
forced choice task. Instructions were manipulated to guide behavioural
choices towards specific features, in contrast to related previous work
that used very different tasks to measure the different features (e.g.,
Thorat et al. 2019), which limits the ability to draw direct comparisons.
We collected human-similarity judgements of 200 various object images
from 191 participants and compared them using representational sim-
ilarity analysis (RSA; Kriegeskorte et al., 2008) to their corresponding
neural representations recorded from 16 participants with Electroen-
cephalography (EEG). Presented with randomly paired objects, the 191
participants in our behavioural judgement task were divided into three
groups and asked either (i) “which object is more similar to a human?”,
(ii) “which object looks more similar to a human?”, or (iii) “which object
thinks/feels more similar to a human?”, in order to test the respective
contribution of overall humanness, perceptual humanness, and concep-
tual humanness in object representations.

2. Methods

We used a previously published stimulus set and corresponding EEG
data, obtained from https://osf.io/a7knv/ (Grootswagers et al., 2019a).
For the current study, we collected humanness scores in three online
behavioural experiments. Data and analysis code for the current study
are available on https://osf.io/3ed8f/.

2.1. Participants

Participants were 191 undergraduate students at Western Sydney
University (50 male, 140 female, 1 non-binary) between the ages of
17 and 64 (M = 22.74, SD = 8.85). Participants were recruited through
the Western Sydney University online research participation platform
(SONA) and received course credit for their participation. Of the partic-
ipants, 14 were left-handed and 177 were right-handed. 47 participants
were non-native English speakers and 144 participants were native En-
glish speakers. Prior to commencing this study, participants were pre-
sented with an information statement summarising the project and the
requirements of the task and provided informed consent. All aspects of
the study were approved by the Western Sydney University Human Re-
search Ethics Committee.

2.2. Visual stimuli

This study used a previously published stimulus set (Grootswagers
et al., 2019a). The stimulus set consisted of 200 images of animate and
inanimate objects (Fig. 1). Stimuli were grouped into two high level cat-
egories; 100 animate objects and 100 inanimate objects. These two cat-
egories were further divided into five animate subcategories (i.e., mam-
mal, human, insect, aquatic, bird) and five inanimate subcategories (i.e.,
clothing, fruits, furniture, plants, tools). Within the subcategories, stim-
uli were further separated into 50 different objects (e.g., cow, kangaroo)
with four different images per object (Fig. 1). This stimulus set was cho-
sen as it contains a large number of objects that could be associated with
a wide range of humanness judgements.

2.3. Behavioural data

The behavioural experiments used in this study sought explicit judge-
ments of human-similarity in response to pairs of stimuli. The be-
havioural experiments were conducted online, and were programmed
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in JavaScript (De Leeuw, 2015), allowing it to be run in a web-
browser. The experiments were hosted on the Pavlovia.org platform
(Peirce et al., 2019), and ran on the participant’s own computer (cf.
Grootswagers, 2020). The experimenters had no direct interaction with
participants. After providing informed consent, participants commenced
the behavioural survey and were prompted to enter their age, gender,
handedness and native language. Next, they received written instruc-
tions with one example trial to indicate how they should respond.

For each participant, we randomly selected one image out of the four
image exemplars belonging to each object (see Fig. 1), resulting in 50
images. A total of 1225 image pairs (all combinations of 50 images) were
presented in random order. Participants were asked to decide which of
the two images in a pair was most similar to a human and were asked
to go with their first, instinctive response. Image pairs were presented
in random order for 200 ms, after which the prompt remained on the
screen until participants indicated their response, using the ‘F’ key on
their keyboard to select the image on the left side and the ‘J’ key to se-
lect the image on the right. Testing pairs of images made it possible to
go beyond the dichotomous responses often observed when using rat-
ing scales (Contini et al., 2020) and obtain a finer degree of humanness
scores for all images. Every 100 pairs, the experiment paused, and par-
ticipants were given the opportunity to take a break for as long as they
required. The entire session lasted approximately 30 min, after which
participants were shown a debrief statement and were redirected to re-
ceive course credit on SONA.

There were three different experiment versions. Participants were
not aware of a difference between the three versions and could only
participate in one. Each experiment version presented stimuli in the
manner described above, however, a different question was asked in
each version to emphasize participants to either focus on overall hu-
manness (“which of these stimuli is more similar to a human?”, n = 63),
perceptual humanness (“which of these stimuli looks more similar to a
human?”, n = 63), or conceptual humanness (“which of these stimuli
thinks or feels more similar to a human?”, n = 65) of the objects. The
mean humanness response for each group of participants was calculated
by how often a stimulus was selected as more similar to a human when
compared with all other stimuli. That is, a score of 1 meant the stimulus
was selected as more similar to a human in 100% of the paired compar-
isons. Therefore, the ‘most human’ stimuli had the highest values on a
scale of 0 to 1.

2.4. EEG data

We made use of previously published EEG data (Grootswagers et al.,
2019a). Relevant aspects of this study are described here but we re-
fer the reader to the original article for further detailed methods
(Grootswagers et al., 2019a). EEG data were collected from 16 adult par-
ticipants. The 200 images were presented in random order in rapid serial
visual presentation (RSVP) sequences at a rate of 5 images per second
(5 Hz, 200 ms each). A total of 40 sequences were presented, yielding
40 presentations for each of the 200 stimuli. 64-channel EEG record-
ings were filtered (0.1-100 Hz), downsampled (250 Hz), and epoched
at time points from 100 ms before stimulus onset up to 996 ms after
stimulus onset. These procedures were the same as in the original study
(Grootswagers et al., 2019a).

2.5. Analyses

We used Representational Similarity Analysis (Kriegeskorte et al.,
2008) to compare the EEG data to the behavioural data. This approach
involves constructing Representational Dissimilarity Matrices (RDMs)
that capture the structure of dissimilarities between the responses to
each pair of stimuli. We used the mean pairwise decoding accura-
cies between each stimulus pair computed using regularised (1=0.01)
linear discriminant analysis classifiers (this was the same procedure
as Grootswagers et al., 2019a) and represented them in an EEG-RDM
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Fig. 1. Stimulus set and task. A: The stimulus set was divided into animate and inanimate objects, with 5 subcategories each, and further divided into 5 objects with
4 associated image exemplars. B: In each trial, participants were presented with a pair of stimuli for 200 ms, after which they had to select the stimulus with the
highest human-similarity. Participants were randomly assigned one of the three questions, probing the different dimensions of humanness.

(Grootswagers et al., 2017; Kriegeskorte et al., 2008) for each subject,
at each time point. Behavioural RDMs were constructed by taking the
difference between humanness scores for each pair of images, so that
the RDM reflects the dissimilarity in the humanness-rating of a pair of
images. To measure the shared and unique variance between the three
questions (i.e., perceptual/conceptual/overall), we computed the cor-
relation and partial correlation between the three behavioural RDMs.
We then assessed the shared and unique variance between each ques-
tion and the EEG-RDMs, by computing the time-varying correlations
between each of the 16 subject’s EEG-RDM and the overall behavioural
RDM for each question (i.e., perceptual/conceptual/overall), resulting
in 3 x 16 time-varying correlations. For comparison to previous results,
we also included the categorical RDMs that model theoretical categori-
cal object organisations (obtained from Grootswagers et al. 2019a).

To measure the unique contributions of the perceptual aspects of
humanness, we computed the time-varying partial correlation between
the perceptual RDM and the EEG-RDMs while controlling for the cor-
relation between the conceptual RDM and the EEG-RDMs. To measure
the unique contributions of the conceptual aspects of humanness, we
computed the partial correlation between the conceptual RDM and the
EEG-RDMs while controlling for the correlation between the perceptual
RDM and the EEG-RDMs. We computed the partial correlations using all
objects in the stimulus set, but also separately for animate and inanimate

objects, to examine whether these two superordinate categories showed
similar effects. The partial correlations made it possible to test how vari-
ance of overall humanness is explained by each feature (perceptual or
conceptual) while controlling for the contribution of the other one (con-
ceptual or perceptual, respectively). This differs from the regression ap-
proach taken in previous work on the same dataset (Grootswagers et al.,
2019a), where the goal was to examine unique contributions of all mod-
els, in contrast to our current goal of comparing the relative contribution
of two particular models.

We also examined the spatio-temporal dynamics of the above-zero
correlations. This was done in two ways. First, we performed a channel
searchlight, where we performed the same analysis as described above
separately for each EEG channel plus its four closest neighbours, result-
ing in a channel-by-time map of correlations. Secondly, we performed
the same analysis described above, but separately using only EEG chan-
nels located above each hemisphere (excluding the channels on the mid-
line), resulting in time-varying correlations for each hemisphere.

2.6. Statistical inference
We used Bayesian statistics to determine the evidence for the al-

ternative hypothesis of non-zero correlations (across the 16 partici-
pants) and the null hypothesis of no correlation for each point in
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time (Dienes, 2011; Kass and Raftery, 1995; Rouder et al., 2009a;
Teichmann et al., 2022; Wagenmakers, 2007), using the Bayes Factor
R package (Morey and Rouder, 2018). The prior for the null hypoth-
esis was set at zero. For the alternative hypothesis we used a half-
Cauchy prior centred around zero, with the default prior width of 1
(Rouder et al., 2009b; Wetzels et al., 2011) and a null-interval (0 to 0.5)
to treat small effects sizes as null (Morey and Rouder, 2011). Bayes Fac-
tors were computed separately for each time point, and for each ques-
tion (i.e., perceptual/conceptual/overall). We interpreted Bayes Factors
smaller than 1/10 as strong evidence for the null hypothesis, and Bayes
Factors larger than 10 as strong evidence for the alternative hypothesis
(Wetzels et al., 2011). Bayes Factors that fall in between this range in-
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dicate insufficient evidence for either hypothesis. In addition, we com-
puted frequentist statistics to complement the Bayes Factors. At each
time point, we computed the p-value for non-zero correlation at the
group level using a one-tailed t-test, and the resulting p-values were
corrected for multiple comparisons across time points using the False
Discovery Rate (Benjamini and Hochberg, 1995).

3. Results
Human-similarity behavioural judgements and EEG data revealed

that perceptual and conceptual features of humanness both contribute
to the representational organisation of objects in the human visual sys-
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Fig. 2. Human-similarity behavioural judgements for all humanness dimensions. A-C: The mean ‘humanness’ response for each condition was calculated by how
often a stimulus was selected as ‘more similar to a human’ when compared with all other stimuli. For each question, the horizontal location of each image reflects its
humanness score with higher scores on the right. The vertical separation of images is only included for visualisation purposes. D: Scatter plots to directly compare
the humanness-responses for all stimuli on all dimension-pairs. Correlations and the partial correlations (controlling for the left-out dimension) are shown in the
plots with asterisks indicating significant relationships (p < .05). Together, these results show that the different ways of operationalising humanness led to different

responses to human similarity.
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Fig. 3. EEG-behaviour correlations for all models. Plots show the correlation over time for the different humanness features (A-C), and theoretical category models
for comparison (D-F). The corresponding model RDMs are shown in the inset. Light shaded areas show standard error across EEG participants (n = 16). Filled areas
show time windows where the correlation was significantly above zero (p < .05, FDR-corrected). Shown below each plot are the corresponding scalp topographies
averaged into 100 ms windows. The bottom rows of each group show the Bayes Factors (BF) at each time point on a log scale, with BF<1/10 marked in grey and
BF>10 highlighted with coloured circles. These plots show that the models derived from the three humanness dimensions all correlated with the EEG data and
outperformed the categorical models, with notably different temporal dynamics for the conceptual humanness model (C).

tem. Our results show that perceptual and conceptual features explain
unique variance in the behavioural judgement of overall humanness and
EEG data, and involve different neural processes evidenced by distinct
EEG spatio-temporal patterns.

3.1. Human-similarity behavioural judgements

Participants’ judgement responses for all stimuli on the three dif-
ferent dimensions of humanness (overall/perceptual/conceptual) trans-
formed into the humanness score, which defined how often a stimulus
was selected as more similar to a human when compared with all other
stimuli, are represented in Fig. 2. It is important to note that not all par-
ticipants were presented with all combinations of the stimuli, which in

combination with the online setting of the experiment may have led to
a few unintuitive individual stimulus locations in these plots. Although
the humanness scores for the different dimensions were strongly corre-
lated, significant partial correlations with overall humanness were found
for both perceptual (partial p = 0.69, p < .05) and conceptual dimensions
(partial p = 0.25, p < .05), showing that the different questions asked
to participants captured different information and variance of overall
humanness.

3.2. EEG-behaviour correlations

Correlations between representational dissimilarity matrixes (RDMs)
of EEG and behavioural judgement data, which enabled direct com-
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Fig. 4. EEG-behaviour partial correlations for
perceptual and conceptual humanness. Plots
show the partial correlation over time, con-
trolled for the other dimension. Shaded area
shows standard error across EEG participants
(n = 16). Filled areas show time windows

where the correlation was significantly above
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parisons of these two levels (Kriegeskorte et al., 2008), revealed that
both perceptual and conceptual features of humanness contribute to
the organisation of object representations in the visual system with
distinct brain processing. Fig. 3 shows the correlation results between
the EEG-RDMs (time-varying pairwise decoding accuracies for each
stimulus pair and each participant) and the behavioural model RDMs
(humanness-rating dissimilarity for each stimulus pair) in panels A-
C, and the theoretical model RDMs (subcategories in the stimulus
set: animacy, category, and object) in panels D-F. All models were
significantly correlated with EEG-RDMs starting within 200 ms af-
ter stimulus presentation, showing that all dimensions of humanness
(overall/perceptual/conceptual) and levels in the stimulus set (ani-
macy/category/object) were represented in EEG data.

The unique contributions of perceptual and conceptual models were
confirmed by time-varying partial correlations between each model and
the EEG-RDMs, which enabled to control for the contribution of the
other model. The results showed that both perceptual and conceptual
features explained unique variance in the EEG data (Fig. 4), and had
different temporal dynamics, with conceptual features contributing to
brain’s dynamic object representation later (starting ~200 ms) than
perceptual features (starting ~100 ms). Notably, the perceptual model
showed a rise from around 100 ms to a local peak at 200 ms, which

700

is consistent with the temporal dynamics of information processing in
the visual hierarchy (e.g., Carlson et al. 2013; Cichy et al. 2014), which
was largely absent for the conceptual model. The channel searchlight
results also suggested an important role of the right hemisphere com-
pared to the left hemisphere in the processing of the conceptual fea-
tures of humanness, as indicated by stronger correlations in the right
hemisphere.

This hemispheric asymmetry was confirmed by partial correlation
analysis performed using data from EEG channels located above the
right and left hemisphere separately, as seen in Fig. 5. While perceptual
humanness partial correlations were present in data from both hemi-
spheres (Fig. 5A-C), partial correlations for conceptual humanness were
only present in the right hemisphere (Fig. 5E, F), and nearly absent in
the left hemisphere (Fig. 5D). Although it is important to note that chan-
nels above one hemisphere can still record activity from the other hemi-
sphere, these results do suggest conceptual features of humanness are
predominantly coded in the right hemisphere.

Partial correlations between EEG-RDMs and behaviour conducted
separately for inanimate and animate objects indicated that the unique
contributions of perceptual and conceptual models occurred for both su-
perordinate categories of stimuli, as shown in Fig. 6. The results within
each superordinate category are similar in their temporal dynamics
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Fig. 5. Lateralisation effects for EEG-behaviour partial correlations for perceptual and conceptual humanness. Plots show the partial correlation over time for the
perceptual and conceptual dimensions, controlled for the other dimension, using data from channels located above the right and left hemisphere separately, as
highlighted in topographical maps. Shaded area shows standard error across EEG participants (n = 16). Filled areas show time windows where the correlation was
significantly above zero (p < .05, FDR-corrected). Shown below each plot are the corresponding Bayes Factors (BF) at each time point on a log scale, with BF<1/10
marked in grey and BF>10 highlighted with coloured circles. These plots show that the perceptual model (A-C) correlated with both hemispheres, but that partial
correlations for the conceptual model (D-F) were only apparent in the right hemisphere.

(e.g., earlier onset for perceptual) to the results for all objects together
(Fig. 4). They also suggest that the main contribution for inanimate ob-
jects may have come from perceptual humanness, with conceptual hu-
manness as the main contribution for the animate objects.

4. Discussion

In this study, we investigated the contribution of the perceptual
and conceptual features of humanness to the organisation of object
representations in the human visual system. Human-similarity judge-
ments were collected from participants focusing either on perceptual
features, conceptual features, or overall humanness through asking
different questions. Human-similarity judgements were subsequently

compared to human neural object representations obtained from EEG
recordings.

The results revealed that both perceptual and conceptual features
of humanness contribute to the multi-dimensional organisation of ob-
ject representations in the human brain. Behavioural human-similarity
judgement data showed that the two types of features explain unique
variance in the overall judgement of humanness. Representational sim-
ilarity analysis, which enabled testing the variance explained in EEG
data by human-similarity judgement data, confirmed an important role
of overall humanness, explaining greater variance in EEG data than
theoretical categorical models such as object animacy and category
(Contini et al., 2020). More importantly, this analysis also revealed
a significant and distinct contribution of both perceptual and concep-
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Fig. 6. EEG-behaviour partial correlations for perceptual and conceptual humanness separately for inanimate and animate objects. Plots show the partial correlation
over time, controlled for the other dimension. Shaded area shows standard error across EEG participants (n = 16). Filled areas show time windows where the
correlation was significantly above zero (p < .05, FDR-corrected). Shown below each plot are the corresponding scalp topographies averaged into 100 ms windows.
The bottom rows of each group show the Bayes Factors (BF) at each time point on a log scale, with BF<1/10 marked in grey and BF>10 highlighted with coloured
circles. These plots show that the perceptual (A-B) and conceptual (C-D) models explained unique variance in the EEG data for both inanimate (left column) and

animate (right column) objects.

tual features of humanness, each explaining unique variance in EEG
data. This is particularly remarkable considering that EEG data were
obtained from a previous study, which involved different participants
and was not purposely designed to test humanness (Grootswagers et al.,
2019a). This not only addresses the persistent question to what ex-
tent results from object studies generalise to different stimulus sets (cf.
Grootswagers and Robinson, 2021), but also builds on previous research
by showing that objects are organised in the human visual system not
only according to their conceptual (agency) human-like features (e.g.,
Connolly et al. 2012, Gobbini et al. 2007, Martin and Weisberg 2003,
Sha et al. 2015) but also perceptual human-like features. Our results
corroborate results from previous studies that measured perceptual sim-
ilarity with a different task (e.g., visual search; Proklova et al. 2016,
Thorat et al. 2019), and show that changing the instructions while ob-
servers perform the same behavioural paradigm effectively guided their
choices towards perceptual or conceptual features. We also found that
the “humanness” dimension is present in both animate and inanimate
objects, which is particularly noteworthy given that inanimate objects
do not exhibit any of the features of the animate objects that could ac-
count for humanness such as face presence, perceived intelligence, or
autonomous movement. Future work can explore this further, perhaps
with more ambiguous stimuli that blur the boundaries between animate
and inanimate (e.g., clouds or waves as in Shatek et al. 2021) or on large
datasets that contain a bigger variety of objects (Grootswagers et al.,
2022; Hebart et al., 2019).

The results also showed distinct temporal dynamics in the process-
ing of conceptual and perceptual features of humanness. Humanness
ratings based on perceptual features explained unique variance in EEG
data earlier than those based on conceptual features. Perceptual feature
information was evident from around 100 ms and rising to an initial
peak around 200 ms which is consistent with the temporal profile of
the visual system hierarchy that progresses from encoding simple (e.g.,
edges and orientations) to complex (e.g., shapes and textures) features
(e.g., Carlson et al. 2013, Cichy et al. 2014). This earlier contribution
of perceptual humanness features to the representational organisation
of objects in the visual system is in line with previous research that
showed that the brain processes perceptual features (e.g., shape) ear-
lier than conceptual features (e.g., category) in general (Contini et al.,
2020; Grootswagers et al., 2019b, 2019a). It is also in accordance with
functional Magnetic Resonance Imaging (fMRI) research showing that
the ventral temporal cortex, which responds later than lower level per-
ceptual areas (Cichy et al., 2016, 2014), represents perceptual category
information as well as agency concepts (Thorat et al., 2019). These re-
sults show that top-down processes, modulated here by asking different
questions in the human-similarity judgement task, can induce a shift in
observers’ focus toward earlier or later features, which translates into
actual decision-making.

Furthermore, the results revealed distinct spatial distributions for
the processing of conceptual and perceptual features of humanness in
the human brain. Although the results revealed that objects were gener-
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ally represented to greater extent in the right hemisphere than the left
hemisphere, this hemispheric asymmetry was found to be stronger for
conceptual features than perceptual features. This asymmetry observed
for all dimensions is generally consistent with overall neural responses
to objects being stronger in the right hemisphere (e.g., Quek and Peelen
2020), especially for faces (Kanwisher et al., 1997; Puce et al., 1995)
and bodies (Downing et al., 2006, 2001). Our results suggest that the
processing of conceptual humanness features of the objects drives this
asymmetry stronger than the processing of perceptual humanness fea-
tures, which were more symmetrically distributed. This asymmetry also
seemed stronger for the inanimate objects, for which the results were
almost entirely right lateralised.

Our results raise questions about when and why these two dimen-
sions of humanness would have become significant and distinct driv-
ing forces of the organisation of object representations in the human
brain. While it is plausible that a human-focused object dimension may
have developed under evolutionary pressures, such as enabling effective
interactions with others, the origin of the perceptual and conceptual
dimensions of humanness as revealed here remains an open question.
It is possible that new objects created by humans (e.g., clothes, toys,
robots) challenged the effectiveness of a visual system organised around
a purely perceptual dimension of humanness. For example, clothes are
shaped like human body parts but do not exhibit human-like agency.
It can be seen in Fig. 2 that judgements for this category of objects
were strongly influenced by whether participants were requested to base
their human-similarity judgements on perceptual or conceptual features.
Likewise, computers, robots, and other autonomous agents often do not
look like humans, but increasingly think and act like humans thanks to
artificial intelligence. These objects could be challenging the concep-
tual definition of humanness in our daily lives. More research would be
needed to address these questions and to better understand the devel-
opment of perceptual and conceptual humanness dimensions, as well as
other potentially important dimensions that shape the representational
organisation of objects in the human brain.

In conclusion, our results highlight unique contributions of percep-
tual and conceptual human-similarity in neural object representations.
The two types of features involve distinct neural processing, with a later
and more lateralised contribution of conceptual humanness than percep-
tual humanness. This study provides new evidence for a multi-faceted
object representation and highlights that knowledge organisation in the
human brain is shaped in part by social requirements.

Stimuli and data can be found at 10.17605/0SF.I0/A7KNV and
10.17605/0SF.10/3EDSF
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