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ABSTRACT Although SISR (Single Image Super Resolution) problem can be effectively solved by deep
learning based methods, the training phase often considers single degradation type such as bicubic inter-
polation or Gaussian blur with fixed variance. These priori hypotheses often fail and lead to reconstruction
error in real scenario. In this paper, we propose an end-to-end CNN model RPSRMD to handle SR problem
in multiple Gaussian degradations by extracting and using as side information a shared image prior that
is consistent in different Gaussian degradations. The shared image prior is generated by an AED network
RPGen with a rationally designed loss function that contains two parts: consistency loss and validity loss.
These losses supervise the training of AED to guarantee that the image priors of one image with different
Gaussian blurs to be very similar. Afterwards we carefully designed a SR network, which is termed as
PResNet (Prior based Residual Network) in this paper, to efficiently use the image priors and generate
high quality and robust SR images when unknown Gaussian blur is presented. When we applied variant
Gaussian blurs to the low resolution images, the experiments prove that our proposed RPSRMD, which
includes RPGen and PResNet as two core components, is superior to many state-of-the-art SR methods that
were designed and trained to handle multi-degradation.

INDEX TERMS Single image super-resolution, convolution neural network, Gaussian blur, multiple
degradations.

I. INTRODUCTION
As one of the most active research topics, single image super-
resolution (SISR) has attracted increasingly attention. SISR
aims at estimating a high-resolution (HR) image from its
degraded low-resolution (LR) observation. Currently, various
deep learning based methods with different network architec-
tures and training strategies have been proposed to improve
the SR performance [1]–[7]. Since most of the existing SR
methods assumed that the LR image is down-sampled by
some pre-defined downsampler (e.g. bicubic interpolation
with/without a known Gaussian blur), these priori hypotheses
make the SR methods suffer from a common defect: their
models were specialized for a single degradation and lack
scalability to handle multiple degradations by a single model.
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As was revealed in [8]–[10], learning-based SR methods eas-
ily suffer performance drop when the assumed degradation
deviates from the real one (especially the mismatch of blur
kernels). As shown in Fig. 1, the quality of SR images deterio-
rates due to the mismatch between the actual and the assumed
degradations in LR images during the training phase. In this
figure, we present the 4 times scale SR results by using EDSR
[3]. Although EDSR assumed that the LR image was gener-
ated from HR image by bicubic interpolation with no other
degradation, we used the EDSR to restore the LR images
that were generated from the HR images by bicubic down-
sampling along with different types of degradations. In the
left column, the LR-HR relation obeys the EDSR assumption,
therefore the SR result is visually plausible. In the middle
and the right columns, the LR-HR relations do not obey
the EDSR assumption, therefore the blurry results and over-
sharped artifacts are observed in themiddle and right columns
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FIGURE 1. SR results (X4) by using EDSR method [3]. We present the SR
results of LR images that are generated from DIV2K [21] HR images by
bicubic down-sampling along with different degradation methods. From
the left to the right, the applied degradations are: none, Gaussian blur
with kernel width 2.6, and unknown degradation.

respectively. Given the aforementioned facts, the SRmethods
considered single degradation type are usually less effective
in practical scenarios that the degradation types are hardly
predictable. The SR problem with unknown degradations,
also known as blind SR, presents great challenge to most deep
learning based SRmethods sincemultiple-degradationmakes
the LR-HR mapping relation becomes complicate [11], [12].

Efficient and powerful image priors are widely exploited
in model-based optimization methods (e.g., the non-local
self-similarity prior [13], [14], sparsity prior [15], denoiser
prior [16], [17], etc.). However, these methods were usu-
ally not end-to-end and involved sophisticated optimization
procedures. Even though the CNN denoiser prior was inte-
grated with model-based optimization in [17] and it improved
the efficiency to some extent, the hand-designed parameters
made it less practical in real-world applications.

Given the correct degradation information as additional
input, some blur-aware methods (e.g. CAB [18], SRMD
[19], SFTMD [20]) could handle multiple degradations and
achieved satisfactory performance. Therefore, the hybrid
method that combined blur estimation and blur-aware SR
could be a solution of blind SR problem. Due to the ill-
posed property of blur estimation, the blur kernel estimated
from one degraded LR image is hardly identical to the real
one. Therefore, the SR methods that rely on accurate blur
estimation are very likely to be unstable in real cases [20].

Given the facts above, this paper focuses on using one end-
to-end CNN to robustly solve SR problem with unknown
Gaussian degradations. Examining the existing SR methods
that offered optimal working blur kernel, a sharper kernel
often leads to the ringing effects and a smoother kernel often
leads to blurry output images. These phenomena empirically
inspires us that the SR model needs robust image prior as
an anchor to stabilize the SR results in different Gaussian
blurs. As shown in Fig. 2, the second row presents our gen-
erated image priors which are highly consistent to different
Gaussian blur kernels without losing the primary contents
in original LR image. It’s noted that the robustness of prior
here means that different degradations applied on one image
only introduce subtle changes on output prior. In practical,

we propose an innovative training strategy to train an auto-
encoder-decoder, named RPGen (Robust Prior Generator),
for generating robust priors.

Instead of estimating the kernel maps as SR prior and then
super-resolve the LR image like SRMD did [19], we integrate
the image content prior into a CNN based SR model due to
the following considerations. First, the kernel maps do not
actually contain the image information.Manipulating the blur
kernel and the LR image at the same time with convolutional
operation introduces interference that is not related to the
image [20]. Oppositely, image prior can act as feature maps
and naturally integrate with CNNs. Secondly, the degraded
texture in LR image depends on blur kernel and original HR
texture at the same time. Therefore, region-aware processing,
which can be offered by an image-content prior, is preferable.
For example, Gaussian blur kernel is a low-pass filter, the
width of Gaussian blur kernel does not significantly affect
the output of degraded image in flat region. In conclusion, a
robust image prior can be more efficient and robust compared
with an estimated blur kernel, since it carries both degradation
and image content information in together. In order to make
effective use of the robust prior, we carefully designed a
residual-structure based SR network PResNet. The complete
framework named RPSRMD (robust prior based super res-
olution for multiple degradation) combines the RPGen and
PResNet, and achieves the state-of-the-art (SOTA) perfor-
mance on SR problem under multiple Gaussian degradations.

In the view of above, the main contributions of this paper
are summarized as follows:

1: We propose an effective end-to-end deep learning frame-
work, referred to as RPSRMD, to robustly deal with SR
problem in multiple Gaussian blur cases. The proposed
method extends the widely-used bicubic degradation
assumption to bicubic + unknown Gaussian blur. This
improvement makes the SR solution more practical in
real applications. The proposed framework contains a
prior generator (i.e., RPGen) that generates the robust
image priors and a SR network (i.e., PResNet) that inte-
grates the prior with LR image to reconstruct visually
plausible HR images.

2: In order to generate shared primary image content in
LR images with different Gaussian blur strength, we
designed a new loss function to control the output con-
sistency of the proposed RPGen. The trained network
is able to produce stable image priors as illustrated in
Fig. 2. Even though the training strategy is proposed for
SR problem, it can be a general approach and can be
extended to other tasks such as deblurring and denoising
in multiple degradations.

II. RELATED WORKS
Recently, CNN based models applied on SR problem made
efficient use of large dataset to learn the mapping from the
synthetic LR image to the ground truth HR images in end-
to-end manner. Plenty of CNN models have been proposed
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FIGURE 2. Illustration of robust priors. The first row presents LR images
degraded from one HR image by different blur kernels, the second row
presents the corresponding priors. The SSIM value between the three
priors are at least 0.99 which indicates the expected robustness to
different blur kernels.

to enhance the performance and efficiency. SRCNN [22]
first trained a shallow CNN to solve SR problem and it
significantly outperformed the traditional methods at that
time. In order to go deeper in network structure and achieve
better performance, VDSR [23] was proposed using skip
connection learning strategy.Moreover, they also showed that
VDSR could handle multiple SR scales with single CNN
model. Although it achieved good performance, VDSR suf-
fered from high computational budgets because the input
images were interpolated to the same spatial size as the output
images via bicubic method. To improve the computational
efficiency, deconvolution layer [24] and pixel-shuffling layer
[25] were introduced in SR network to upscale the image
at the end of the network. LapSRN [26] further took the
LR image as input and progressively predicted the sub-band
residuals with a coarse-to-fine strategy. SRResNet [27] first
introduced residual blocks in SR networks. EDSR [3] then
improved it by removing the BN (batch normalization) lay-
ers and applied residual scaling layer in residual blocks to
accelerate the training procedure and expand the model size.
SRGAN [27] and ESRGAN [28] applied GAN methods to
improve the perceptual quality of the reconstructed images.
Some other works focused on special scenarios, e.g., SFT
layer was introduced in [29] to introduce the semantic prior
as additional input of SR network. SRMD [19] proposed a
stretching strategy to integrate the degradation information
in the SR network and achieved visually plausible results in
reconstructing real LR image.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
In SISR problem, the LR image ILR generated from the HR
image IHR can be formulated by a degradation model as
follows:

ILR = (k ⊗ IHR) ↓s +n, (1)

where ⊗ denotes the convolution operation, k is the blur
kernel, ↓s represents the downsampler and n is the addi-
tive noise. The main problem we focus on in this paper
is to restore the down-sampled blurry image without addi-
tive noise. Similar as many SR methods considered LR

degradations [8], [19], [20], we adopt the combination of
Gaussian blur and bicubic downsampling as our LR gener-
ation model:

ILR = (g⊗ IHR) ↓bs, (2)

where ↓bs is the bicubic downsampler and g is the Gaussian
blur kernel:

g =
1

σ
√
2π

e−
x2

2σ2 , (3)

and σ is also referred to as Gaussian blur kernel width or blur
strength in this paper.

B. OVERALL FRAMEWORK
As shown in Fig. 3, the proposed RPSRMD framework con-
sists of two CNN (convolutional neural network) models:
a prior estimator P (RPGen in Fig. 3) and a SR model F
(PResNet in Fig. 3). We suppose the LR image ILR has the
shape of H ×W × C , where C denotes the number of color
channels,H andW denote the height andweight of the image.

The prior estimator P aims at providing robust image prior
with the given degraded LR image by the function:

prior = Pθp (I
LR), (4)

where prior is a feature map with the shape of H ×W × 1,
and θp represents the trained CNN parameters of estimator P.
The SR model F integrates the LR image and its corre-

sponding prior together as the input to reconstruct the high
quality HR image. It can be formulated as:

ISR = Fθf (I
LR, prior), (5)

where θf represents the trained CNN parameters of F . Model
F upscales the input ILR at the output instead of applying the
upscale at the input. Therefore, the SR model F can apply
convolution on feature maps in small spatial size.

The entire framework is a FCN (full convolutional neural
network) so as to exploit the advanced merits of CNN, such
as the fast speed by parallel computing and high accuracy
through recursive learning. It’s worth noting that even though
we train two parts of the framework (i.e. P and F) individu-
ally, the whole structure is still an end-to-end CNN model in
the test phase.

C. RPGEN: HOW TO GENERATE IMAGE PRIOR
1) RPGen STRUCTURE
As shown in Fig.4, the RPGen network is a shallow CNN
model to preserve the primary contents in the image and
eliminate the randomly generated corruptions. It consists of
several symmetric downsample and upsample modules with
detailed information in the right bottom part of Fig. 3. The
downsample modules act as the feature extractor and encode
the primary contents in the degraded LR images. The upsam-
ple modules decode the image abstraction to restore image
details. Moreover, skip connections from a downsamplemod-
ule to its corresponding upsample module pass the feature
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FIGURE 3. The structure of the RPSRMD framework. The whole framework consists of two CNN networks, the PResNet and the RPGen model. The feature
maps of the priors are plugged into residual blocks, concatenated in channel-wise with output features of each layer in the residual block. The skip
connection upscale the inputs and add with the outputs of the last residual block in pixel-wise.

FIGURE 4. Illustration of the simi-loss of the RPGen. We minimize the
consistency loss of the priors extracted from different LR images which
are generated by different degradations from the single HR image.

maps through and add them element-wise. The output has
same spatial size (i.e., width and height) as the input image.

In SR processing, we prefer using neither pooling nor
unpooling in the network since pooling usually discards use-
ful texture information which could be essential for restor-
ing details [30]. Thus we use pixelshuffle operation to
down/upscale the spatial size of the feature maps without
information loss. Given the scale factor r , the upsample layer
Lu reshapes a H × W × C feature matrix to a rH × rW ×
C/r2 feature matrix and the downsample layer Ld reshapes a
H × W × C feature matrix to a H/r × W/r × r2C feature
matrix as introduced in [25]

Each down/upsample module consists of a down/upscale
layer with scale factor r = 2, a convolution layer with the

activation function RELU. As shown in Fig.4, the symmetric
skip connections pass the feature maps of downscale module
to the upscale module thus the network provides low-level
features for better restoration and help the back propagation
of gradient [30].

2) LOSS FUNCTION
In order to enhance the robustness of image priors gener-
ated by RPGen, we introduce an innovative loss function to
guarantee that the image priors of one image with different
Gaussian blurs to be very similar. In practical, we generate
n LR images (ILRk , k = 0, 1, 2, . . . , n) by down sampling
one HR image with n different Gaussian blur kernels. We
further assume that the n LR images share similar image
prior estimations from our proposed RPGen without losing
primary image contents. Accordingly, we introduce a novel
loss function to exploit the required properties of the network,
which consists of two parts:
consistency loss:

Lsimi =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

mse(prior i, prior j), (6)

and validity loss:

Lmmse =
1
n

n∑
i=1

mse(prior i, Ianchor ), (7)
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where priork , k ∈ [1, 2, . . . , n] is the kth output of RPGen
Pθp (I

LR
k ), and mse denotes the mean-squared-error. Ianchor

is the LR image that is bicubic down-sampled from the HR
image. The final cost function is a linear combination of this
two parts by hyper-parameter α:

Lrp = Lsimi + αLmmse. (8)

In a network with multiple inputs, Lsimi enforces the out-
puts to be pixel-wise similar. However, the network often
shrinks the value range of the output to reduce the loss energy
if only Lsimi is presented in the loss function.We therefore add
a regularization term Lmmse to address the above issue. The
anchor Ianchor plays an important role here, it guides the tex-
ture and structure restoration and it avoids the value shrinkage
problem. We empirically set Ianchor as the Y channel (in
YCbCr color space) of LR image bicubic down-sampled from
the HR image.

It is worth noticing that there is a trade-off between Lsimi
and Lmmse. Specifically, the consistency of output gets worse
with large α while the RPGen output tends to be blurry
with very small α. In order to keep the balance between
consistency and clarity, we set n = 2 and α = 2 in the training
phase. In specific, we optimize:

min
θp

E{[Pθp (I
LR
0 )− Pθp (I

LR
1 )]2

+ [Pθp (I
LR
0 )− Ianchor ]2

+ [Pθp (I
LR
1 )− Ianchor ]2}, (9)

where ILR0 and ILR1 are two LR images blurred by two different
random Gaussian kernels.

D. PResNet: HOW TO USE IMAGE PRIOR
PResNet is essentially a SR network to reconstruct high qual-
ity images with the degraded LR image and its corresponding
content prior. We follow the trends of using residual structure
based network for its capability of generalization. There are
alternative ways to introduce priors to a SR network. For
instance, one can concatenate priors with the input LR images
as a joint input to the network [19]. However, directly con-
catenating them together only applies the prior information
in the first layer, and the deep layers are difficult to be
affected by prior information [20]. Hence, we feed the priors
into each residual blocks to employ the prior information
efficiently and exploit the deep residual structure to improve
performance. In practice, we concatenate the prior and feature
maps in each residual block before convolution, as shown in
Fig.5. In the red boxes of Fig.5, the dimension of the feature
maps are denoted as W × H × C , where W is the feature
width, H is the feature height and C is the number of feature
channels.

Specifically, we pass the input LR image (i.e. the RGB
channels) into two branches in parallel, one is fed to a pre-
trained RPGen to obtain the robust image prior, and the other
is fed to the PResNet. At first, the original LR image with
dimension W × H × 3 is expanded to feature maps with

FIGURE 5. The proposed PResNet. The numbers in the red boxes indicate
the feature dimension at each step.

dimension W × H × 256, which is the size of feature maps
fed into every residual block. In each residual block, the input
feature maps are first concatenated with the image content
prior channel-wise (i.e. in C dimension) and then are con-
volved and rectified. The corresponding feature maps sizes
are presented in the red boxes of Fig.5. In each residual block,
we apply twice concatenating+convolution operations to add
into PResNet the information of image prior. Moreover, to
avoid the numerical unstable in training procedure, we adopt
the residual scaling with factor 0.1 [3] in each residual block.
Overall, we stack 32 residual blocks, each of which takes the
output of the previous module and the robust prior as input. In
the up-sampling and the skip connection part, we use pixel-
shuffling layer [25] to upsample the output of the last residual
block and the LR image respectively and add them pixel-wise
to obtain the final HR image. With the pre-trained RPGen
network, the loss function of PResNet can be formulated as:

min
2f

E{IHR − Fθf [I
LR,Pθp (I

LR)]}2, (10)

where Pθp is the pre-trained RPGen estimating image content
prior, Fθf is the PResNet trained to generate SR image with
the LR image ILR and its corresponding prior Pθp (I

LR).

E. WHY NOT LEARN NETWORK DIRECTLY
Compared with our proposed method, one similar but
straightforward method is to train a neural network with the
dataset which is augmented to cover multiple degradations.
However, direct training often leads to the following defects:
1) It tends to over-fitting or under-fitting some degradation
types so that the network lacks robustness; 2) In order to
generalize the ability to reconstruct all degraded images, the
network has pool average reconstruction quality. The above
problems lead to the lack of practicality in real applications.
Moreover, we will show in Sec. IV that our proposed method
can achieve better performance both on robustness and recon-
struction quality than direct training.

IV. EXPERIMENTS
A. DATA PREPARATION
We combined DIV2K training set [21] and Flicker2K
dataset [3] to obtain 3450 high quality HR training images
and trained the RPGen and the PResNet in our proposed
RPSRMD framework. We randomly cropped each training

VOLUME 8, 2020 74199



W. Wang et al.: Robust Prior-Based SISR Under Multiple Gaussian Degradations

image into 100 patches with the size of 48S × 48S where S
was the scale factor. The pixel values were first normalized
within [0,1] and the mean value of each channel was sub-
tracted. In order to present multiple Gaussian degradations
in our training dataset, we defined the degradation domain
D =

{
gσi (·) ↓bs |σi ∈ [0.2, 0.3, . . . , S]

}
, where gσi (·) was

the Gaussian blur in Eq. 3 with variance σi and ↓bs repre-
sented the bicubic downsampling. In RPGen’s training phase,
according to Eq. (9), we generated two LR images as joint
inputs from one HR image by randomly applying two degra-
dation types in D, and Ianchor was the Y channel (in YCbCr
color space) of LR image bicubic down-sampled from the HR
image. In PResNet’s training phase, according to Eq. (10), ILR
was degraded by randomly choosing the degradation in set
D. All models were trained with Adam [31] as optimizer, the
initial learning rate was set to be lr0 = 0.0001, and gradually
decayed by:

lrk = max(
lr0

2
(cos(

kπ
N

)+ 1), 10−5) (11)

where lrk is the learning rate in the kth epoch and N is the
max epoch number. We set N = 300 in RPGen’s training and
N = 600 in PResNet’s training respectively.

B. ROBUSTNESS OF PRIORS
In Sec. III-C, we introduced the underlying assumptions of
shared content in SR and the corresponding training strategies
of the proposed prior generator Pθp . In this part, we will show
by simulation experiments that our trained prior generator
Pθp can generate robust image priors from LR images derived
from different Gaussian blur kernels.

Given each HR image in the widely used datasets (i.e.
Set5, Set14, BSD100, and Urban100), we generated multiple
LR images ILRσi by using Eq. (2) and Eq. (3) with σi ∈
{0.3, 0.4, . . . , 2.0}. Afterwards, the image priors Ipriorσi of
each LR image ILRσi was generated from the trainedPθp and the
prior similarity in one HR image is evaluated by calculating
PSNR and SSIM between Ipriorσi and

Ipriormean =
1
M

M∑
i=1

Ipriorσi
, (12)

where M = 18 is the number of different Gaussian σ we
applied here.

In Fig. 6, we present the PSNR and SSIM values of the
image priors derived from dataset Set5, Set14, BSD100, and
Urban100. The x axis represents the Gaussian σ of the blur
kernel applied in LR image generation, the y axis represents
the PSNR/SSIM value of the image prior corresponding to a
specified Gaussian kernel versus the average image prior. It
is clear that the image priors shared very similar contents and
textures even if their corresponding LR images were blurred
very differently (i.e σ varies from 0.3 to 2.0). Therefore, this
prior can be a very useful and robust side information in SR
restoration, especially when the LR images are blurred by
variant or unknown Gaussian kernels.

FIGURE 6. Prior robustness. The PSNR and SSIM values of the image
priors in different Gaussian blurs versus the average image prior.

C. SR QUALITY COMPARISON
We evaluate and compare the performance of our proposed
method based on the widely used datasets: Set5, Set14,
BSD100, and Urban100. First we compare the SR results
between EDSR [3], SRMD [19] and the proposed RPSRMD
when the LR images are blurred by varying Gaussian σ .

In Fig. 7, the x axis represents the Gaussian σ of the blur
kernel applied in LR image generation, the y axis represents
the PSNR value of the reconstructed SR image versus original
HR image in the dataset. Specifically, Fig. 7 (a) compares the
PSNR performance in scale 2 on Set5, and Fig. 7 (b) com-
pares the PSNR performance in scale 4 on Set14. It is noted
that the performance of EDSR drops fast as the Gaussian σ
increases because the network is trained with single type of
degradation and it is fragile when kernel mismatch happens.
The SRMD takes the complete kernel information and LR
image as joint input, therefore it should be more robust when
the strength of Gaussian blur changes. According to Fig. 7,
SRMD is indeed more robust than EDSR as we expected,
its performance does not significantly drop when Gaussian
σ increases. Different from SRMD that needs accurate infor-
mation of the blur kernel, our proposed RPSRMD only takes
the LR images as inputs and its robustness to Gaussian σ
changing outperforms SRMD by means of PSNR. Therefore,
this experiment shows that our proposed method can stably
deal with the SR problem when the LR image suffers varying
Gaussian blur and the blur strength is unknown.
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TABLE 1. The PSNR (dB) and SSIM of multi-degradation SR methods (x2) with different kernel width (σ ).

TABLE 2. The PSNR (dB) and SSIM of multi-degradation SR methods (x4) with different kernel width (σ ).

We then conduct thorough comparisons between our pro-
posed RPSRMD and other SOTA methods in different Gaus-
sian blur kernels. Table 1 and Table 2 compare the PSNR of
SR images on four widely-used datasets (i.e., Set5, Set14,
BSD100 and Urban100) with scale factor 2 and 4. The
original EDSR (denoted as EDSR) suffers severe perfor-
mance drop when the downsampling kernel is different to
the predefined one. In order to make fair comparison, we
also trained the EDSR model (denoted as EDSR-MD) with
our PResNet training set which contains multiple degradation

types. The SR results from EDSR-MD is still not as good
as our proposed RPSRMD. It proves that the robust prior
can enhance the SR results when multiple Gaussian blur
types are presented in the training set. Although SRMD
takes the complete kernel information as input, our proposed
RPSRMD requires less blur information and generates better
quality SR images than SRMD. It should be noted that this
does not mean comprehensive information leads to negative
effect. Actually, acquiring complete blur information would
be always preferable but difficult. Therefore a SRmethod that
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FIGURE 7. The PSNR values of the reconstructed SR images from LR
images that suffer different Gaussian blur. We test the scale factor 2 on
Set5 and scale factor 4 on Set14 using EDSR, SRMD and the proposed
RPSRMD.

FIGURE 8. Visual comparison between SR methods on real LR image
‘chips’.

requires less blur information would be useful and practical.
In our method, the side information ‘‘image prior’’ is trained
by our designed network and the cascade SR network is
jointly designed. Therefore, our proposed SR method can
make good use of the ‘‘image prior’’ and generated high
quality SR images.

Furthermore, we compare the visual quality of different
methods on real and synthetic images in Fig.8 - 10.

FIGURE 9. Visual comparison between SR methods on synthetic LR
images with Gaussian blur strength σ = 1.2.

FIGURE 10. Visual comparison between SR methods on synthetic LR
images with Gaussian blur strength σ = 2.6.

In Fig. 8, we compare our methods to Bicubic interpola-
tion, EDSR and SRMD on the real LR image ‘chips’. The
performance of EDSR is severely affected by the unknown
degradation. Because SRMD takes known degradation infor-
mation as input, it reconstructs better SR image compared
with EDSR but the reconstruction result still looks blurry.
In comparison, our method can not only produces sharper
edges but also provides good recognizability of the characters
printed on the chip.

Afterwards, we generate LR images from high quality HR
images by applying different Gaussian blurs (σ = 1.2, σ =
2.6) and bicubic downsampler, and restore them by Bicubic
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interpolation, EDSR, SRMD, EDSR-MD and our proposed
RPSRMD, as shown in the enlarged parts in Fig. 9 and 10.
The EDSR reconstructs blurry SR images under unexpected
degradation type in Fig. 9, and the results become worse
when kernel width rises in Fig. 10. The SRMD which takes
known degradation type as part of the input can produce better
results than the EDSR.Meanwhile EDSR-MDproduces simi-
lar results as SRMD does though without known degradation
type as input because of the great representational capacity
of the deep network. Our proposed RPSRMD outperforms
the aforementioned methods when different Gaussian kernel
widths are applied in Fig. 9 and Fig. 10 respectively. In
Fig. 9 and Fig. 10, we can find in the first two rows that
RPSRMD produces less blurry results and sharper textures,
and we can find in the last two rows that RPSRMD is able to
recover plausible image details which is similar with them in
the groundtruth image. Both the qualitative and quantitative
results prove the RPSRMD achieves the SOTA in unknown
degradations which is highly applicable in real scenario.

V. CONCLUSIONS
In order to address the common SR problem that the degra-
dation priori hypotheses often fail and lead to reconstruction
error in real scenario, we propose the RPSRMD framework
to handle SISR problem in multiple Gaussian degradations
scenarios. By designing an AED network called as PRGen,
we can robustly extract from the degraded LR images a shared
image content prior that is highly consistent when the LR
images are blurred by different Gaussian kernels. Afterwards,
we propose a deep ResNet called as PResNet to take the
image content prior as side information to recover the SR
image from its LR observations with different Gaussian blur
strength. The experiments prove that our method is superior
to many state-of-the-art SR methods that were designed and
trained to handle multi-degradation. In this paper, we use
the Gaussian blur as the blur model since it is one of the
most common blur types in many photography cases. In the
future work, the underlying principles used in this paper are
promising to extend in more complicated and even mixture
blur types.
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