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CPGD: Cadzow Plug-and-Play Gradient Descent
for Generalised FRI
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Abstract—Finite rate of innovation (FRI) is a powerful recon-
struction framework enabling the recovery of sparse Dirac streams
from uniform low-pass filtered samples. An extension of this frame-
work, called generalised FRI (genFRI), has been recently proposed
for handling cases with arbitrary linear measurement models.
In this context, signal reconstruction amounts to solving a joint
constrained optimisation problem, yielding estimates of both the
Fourier series coefficients of the Dirac stream and its so-called
annihilating filter, involved in the regularisation term. This optimi-
sation problem is however highly non convex and non linear in the
data. Moreover, the proposed numerical solver is computationally
intensive and without convergence guarantee. In this work, we
propose an implicit formulation of the genFRI problem. To this
end, we leverage a novel regularisation term which does not depend
explicitly on the unknown annihilating filter yet enforces sufficient
structure in the solution for stable recovery. The resulting optimisa-
tion problem is still non convex, but simpler since linear in the data
and with less unknowns. We solve it by means of a provably conver-
gent proximal gradient descent (PGD) method. Since the proximal
step does not admit a simple closed-form expression, we propose
an inexact PGD method, coined Cadzow plug-and-play gradient
descent (CPGD). The latter approximates the proximal steps by
means of Cadzow denoising, a well-known denoising algorithm
in FRI. We provide local fixed-point convergence guarantees for
CPGD. Through extensive numerical simulations, we demonstrate
the superiority of CPGD against the state-of-the-art in the case of
non uniform time samples.
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I. INTRODUCTION

SAMPLING theorems lie at the foundation of modern digital
signal processing as they permit the convenient navigation

between the analogue and digital worlds [1], [2]. The most fa-
mous is undoubtedly the Shannon sampling theorem [3], which
states that bandlimited signals can be recovered exactly from
their discrete samples for a sufficient sampling rate. This major
result has had tremendous impact on the field of signal pro-
cessing and by extension on many fields of natural sciences. But
this unanimous celebration lead many scientists to start thinking
about sampling theory exclusively in terms of bandlimitedness,
which is only a sufficient condition for a signal to admit a discrete
representation. In fact, sampling theorems can also be devised
for non-bandlimited signals as long as they possess finitely many
degrees of freedom.

This fact was brought to the attention of the signal processing
community in [4], where the authors introduced the finite rate
of innovation (FRI) framework. FRI is concerned with the sam-
pling of sparse non-bandlimited signals such as the prototypical
sparse signal, namely the T -periodic stream of Diracs:

x(t ) =
∑
k′∈Z

K∑
k=1

xkδ(t − tk − T k′), ∀t ∈ R, (1)

with xk ∈ C and tk ∈ [0, T [. In the FRI framework, the sparsity is
measured in terms of its rate of innovation, defined as the number
of degrees of freedom per unit of time. For instance, the Dirac
stream (1) has 2K degrees of freedom {xk, tk}k=1,...,K per period
T , yielding a finite rate of innovation of ρ = 2K/T . Intuitively,
any lossless sampling scheme for (1) must therefore have a
sampling rate at least as large as the rate of innovation ρ or it will
be impossible to fix all degrees of freedom. The reconstruction
of FRI signals has useful applications in many fields of applied
signal processing such as ultra-wide band communications [5],
[6], electroencephalography (EEG) [7], [8], optical coherence
tomography [9], ultrasound imaging [10]–[12], radio astron-
omy [13], array signal processing [14], calcium imaging [15]
non uniform spline approximation [16], [17] and functional
magnetic resonance imaging (fMRI) [18].

Blu et al. described in [19] a sampling scheme achieving
the second best sampling rate after the critical innovation rate,
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permitting to perfectly recover the signal innovations from the
knowledge of any 2K + 1 consecutive Fourier coefficients of
x. Unfortunately, this scheme can be very sensitive to noise
perturbations in the collected samples. This is because the re-
covery of the innovations tk relies on the resolution of a so-called
annihilating equation which requires the Toeplitz matrix built
from the Fourier coefficients to be rank deficient. While this
structural constraint is guaranteed to hold in the case of noiseless
recovery of Dirac streams, it can break down in the presence of
noise, inevitable in practical applications.

As a remedy, Blu et al. proposed to denoise the collected
samples prior to solving the annihilating equation. To this end,
they leveraged the well-known Cadzow algorithm [20], which
aims to retrieve the closest rank-deficient Toeplitz matrix to
a high-dimensional embedding of the data via an alternating
projection method. When upgraded with this extra denoising
step, simulation results from Blu et al. revealed that the overall
accuracy of the recovery procedure remains very good for signal-
to-noise ratios (SNR) as low as 5 dB [19]. While Cadzow algo-
rithm empirically provides accurate results after a few iterations,
convergence in theory has however not been demonstrated to
date, due to the non convex nature of the space of rank-deficient
matrices. Condat and Hirabayashi [21] revisited Cadzow de-
noising as a structured low-rank approximation (SLRA) problem
and proposed a Douglas-Rachford splitting algorithm to solve
it [22], with higher accuracy than traditional Cadzow denois-
ing. Unfortunately, the gain in accuracy comes at the price of
significantly higher computational cost, the Douglas-Rachford
splitting method requiring many more iterations to converge than
Cadzow algorithm.

In addition to their somewhat heuristic nature, neither Cadzow
denoising nor its upgrade can handle more general types of input
measurements as considered in the generalised FRI (genFRI)
framework introduced by Pan et al. in [23]. The latter extends
FRI to very generic cases where the measurements are related to
the unknown Fourier coefficients of signals satisfying the annihi-
lating property by a linear map. In such configurations, both the
Fourier coefficients and their corresponding annihilating filter
are unknown and must be estimated from the data. Pan et al.
proposed to perform this joint estimation task by solving a
constrained optimisation problem which recovers the Fourier
coefficients, required to minimise a quadratic data-fidelity term,
and their corresponding annihilating filter coefficients. The
annihilating equation linking the two unknowns is explicitly
enforced as a constraint. This optimisation problem is highly
non convex and non linear in the data. They suggested to solve it
via an iterative alternating minimisation algorithm with multiple
random initialisations [23]. The proposed algorithm however
comes without convergence guarantees and is computationally
intensive.

In this paper, we propose an implicit formulation of the gen-
FRI problem in which only the Fourier coefficients to be annihi-
lated are recovered. This formulation does not rely explicitly on
the unknown annihilating filter but rather leverages a structured
low-rank regularisation constraint based on a “Toeplitzification”
linear operator, guaranteeing non-trivial solutions to the annihi-
lating equation. The resulting optimisation problem is still non

convex, but simpler to analyse and solve since it is linear in
the data and with less unknowns. We solve the implicit genFRI
problem via proximal gradient descent (PGD) [24], [25].

We first consider PGD with exact proximal steps which is
shown to converge towards critical points of the implicit genFRI
problem. The latter is however impractical since the proximal
step involved at each iteration does not have a closed-form
expression. We therefore consider an inexact PGD [26], with
proximal steps approximated by means of alternating projec-
tions. In the case of injective forward matrices, the approxi-
mate proximal step is shown to reduce to Cadzow denoising.
Such an approach is reminiscent of the plug-and-play (PnP)
framework in which proximal operators involved in first-order
iterative methods are replaced by generic denoisers [27]–[29].
For this reason, we name our reconstruction algorithm Cadzow
PnP Gradient Descent (CPGD).1 We demonstrate that CPGD
converges locally towards fixed points of the update equation
for injective forward matrices. Through simulations of irregular
and noisy time sampling of periodic stream of Diracs we show
that CPGD is almost always more accurate and more efficient
than the procedure proposed by Pan et al. in [23], sometimes by
several orders of magnitude.

The remainder of the paper is organised as follows:
� Preliminary concepts required for the understanding of the

further sections are introduced in Section II.
� Section III describes the genFRI problem and details the

proposed implicit formulation. The CPGD algorithm is
introduced in Section IV.

� Experiments and results are detailed in Section V and
concluding remarks are given in Section VI.

Note that Appendices D to L are provided as supplementary
material to this manuscript. Finally, all experiments and simu-
lations are fully reproducible using the benchmarking routines
provided in our GitHub repository [30].

II. PRELIMINARIES

In this section we introduce a linear operator, baptised
Toeplitzification operator,2 which transforms a vector into a
Toeplitz matrix. This operator will be used in the regularisation
term of our implicit genFRI optimisation problem. We then
briefly review the method of alternating projections [31] as well
as the FRI [4] framework and Cadzow denoising [21].

A. Toeplitzification Operator

Assume that we are given an arbitrary vector x ∈ C
N , N =

2M + 1, with entries indexed as follows:

x := [x−M, x−M+1, . . . , xM−1, xM]T.

Then, for any P ≤ M, we can embed x into the space TP of
Toeplitz matrices of C

(N−P)×(P+1) by means of the following

1An efficient Python implementation of CPGD is provided on our GitHub
repository [30]

2The alternative appellation Toeplitzication was used in [21].
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Toeplitzification operator:

TP :

{
C

N → TP ⊂ C
(N−P)×(P+1)

x �→ [TP(x)]i, j := x−M+P+i− j,
(2)

where i = 1, . . . , N − P, j = 1, . . . , P + 1. Note from (2) that
the value of an entry [TP(x)]i, j of the matrix TP(x) depends
only on the distance i − j between the row and column indices:
TP(x) is therefore a Toeplitz matrix and the vector x is called its
generator.

It is well-known that the Toeplitzification operator (2) can
be used to implement linear convolutions. More specifically,
it can be shown (see Appendix D) that the multiplication of
TP(x) with a vector u = [u1, . . . , uP+1]T ∈ C

P+1 returns the
valid part3 of the convolution between the two zero-padded se-
quences x̃ := [. . . , 0, x−M , . . . , x0 , . . . , xM , 0, . . .] ∈ C

Z and

ũ := [. . . , 0 , u1, . . . , uP+1, 0, . . .] ∈ C
Z (following the nota-

tional convention of [1], we mark the zeroth element of a
sequence x ∈ C

Z by enclosing it in a box).
The pseudoinverse T †

P : C(N−P)×(P+1) → C
N of the Toeplitzi-

fication operator maps a Toeplitz matrix H ∈ C
(N−P)×(P+1) onto

its generator h ∈ C
N . As shown in Appendix E, the latter is given

by

T †
P = �−1T ∗P , (3)

where T ∗P : C(N−P)×(P+1) → C
N is the adjoint of the Toeplizifi-

cation operator given by (see Proposition E.1)

T ∗P :

{
C

(N−P)×(P+1) → C
N

H �→ h j =
∑

i=k+ j−1−P
Hik, j = 1, . . . , N, (4)

and � = T ∗P TP ∈ C
N×N is a diagonal matrix with entries given

by (see Proposition E.2):

�i,i = min (i, P + 1, N + 1− i) , i = 1, . . . , N. (5)

Observe that the composition of T ∗P and �−1 in the expression
of the pseudoinverse (3) implements a diagonal averaging: T ∗P
first sums across each diagonal of the matrix H ∈ C

(N−P)×(P+1)

and �−1 then divides the sums by the number of elements on
each diagonal. It is interesting to note that this operation is
also leveraged in Cadzow denoising as described in [19], in
order to map back the data from their high dimensional Toeplitz
embedding. The formal interpretation of this diagonal averaging
as the pseudoinverse of the Toeplitzification operator proposed
here is nevertheless not discussed in [19], nor anywhere else we
may be aware of.

B. FRI in a Nutshell

The classical FRI framework, introduced in [4], aims at es-
timating the innovations {(xk, tk ), k = 1, . . . , K} ⊂ C× [0, T [,
of a T -periodic stream of Diracs:

x(t ) =
∑
k′∈Z

K∑
k=1

xkδ(t − tk − T k′), ∀t ∈ R.

3See Appendix D for a formal definition of the valid part of a convolution
between zero-padded sequences.

In standard FRI, the estimation procedure is divided into two
stages. The locations tk are first estimated by a nonlinear method,
and then arranged into a Vandermonde system whose solution
yields the Dirac amplitudes [19]. The recovery of the loca-
tions tk relies on the so-called annihilating equation, dating
from Prony’s work [32], which cancels out the Fourier series
coefficients of x by convolving them with a particular filter,
called the annihilating filter. The latter is defined as the finite-
tap sequence h = [· · · , 0, h0 , h1, . . . , hK , 0, · · · ] ∈ C

Z, with

z-transform vanishing at roots {uk := e− j2πtk/T , k = 1, . . . , K}:

H (z) =
K∑

k=0

hk z−k = h0

K∏
k=1

(1− ukz−1). (6)

For such a filter, we have indeed

(x̂ ∗ h)m =
K∑

k=0

hkx̂m−k

=
K∑

k′=1

xk′

(
K∑

k=0

hku−k
k′

)
um

k′ = 0, m ∈ Z, (7)

where x̂m =
∑K

k=1 xkum
k , m ∈ Z, are the Fourier coefficients of x

in (1). Notice that the roots uk of the z-transform H (z) in (6) of h
are , ignoring multiplicative constants, in one-to-one correspon-
dence with the locations tk . Recovering them amounts to esti-
mating the coefficients h = [h0, . . . , hK ] ∈ C

K+1 of h from the
annihilating equation (7). If for instance we have N = 2M + 1
consecutive Fourier coefficients of x, e.g. x = [x̂−M , . . . , x̂M ] ∈
C

2M+1, we can extract the N − K equations from (7) correspond-
ing to the convolution indices m = −M + K, . . . , M, and use the
Toeplitzification operator.4 defined in (2) to form the following
matrix equation:

TK (x)h = 0N−K , ‖h‖ �= 0. (8)

Observe that any nontrivial element of the nullspace of TK (x)
is a solution to (8). For M ≥ K , it can be shown [19] that
TK (x) ∈ C

(N−K )×(K+1) has rank K and therefore has a nontrivial
nullspace with dimension 1. Up to a multiplicative constant,
the annihilating equation (8) admits hence a unique solution.
The latter can be obtained numerically by means of total least-
squares [19], which computes the eigenvector associated to the
smallest5 eigenvalue of TK (x). In the critical case M = K , the
matrix TK (x) is square, while in the oversampling case M > K
it is rectangular and tall. As explained in [19], oversampling
makes the estimation procedure more resilient to potential noise
perturbations in the Fourier coefficients. In such cases, Blu et
al. recommend moreover to perform Cadzow denoising on the
Fourier coefficients x (see Section II-C) as well as replace (8)
by a more general annihilating equation:

TP(x)h̃ = 0N−P, ‖h̃‖ �= 0, (9)

4Remember the link between the Toeplitzification operator and convolution
discussed in Section II-A

5An eigenvalue exactly equal to zero may in practice be impossible to obtain
due to numerical inaccuracies.
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with K ≤ P ≤ M, and h̃ ∈ C
P+1. Again, it is possible to show

that TP(x) has rank K , and hence a nontrivial nullspace with
dimension P + 1− K . Solutions to (9) are therefore not unique
in this case, but all are equally valid for practical purposes.
Moreover, the increased nullspace dimension makes Cadzow
denoising more efficient at filtering the noise component. In
practice, the case P = M has been reported to yield the best
empirical performance [19].

C. Cadzow Denoising

For strong noise perturbations, the generalised annihilating
equation (9) may fail to admit a nontrivial solution. Indeed,
noisy generators x can yield full column rank matrices TP(x)
with trivial nullspace. As a potential cure, Blu et al. propose to
denoise the Fourier coefficients x prior to solving the annihilat-
ing equation. This denoising step attempts to transform TP(x)
into a Toeplitz matrix with rank at most K , thus guaranteeing
the existence of nontrivial solutions to (9). This operation is
carried out by means of Cadzow denoising [21], an alternating
projection method6 applied heuristically to the subspace TP of
Toeplitz matrices and the subset HK of matrices with rank at
most K :

HK := {
M ∈ C

(N−P)×(P+1) | rank M ≤ K
}
. (10)

Using the notation introduced in Section II-A, Cadzow denoising
can be seen as processing the noisy coefficients x as follows:

x̌ = T †
P

[
�TP

�HK

]n
TP(x), (11)

for some suitable n ∈ N, where �TP
and �HK

are the
projections onto the subsets TP and HK of C

(N−P)×(P+1)

respectively.
Note that since HK is a non convex set the convergence of the

method of alternating projection (MAP) in (11) is not guaran-
teed. Nevertheless, experimental results [19], [21] suggest that
Cadzow denoising almost always converges after a few iterations
(typically n ≤ 20), which could theoretically7 be explained by
the local convergence result Theorem G.1 discussed in Ap-
pendix G. We conclude this section by providing closed-form
expressions for the projection operators �TP

and �HK
, needed

in (11).
1) Projection OntoTP: As shown in Appendix F, the orthog-

onal projection operator onto the subspace TP ⊂ C
(N−P)×(P+1)

of rectangular Toeplitz matrices can be written in terms of the
Toeplitzification operator and its pseudoinverse as:

�TP
= TPT †

P = TP�−1T ∗P . (12)

2) Projection Onto HK : The projection operator onto the
space HK of matrices with rank at most K is given by the
Eckart-Young-Minsky theorem [33]. The latter states that the
projection map

�HK
(X ) = arg min

H∈HK

‖X −H‖F , X ∈ C
(N−P)×(P+1), (13)

6See Appendix G for a review of the method of alternating projections.
7As explained in Appendix G however, the assumptions of Theorem G.1 are

unfortunately very difficult to verify in practice.

can be computed in closed-form as:

�HK
(X ) = U�KV H , X ∈ C

(N−P)×(P+1), (14)

where X = U�V H is the singular value decomposition of X , and
�K is the diagonal matrix of sorted singular values truncated to
the K strongest ones. Note that the output of the projection map
is unique as long as the K−th and (K + 1)−th largest singular
values are different. Fortunately, the space of matrices failing to
verify this condition is very small –more precisely it is thin, as
discussed extensively in [34, Section 2]. In practice moreover,
floating-point arithmetic makes it very unlikely that the K−th
and (K + 1)−th largest singular values be exactly identical.
Thus, the projection map �HK

can be considered single-valued
for practical purposes.

III. GENERALISED FRI AS AN INVERSE PROBLEM

A. Generalised FRI

In Section II-B, we have described a procedure for recov-
ering the locations tk from consecutive Fourier coefficients of
x. The issue of computing these Fourier coefficients from a
collection of arbitrary linear measurements y ∈ C

L of x, L ≥ N
now remains. Blu et al. [19] treated the simple scenario of
measurements resulting from regular time sampling with ideal
low-pass prefiltering. In such a case, they showed that, for a
well chosen prefilter bandwidth, the Fourier coefficients could
simply be obtained by applying a discrete Fourier transform to
the measurements y. For more general measurement types, the
situation is more complex, and the Fourier coefficients x ∈ C

N

must in general be estimated by solving a linear inverse problem:

y = Gx+ n, (15)

where the forward matrix G ∈ C
L×N , L ≥ N, is application

dependent, and n is additive noise, usually assumed to be a
white Gaussian random vector. In [23], Pan et al. proposed the
generalised FRI (genFRI) optimisation problem to deal with
(15). The latter is a non convex constrained optimisation problem
whose objective is to jointly recover the Fourier coefficients
x ∈ C

N –required to minimise a quadratic data-fidelity term–
and their corresponding annihilating filter coefficients h ∈ C

P+1.
The annihilating equation linking the two unknowns is explicitly
enforced as a constraint, yielding an optimisation problem of the
form:

min
x∈CN

h∈CP+1

‖Gx− y‖2
2 subject to

{
TP (x) h = 0N−P,

〈h, h0〉 = 1,
(16)

where h0 ∈ C
P+1 is generated randomly according to

the circularly-symmetric complex Gaussian distribu-
tion CN (0, IP+1). The normalisation constraint,8 〈h, h0〉 = 1
is used to exclude trivial solutions to the annihilating equation
in (16) [13], [23].

8In [23] the authors have also considered the more natural normalisation
constraint ‖h‖ = 1. They claim however that this normalisation strategy is less
successful experimentally.
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Pan et al. propose to solve (16) via an heuristic alternating
minimisation algorithm described in Appendix H. At each it-
eration, the annihilating filter hn and the Fourier series coef-
ficients xn are updated by solving two linear systems of size
2(N + 1)× 2(N + 1) and (2N − P)× (2N − P) respectively.
In practice, the algorithm is stopped when the data mismatch
‖Gxn − y‖2 falls below a certain threshold ε (typically the noise
level). Note that this heuristic iterative procedure comes without
any strong or weak convergence guarantee: it is not known if the
sequence {(hn, xn), n ∈ N} ⊂ C

P+1 × C
N converges and if its

limit coincides with a critical point of (16). Moreover, the pro-
posed stopping criterion requires a knowledge of the noise level,
unknown in practice. When it is unknown, Pan et al. recommend
performing the reconstruction for a fixed and arbitrary number
of iterations (typically 50). For optimal performances, they also
suggest to run the algorithm for multiple random initialisations
of h0 ∈ C

P+1 (typically 15). The overall reconstruction proce-
dure can therefore be computationally intensive since each itera-
tion has a complexity of O(8(N + 1)3 + (2N − P)3) = O(N3)
–the cost of solving the linear systems.

B. Implicit Generalised FRI

The annihilating equation constraint in (16) can be thought
of as regularising the genFRI problem. Indeed, minimising
the quadratic term ‖Gx− y‖2

2 alone in the presence of noise
would not necessarily yield Fourier coefficients x with nontrivial
annihilating filter, which the annihilating constraint enforces
explicitly. Unfortunately, this regularisation also complicates
significantly the optimisation procedure. Indeed, it requires the
introduction of an extra unknown variable with non linear de-
pendency on the data, namely the annihilating filter h. Moreover,
the non linear constraint TP(x)h = 0N−P is highly non convex,
and state-of-the-art algorithms, such as alternating minimisation
or gradient descent [24], may suffer from getting trapped in
local minima.9 [35]. To circumvent these issues, we propose the
following implicit formulation of the genFRI problem, in which
only the Fourier coefficients are recovered:

min
x∈CN
‖Gx− y‖2

2 subject to

{
rank TP (x) ≤ K,

‖x‖2 ≤ ρ,
(17)

where K ≤ P ≤ M and ρ ∈]0,+∞].
Similarly to (16), the quadratic term ‖Gx− y‖2

2 in (17) is
used to guarantee high fidelity of the recovered coefficients to
the observed data. Unlike (16), (17) leverages a regularising
rank constraint on TP(x) which does not explicitly involve the
unknown annihilating filter. As already discussed in Section II-C
in the context of Cadzow denoising, requiring TP (x) to be of rank
at most K is indeed a sufficient condition for the generalised
annihilating equation (9) to admit nontrivial solutions. This
implicit regularisation greatly simplifies the genFRI problem,
since it decouples the problem of estimating the Fourier coeffi-
cients from the problem of estimating the annihilating filter. The
normalisation constraint ‖x‖2 ≤ ρ enforces finite energy to the

9This is notably the reason why Pan et al. recommend multiple random
initialisations of their algorithm in [23].

recovered Fourier coefficients. As shall be seen in Section IV,
it can be relaxed when the forward matrix G is injective by
setting ρ = +∞. Indeed, it is only used to ensure coercivity
in underdetermined cases where the forward matrix G has a
nontrivial null space. Coercivity is indeed a key assumption [36]
for the convergence of the proximal gradient descent method
envisioned in Section IV-A.

Remark (On the choice of P): Note that the rank constraint in
(17) is more selective for values of P close to M, hence enforcing
a stronger regularisation. Indeed, it is easy to see that the max-
imal rank of rectangular matrices in C

(N−P)×(P+1) ranges in10

[[K + 1, M + 1]] when P ranges in [[K, M]]. Consequently, the
subset HK of matrices of rank at most K becomes “smaller and
smaller” relatively to the ambient space as P increases towards
M. We can hence expect (17) to perform better in practice for
P = M. This is in contrast with the explicit generalised FRI
problem (16), whose equality constraint is equally stringent for
different values of P.

Remark (Case G = I): When G = I, the optimisation prob-
lem (17) becomes a simple denoising problem, which could
therefore be used as an alternative to Cadzow denoising or its
upgrade [21].

IV. OPTIMISATION ALGORITHM

A. Non Convex Proximal Gradient Descent

The optimisation problem (17) can be rewritten in an uncon-
strained form as:

min
x∈CN
‖Gx− y‖2

2 + ιHK
(TP (x)) + ιBρ

(x), (18)

where HK is the non convex set of matrices with rank lower than
or equal to K defined in (10), Bρ := {x ∈ C

N : ‖x‖2 ≤ ρ} is the

2-ball with radius ρ > 0, and ιHK

: C(N−P)×(P+1) → {0,+∞},
ιBρ

: CN → {0,+∞} are indicator functions with domains HK

and Bρ , respectively. Observe that the unconstrained optimisa-
tion problem (18) can be written as a sum between a convex and
differentiable quadratic term

F (x) := ‖Gx− y‖2
2 , x ∈ C

N ,

and a non convex and non differentiable term

H (x) := ιHK
(TP (x)) + ιBρ

(x), x ∈ C
N .

It is moreover easy to see that the gradient of F

∇F (x) = 2GH (Gx− y), x ∈ C
N , (19)

is β-Lipschitz continuous with Lipschitz constant given by twice
the spectral norm of the matrix GH G:

β = 2
∥∥GH G

∥∥
2 = sup

{
2
∥∥GH Gx

∥∥
2 : x ∈ C

N , ‖x‖2 = 1
}
.

(20)

It is hence possible to optimise (18) by means of proximal
gradient descent (PGD) [24], an iterative method alternating
between gradient and proximal steps according to the following

10For n, m ∈ Z, n < m, we denote by [[n,m]] the integer interval [n, m] ∩ Z.
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update equation:

xk+1 ∈ proxτH (xk − τ∇F (xk )) , (21)

for k ≥ 0, x0 ∈ C
N , τ > 0 and proxτH defined in (22). Given

a current estimate xk ∈ C
N , the update equation (21) decreases

the value of the objective function (18) by selecting a proximal
point [24] –with respect to H– of a target located at a distance τ

from xk along the direction of steepest descent −∇F (xk ). The
operator mapping a point x ∈ C

N to its proximal points with
respect to H is called proximal operator, and is defined as [24]

proxτH (x) :

{
C

N → P (
C

N
)
,

x �→ arg minz∈CN
1

2τ
‖x− z‖2

2 + H (z),
(22)

where P (CN ) is the power set of CN , and τ > 0 controls the
relative importance of H with respect to the squared distance to x.
The function H being non convex, the proximal operator (22)
will in general return multiple proximal points, which can all be
used interchangeably in (21). The convergence of the sequence
{xk}k∈N of PGD iterates (21) towards critical points of (18) is
established by the following theorem.

Theorem 1 (Convergence of PGD for Arbitrary G): Assume
that ρ ∈ (0,+∞) in (18), and τ < 1/β with β defined in (20).
Then, any limit point x
 of the sequence {xk}k∈N generated by
(21) is a local minimum of (18).

Proof: The proof of this theorem is adapted from [36, Theo-
rem 1] and given in Appendix I.

As stated by Theorem 2 hereafter, the convergence of PGD
furthermore extends to the case ρ = +∞, at least for injective
forward matrices G. Setting ρ = +∞ in (17) is equivalent to
dropping the energy normalisation constraint, since ‖x‖2 ≤ +∞
is trivially verified and hence the associated indicator function
ιBρ

in (18) is always null.
Theorem 2 (Convergence of PGD for Injective G): Assume

that ρ = +∞ in (18), τ < 1/β with β defined in (20), and G ∈
C

L×N in (18) is injective, i.e., ker(G) = {0N }. Then, any limit
point x
 of the sequence {xk}k∈N generated by (21) is a local
minimum of (18).

Proof: The proof of this theorem is given in Appendix I. �
A practical implication of Theorem 2 is that, for injective

forward matrices G, PGD applied to the following relaxed
implicit genFRI problem is convergent:

min
x∈CN
‖Gx− y‖2

2 + ιHK
(TP (x)) , (23)

where F (x) := ‖Gx− y‖2
2, and H (x) := ιHK

(TP(x)). As dis-
cussed in Section IV-B, (23) should always be favoured over
(18) for injective forward matrices G, since solving it via PGD
requires less computations at each proximal step.

B. Cadzow PnP Gradient Descent

As seen in the previous section, PGD requires the computation
of the proximal operator (22) at each iteration, which amounts
to finding a minimiser to the following non convex optimisation
problem:

min
z∈CN

{
1

2τ
‖x− z‖2

2 + ιHK
(TP (z))+ ιBρ

(z)

}
, (24)

for some input x ∈ C
N . Observe that the proximal step (24)

can be seen as a generalised projection step, aiming to find a
point as close as possible from x while verifying some convex
and non convex constraints specified by the indicator functions.
This is formalised by Proposition 1 hereafter, which shows that
solutions to (24) can be identified with those of a projection
problem:

Proposition 1: Consider the Toeplitz matrix W :=
TP(diag(�−1/2)) where diag : CN×N → C

N is the linear operator
mapping a matrix onto its diagonal and � = T ∗P TP ∈ C

N×N is
the diagonal and positive definite matrix given by (5). Then,
the proximal operator (22) of H (x) := ιHK

(TP(x))+ ιBρ
(x), for

ρ ∈]0,+∞], τ > 0 and K ≤ P ≤ M is given by

proxτH (x) = T †
P �W

TP∩HK∩BW
ρ

TP(x), ∀x ∈ C
N , (25)

where

B
W
ρ := {X ∈ C

(N−P)×(P+1) : ‖W � X‖F ≤ ρ}, (26)

and �W
TP∩HK∩Bρ

is the projection operator onto TP ∩HK ∩ BW
ρ

with respect to the W -weighted Frobenius norm:

�W
TP∩HK∩BW

ρ
:

{
C

(N−P)×(P+1) → P (
C

(N−P)×(P+1)
)
,

X �→ arg minZ∈TP∩HK∩BW
ρ
‖W � (X − Z)‖F .

(27)
The symbol � in (26) and (27) denotes the Hadamard product
for matrices.

Proof: The proof of this proposition is given in Appendix A.�
Equation (25) provides us with a three-step recipe for com-

puting the proximal operator (22) associated to a vector x ∈ C
N :

1) Transform the input vector x into a Toeplitz matrix via the
Toeplitzification operator TP.

2) Project TP(x) onto TP ∩HK ∩ BW
ρ by solving the

weighted structured low-rank approximation (WSLRA)
problem (27).

3) Map back the projected matrix onto C
N using the pseu-

doinverse T †
P of the Toeplitzification operator.

Unfortunately, simple closed-form solutions to the WSLRA
problem (27) are unavailable in general, and must therefore
be approximated numerically. We propose to perform such an
approximation by means of the method of alternating projections
(MAP) (see Appendix G):

�W
TP∩HK∩BW

ρ
�
[
�W

TP
�W

HK
�W

BW
ρ

]n
, (28)

where n ∈ N and where �W
TP

, �W
HK

and �W
BW

ρ
are the projection

operators onto TP, HK and B
W
ρ with respect to the W -weighted

Frobenius norm. As detailed in Propositions 2 and 3 hereafter,
the projection operators �W

TP
and �W

BW
ρ

admit simple closed-form

expressions.
Proposition 2 (Weighted Projection onto TP): Let W be

the Toeplitz matrix from Proposition 1. Then, the projection
operator onto TP with respect to the W -weighted Frobenius
norm is given, for every X ∈ C

(N−P)×(P+1), by:

�W
TP

(X ) = �TP
(X ), (29)

where �TP
is the projection operator onto TP with respect to the

canonical Frobenius norm given in (12).
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Proof: The proof of this proposition is given in Appendix J.
Proposition 3 (Weighted Projection ontoBW

ρ ): The projection
operator onto B

W
ρ with respect to the W -weighted Frobenius

norm is given, for every X ∈ C
(N−P)×(P+1), by:

�W
BW

ρ
(X ) =

{
X if ‖W � X‖F ≤ ρ,

ρX
‖W�X‖F if ‖W � X‖F > ρ.

(30)

Proof: The proof of this proposition is given in Appendix K.�
Computing the projection operator �W

HK
amounts to solving a

weighted low-rank approximation (WLRA) problem [37], [38],
which is a more difficult task. Indeed, WLRA problems admit
no simple closed-form solutions and must hence be solved
numerically via iterative algorithms [37], [38]. This is in contrast
with the unweighted low-rank approximation problem discussed
in Section II-C2, whose solutions could easily be computed
via a simple truncated SVD (14). A popular algorithm for
solving WLRA problems is the EM-algorithm from Srebro and
Jaakkola [38] , which is relatively simple, efficient, and has good
empirical performances. Starting from an initial guess X 0 ∈
C

(N−P)×(P+1), the algorithm computes the projection �W
HK

(X ) of
a matrix X ∈ C

(N−P)×(P+1) via the following iterative scheme:

X j = �HK

(
W � X + (I −W )� X j−1

)
, j ≥ 1, (31)

where �HK
is the projection operator (14) with respect to the

unweighted Frobenius norm. Numerical experiments carried out
by Srebro and Jaakkola reveal that, for weighting matrices W
with non zero entries, choosing X 0 = X promotes convergence
of the iterations (31) towards a global –or at least deep local–
minimum of the WLRA problem defining �W

HK
(X ) [38]. We

therefore propose to approximate �W
HK

via (31) with X 0 = X
and j = 1, yielding

�W
HK

(X ) � �HK
(W � X + (I −W )� X ) = �HK

(X ) .

The decision of stopping the algorithm after a single iteration is
entirely motivated by computational and speed considerations.
Indeed, the inexact MAP proximal step (28) –computed at each
iteration of the PGD algorithm– requires n successive compu-
tations of the operator �W

HK
which must hence be relatively fast

to compute. Since each iteration of the scheme (31) involves the
computation of an (expensive) SVD, performing more than one
iteration would be impractical in our context.

To summarize, the MAP (28) can be approximated in practice
as:

�W
TP∩HK∩BW

ρ
�
[
�W

TP
�W

HK
�W

BW
ρ

]n
�
[
�TP

�HK
�W

BW
ρ

]n
, (32)

where �W
BW

ρ
is given by (30). Observe that when ρ = +∞

(which is possible for injective matrices G, see Theorem 2) we
have �W

BW
ρ
= Id and the right-hand side of (32) simplifies to

[�TP
�HK

]n. Plugging (32) into (25) finally yields the following
approximate proximal step:

proxτH (x) � T †
P

[
�TP

�HK
�W

BW
ρ

]n
TP(x), ∀x ∈ C

N , (33)

for some n ≥ 0. The PGD algorithm with approximate proxi-
mal step (33) is provided in Algorithm 1. Observe that when
ρ = +∞, (33) reduces to Cadzow denoising (11). The effect

Algorithm 1: Cadzow PnP Gradient Descent (CPGD).
Require: y, G, TP, x0, K ≤ P, τ as in (36), n ∈ N, ρ > 0

k:=0
repeat

zk+1 := xk − 2τGH (Gxk − y)
if ρ = +∞ then

xk+1 := T †
P [�TP

�HK
]nTP(zk+1)

else
xk+1 := T †

P [�TP
�HK

�W
BW

ρ
]nTP(zk+1)

end if
k← k + 1

untila stopping criterion is satisfied
return x(k)

of heuristic (32) is hence to replace the proximal step in the
PGD iterations by a generic denoising step. Such an approach
is reminiscent of the plug-and-play (PnP) framework [28], [29]
from image processing, which leverages generic denoisers to ap-
proximate complex proximal operators [27]. For this reason, we
baptise our algorithm Cadzow PnP Gradient Descent (CPGD).
In the next section, we study the convergence of Algorithm 1.

Remark Note that, since HK is non convex and �W
HK

is
approximated by �HK

, the MAP approximation (32) is not
guaranteed to converge towards the actual projection map (27)
as n grows to infinity. Empirical evidence suggests however
that (32) is a good enough proxy for practical purposes. Indeed,
the main role of the projection operator (27) is to regularise the
PGD iterates by enforcing the structure TP(x) ∈ TP ∩HK ∩ BW

ρ

–as per the constraints of the implicit genFRI problem (17). Most
often, such a behaviour is also achieved by the inexact proximal
step (33). For the specific case ρ = +∞, it is indeed possible to
apply Theorem G.1 and show the local convergence of the MAP
(32) towards a point in TP ∩HK (see Corollary G.1 for a proof).
This explains notably why the upgraded Cadzow algorithm from
Condat and Hirabayashi [21] –which attempts to solve for the
WSLRA problem directly via a heuristic primal-dual splitting
method– achieves marginal accuracy gain in comparison to
the more naive MAP scheme leveraged by standard Cadzow
denoising.

C. Local Fixed-Point Convergence of CPGD

In Section IV-A, we established Theorems 1 and 2 which show
the convergence of PGD towards critical points of (18). How-
ever, such results required the computation of exact proximal
steps (22) in the PGD iterations, and do not apply to CPGD which
leverages the inexact proximal step (33). Convergence of PGD
in non convex setups with inexact proximal steps was studied
in [26], [39]. The results established in both papers require the
proximal step approximation errors incurred at each iteration
to be decreasing and summable, which may not necessarily be
the case for the MAP approximation (32). It is nevertheless
possible to demonstrate that the iterations of CPGD are locally
contractive, and therefore locally convergent towards a fixed
point using the Banach contraction principle. Such a result is
stated in Theorem 3 hereafter.
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Theorem 3 (CPGD is a Local Contraction): Let RK ⊂
C

(N−P)×(P+1) be the set of matrices of rank exactly K ≤ P ≤
�N/2�, and Uτ,n : CN → C

N the update CPGD map

Uτ,n(x) := Hn (x− τ∇F (x)) , x ∈ C
N , (34)

with Hn(x) := T †
P [�TP

�HK
�W

BW
ρ

]nTP(x). Let G ∈ C
L×N be in-

jective, and define

β := 2λmax
(
GH G

)
, α := 2λmin

(
GH G

)
,

whereλmin(M) andλmax(M) denote the minimum and maximum
eigenvalues of a matrix M respectively.

Then, Uτ,n is locally well-defined (single-valued) and Lips-
chitz continuous∥∥Uτ,n(x)−Uτ,n(z)

∥∥
2 ≤ L̃τ‖x− z‖2,

for all x, z ∈ C
N such that TP(x) and TP(z) are in some

neighbourhood11 of some matrix R ∈ RK . The Lipschitz con-
stant L̃τ is moreover independent of the local neighbourhood
and given by

L̃τ =
√

P + 1Lτ , (35)

where Lτ = max{|1− τα|, |1− τβ|}. Moreover, Uτ,n is con-
tractive, i.e., 0 ≤ L̃τ < 1, for

1

β

(
1− 1√

P + 1

)
< τ <

1

β

(
1+ 1√

P + 1

)
. (36)

Proof: The proof of this theorem is given in Appendix B. �
The following corollary shows the local convergence of

CPGD towards a fixed-point of the update map (34):
Corollary 1 (CPGD Converges Locally): With the same no-

tations as in Theorem 3, assume that all CPGD iterates {xk}k∈N
are such that

{TP(xk+1), TP(xk )} ⊂ Uk, ∀k ∈ N, (37)

for some neighbourhoods {Uk}k∈N of some matrices {Rk}k∈N ⊂
RK . Assume further that τ satisfies (36). Then, xk

k→∞→ x
 where
x
 ∈ C

N is a fixed-point of Uτ,n, i.e., Uτ,n(x
) = x
. Moreover,
we have

‖x
 − xk‖2 ≤ L̃k
τ

1− L̃τ

‖x1 − x0‖2, ∀k ≥ 1, (38)

where L̃τ < 1 is the Lipschitz constant (35) of Uτ,n.
Proof: The proof of this corollary is given in Appendix C. �
Remark (Fixed Points vs. Critical Points): Note that Corol-

lary 1 is a much weaker result than Theorems 1 and 2. Indeed,
Corollary 1 only shows the local convergence of CPGD towards
fixed points of Uτ,n, which may not necessarily be critical points
of the optimisation problem (18). Theorems 1 and 2 on the other
hand, show the global convergence of PGD with exact proximal
step towards critical points of (18). This is however the price to
pay for computing the proximal step (24) efficiently in practice.

Remark (Geometric Interpretation of Condition (37)):
Roughly speaking, Corollary 1 guarantees the convergence of

11If X is a topological space and p is a point in X, a neighbourhood of p is a
subset V of X that includes an open set U containing p, p ∈ U ⊆ V.

Fig. 1. Illustration of condition (37) in Corollary 1.

CPGD towards a fixed point of the update map (34), provided
that the forward matrix G is injective, and that any two consec-
utive lifted estimates TP(xk ), TP(xk+1), are in a common neigh-
bourhood Uk of some matrix Rk ∈ RK . Note that this is much
less stringent than requiring the entire lifted path {TP(xk )}k∈N to
belong to some neighbourhood U of some fixed matrix R ∈ RK .
Indeed, condition (37) allows the lifted estimates to travel from
one neighbourhood of the manifoldRK to another, provided that
every visited neighbourhood contains at least two consecutive
lifted estimates (see Fig. 1 for an illustration). This condition,
although difficult to verify in practice, seems however likely to
hold for ρ = +∞, small enough step sizes, large enough n and
x0 = 0N . Indeed, in such a case, we have:
� TP(x0) ∈ HK is in some neighbourhood of RK since RK is

dense in HK .
� For n large enough, TP(xk ) is very likely to be in some

neighbourhood of RK , since the denoising step in the
update map (34) makes TP(xk ) close to be in the intersection
HK ∩ TP (see Corollary G.1).

� For a small enough step size τ , TP(xk ) and TP(xk+1) are
likely to belong to the same neighbourhood of RK .

V. EXPERIMENTS AND RESULTS

In this section we validate the CPGD method numerically,
considering as a testbed the scenario of irregular time sampling
from [23, Section IV.A]. We assess both the reconstruction
accuracy and the computational complexity of the method, and
compare it to the state-of-the-art.

Remark (Reproducibility): Special care has been taken into
making the experiments and simulations of this section fully
reproducible. To reproduce the results, the reader is referred to
the routines provided in our GitHub repository [30].

A. Reconstruction Accuracy

We define a 1-periodic stream of K = 9 Diracs (see Fig. 2):

x(t ) =
∑
m∈Z

K∑
k=1

xkδ(t − tk − m), ∀t ∈ R, (39)

where the amplitudes xk ∈ R+ and locations tk ∈ [0, 1) are ran-
dom, with log-normal and uniform12 distributions respectively.

12To avoid degenerate cases, the Diracs are required to have a minimum
separation distance of 1% of the total period.
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Fig. 2. Dirac stream with K = 9 sources (dark grey, round coloured heads)
and noiseless irregular time samples (light grey diamond heads) of the low-pass
filtered Dirac stream (light grey plain line), for a bandwidth 2M + 1 = 19.

We then generate L = 73 noisy samples as

yl =
M∑

m=−M

x̂me j2πmθl + εl , l = 1, . . . , L, (40)

where x̂m =
∑K

k=1 xk exp(− j2πmtk ), m = −M, . . . , M, are the
Fourier coefficients of the Dirac stream x, θl ∈ [0, 1) are chosen
uniformly13 at random, and εl ∈ R are independent realisations
of a Gaussian random variable14 N (0, σ 2), for l ∈ [[1, L]]. As
explained in [23, Section IV.A], the measurements yl correspond
to noisy samples of the low-pass filtered Dirac stream x at
irregular times θl (see Fig. 2), where the low-pass filter is chosen
as an ideal low-pass filter with bandwidth 2M + 1:

yl =
K∑

k=1

xkϕM (θl − tk ) + εl , l = 1, . . . , L,

where

ϕM (t ) := sin ((2M + 1)πt )

(2M + 1) sin (πt )
, ∀t ∈ [0, 1),

is the 1-periodic sinc function or Dirichlet kernel. Using the
formalism of Section III, we can rewrite (40) in vector notation
as

y = Gx+ ε, (41)

where y = [y1, . . . , yL] ∈ C
L, x = [x̂−M, . . . , x̂M] ∈ C

N=2M+1,

ε = [ε1, . . . , εL] ∈ C
L, and G ∈ C

L×N is given by

G =

⎡⎢⎢⎢⎢⎢⎣
e− j2πMθ1 · · · 1 · · · e j2πMθ1

e− j2πMθ2 · · · 1 · · · e j2πMθ2

... · · · ... · · · ...
e− j2πMθL−1 · · · 1 · · · e j2πMθL−1

e− j2πMθL · · · 1 · · · e j2πMθL

⎤⎥⎥⎥⎥⎥⎦ .

Note that from the periodicity of complex exponentials, it is pos-
sible to flip the columns of G so as to rewrite it as a Vandermonde
matrix [23]. This shows that G is injective when 2M + 1 ≤ L
and the irregular time samples are all distinct. From the samples

13To avoid degenerate cases, the sampling locations are required to have a
minimal separation distance of 0.5% of the total period.

14The noise level is defined as the standard deviation σ of the Gaussian
distribution.

y and the data model (41), we consider recovering the Fourier
coefficients x ∈ C

N by means of three algorithms:
� The CPGD algorithm 1 with ρ = +∞ when 2M + 1 ≤ L

(since G is then injective) and ρ = ‖y‖2 when 2M + 1 > L
(since G is then non injective). The step size is set as
τ = 1/β –where β is set as described in Theorem 3–
which satisfies condition (36) for the local fixed-point
convergence of the algorithm (at least for injective forward
matrices G).

� The state-of-the-art algorithm of Pan et al. [23], described
in Section III-A and referred to hereafter as GenFRI. For
smooth integration, the Python 3 implementation of Gen-
FRI provided by Pan et al. on their official Github repos-
itory [40] was included in our own algorithmic interface.
Since the noise level is assumed to be unknown, we set
–as recommended in [23, Section III-C]– the number of
inner iterations and random initialisations to their default
values, 50 and 15 respectively. Note that since GenFRI is
only defined for injective matrices G (see discussion in
Appendix H), we could not apply it to experimental setups
with 2M + 1 > L.

� The baseline method, referred to hereafter as LS-Cadzow,
which consists in applying Cadzow denoising to the least-
squares estimate of the Fourier coefficients{

xLS = argmin
x∈CN

‖Gx− y‖2
2 ,

xLS-Cadzow = T †
P

[
�TP

�HK

]n
TP (xLS) .

(42)

We solve the least-squares optimisation problem in (42) by
means of the lstsq function in scipy [41], with cut-off
ratio cond = 10−4.

For CPGD, we fix the maximum number of iterations15 to 500
and consider that convergence is reached if the iterate norm is
changed by less than 0.01% between two iterations. For Cadzow
denoising, we fix the number of iterations to 10 for both LS-
Cadzow and CPGD. For all three algorithms finally, we choose
P = M.

The reconstruction accuracy is assessed by matching the true
Dirac locations tk to the recovered ones, denoted by ωk , for k
between 1 and K . To do so, we proceed as explained in Section II-
B and infer the Dirac locations ωk from the z-transform roots
of the annihilating filter associated to the Fourier coefficients
estimated by each method.16 Then, we solve the following
matching problem by means of the Hungarian algorithm17 [42]

min
j1,..., jK∈{1,...,K}

{
1

K

K∑
k=1

d (tk, ω jk )

}
, (43)

where d (t, ω) = min{|t − ω|, 1− |t − ω|}, ∀t, ω ∈ [0, 1), is
the canonical distance on the periodised interval [0, 1). Finally,
we report the average positioning error, corresponding to the
value of the cost function

∑K
k=1 d (tk, ωik )/K for the indices

15In practice this upper bound is never reached: CPGD almost always con-
verges in less than 150 iterations.

16See [21, Fig. 2] for additional details on the procedure used to recover the
Dirac locations from the annihilating filter coefficients.

17The Hungarian algorithm is implemented in the lin-
ear_sum_assignment function from scipy [41].
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Fig. 3. Positioning error (43) (in percent of period and log-scale) for LS-Cadzow, CPGD and GenFRI, various oversampling parameters γ ∈ {1, 2, 3, 4}
and a PSNR in {−30,−20,−10, 0, 10, 20, 30} dB. For each case, plain lines and shaded areas represent respectively the median and inter-quartile region
of the positioning error’s empirical distribution obtained from 192 independent noise realisations. These results can be reproduced using the Python script
reproduce_simulation_results.py located in the directory ./benchmarking/ of our GitHub repository [30].

TABLE I
CONDITIONING NUMBER OF GH G FOR VARIOUS VALUES OF THE

OVERSAMPLING PARAMETER γ

{i1, . . . , iK} solutions to the matching problem (43). This metric
is computed for 192 noise realisations, various cutoff frequen-
cies M = γ K with the oversampling factor γ ∈ {1, 2, 3, 4, 5}
(see Figs. L.1a, L.1b, L.1c, L.1d and L.1e respectively) and
various noise levels

σ = max
k=1,...,K

|xk| × exp

(
−PSNR

10

)
,

where the peak signal to noise ratio PSNR ranges from−30 dB
to 30 dB. The conditioning numbers of the matrix GH G for the
different values of the oversampling parameter γ are provided in
Table I. The results of the experiments are displayed on Figs. 3, 4,
L.2 and L.3. In Figs. 3 and 4 we plot, for different oversampling
factors and PSNR, the median and inter-quartile region of the
empirical distribution of the average positioning error of the
different methods. In Figs. L.2 and L.3, we plot, for each source,
different oversampling factors and PSNR, the median of the
empirical distribution of the source location as estimated by the

Fig. 4. Positioning error (43) (in percent of period and log-scale) for LS-
Cadzow and CPGD for γ = 5 and a PSNR in {−30,−20,−10, 0, 10, 20, 30}
dB. For each case, plain lines and shaded areas represent respectively the median
and inter-quartile region of the positioning error’s empirical distribution obtained
from 192 independent noise realisations.

three methods against the true source location. The conclusions
that can be drawn from the results are the following:
� Figs. 3 a, L.2a, L.2b and L.2c reveal that without oversam-

pling in the Fourier domain (i.e., γ = 1 and a minimal cut-
off frequency of M = K = 9), the three algorithms CPGD,
GenFRI and LS-Cadzow perform similarly throughout the
entire PSNR range. The average positioning error –almost
indistinguishable for the three algorithms– goes from ap-
proximately 10% of the period for PSNRs of −30 dB to
1% of the period for PSNRs of 30 dB.
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� Figs. 3 b, L.2d, L.2e and L.2f reveal reveal that with an
oversampling of γ = 2 –yielding a cutoff frequency of
M = 18, the three algorithms CPGD, GenFRI and LS-
Cadzow start behaving differently for PSNRs larger than
0 dB: CPGD has the lowest positioning error, followed by
LS-Cadzow and finally GenFRI. The inter-quartile regions
of the positioning error’s distributions are however overlap-
ping, which means that the differences in performance are
not statistically significant. For PSNRs larger than 0 dB, all
algorithms have a lower positioning error than in the case
γ = 1. For high PSNRs, this improvement can be as high
as one and a half order of magnitude.

� Figs. 3 c, L.2g, L.2h and L.2i reveal that with an oversam-
pling of γ = 3 –yielding a cutoff frequency of M = 27, the
three algorithms CPGD, GenFRI and LS-Cadzow again
behave differently for PSNRs larger than 0 dB: CPGD
has the lowest positioning error, followed by GenFRI and
finally LS-Cadzow. For high PSNRs, the differences in per-
formance among the three algorithms become statistically
significant: the inter-quartile regions of the positioning er-
ror’s empirical distribution do not overlap anymore. CPGD
moreover reaches a positioning error as low as 0.01% of the
period, which is up to two orders of magnitude smaller than
the minimal positioning error of GenFRI or LS-Cadzow
in this scenario. For PSNRs greater than 10 dB, CPGD
improves its positioning error with respect to the case
γ = 2 by a bit less than half an order of magnitude. This
is not the case for GenFRI and LS-Cadzow which both
underperform with respect to the case γ = 2 –and even
with respect to the case γ = 1 for LS-Cadzow. This can be
explained by the large conditioning number of the matrix
GH G in this case (see Table I), affecting the numerical
stability of both algorithms (see remark in Appendix H of
the suppplementary material).

� Figs. 3 a, L.2j, L.2k and L.2l reveal that with an oversam-
pling of γ = 4 –yielding a critical bandwidth of 2M + 1 =
73 equal to the number of measurements L, CPGD is
superior to GenFRI which is itself superior to the baseline
method LS-Cadzow in nearly all cases, with the exception
of very low PSNRs (∼ −30 dB), where the three meth-
ods have comparable reconstruction accuracy. For PSNRs
larger than−20 dB, the differences in performance are sta-
tistically significant. CPGD is more accurate than GenFRI
and LS-Cadzow by a few orders of magnitude (from 1 to
3 orders of magnitude for PSNRs larger than −10 dB),
reaching a minimal positioning error as low as 0.005%
of the period. For PSNRs greater than −20 dB, CPGD
improves its positioning error with respect to all previous
cases γ ∈ {1, 2, 3}. Again, this is not the case for GenFRI
and LS-Cadzow which both perform as good as or worse
than the case γ = 1. This can be explained by the (very)
large conditioning number of the matrix GH G in this case
(see Table I), which severely affects the numerical stability
of both algorithms.

� Figs. 4, L.3a, L.3b and L.3c reveal that with an oversam-
pling of γ = 5 –yielding a critical bandwidth of 2M + 1 =
91 greater than the number of measurements L, CPGD is

superior to the baseline method LS-Cadzow18 for PSNRs
smaller or equal to 0 dB. The differences in reconstruction
accuracy are moreover statistically significant: the posi-
tioning error of CPGD is between half an order and one
order of magnitude smaller than the one of LS-Cadzow.
For PSNRs between 10 and 20 dB, the two methods have
however comparable performances. For PSNRs of 30 dB
finally, LS-Cadzow outperforms CPGD by two orders of
magnitudes. This is because when G is fat, the LS estimate
xLS in the LS-Cadzow algorithm (42) perfectly matches
the data –i.e., GxLS = y– which is desirable for very high
PSNRs. It is interesting to observe that, in contrast with
the previous reconstruction accuracy profiles, CPGD’s po-
sitioning error is in this case non monotonically decreasing
with respect to the PSNR. This is a surprising behaviour,
for which we do not have any satisfying explanation yet.
Finally, it shall be noted that despite the convergence of
CPGD being not proven in this case (Corollary 1 is for
injective matrices G only), we did not experience any con-
vergence issues during our numerical experiments –CPGD
always converged in less than 150 iterations. Moreover,
the value of the parameter ρ > 0 seemed to have a limited
effect on the reconstruction accuracy of CPGD.

In conclusion, in these simulations CPGD is better at leverag-
ing oversampling in the Fourier domain to improve the recon-
struction accuracy by several orders of magnitude with respect
to the non oversampled case. In particular, CPGD performs best
when the bandwidth of the low-pass filter is chosen as large as the
number of measurements. As explained in Section II-C, Cadzow
denoising exhibits a similar behaviour. This similarity is not for-
tuitous: both algorithms leverage a similar rank constraint which
becomes more and more selective as the oversampling parameter
increases. In contrast, GenFRI and LS-Cadzow are negatively
affected by large oversampling parameters, due to numerical
stability issues. For the critical bandwidth 2M + 1 = L, CPGD
notably outperforms GenFRI and LS-Cadzow by one to three
orders of magnitude, and this even for PSNRs as low as−20 dB.

B. Computational Complexity

As explained in Section III-A GenFRI has an overall computa-
tional complexity of O(N3). For CPGD, the computational cost
of each iteration is dominated by the successive projections onto
HK in the approximate proximal step, which are computed via an
SVD –see Algorithm 1 and (14). At a cursory glance, it may seem
that the overall complexity of CPGD is somewhat comparable to
the one of GenFRI, since computing the SVD of a matrix with
size (N − P)× (P + 1) has in general a computational com-
plexity of O((N − P)2(P + 1)+ (P + 1)3) [43] which reduces
to O(N3) when P = M. In practice however, projecting onto
HK does not require to perform a complete SVD since only the
K strongest eigenvalues and their associated eigenvectors are
needed. This truncated SVD can be performed very efficiently by
means of the implicitly restarted Arnoldi method (IRAM) [44], or

18The performances of GenFRI were not investigated in this case, since the
latter requires the forward matrix G to be injective which cannot be the case
when 2M + 1 > L.
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Fig. 5. Reconstruction times for CPGD and GenFRI for various bandwidth
sizes N and K = 9. The reported times are for a MacBook Pro (16-inch, 2019),
Intel Core i7 (6 C/12 T) @ 2.6 GHz with 32 GB RAM. These results can be
reproduced using the Python script reproduce_execution_times.py
located in the directory ./benchmarking/ of our GitHub repository [30].

the implicitly restarted Lanczos method for Hermitian matrices.
When K � P + 1, such methods are obviously much more
efficient than a wasteful standard SVD. IRAM is moreover a
matrix-free method [45]: it does not need the processed matrix
to be stored in memory but simply requires an algorithm for
performing matrix/vector products. In our context, since the
truncated SVDs are exclusively performed on Toeplitz matrices,
such matrix/vector products can be efficiently implemented by
means of FFTs thanks to the convenient links between Toeplitz
matrices and convolutions outlined in Section II-A.

The CPGD implementation provided in our Github reposi-
tory [30] leverages all these computational tricks. In Fig. 5, we
show that our implementation of CPGD is considerably faster
than GenFRI. Fig. 5 reports the reconstruction times of CPGD
and GenFRI for K = 9 and bandwidth N = 2γ M + 1 = L with
γ ranging from 1 to 300. To save computational time, the
reconstruction times were scaled from the execution time of
a single iteration of CPGD and GenFRI, assuming a typical
number of iterations of 100 and 15×50=750 respectively. We
observe that CPGD is always faster than GenFRI, sometimes by
two orders of magnitude. Moreover, regressions performed in
log-log scale reveal that CPGD scales as N2.11 while GenFRI
scales as N2.79. Note that this difference in scaling behaviour is
overlooked by the complexity analysis above.

VI. CONCLUSION

We propose an implicit version of the generalised finite-rate-
of-innovation (genFRI) problem for the recovery of the Fourier
series coefficients of sparse Dirac streams with arbitrary linear
sensing. This formulation relies on a novel regularisation term
which enforces the annihilation of the recovered Fourier series
coefficients without explicitly involving the unknown annihi-
lating filter. The resulting non convex optimisation problem is
consequently simpler and linear in the data. To solve it, we
suggest a proximal gradient descent (PGD) algorithm which we
prove converges towards a critical point of the objective function.
We further introduce an inexact PGD method, coined Cadzow
plug-and-play gradient descent (CPGD), where the intractable
proximal steps involved in PGD are approximated by means of
alternating projections, akin to the popular Cadzow denoising

algorithm. We outline the resemblance of CPGD to PnP meth-
ods used in image processing and prove its local fixed-point
convergence under relatively weak assumptions. Considering
the traditional irregular time sampling testbed, we demonstrate
empirically that CPGD outperforms by several orders of mag-
nitude the state-of-the-art GenFRI algorithm, both in terms of
accuracy and reconstruction time.

For future work, we plan on investigating acceleration tech-
niques for CPGD, such as approximate sketching-based eigen-
value decomposition methods [46], [47], more computationally
efficient for large-scale problems. Applications of CPGD to
acoustics and radio astronomy will also be investigated.

APPENDIX A
PROOF OF PROPOSITION 1

Recall the definition of the proximal set associated to a point
x ∈ C

N :

proxτH (x)

= arg min
z∈CN

{
1

2τ
‖x− z‖2

2 + ιHK
(TP (z))+ ιBρ

(z)

}
. (A.1)

When mapped via the Toeplitzification operator TP , the proximal
set (A.1) becomes

TP
(
proxτH (x)

) =
= {

TP(x̌), x̌ ∈ proxτH (x)
}

=
{

X̌ ∈ TP, T †
P (X̌ ) ∈ proxτH (x)

}
= arg min

Z∈TP

{
1

2τ
‖T †

P (Z)− x‖2
2 + ιHK

(Z)+ ιBρ

(
T †

P (Z)
)}

= arg min
Z∈TP∩HK

{
1

2τ
‖T †

P (Z)− x‖2
2 + ιBρ

(
T †

P (Z)
)}

, (A.2)

where we have used the fact that T †
P TP(z) = z for all z ∈ C

N .
Define W = TP(diag(�−1/2)) ∈ TP where diag : CN×N → C

N

is the linear operator mapping a matrix onto its diagonal and
� = T ∗P TP ∈ C

N×N is the diagonal and positive definite matrix
given by (5). Then, the following relationships hold:

�−1/2T ∗P (Z) = T ∗P (W � Z), ∀Z ∈ C
(N−P)×(P+1), (A.3)

and

TP(�−1/2x) =W � TP(x), ∀x ∈ C
N , (A.4)

where � denotes the Hadamard product for matrices. Using
(A.3) and (A.4), we get moreover, ∀Z ∈ TP:

‖T †
P (Z)− x‖2

2 = 〈T †
P (Z)− x, T †

P (Z)− x〉2
= 〈T †

P (Z), T †
P (Z)〉2 + 〈x, x〉2

− 〈T †
P (Z), x〉2 − 〈x, T †

P (Z)〉2
= 〈�−1T ∗P (Z), �−1T ∗P (Z)〉2
+ 〈�1/2�−1/2x, �1/2�−1/2x〉2
− 〈�−1T ∗P (Z), x〉2 − 〈x, �−1T ∗P (Z)〉2



54 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

= 〈�−1/2T ∗P (W � Z), �−1/2T ∗P (W � Z)〉F
+ 〈T ∗P TP�−1/2x, �−1/2x〉2
− 〈T ∗P (W � Z), �−1/2x〉2
− 〈�−1/2x, T ∗P (W � Z)〉2

= 〈W � Z, TP�−1T ∗P (W � Z)〉F
+ 〈TP(�−1/2x), TP(�−1/2x)〉2
− 〈W � Z, TP(�−1/2x)〉F
− 〈TP(�−1/2x),W � Z〉F
= 〈W � Z,W � Z〉F
+ 〈W � TP(x),W � TP(x)〉F
− 〈W � Z,W � TP(x)〉F
− 〈W � TP(x),W � Z〉F

= ‖W � Z‖2
F + ‖W � TP(x)‖2

F

− 2R (〈W � Z,W � TP(x)〉F )

= ‖W � (Z− TP(x))‖2
F , (A.5)

where we have used the fact that � = �H = T ∗P TP, W � Z ∈ TP

for every Z ∈ TP and TP�−1T ∗P = �TP
(see Appendices E and

F). With similar arguments, we have ∀Z ∈ TP:∥∥∥T †
P (Z)

∥∥∥
2
≤ ρ ⇔

√
〈T †

P (Z), T †
P (Z)〉2 ≤ ρ

⇔
√
〈W � Z,W � Z〉F ≤ ρ

⇔ ‖W � Z‖F ≤ ρ,

so that

ιBρ

(
T †

P (Z)
)
= ιBW

ρ
(Z) , ∀Z ∈ TP, (A.6)

where B
W
ρ := {Z ∈ C

(N−P)×(P+1) : ‖W � Z‖F ≤ ρ}.
Plugging (A.5) and (A.6) into (A.2) hence yields

TP
(
proxτH (x)

) =
= arg min

Z∈TP∩HK

{
1

2τ
‖T †

P (Z)− x‖2
2 + ιBρ

(
T †

P (Z)
)}

= arg min
Z∈TP∩HK

{
1

2τ
‖W � (Z− TP(x))‖2

F + ιBW
ρ

(Z)

}
= arg min

Z∈TP∩HK∩BW
ρ

{
1

2τ
‖W � (Z− TP(x))‖2

F

}
= arg min

Z∈TP∩HK∩BW
ρ

‖W � (Z− TP(x))‖F

= �W
TP∩HK∩BW

ρ
TP(x). (A.7)

Using the fact that T †
P TP = IN we can finally rewrite (A.7) as

proxτH (x) = T †
P �W

TP∩HK∩BW
ρ

TP(x),

which completes the proof.

APPENDIX B
PROOF OF THEOREM 3

The proof of Theorem 3 relies on the four lemmas here-
after. The first lemma shows that gradient descent is Lipschitz
continuous, and exhibits step size ranges for which it is also
a μ-contraction –i.e., the Lipschitz constant is strictly smaller
than 1/

√
μ+ 1 for some μ ≥ 0. This is a generalisation of a

famous result in optimisation [48], [49].
Lemma B.1 (μ-Contractive Gradient Descent): Let G ∈

C
L×N be injective, and define

α := 2λmin
(
GH G

)
, (B.1)

β := 2λmax
(
GH G

)
, (B.2)

whereλmin(M) andλmax(M) denote the minimum and maximum
eigenvalue of a matrix M respectively. Let τ ∈ R+ be a positive
constant and consider the linear map

Dτ :

{
C

N → C
N ,

x �→ x− 2τGH (Gx− y) ,
(B.3)

for some y ∈ C
L. Then, Dτ is Lipschitz continuous:

‖Dτ (x)− Dτ (z)‖2 ≤ Lτ ‖x− z‖2 , ∀x, z ∈ C
N ,

with Lipschitz contant:

Lτ = max {|1− τα|, |1− τβ|} . (B.4)

For μ ≥ 0 moreover, Dτ is μ-contractive, i.e., 0 ≤ Lτ <

1/
√

μ+ 1, for

1

β

(
1− 1√

μ+ 1

)
< τ <

1

β

(
1+ 1√

μ+ 1

)
. (B.5)

Proof: We have

‖Dτ (x)− Dτ (z)‖2 =
∥∥(IN − 2τGH G)(x− z)

∥∥
2

≤ ∥∥IN − 2τGH G
∥∥

2
‖x− z‖2

= Lτ ‖x− z‖2 ,

where the Lipschitz constant Lτ := ‖IN − 2τGH G‖2 > 0 is the
spectral norm of IN − 2τGH G. Note that since G is injective,
GH G is positive definite and hence we easily get [49] that the
eigenvalues of IN − 2τGH G are contained in the interval [1−
τβ, 1− τα], where β ≥ α > 0 are defined in (B.1) and (B.2)
respectively. Its spectral norm is hence given by:∥∥IN − 2τGH G

∥∥
2 = max {|1− τα|, |1− τβ|} ,

which proves (B.4).
For τ verifying (B.5), we have moreover:

1− 1√
μ+ 1

< τβ < 1+ 1√
μ+ 1

⇔ − 1√
μ+ 1

< 1− τβ <
1√

μ+ 1

⇔ |1− τβ| < 1√
μ+ 1
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and similarly since α ≤ β:

α

β

(
1− 1√

μ+ 1

)
< τα <

α

β

(
1+ 1√

μ+ 1

)
⇔ 1− 1√

μ+ 1
< τα < 1+ 1√

μ+ 1

⇔ |1− τα| < 1√
μ+ 1

,

which shows the μ-contractivity of Dτ . �
The second lemma states that in a Hilbert space, projection

maps onto closed convex sets are non-expansive. This is a known
result from approximation theory [50], [51].

Lemma B.2 (Non-Expansiveness of Closed Convex Projec-
tions): Let H be some Hilbert space with some inner-product
norm ‖ · ‖ and C ⊂ H a closed, convex set. Then the projection
map onto C, defined as

�C (x) = arg min
z∈C
‖x − z‖, ∀x ∈ H,

is non-expansive, i.e.,

‖�C (x)−�C (z)‖ ≤ ‖x − z‖, ∀x, z ∈ H.

Proof: Lemma B.2 is proven in [50, Theorem 5.5]. �
The third lemma states that the singular value projection map

�Hk
is locally non-expansive in every neighbourhood of the

manifold of matrices with rank exactly k.
Lemma B.3 (Local Non-Expansiveness of the Singular Value

Projection): Let Cm×n be the space of complex-valued rectan-
gular matrices of size m× n, and Hk ⊂ C

m×n, Rk ⊂ C
m×n the

sets of matrices with rank at most and exactly k ≤ max{m, n}
respectively. Denote further by �Hk

the projection map onto
Hk given in (14). Then, for every R ∈ Rk , the map �Hk

is
well-defined (single-valued) and locally non-expansive

‖�Hk
(X )−�Hk

(Z)‖F ≤ ‖X − Z‖F , ∀X ,Y ∈ U ,

for some neighbourhood19 U � R.
Proof: SinceRk is dense inHk [34, Proposition 2.1], we have

�Hk
= �Rk

in a neighbourhood W of every R ∈ Rk (see [52,
Example 2.3] for a detailed proof of this fact). Moreover,
[53, Lemma 3] tells us that, for every R ∈ Rk , �Rk

is, in a
neighbourhood U � R such that U ⊂W , well-defined (single-
valued), continuous and differentiable, with gradient given by:
∇�Rk

= �TRk
(R) where TRk

(R) ⊂ C
m×n is the tangent plane of

the manifold Rk in R (see [52, Example 2.2]). Since TRk
(R)

is by definition a linear subspace of Cm×n, the orthogonal pro-
jection operator �TRk

(R) is bounded with unit spectral norm.
The map �Rk

= �Hk
is consequently 1-Lipschitz continuous

(i.e., non-expansive) with respect to the Frobenius norm in the
neighbourhood U of R ∈ Rk . �

The last lemma finally, makes use of Lemmas B.2
and B.3 to show that the denoising operator Hn(x) =
T †

P [�TP
�HK

�W
BW

ρ
]nTP(x) is locally Lipschitz continuous:

Lemma B.4 (Local Lipschitz Continuity of Denoiser): Let
C

(N−P)×(P+1) be the space of complex-valued rectangular

19If X is a topological space and p is a point in X, a neighbourhood of p is a
subset V of X that includes an open set U containing p, p ∈ U ⊆ V.

matrices of size (N − P)× (P + 1), P ≤ �N/2�, and HK ⊂
C

(N−P)×(P+1),RK ⊂ C
(N−P)×(P+1) the sets of matrices with rank

at most and exactly K ≤ P respectively. Let

Hn(x) := T †
P

[
�TP

�HK
�W

BW
ρ

]n
TP(x), ∀x ∈ C

N ,

be the approximate proximal operator (33). Then, Hn is locally
well-defined (single-valued) and

√
P + 1-Lipschitz continuous

‖Hn(x)− Hn(z)‖2 ≤
√

P + 1‖x− z‖2,

for all x, z ∈ C
N such that TP(x), TP(z) are in some neighbour-

hood of some matrix R ∈ RK .
Proof: First, we have, for all x, z ∈ C

N :

‖Hn(x)− Hn(z)‖2 =
∥∥∥T †

P (�nTP(x)−�nTP(z))
∥∥∥

2
, (B.6)

where �n = [�TP
�HK

�W
BW

ρ
]n. As shown in (A.5) we have more-

over, for X ∈ TP,∥∥∥T †
P (X )

∥∥∥2

2
= ‖W � X‖2

F =
N−P∑
i=1

P+1∑
j=1

W 2
i j |Xi j |2

≤ ∥∥W�2
∥∥
∞ ‖X‖2

F ,

where W = TP(diag(�−1/2)) ∈ TP is as in Proposition 1. From
the definition of � in (5), it is moreover easy to show that
‖W�2‖∞ = ‖�−1‖∞ = 1 and hence∥∥∥T †

P (X )
∥∥∥2

2
≤ ‖X‖2

F , ∀X ∈ TP.

Since the range of �n is TP, (B.6) becomes:

‖Hn(x)− Hn(z)‖2≤‖�nTP(x)−�nTP(z)‖F .

Assuming now that TP(x) and TP(z) are in some neighbourhood
of some point R ∈ RK , we can invoke Lemmas B.2 and B.3
recursively to obtain:

‖�nTP(x)−�nTP(z)‖F ≤ ‖TP(x)− TP(z)‖F

= ∥∥�1/2 (x− z)
∥∥

2

≤ ∥∥�1/2
∥∥

2
‖x− z‖2 ,

where we have used: ‖TP(x)‖2
F = 〈TP(x), TP(x)〉F =

〈T ∗P TP(x), x〉2 = ‖�1/2x‖2, ∀x ∈ C
N . From the definition

of � in (5), we can easily show that ‖�1/2‖2 =
√

P + 1 which
finally yields

‖Hn(x)− Hn(z)‖2 ≤
√

P + 1 ‖x− z‖2 ,

for all x, z ∈ C
N such that TP(x), TP(z) are in some neighbour-

hood of some matrix R ∈ RK . �
We are now ready to show Theorem 3. Let

Uτ,n(x) := Hn (x− τ∇F (x)) = Hn(Dτ (x)), x ∈ C
N .

Then, for every x, z ∈ C
N such that TP(x), TP(z) are in some

neighbourhood of some matrix R ∈ RK , Uτ,n is locally Lips-
chitz continuous as composition between two (locally) Lipschitz
continuous functions Hn and Dτ , see Lemmas B.4 and B.1
respectively. Moreover, the Lipschitz constant is the product of
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the Lipschitz constants of Hn and Dτ ,
√

P + 1 and Lτ in (B.4)
respectively. We have therefore∥∥Uτ,n(x)−Uτ,n(z)

∥∥
2 ≤
√

P + 1Lτ‖x− z‖2,

for all x, z ∈ C
N such that TP(x), TP(z) are in some neighbour-

hood of some matrix R ∈ RK . Finally, for

1

β

(
1− 1√

P + 1

)
< τ <

1

β

(
1+ 1√

P + 1

)
we have from Lemma B.1 that Lτ < 1/

√
P + 1 and hence finally∥∥Uτ,n(x)−Uτ,n(z)

∥∥
2 < ‖x− z‖2,

which shows than Uτ,n is locally contractive. �

APPENDIX C
PROOF OF COROLLARY 1

First, we note that from Theorem 3, we have under the
assumptions of the corollary that

‖xk+1 − xk‖2=‖Uτ,n(xk )−Uτ,n(xk−1)‖2 ≤ L̃τ‖xk − xk−1‖2,

for all k ≥ 1 and hence by induction

‖xk+1 − xk‖2 ≤ L̃k
τ‖x1 − x0‖2, ∀k ≥ 1. (C.1)

Since τ is assumed to satisfy (36) we have moreover 0 < L̃τ < 1.
We deduce hence from (C.1) that {xk}k∈N is a Cauchy sequence.
Let j, k ∈ N with j > k:

‖x j − xk‖2 ≤
j−1∑

m=k

‖xm+1 − xm‖2

≤
j−1∑

m=k

L̃m
τ ‖x1 − x0‖2

= ‖x1 − x0‖2L̃k
τ

j−1−k∑
m=0

L̃m
τ

≤ ‖x1 − x0‖2L̃k
τ

∞∑
m=0

L̃m
τ

= L̃k
τ

1− L̃τ

‖x1 − x0‖2. (C.2)

For every ε > 0, we can choose a J ∈ N such that

L̃J
τ <

ε(1− L̃τ )

‖x1 − x0‖2
,

and hence for all j > k > J

‖x j − xk‖2 < ε.

The sequence {xk}k∈N is hence a Cauchy sequence, and since
C

N is complete, it converges towards a limit point x
 ∈ C
N . We

have moreover, since Uτ,n is continuous

x
 = lim
k→∞

xk = lim
k→∞

Uτ,n(xk−1) = Uτ,n

(
lim

k→∞
xk−1

)
= Uτ,n(x
),

and hence x
 is a fixed-point of Uτ,n. Note moreover that, from
(C.2) we get

‖x
 − xk‖2 = lim
j→+∞

‖x j − xk‖2

≤ lim
j→+∞

‖x1 − x0‖2L̃k
τ

j−1−k∑
m=0

L̃m
τ

=‖x1 − x0‖2L̃k
τ

+∞∑
m=0

L̃m
τ

= L̃k
τ

1− L̃τ

‖x1 − x0‖2,

which proves (38) of Corollary 1. �
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