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a b s t r a c t 

The human brain is able to quickly and accurately identify objects in a dynamic visual world. Objects evoke different patterns of neural activity in the visual system, 

which reflect object category memberships. However, the underlying dimensions of object representations in the brain remain unclear. Recent research suggests 

that objects similarity to humans is one of the main dimensions used by the brain to organise objects, but the nature of the human-similarity features driving 

this organisation are still unknown. Here, we investigate the relative contributions of perceptual and conceptual features of humanness to the representational 

organisation of objects in the human visual system. We collected behavioural judgements of human-similarity of various objects, which were compared with time- 

resolved neuroimaging responses to the same objects. The behavioural judgement tasks targeted either perceptual or conceptual humanness features to determine 

their respective contribution to perceived human-similarity. Behavioural and neuroimaging data revealed significant and unique contributions of both perceptual 

and conceptual features of humanness, each explaining unique variance in neuroimaging data. Furthermore, our results showed distinct spatio-temporal dynamics 

in the processing of conceptual and perceptual humanness features, with later and more lateralised brain responses to conceptual features. This study highlights the 

critical importance of social requirements in information processing and organisation in the human brain. 
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. Introduction 

Successful object recognition is critically important for a wide ar-

ay of human activities, from selecting food and tools to recognising

aces and interacting with others. Objects encountered every day, in-

luding those never seen before, are recognised by the human brain

ithin hundred milliseconds, enabling timely decision-making and flexi-

le behavioural responses. To understand how the human brain achieves

uch performance, it is necessary to elucidate how object representations

merge from the retinal input and are organised in the visual system.

bject recognition is achieved in the “ventral visual stream ”, a hier-

rchically structured pathway from striate cortex to the ventral tem-

oral cortex, which responds selectively to different object categories.

he organisation of object representations in ventral temporal cortex

nderpins how humans make sense of the world and adapt to their

nvironment. While previous research has revealed distinct represen-

ations for several object categories, such as animals ( Caramazza and

helton, 1998 ; Cichy et al., 2014 ), body parts ( Downing et al., 2001 ;

owning and Peelen, 2016 ), tools, and faces ( Kanwisher et al., 1997 ), it

emains unclear what drives the organisation of these object represen-

ations in the human visual system. The representational organisation

f objects can be construed as a multi-dimensional space where indi-

idual dimensions code for different object features ( Bao et al., 2020 ;

larke, 2015 ; Hebart et al., 2020 ; Huth et al., 2012 ; Mitchell et al.,

008 ). 

Growing evidence suggests that humanness features are one of the

riving forces of such representational organisation, which is believed to
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ave developed through evolution to support effective interaction with

thers and the survival of the specie (cf. Caramazza and Shelton, 1998 ).

revious research has revealed a continuum of biological classes in the

entral temporal cortex where object representations are distributed in

he visual system, with inanimate objects on one side, and animate ob-

ects on the other, with humans and non-human primates standing out

rom other animate objects ( Connolly et al., 2012 ; Sha et al., 2015 ).

ecent research also showed that the presence of faces or face-like fea-

ures, as well as the attributed capacity to think or feel like a human,

urther explain the representational organisation of objects in the ven-

ral temporal cortex ( Contini et al., 2020 ; Proklova and Goodale, 2022 ;

itchie et al., 2021 ; Thorat et al., 2019 ), which has been argued to re-

ect the importance of conceptual (i.e., agency) features of humanness

 Contini et al., 2020 ; Gobbini et al., 2007 ; Proklova and Goodale, 2022 ;

horat et al., 2019 ). As such, humanness seems to be an important di-

ension of object representations in the ventral temporal cortex, but it

emains unclear whether it represents either perceptual features (e.g.,

aces or limbs), conceptual features (e.g., agency/intelligence), or both.

The respective contribution of conceptual features of humanness

i.e., thinks or feels like a human) and perceptual features of human-

ess (i.e., looks like a human) to the representational organisation of

bjects in the human visual system remains an open question because

hese two levels have not been fully disentangled yet. Judgements of ob-

ect agency used in previous research might not necessarily reflect the

ontribution of conceptual features but rather that of perceptual features

uch as human face-like or body-like shapes, as object shape has been

hown to play a large role in object representations ( Bracci et al., 2019 ;
2 
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racci and Op de Beeck, 2016 ; Grootswagers et al., 2019b ; Long et al.,

018 ; Proklova et al., 2016 , 2019 ). Moreover, humanness has com-

only been measured using rating scales (e.g., Contini et al. 2020 )

hich may not reveal subtle differences between objects. Here we ad-

ress these issues by testing separately the contribution of perceptual

nd conceptual features of humanness to the organisation of object

epresentations in the human visual system, using a two-alternative

orced choice task. Instructions were manipulated to guide behavioural

hoices towards specific features, in contrast to related previous work

hat used very different tasks to measure the different features (e.g.,

horat et al. 2019 ), which limits the ability to draw direct comparisons.

e collected human-similarity judgements of 200 various object images

rom 191 participants and compared them using representational sim-

larity analysis (RSA; Kriegeskorte et al., 2008 ) to their corresponding

eural representations recorded from 16 participants with Electroen-

ephalography (EEG). Presented with randomly paired objects, the 191

articipants in our behavioural judgement task were divided into three

roups and asked either (i) “which object is more similar to a human? ”,

ii) “which object looks more similar to a human? ”, or (iii) “which object

hinks/feels more similar to a human? ”, in order to test the respective

ontribution of overall humanness, perceptual humanness, and concep-

ual humanness in object representations. 

. Methods 

We used a previously published stimulus set and corresponding EEG

ata, obtained from https://osf.io/a7knv/ ( Grootswagers et al., 2019a ).

or the current study, we collected humanness scores in three online

ehavioural experiments. Data and analysis code for the current study

re available on https://osf.io/3ed8f/ . 

.1. Participants 

Participants were 191 undergraduate students at Western Sydney

niversity (50 male, 140 female, 1 non-binary) between the ages of

7 and 64 (M = 22.74, SD = 8.85). Participants were recruited through

he Western Sydney University online research participation platform

SONA) and received course credit for their participation. Of the partic-

pants, 14 were left-handed and 177 were right-handed. 47 participants

ere non-native English speakers and 144 participants were native En-

lish speakers. Prior to commencing this study, participants were pre-

ented with an information statement summarising the project and the

equirements of the task and provided informed consent. All aspects of

he study were approved by the Western Sydney University Human Re-

earch Ethics Committee. 

.2. Visual stimuli 

This study used a previously published stimulus set ( Grootswagers

t al., 2019a ). The stimulus set consisted of 200 images of animate and

nanimate objects ( Fig. 1 ). Stimuli were grouped into two high level cat-

gories; 100 animate objects and 100 inanimate objects. These two cat-

gories were further divided into five animate subcategories (i.e., mam-

al, human, insect, aquatic, bird) and five inanimate subcategories (i.e.,

lothing, fruits, furniture, plants, tools). Within the subcategories, stim-

li were further separated into 50 different objects (e.g., cow, kangaroo)

ith four different images per object ( Fig. 1 ). This stimulus set was cho-

en as it contains a large number of objects that could be associated with

 wide range of humanness judgements. 

.3. Behavioural data 

The behavioural experiments used in this study sought explicit judge-

ents of human-similarity in response to pairs of stimuli. The be-

avioural experiments were conducted online, and were programmed
2 
n JavaScript ( De Leeuw, 2015 ), allowing it to be run in a web-

rowser. The experiments were hosted on the Pavlovia.org platform

 Peirce et al., 2019 ), and ran on the participant’s own computer (cf.

rootswagers, 2020 ). The experimenters had no direct interaction with

articipants. After providing informed consent, participants commenced

he behavioural survey and were prompted to enter their age, gender,

andedness and native language. Next, they received written instruc-

ions with one example trial to indicate how they should respond. 

For each participant, we randomly selected one image out of the four

mage exemplars belonging to each object (see Fig. 1 ), resulting in 50

mages. A total of 1225 image pairs (all combinations of 50 images) were

resented in random order. Participants were asked to decide which of

he two images in a pair was most similar to a human and were asked

o go with their first, instinctive response. Image pairs were presented

n random order for 200 ms, after which the prompt remained on the

creen until participants indicated their response, using the ‘F’ key on

heir keyboard to select the image on the left side and the ‘J’ key to se-

ect the image on the right. Testing pairs of images made it possible to

o beyond the dichotomous responses often observed when using rat-

ng scales ( Contini et al., 2020 ) and obtain a finer degree of humanness

cores for all images. Every 100 pairs, the experiment paused, and par-

icipants were given the opportunity to take a break for as long as they

equired. The entire session lasted approximately 30 min, after which

articipants were shown a debrief statement and were redirected to re-

eive course credit on SONA. 

There were three different experiment versions. Participants were

ot aware of a difference between the three versions and could only

articipate in one. Each experiment version presented stimuli in the

anner described above, however, a different question was asked in

ach version to emphasize participants to either focus on overall hu-

anness ( “which of these stimuli is more similar to a human? ”, n = 63),

erceptual humanness ( “which of these stimuli looks more similar to a

uman? ”, n = 63), or conceptual humanness ( “which of these stimuli

hinks or feels more similar to a human? ”, n = 65) of the objects. The

ean humanness response for each group of participants was calculated

y how often a stimulus was selected as more similar to a human when

ompared with all other stimuli. That is, a score of 1 meant the stimulus

as selected as more similar to a human in 100% of the paired compar-

sons. Therefore, the ‘most human’ stimuli had the highest values on a

cale of 0 to 1. 

.4. EEG data 

We made use of previously published EEG data ( Grootswagers et al.,

019a ). Relevant aspects of this study are described here but we re-

er the reader to the original article for further detailed methods

 Grootswagers et al., 2019a ). EEG data were collected from 16 adult par-

icipants. The 200 images were presented in random order in rapid serial

isual presentation (RSVP) sequences at a rate of 5 images per second

5 Hz, 200 ms each). A total of 40 sequences were presented, yielding

0 presentations for each of the 200 stimuli. 64-channel EEG record-

ngs were filtered (0.1–100 Hz), downsampled (250 Hz), and epoched

t time points from 100 ms before stimulus onset up to 996 ms after

timulus onset. These procedures were the same as in the original study

 Grootswagers et al., 2019a ). 

.5. Analyses 

We used Representational Similarity Analysis ( Kriegeskorte et al.,

008 ) to compare the EEG data to the behavioural data. This approach

nvolves constructing Representational Dissimilarity Matrices (RDMs)

hat capture the structure of dissimilarities between the responses to

ach pair of stimuli. We used the mean pairwise decoding accura-

ies between each stimulus pair computed using regularised ( 𝜆= 0.01)

inear discriminant analysis classifiers (this was the same procedure

s Grootswagers et al., 2019a ) and represented them in an EEG-RDM

https://osf.io/a7knv/
https://osf.io/3ed8f/
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Fig. 1. Stimulus set and task. A: The stimulus set was divided into animate and inanimate objects, with 5 subcategories each, and further divided into 5 objects with 

4 associated image exemplars. B: In each trial, participants were presented with a pair of stimuli for 200 ms, after which they had to select the stimulus with the 

highest human-similarity. Participants were randomly assigned one of the three questions, probing the different dimensions of humanness. 

(  

a  

d  

t  

i  

q  

r  

W  

t  

b  

R  

i  

w  

c

 

h  

t  

r  

t  

c  

E  

R  

o  

o  

s  

a  

c  

c  

p  

2  

e  

o

 

c  

s  

s  

i  

t  

n  

l

2

 

t  

p  
 Grootswagers et al., 2017 ; Kriegeskorte et al., 2008 ) for each subject,

t each time point. Behavioural RDMs were constructed by taking the

ifference between humanness scores for each pair of images, so that

he RDM reflects the dissimilarity in the humanness-rating of a pair of

mages. To measure the shared and unique variance between the three

uestions (i.e., perceptual/conceptual/overall), we computed the cor-

elation and partial correlation between the three behavioural RDMs.

e then assessed the shared and unique variance between each ques-

ion and the EEG-RDMs, by computing the time-varying correlations

etween each of the 16 subject’s EEG-RDM and the overall behavioural

DM for each question (i.e., perceptual/conceptual/overall), resulting

n 3 × 16 time-varying correlations. For comparison to previous results,

e also included the categorical RDMs that model theoretical categori-

al object organisations (obtained from Grootswagers et al. 2019a ). 

To measure the unique contributions of the perceptual aspects of

umanness, we computed the time-varying partial correlation between

he perceptual RDM and the EEG-RDMs while controlling for the cor-

elation between the conceptual RDM and the EEG-RDMs. To measure

he unique contributions of the conceptual aspects of humanness, we

omputed the partial correlation between the conceptual RDM and the

EG-RDMs while controlling for the correlation between the perceptual

DM and the EEG-RDMs. We computed the partial correlations using all

bjects in the stimulus set, but also separately for animate and inanimate
3 
bjects, to examine whether these two superordinate categories showed

imilar effects. The partial correlations made it possible to test how vari-

nce of overall humanness is explained by each feature (perceptual or

onceptual) while controlling for the contribution of the other one (con-

eptual or perceptual, respectively). This differs from the regression ap-

roach taken in previous work on the same dataset ( Grootswagers et al.,

019a ), where the goal was to examine unique contributions of all mod-

ls, in contrast to our current goal of comparing the relative contribution

f two particular models. 

We also examined the spatio-temporal dynamics of the above-zero

orrelations. This was done in two ways. First, we performed a channel

earchlight, where we performed the same analysis as described above

eparately for each EEG channel plus its four closest neighbours, result-

ng in a channel-by-time map of correlations. Secondly, we performed

he same analysis described above, but separately using only EEG chan-

els located above each hemisphere (excluding the channels on the mid-

ine), resulting in time-varying correlations for each hemisphere. 

.6. Statistical inference 

We used Bayesian statistics to determine the evidence for the al-

ernative hypothesis of non-zero correlations (across the 16 partici-

ants) and the null hypothesis of no correlation for each point in
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ime ( Dienes, 2011 ; Kass and Raftery, 1995 ; Rouder et al., 2009a ;

eichmann et al., 2022 ; Wagenmakers, 2007 ), using the Bayes Factor

 package ( Morey and Rouder, 2018 ). The prior for the null hypoth-

sis was set at zero. For the alternative hypothesis we used a half-

auchy prior centred around zero, with the default prior width of 1

 Rouder et al., 2009b ; Wetzels et al., 2011 ) and a null-interval (0 to 0.5)

o treat small effects sizes as null ( Morey and Rouder, 2011 ). Bayes Fac-

ors were computed separately for each time point, and for each ques-

ion (i.e., perceptual/conceptual/overall). We interpreted Bayes Factors

maller than 1/10 as strong evidence for the null hypothesis, and Bayes

actors larger than 10 as strong evidence for the alternative hypothesis

 Wetzels et al., 2011 ). Bayes Factors that fall in between this range in-
ig. 2. Human-similarity behavioural judgements for all humanness dimensions. A–

ften a stimulus was selected as ‘more similar to a human’ when compared with all ot

umanness score with higher scores on the right. The vertical separation of images i

he humanness-responses for all stimuli on all dimension-pairs. Correlations and the

lots with asterisks indicating significant relationships ( p < .05). Together, these resu

esponses to human similarity. 

4 
icate insufficient evidence for either hypothesis. In addition, we com-

uted frequentist statistics to complement the Bayes Factors. At each

ime point, we computed the p-value for non-zero correlation at the

roup level using a one-tailed t-test, and the resulting p-values were

orrected for multiple comparisons across time points using the False

iscovery Rate ( Benjamini and Hochberg, 1995 ). 

. Results 

Human-similarity behavioural judgements and EEG data revealed

hat perceptual and conceptual features of humanness both contribute

o the representational organisation of objects in the human visual sys-
C: The mean ‘humanness’ response for each condition was calculated by how 

her stimuli. For each question, the horizontal location of each image reflects its 

s only included for visualisation purposes. D: Scatter plots to directly compare 

 partial correlations (controlling for the left-out dimension) are shown in the 

lts show that the different ways of operationalising humanness led to different 
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Fig. 3. EEG-behaviour correlations for all models. Plots show the correlation over time for the different humanness features (A-C), and theoretical category models 

for comparison (D-F). The corresponding model RDMs are shown in the inset. Light shaded areas show standard error across EEG participants ( n = 16). Filled areas 

show time windows where the correlation was significantly above zero ( p < .05, FDR-corrected). Shown below each plot are the corresponding scalp topographies 

averaged into 100 ms windows. The bottom rows of each group show the Bayes Factors (BF) at each time point on a log scale, with BF < 1/10 marked in grey and 

BF > 10 highlighted with coloured circles. These plots show that the models derived from the three humanness dimensions all correlated with the EEG data and 

outperformed the categorical models, with notably different temporal dynamics for the conceptual humanness model (C). 
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em. Our results show that perceptual and conceptual features explain

nique variance in the behavioural judgement of overall humanness and

EG data, and involve different neural processes evidenced by distinct

EG spatio-temporal patterns. 

.1. Human-similarity behavioural judgements 

Participants’ judgement responses for all stimuli on the three dif-

erent dimensions of humanness (overall/perceptual/conceptual) trans-

ormed into the humanness score, which defined how often a stimulus

as selected as more similar to a human when compared with all other

timuli, are represented in Fig. 2 . It is important to note that not all par-

icipants were presented with all combinations of the stimuli, which in
5 
ombination with the online setting of the experiment may have led to

 few unintuitive individual stimulus locations in these plots. Although

he humanness scores for the different dimensions were strongly corre-

ated, significant partial correlations with overall humanness were found

or both perceptual (partial 𝜌= 0.69, p < .05) and conceptual dimensions

partial 𝜌 = 0.25, p < .05), showing that the different questions asked

o participants captured different information and variance of overall

umanness. 

.2. EEG-behaviour correlations 

Correlations between representational dissimilarity matrixes (RDMs)

f EEG and behavioural judgement data, which enabled direct com-
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Fig. 4. EEG-behaviour partial correlations for 

perceptual and conceptual humanness. Plots 

show the partial correlation over time, con- 

trolled for the other dimension. Shaded area 

shows standard error across EEG participants 

( n = 16). Filled areas show time windows 

where the correlation was significantly above 

zero (p < .05, FDR-corrected). Shown below 

each plot are the corresponding scalp topogra- 

phies averaged into 100 ms windows. The bot- 

tom rows of each group show the Bayes Fac- 

tors (BF) at each time point on a log scale, 

with BF < 1/10 marked in grey and BF > 10 high- 

lighted with coloured circles. These plots show 

that the perceptual (A) and conceptual (B) 

models explained unique variance in the EEG 

data, but with an earlier onset for the percep- 

tual model. 
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arisons of these two levels ( Kriegeskorte et al., 2008 ), revealed that

oth perceptual and conceptual features of humanness contribute to

he organisation of object representations in the visual system with

istinct brain processing. Fig. 3 shows the correlation results between

he EEG-RDMs (time-varying pairwise decoding accuracies for each

timulus pair and each participant) and the behavioural model RDMs

humanness-rating dissimilarity for each stimulus pair) in panels A-

, and the theoretical model RDMs (subcategories in the stimulus

et: animacy, category, and object) in panels D-F. All models were

ignificantly correlated with EEG-RDMs starting within 200 ms af-

er stimulus presentation, showing that all dimensions of humanness

overall/perceptual/conceptual) and levels in the stimulus set (ani-

acy/category/object) were represented in EEG data. 

The unique contributions of perceptual and conceptual models were

onfirmed by time-varying partial correlations between each model and

he EEG-RDMs, which enabled to control for the contribution of the

ther model. The results showed that both perceptual and conceptual

eatures explained unique variance in the EEG data ( Fig. 4 ), and had

ifferent temporal dynamics, with conceptual features contributing to

rain’s dynamic object representation later (starting ∼200 ms) than

erceptual features (starting ∼100 ms). Notably, the perceptual model

howed a rise from around 100 ms to a local peak at 200 ms, which
6 
s consistent with the temporal dynamics of information processing in

he visual hierarchy (e.g., Carlson et al. 2013 ; Cichy et al. 2014 ), which

as largely absent for the conceptual model. The channel searchlight

esults also suggested an important role of the right hemisphere com-

ared to the left hemisphere in the processing of the conceptual fea-

ures of humanness, as indicated by stronger correlations in the right

emisphere. 

This hemispheric asymmetry was confirmed by partial correlation

nalysis performed using data from EEG channels located above the

ight and left hemisphere separately, as seen in Fig. 5 . While perceptual

umanness partial correlations were present in data from both hemi-

pheres ( Fig. 5 A–C), partial correlations for conceptual humanness were

nly present in the right hemisphere ( Fig. 5 E, F), and nearly absent in

he left hemisphere ( Fig. 5 D). Although it is important to note that chan-

els above one hemisphere can still record activity from the other hemi-

phere, these results do suggest conceptual features of humanness are

redominantly coded in the right hemisphere. 

Partial correlations between EEG-RDMs and behaviour conducted

eparately for inanimate and animate objects indicated that the unique

ontributions of perceptual and conceptual models occurred for both su-

erordinate categories of stimuli, as shown in Fig. 6 . The results within

ach superordinate category are similar in their temporal dynamics
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Fig. 5. Lateralisation effects for EEG-behaviour partial correlations for perceptual and conceptual humanness. Plots show the partial correlation over time for the 

perceptual and conceptual dimensions, controlled for the other dimension, using data from channels located above the right and left hemisphere separately, as 

highlighted in topographical maps. Shaded area shows standard error across EEG participants ( n = 16). Filled areas show time windows where the correlation was 

significantly above zero ( p < .05, FDR-corrected). Shown below each plot are the corresponding Bayes Factors (BF) at each time point on a log scale, with BF < 1/10 

marked in grey and BF > 10 highlighted with coloured circles. These plots show that the perceptual model (A-C) correlated with both hemispheres, but that partial 

correlations for the conceptual model (D-F) were only apparent in the right hemisphere. 
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e.g., earlier onset for perceptual) to the results for all objects together

 Fig. 4 ). They also suggest that the main contribution for inanimate ob-

ects may have come from perceptual humanness, with conceptual hu-

anness as the main contribution for the animate objects. 

. Discussion 

In this study, we investigated the contribution of the perceptual

nd conceptual features of humanness to the organisation of object

epresentations in the human visual system. Human-similarity judge-

ents were collected from participants focusing either on perceptual

eatures, conceptual features, or overall humanness through asking

ifferent questions. Human-similarity judgements were subsequently
7 
ompared to human neural object representations obtained from EEG

ecordings. 

The results revealed that both perceptual and conceptual features

f humanness contribute to the multi-dimensional organisation of ob-

ect representations in the human brain. Behavioural human-similarity

udgement data showed that the two types of features explain unique

ariance in the overall judgement of humanness. Representational sim-

larity analysis, which enabled testing the variance explained in EEG

ata by human-similarity judgement data, confirmed an important role

f overall humanness, explaining greater variance in EEG data than

heoretical categorical models such as object animacy and category

 Contini et al., 2020 ). More importantly, this analysis also revealed

 significant and distinct contribution of both perceptual and concep-
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Fig. 6. EEG-behaviour partial correlations for perceptual and conceptual humanness separately for inanimate and animate objects. Plots show the partial correlation 

over time, controlled for the other dimension. Shaded area shows standard error across EEG participants ( n = 16). Filled areas show time windows where the 

correlation was significantly above zero ( p < .05, FDR-corrected). Shown below each plot are the corresponding scalp topographies averaged into 100 ms windows. 

The bottom rows of each group show the Bayes Factors (BF) at each time point on a log scale, with BF < 1/10 marked in grey and BF > 10 highlighted with coloured 

circles. These plots show that the perceptual (A-B) and conceptual (C-D) models explained unique variance in the EEG data for both inanimate (left column) and 

animate (right column) objects. 
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ual features of humanness, each explaining unique variance in EEG

ata. This is particularly remarkable considering that EEG data were

btained from a previous study, which involved different participants

nd was not purposely designed to test humanness ( Grootswagers et al.,

019a ). This not only addresses the persistent question to what ex-

ent results from object studies generalise to different stimulus sets (cf.

rootswagers and Robinson, 2021 ), but also builds on previous research

y showing that objects are organised in the human visual system not

nly according to their conceptual (agency) human-like features (e.g.,

onnolly et al. 2012 , Gobbini et al. 2007 , Martin and Weisberg 2003 ,

ha et al. 2015 ) but also perceptual human-like features. Our results

orroborate results from previous studies that measured perceptual sim-

larity with a different task (e.g., visual search; Proklova et al. 2016 ,

horat et al. 2019 ), and show that changing the instructions while ob-

ervers perform the same behavioural paradigm effectively guided their

hoices towards perceptual or conceptual features. We also found that

he “humanness ” dimension is present in both animate and inanimate

bjects, which is particularly noteworthy given that inanimate objects

o not exhibit any of the features of the animate objects that could ac-

ount for humanness such as face presence, perceived intelligence, or

utonomous movement. Future work can explore this further, perhaps

ith more ambiguous stimuli that blur the boundaries between animate

nd inanimate (e.g., clouds or waves as in Shatek et al. 2021 ) or on large

atasets that contain a bigger variety of objects ( Grootswagers et al.,

022 ; Hebart et al., 2019 ). 
8 
The results also showed distinct temporal dynamics in the process-

ng of conceptual and perceptual features of humanness. Humanness

atings based on perceptual features explained unique variance in EEG

ata earlier than those based on conceptual features. Perceptual feature

nformation was evident from around 100 ms and rising to an initial

eak around 200 ms which is consistent with the temporal profile of

he visual system hierarchy that progresses from encoding simple (e.g.,

dges and orientations) to complex (e.g., shapes and textures) features

e.g., Carlson et al. 2013 , Cichy et al. 2014 ). This earlier contribution

f perceptual humanness features to the representational organisation

f objects in the visual system is in line with previous research that

howed that the brain processes perceptual features (e.g., shape) ear-

ier than conceptual features (e.g., category) in general ( Contini et al.,

020 ; Grootswagers et al., 2019b , 2019a ). It is also in accordance with

unctional Magnetic Resonance Imaging (fMRI) research showing that

he ventral temporal cortex, which responds later than lower level per-

eptual areas ( Cichy et al., 2016 , 2014 ), represents perceptual category

nformation as well as agency concepts ( Thorat et al., 2019 ). These re-

ults show that top-down processes, modulated here by asking different

uestions in the human-similarity judgement task, can induce a shift in

bservers’ focus toward earlier or later features, which translates into

ctual decision-making. 

Furthermore, the results revealed distinct spatial distributions for

he processing of conceptual and perceptual features of humanness in

he human brain. Although the results revealed that objects were gener-
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lly represented to greater extent in the right hemisphere than the left

emisphere, this hemispheric asymmetry was found to be stronger for

onceptual features than perceptual features. This asymmetry observed

or all dimensions is generally consistent with overall neural responses

o objects being stronger in the right hemisphere (e.g., Quek and Peelen

020 ), especially for faces ( Kanwisher et al., 1997 ; Puce et al., 1995 )

nd bodies ( Downing et al., 2006 , 2001 ). Our results suggest that the

rocessing of conceptual humanness features of the objects drives this

symmetry stronger than the processing of perceptual humanness fea-

ures, which were more symmetrically distributed. This asymmetry also

eemed stronger for the inanimate objects, for which the results were

lmost entirely right lateralised. 

Our results raise questions about when and why these two dimen-

ions of humanness would have become significant and distinct driv-

ng forces of the organisation of object representations in the human

rain. While it is plausible that a human-focused object dimension may

ave developed under evolutionary pressures, such as enabling effective

nteractions with others, the origin of the perceptual and conceptual

imensions of humanness as revealed here remains an open question.

t is possible that new objects created by humans (e.g., clothes, toys,

obots) challenged the effectiveness of a visual system organised around

 purely perceptual dimension of humanness. For example, clothes are

haped like human body parts but do not exhibit human-like agency.

t can be seen in Fig. 2 that judgements for this category of objects

ere strongly influenced by whether participants were requested to base

heir human-similarity judgements on perceptual or conceptual features.

ikewise, computers, robots, and other autonomous agents often do not

ook like humans, but increasingly think and act like humans thanks to

rtificial intelligence. These objects could be challenging the concep-

ual definition of humanness in our daily lives. More research would be

eeded to address these questions and to better understand the devel-

pment of perceptual and conceptual humanness dimensions, as well as

ther potentially important dimensions that shape the representational

rganisation of objects in the human brain. 

In conclusion, our results highlight unique contributions of percep-

ual and conceptual human-similarity in neural object representations.

he two types of features involve distinct neural processing, with a later

nd more lateralised contribution of conceptual humanness than percep-

ual humanness. This study provides new evidence for a multi-faceted

bject representation and highlights that knowledge organisation in the

uman brain is shaped in part by social requirements. 

Stimuli and data can be found at 10.17605/OSF.IO/A7KNV and

0.17605/OSF.IO/3ED8F 
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