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ABSTRACT This paper gives two contributions to the state-of-the-art for viticulture technology
research. First, we present a comprehensive review of computer vision, image processing, and machine
learning techniques in viticulture. We summarize the latest developments in vision systems and techniques
with examples from various representative studies, including, harvest yield estimation, vineyardmanagement
andmonitoring, grape disease detection, quality evaluation, and grape phenology.We focus on how computer
vision and machine learning techniques can be integrated into current vineyard management and vinification
processes to achieve industry relevant outcomes. The second component of the paper presents the new
GrapeCS-MLdatabasewhich consists of images of grape varieties at different stages of development together
with the corresponding ground truth data (e.g., pH and Brix) obtained from chemical analysis. One of the
objectives of this database is to motivate computer vision and machine learning researchers to develop
practical solutions for deployment in smart vineyards. We illustrate the usefulness of the database for a color-
based berry detection application for white and red cultivars and give baseline comparisons using various
machine learning approaches and color spaces. This paper concludes by highlighting future challenges that
need to be addressed prior to successful implementation of this technology in the viticulture industry.

INDEX TERMS Viticulture, computer vision, machine vision, visual computing, image processing, machine
learning.

I. INTRODUCTION
The domesticated grape is an important fruit crop from an
economic perspective and is also one of the oldest with a
long history of cultural significance. It is believed that Vitis
vinifera has its beginnings in an area between the Black
Sea and Caspian Sea but today there are over ten thousand
varieties grown across the globe. In terms of land area des-
ignated for wine production, Spain is first, followed by other
countries like France and Italy [1]. The viticulture industry is
also important in countries like the United States, Australia
and Chile. Suitable environmental conditions and appropriate
cultural practices throughout the season are required to ensure
optimal grapevine performance and grapes that will match
the desired wine style [2]. The harvest can vary substantially
from year to year and also within the vineyard due to soil
conditions, climate, disease, pests, and vineyard management
practices. In vineyards using traditional practices, tasks are

human performed; they can be time consuming and lead to
physical stress and fatigue. In recent decades and especially
over the last few years, new technologies have been imple-
mented to allow the automation of many tasks.

Such technologies include robotics, remote sensing, and
wireless sensor network (WSN) technologies. Modern agri-
cultural machines utilize automation technologies to control
the movement within the vineyard (in terms of speed and
direction of travel and steering angle) and to manage the
agronomic operations. Advanced location technology makes
it possible to have an automatic guidance system based
on the use of GPS and sensors [3]. For example, tractors
have been engineered to perform site-specific operations
autonomously without human intervention through the inter-
pretation of prescription maps made with monitoring sensors
mounted on board. There are many commercial solutions for
Variable Rate Technology (VRT) deployment in vineyards.
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The practical deployment of robotics in precision viticulture
is still in the emerging phase, but many projects are already in
the final stages of development, and some have already been
put on themarket. Examples of robot prototypes and commer-
cial solutions for viticulture are VineRobot [4], VINBOT [5],
VineGuard [6], Wall-Ye [7], VRC Robot [8], Vitirover [9],
and Forge Robotic Platform [10].

The application of remote sensing technologies to pre-
cision viticulture has allowed the description of vineyard
spatial variability with high resolution. The use of image
acquisition performed at a distance with different scales of
resolution is able to describe the vineyard by detecting and
recording sunlight reflected from the surface of objects on
the ground. Platforms used in remote sensing are satellites,
aircraft, helicopter and unmanned aerial vehicles (UAVs).
However, they either produce single or few synoptic views
over the entire vineyard because data capture is expensive,
and therefore unlikely to be adopted by vineyardmanagers for
continuousmeasurements ormonitoring.Wireless sensor net-
work (WSN) technologies are useful and efficient for remote
and real-time monitoring of important variables involved in
grape production. A WSN is a network of peripheral nodes
consisting of a sensor board equipped with sensors and a
wireless module for data transmission from nodes to a base
station. The data can be processed or stored and is accessible
to the user. A comprehensive review on the state of the art of
WSNs in agriculture can be found in Ruiz-Garcia et al. [11].
The use of remote image sensing has been the focus of much
of the research in viticulture but it falls outside the scope
of this review. Similarly, WSNs, automation technologies
and robots without image sensing or computer vision and
machine learning also fall outside of the scope of this paper.
The reader can refer to the available reviews on automa-
tion and robotics [12], [13], remote sensing [14], [15], and
WSNs [11], [l6] in viticulture and agriculture.

Potential emerging viticulture technologies are not fully
mature and there are several challenges to be addressed.
While much of the work to date is promising, we have not
yet achieved the ‘‘vineyard of the future’’, where these tech-
nologies can provide powerful tools that can be adopted by
viticulturists to inform the management of their vineyards.
These involve automatic leaf area estimation, fruit harvest-
ing, yield estimation, grape quality evaluation and grapevine
variety identification. Further challenges include accurate
yield estimation and quality control, because such factors are
affected by environmental and biotic variables (soil factors,
climate, plant diseases), farming factors such as irrigation
and the application of agrichemicals (pesticides, fertilizers,
herbicides) [18], [19], and other agricultural tasks [20] (shoot
thinning, bunch thinning, etc.).

This paper gives two contributions to the state-of-the-
art for viticulture technology research. The first component
presents a comprehensive review of the use of computer/
machine vision, image/visual processing, and machine learn-
ing techniques in viticulture. To the best of our knowledge,
such a comprehensive review of these fields for viticulture has

not yet been reported. We review the latest developments in
these areas for both laboratory-based and in-field techniques.
We will demonstrate that these vineyard monitoring tech-
niques are targeted at harvest yield estimation, grape disease
detection, grape phenology assessment and crop quality eval-
uation, with the overall aim to aid vineyardmanagement deci-
sions. The second part of the paper presents a new database
called GrapeCS-ML which consists of images of grape vari-
eties at different stages of development together with the
corresponding ground truth data (e.g. sugar content, acid
levels, etc.) obtained from chemical analysis. Again, to the
best of our knowledge, no such database is currently available
for the research community in computer vision and machine
learning. The availability of such a database is important to
computer vision and machine learning researchers so that
they are able to compare between techniques using common
datasets. It is expected that the information contained in the
database will spur new computer vision and machine learning
research by providing training data for new algorithms and
image processing techniques.

The remainder of the paper is organized as follows.
Section II provides a comprehensive review of computer
vision and machine learning for viticulture technology
research focusing on representative studies. Section III
presents the GrapeCS-ML database and gives details on the
datasets. Section IV presents an illustration of the usefulness
of the database to estimate the optimal harvest time for white
grape cultivars using changes in hue color information. Future
challenges for viticulture technology research are presented
in Section V. Finally, Section VI concludes the paper.

II. REVIEW OF TECHNOLOGIES AND RESEARCH WITH
A FOCUS ON THE FIELDS OF COMPUTER VISION AND
MACHINE LEARNING FOR VITICULTURE
This section presents a review of recent research relevant to
the application of computer vision, machine vision, image
processing andmachine learning research for viticulture tech-
nology focusing on five topics relevant to viticulture includ-
ing harvest yield estimation, vineyard management and mon-
itoring, grape disease detection, quality evaluation, and grape
phenology. Tables 1 to 5 list the individual studies relevant
to each of these topics – the imaging method used, the com-
puter vision/machine learning techniques applied, and a value
assessment of the study.

The methods can be broadly divided into two main
approaches: (i) laboratory-based techniques; and (ii) in-field
techniques. Laboratory-based techniques have the advantage
of controlled lighting conditions and in the case for accurate
berry detection the problem of obstruction by leaves and other
bunches is avoided. The drawback, however, is that these
methods are destructive. The more challenging approach
is to perform berry detection in-field in a non-destructive
manner. In this case, the illumination conditions cannot be
controlled, and there is the additional obstruction problem.
For each representative viticulture topic, we will first discuss
the laboratory-based approaches which have been proposed
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TABLE 1. Representative studies using computer vision and machine learning to estimate yield in viticulture.
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TABLE 2. Representative studies focusing on pruning and shoot characteristics using computer vision and machine learning.

followed by the in-field approaches. We also attempt to
present a chronological sequence based on the publication
year. Details on the grape variety are also included.

A. COMPUTER VISION AND MACHINE LEARNING
STUDIES FOR HARVEST YIELD ESTIMATION IN
VITICULTURE
Yield estimation or forecasting is of critical importance in
the wine industry. Traditionally, yield forecasts have been
generated by counting vine number, bunch number per vine
and includes the manual and destructive sampling of bunches
to determine their weights, berry size, and berry numbers.
Details of yield estimations involving traditional methods
such as the lag phase method and others can be found
in [21] and [22]. The manual process is labor intensive,
expensive, and inaccurate. For each selected vine, the hand-
harvested bunches are weighed and counted. From this data,
the average number of bunches per vine and the average
weight per bunch can be calculated and this information is
then extrapolated to the vineyard on the basis of the number
of vines per acre. The method can be inaccurate if the yield is
unevenly distributed across the vineyard. Traditional manual
sampling methods are destructive because a subsample of the
bunches or berries are removed from the vine.

Laboratory-based techniques for harvest yield estimation
can be found in the works by [26] and [31]. Battany [26]
used a flatbed scanner to take images of detached Pinot
Noir berries. The grayscale images were converted to binary
and watershed segmentation was used to separate the joined
berries and counted. Their approach was more accurate and
faster than manual berry counting, but also involves destruc-
tive harvesting. In practice, this would also require subjective

sampling which may cause inaccuracies for yield estimation.
Tardaguila et al. [31] proposed a methodology to determine
the size and weight of grapes by extracting the morphology
of a grape using the Freeman chain code algorithm. Their
method was not developed for grape bunches but for individ-
ual berries under laboratory conditions. Although significant
progress has been made, the approach is still impractical for
the accurate and rapid measurement of berry size and weight
in the field.

Field-based techniques for harvest yield estimation can be
found in the works by [23]–[25], [27]–[30], and [32]–[44].
An early approach was proposed by Dunn and Martin [23]
2004. The authors studied the relationship between fruit
weight and the ratio of fruit pixels to total pixels from 16 color
RGB images of the canopy of Cabernet Sauvignon grapevines
as the vine was progressively harvested. Threshold and tol-
erance values were then set manually to select the ‘‘fruit’’
pixels from a single image. These values were then used for
the subsequent analysis of the remaining images, and the
segmented ‘‘fruit’’ pixels were counted. Using this approach,
their experiments accounted for 85% of the variation in yield
for the various levels of fruit removal. Chamelat et al. [24]
developed an approach that combined shape detection with
color information using a semi-supervised Support Vector
Machine (SVM) classifier to detect red grape bunches. Their
technique allowed the detection of the grape bunches in dif-
ferent orientations and sizes with a 99% success rate. The
method by Rabatel and Guizard [25] used a watershed algo-
rithm to detect the separation of berry contours from lumi-
nance discontinuities with ellipse model fitting of the contour
arcs using the least square algorithm. Their method could
detect two thirds of the visible berries on the vine. The authors
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TABLE 3. Representative studies focusing on disease detection in viticulture using computer vision and machine learning.

TABLE 4. Representative studies focusing on bunch compactness using computer vision and machine learning.

concluded that the size estimation would be more accurate by
introducing adaptive thresholding in the watershed algorithm
and the model fitting using a multivariate semi-supervised
classification.

A different approach was proposed by Reis et al. [27]
to detect bunches from white and red grape cultivars using

night captured images. Color segmentation and mapping was
implemented to generate a binary image. Morphological dila-
tion was applied to fill in holes between pixels and small
regions were removed. The orientation of each bunch and the
stem location was determined from the pixel distribution and
density around the bunch centre. Reis et al. [28] reported a
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TABLE 5. Representative studies focusing on grape seed maturity using computer vision and machine learning.

false detection rate of 9% for all images used in their experi-
ment. The authors extended the work in 2012 to differentiate
between white and red grapes and achieved classification
rates of 97% and 91% for red and white grapes respectively.
Nuske et al. [29] proposed an automated computer vision
method based on shape and visual texture to identify and
count green grape berries against a green leaf background.
Their approach used a visible light camera mounted on a
small vehicle driven along the rows in a vineyard. Their algo-
rithm was comprised of several components to enable berry
detection. They first used the radial symmetry transform to
identify berry locations. Then, a combination of color and
texture features followed by the k-Nearest Neighbor classifier
was used to classify the detected points. The final stage
removes false positive detections for berries which do not
have at least five berries in close proximity. Their approach
can predict yield to within 9.8% of the actual crop weight.
Nuske et al. [30] performed an extension of the work in 2012
by utilizing calibration data obtained from previous har-
vests and a small set of handpicked samples. This approach
achieved a 4% and 3% improvement in yield estimation
accuracy above the previous harvest calibration and the hand-
picked samples respectively. Murillo-Bracamontes et al. [32]
proposed an advanced approach to segment and identify indi-
vidual grapes from the image of a cluster using the circular
Hough transform. Their method was robust enough to detect
partially occluded berries. False detections were reduced
using color information. A group of researchers in Spain [33]
proposed a grapevine yield and leaf area estimation technique
using supervised classification in RGB images based on the
Mahalanobis distance parameter to characterize the grapevine
canopy and assess the leaf area and yield. Their classification
methodology is able to discriminate among seven different
classes (grape, wood, background and leaf (with four classes
based on increasing leaf age). Their results revealed a high
performance of 92% accuracy for leaves and 98% for clusters.
Their method is more successful than other approaches due
to its capability to identify various classes of tissue.

Farias et al. [34] proposed an image acquisition and pro-
cessing framework for in-field grape and leaf detection and
quantification. Their framework has six steps: (1) image

segmentation based on Fuzzy C-Means with Gustafson
Kessel (FCM-GK) clustering; (2) obtaining the centroids
which are the FCM-GK outputs as seeding for k-Means
clustering; (3) Cluster identification generated by k-Means
using SVM; (4)Morphological operations over grape and leaf
clusters to fill holes and eliminate small clusters; (5) a Scale-
Invariant Feature Transform (SIFT) to create a mosaic image
to avoid overlapping regions among images; and (6) Finding
centroids in the grape bunches by calculating the areas of
leaves and grapes. The performance of their method is more
successful than that of [33] since the method accounts for
illumination artifacts and automatically clusters the training
data. The work by Liu et al. [35] aimed to accurately estimate
the weight of fruit on the vine. They first photographed
manually harvested bunches in a laboratory environment to
provide a baseline for the accuracy of the weight calculation.
The authors investigated several approaches for classification
(color histogram, RBF thresholding, and fuzzy clustering and
SVM). The authors concluded that two important parameters
affect the performance of the histograms: (i) the color space
used, and (ii) the number of bins in the histogram. Their
results showed that RGB thresholding gave a true positive
rate of 87%, with a false positive rate of 5%, whilst fuzzy
clustering and SVM results in a true positive rate of 97%,
with a false positive rate of 16%.

In 2014, Nuske et al. extendedwork [36], [37] that was cen-
tered on a vehicle-mounted vision system. Their algorithms
processed images by exploiting three prominent visual cues
(shape, color and texture) using a classifier which detects
berries which has similar color to the background of vine
leaves. Methods were also introduced to maximize the spatial
variance and the accuracy of the yield estimates by optimizing
the relationship between image measurements and yield. The
experimental results conducted over four growing seasons for
wine and table grapes demonstrated yield estimates that cap-
ture up to 75% of spatial yield variance and with an average
error between 3% and 11% of total yield. Another approach
was proposed by Font et al. [38] for yield estimation using
the analysis of high-resolution images obtained with artifi-
cial illumination at night. Their work first assessed different
pixel-based segmentation approaches to detect red grapes to
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obtain the best estimation of the cluster areas in these illu-
mination conditions. They used various methods including
threshold-based, Bayesian classifier, Mahalanobis distance,
histogram segmentation and linear colormodel segmentation,
and investigated the RGB andHSV color spaces. Their results
showed that the best segmentation method for non-occluded
red table grapes was threshold segmentation in HSV color
space, resulting in 10% estimation error after morphological
filtering. The authors proposed two procedures for yield esti-
mation: (1) The number of pixels corresponding to a cluster
of grapes is computed and converted directly into a yield
estimate; and (2) The area of a cluster of grapes is converted
into a volume. The results with these proposed methods gave
yield errors of 16% and 17% respectively.

Liu et al. [39] presented a work in 2015 using a combi-
nation of texture and color information with SVM classi-
fication. The bunch segmentation method has three stages
(image pre-processing, training using a training dataset and
testing segmentation on the test dataset).Morphological oper-
ations are performed in HSV color space on both training
and testing images to extract the initial bunch hypotheses.
A shape filter is then applied to exclude incorrectly iden-
tified bunches. A new approach for yield estimation was
proposed by Liu et al. [40] to estimate the 3D structure
of grape bunches from a single image. The proposed 3D
model based on a single image is appropriate for a bunch
with distinguishing shoulders but it cannot achieve a good
estimation of berry numbers on a bunch with overlapping
shoulders. Their experiments on two varieties revealed an
average accuracy of 87.3% relative to the actual number of
berries on a bunch. Researchers in China aimed to detect
the grape clusters in a vineyard using image processing and
machine learning [41]. They proposed an image segmentation
method based on an improved artificial swarm optimization
fuzzy clustering. The fitness function of the artificial colony
was improved based on the objective function of the fuzzy
C-average clustering (FCM) algorithm. Image segmentation
was then performed based on the maximum membership
principle. They conducted their experiment on black grape
images taken under normal light illumination and an accuracy
of 90.33% was achieved. Luo et al. continued their research
by proposing grape image segmentation based onartificial
bee colony and fuzzy clustering and the AdaBoost frame-
work [42]. In the initial step, the effective color components
of grape clusters were extracted to construct the linear clas-
sification models based on a threshold. In the second com-
ponent, an advance classifier was constructed by using the
AdaBoost framework. The authors used 900 testing samples
to verify the performance and an accuracy rate of up to
96.56% was achieved. They also tested the performance of
their work using 200 images captured under three various
illuminations in the vineyard and the average detection rate
was 93.74%.

Vincent Casser et al. [43] applied feedforward neural
networks (FFNN) to address the problem of color-based
grape detection for in-field images. The authors considered

four classes (night time red berries, night time white berries,
day time red berries and day time white berries). Different
light conditions on grape varieties were investigated and
the influence of different color models was also examined.
Their simulation results showed that an average classification
rate of 93% could be achieved. The comparison with SVM
revealed that FFNN could slightly outperform SVM in com-
putation time. A recent approach for a smartphone application
was proposed by Aquino et al. [44] in 2017. The grape cluster
is placed in front of a dark cardboard for analysis. The authors
proposed a new image analysis algorithm based onmathemat-
ical morphology and pixel classification for grapevine berry
counting. The methodology has two main stages. Initially,
images were down-sized and converted to the CIELab color
space. In the first stage, a set of berry candidates was extracted
from the image using morphological filtering. The bright
spots produced by light reflection from the berry surface
were detected by finding the regionalmaxima of illumination.
In the second stage, false positives (FP) were eliminated. This
elimination process was performed by means of pixel classi-
fication using a classifier input with a set of key descriptors,
and trained by supervised learning. This process involved a
set of six morphological and statistical descriptors (grouped
into shape (one descriptor), normality (one descriptor) and
color descriptors (four descriptors)) to form a feature space
used to train a classifier for FP discrimination. Two classi-
fiers, a three-layer neural network and an optimized SVM
were considered in their work. Their experimental results
showed that the three-layer neural network performed better
than the SVM. The authors informed that the method would
be implemented in smartphone devices in the near future.

B. COMPUTER VISION AND MACHINE LEARNING
FOR PRUNING AND ASSESSMENTS OF SHOOT
CHARACTERISTICS FOR VINEYARD MANAGEMENT
AND MONITORING IN VITICULTURE
Wireless Sensor Networks (WSNs) are popular in vineyard
management and monitoring. WSN technologies can pro-
vide an efficient and useful tool for remote and real-time
monitoring of essential parameters involved in grape pro-
duction, processing the data and transmitting the required
information to the grape growers. Works for viticulture on
WSNs without image processing technologies can be found
in [45]–[49]. There are commercial companies currently
offering such monitoring solutions for vineyards. For exam-
ple, VintiOS [53] is a precision agriculture software that sup-
ports vine growers. Another tool named Monet [54] monitors
the health of a vineyard including the risk of developing cer-
tain diseases, weather information, and other relevant events.
Other solutions have been developed by Ranchsystems [55],
SmartVineyard [56] and Save [57]. For this paper, we do
not review WSNs or commercial technologies if they do
not contain an image sensing, computer vision or machine
learning component.

Computer vision and machine learning techniques for
vineyard management and monitoring can be found in the
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works by [45]–[52]. An early work by McFarlane et al. [45]
applied image analysis to vine pruning. The authors sug-
gested that the bottom position of the branches could not
be determined accurately enough because the visualization
system had very little understanding of the vine structure but
they reported a success rate of 80% with their techniques.
The work by Svensson et al. [46] applied image processing to
determine shoot count and canopy density. In 2006, a research
team from the University of Adelaide (Gao and Lu) [47]
proposed a new technique based on computer vision to tackle
pruning of those grapevine varieties that are fruitful in the
basal bud area and thus suitable for the 2-bud spur prun-
ing method. This group later extended the work to include
stereo vision [48]. The authors developed a new algorithm
using image processing, image analysis and stereo vision to
locate the pruning positions and demonstrated the feasibility
of automatic grapevine pruning. The images captured from
the stereo cameras were first pre-processed to obtain binary
images. Image analysis was then used to identify different
parts of the grapevine and obtain the 2D positions of the
cutting points. The authors designed algorithms to locate the
cordon, the branch and the nodes. Their experimental results
gave a success rate of 85%. A vineyard health assessment
protocol combining WSNs with image sensing techniques
was proposed by Lloret et al. [49]. The researchers introduced
a WSN where each sensor node captured images from the
field and used image analysis to detect leaf color changes
induced by physiological deficiencies, pests and diseases or
other harmful agents. The first step estimates an average leaf
size for use in later steps. A threshold is then applied to
the remaining pixels to eliminate those that do not meet a
color condition corresponding with the bad (stressed) leaves.
Further processing makes sure that the ground is not mis-
takenly identified as stressed leaves because of their similar
color. When the symptom is detected, the sensor node sends
a message to the WSN sink to notify the grower.

There are several applications where bud detection in
vineyard images is critical for providing potential solutions
to grapevine pruning, grapevine plant phenotyping and 3D
reconstruction of the plant structure and components. The
work by Xu et al. [50] proposed a machine vision algorithm
to detect the buds of grape vines in winter. Color RGB images
were captured indoors. The blue component was used for
image preprocessing such as filtering, threshold segmentation
and noise removal to obtain the binary image. The Rosenfeld
algorithm for thinning was then applied to the binary image
to extract the skeleton of the grape branches, and the Harris
corner detection algorithm was applied to detect the point
of buds from the skeleton image. Their experimental results
gave a detection rate of 70.2%. A recent approach combining
machine vision with robotics to locate the spatial coordinates
of the cutting points on a peduncle of grape bunches can be
found in the work by Luo et al. [51]. The authors proposed
a technique to acquire spatial information of grape bunches
based on binocular stereo vision. Their technique consisted
of four stages. The first stage performed a calibration of the

binocular cameras and then applies a correction. The second
stage detects the cutting points on the peduncle and the
centers of the grape berries. This is followed by extraction
of the three-dimensional spatial coordinates of the points,
and the final stage calculates the bounding volume of the
grape clusters. In their experiments, 300 images from the
vineyard were captured and tested to verify the performance
of their technique. Their results gave a success rate of approx-
imately 87%. The authors also found that the elapsed time of
the overall technique was less than 0.7s, indicating that their
algorithms could be deployed on harvesting robots.

Recently, a comprehensive approach for grapevine bud
detection under natural field conditions to aid in winter
pruning was proposed by Diego et al. [52]. Their proposed
approach used the Scale-Invariant Feature Transform (SIFT)
for obtaining the low-level image features, Bag-of-Features
for building the image descriptors and the SVM for clas-
sification. The classification algorithm was intended to be
used on patches produced by scanning-window detection
algorithms. Their experiment evaluated images containing
buds of at least 100 pixels in diameter. Their results showed
that the approach could achieve a classification recall greater
than 0.89 in patches containing at least 60% of the original
bud pixels, where the proportion of bud pixels in the patch
is greater than 20%, and the bud is at least 100 pixels in
diameter. Better results were obtained for patches that hold
between 90% and 100% of the bud pixels and these pixels
represent between 20% and 30% of the patch, i.e. patches
from three to five times larger than buds

C. COMPUTER VISION AND MACHINE LEARNING
STUDIES FOR DISEASE DETECTION IN VITICULTURE
Disease detection is an intensive research area in viticulture.
Diseases can be caused by fungi or bacteria. Common grape
diseases caused by fungi are downymildew, powderymildew,
anthracnose, grey mold and black rot. The grown call disease
is an example of a disease caused by bacteria. Fungal diseases
such as powdery mildew, downy mildew and botrytis can
cause severe problems economic losses. For example, botrytis
can decrease yield and wine quality [58] and downy mildew
can taint the flavor of wine [59]. Given the significant impact
and economic costs of diseases, it is important to automate
the early detection of these diseases in vineyards. The use of
imaging techniques for disease detection is challenging for
several reasons: (1) The grapes may be covered by a natural
bloom and this has similar visual characteristics to that of dis-
eased berries, thus decreasing the detection accuracy; (2) The
signs and symptoms exhibited by a disease may be different
depending on the development stage of the disease and the
variety of the grape; (3) More than one disease can be present
at the same time; and (4) Factors such as nutrient deficiencies,
pesticides, and weather can also produce similar symptoms to
those of diseases. This section reviews current research using
image processing, computer vision and machine learning for
the detection of diseases in viticulture.
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An image technique for downy mildew detection was pro-
posed by Boso et al. [60] in 2004. In this early study, mature
leaves with oily spots exhibiting symptoms of downy mildew
were digitally photographed on the vine and analyzed using
the anaySIS 3.0 software tool. The number of spots to deter-
mine the severity and intensity of the infection of eight differ-
ent clones of the grape cultivar Albariño were counted. This
work showed that image processing techniques could deliver
a means of rapid, reliable and quantitative early detection of
the disease.Meunkaewjinda et al. [61] proposed an automatic
plant disease diagnosis for grape leaf disease. Their system
has three main stages (color segmentation of the grape leaf,
grape leaf disease segmentation, and analysis & classification
of the disease). Grape leaf color segmentation was first per-
formed to filter out irrelevant background information. The
authors applied a hybrid approach using a self-organizing fea-
ture map (SFOM) together with a backpropagation (BP) neu-
ral network to recognize colors of the grape leaf. A modified
DOM model with a genetic algorithm (GA) for optimization
was used to perform the grape leaf disease segmentation. The
segmented image was then passed through a Gabor wavelet
filter to allowmore efficient analysis of leaf disease color fea-
tures. The SVMwas applied to classify the grape leaf disease.
Their approach could categorize the leaf images into three
classes (scab disease, rust disease and no disease) and demon-
strated the potential for automatic diagnosis of grapevine
diseases. Peresotti et al. [62] reported the development of
a simple image analysis-based semi-automatic method for
the quantification of grapevine downy mildew sporulation
using a compact digital camera and the open source software
ImageJ. They first artificially inoculated small discs of a
grapevine leaf and then took photographs over several days.
The color of the capture images was then balanced using
ImageJ. Rolling Ball background subtraction and median-cut
color quantization were then used to quantify the sporulation
of the image to 8-bits, and the ImageJ auto-thresholding
feature was used to select the area to be measured.

Li et al. [63] proposed an image recognition technique
to conduct the identification and diagnosis of grape downy
mildew and grape powdery mildew. In their approach, images
were pre-processed using nearest neighbor interpolation to
compress the image prior to removal by a median filter.
The k-means clustering algorithm was used to perform unsu-
pervised segmentation of the disease images. Fifty shape,
color and texture features were extracted from the images
of the diseases, and the SVM classifier was used to perform
the disease recognition. Their experimental results (testing
phase) gave recognition rates of grape downy mildew and
grape powdery mildew of 90% and 93.33%, respectively. The
authors work provided an effective approach for rapid and
accurate identification and diagnosis of plant diseases. It also
provided a basis and reference for further development of
automatic diagnostic systems for plant diseases.

In 2013, grape farming in India faced a threat from leaf
diseases. Sannakki et al. [64] proposed a diagnosis and
classification approach for grape leaf diseases using neural

networks. In their approach, the grape leaf image with a
complex background is input to the system. Thresholding
was then applied to mask green pixels. This was followed
by noise removal using anisotropic diffusion, followed by
grape leaf disease segmentation using k-means clustering.
The authors used the feedforward BP network to perform the
classification.

Narvekar et al. [65] developed a system for grape disease
detection by inspection of leaf features. The authors used five
steps in their approach (color transformation, masking green
pixels, segmentation, color co-occurrence, and texture feature
analysis). The RGB leaf images were first captured and con-
verted into the Hue Saturation Intensity (HSI) color space.
Green colored pixels were identified based on a specified and
varying threshold value obtained using Otsu’s method. The
infected portion of the leaf was extracted, and this infected
region was segmented into patches of equal size (32 × 32).
In the color co-occurrence method (CCM), both the color and
texture of the image were considered to represent the image.
The CCM was developed based on spatial gray-level depen-
dence matrices (SGDM). The proposed method was tested
on black rot, downy mildew and powdery mildew. Their
experimental results showed that their method could support
an accurate leaf disease detection with lower computational
cost.

Wadekar et al. [66] developed an automatic system for
diagnosis of grape leaf diseases using image processing and
an automatic pesticide spraying mechanism to detect and
monitor three types of diseases (downy mildew, powdery
mildew and anthracnose). Using the HSV color extraction
algorithm, it can perform the diagnosis on grape leaf images.
Depending on the image processing result the disease sever-
ity is determined and the pesticides are sprayed accord-
ingly. No detail of the technical work associated with the
image processing can be found in their article. The work
by Kajale et al. [67] proposed detection and recognition of
plant leaf diseases using image processing on Android. The
authors applied techniques like color transformation, mask-
ing of green pixels, segmentation, and texture feature analy-
sis. Waghmare et al. [68] focused on detecting downymildew
and black rot through background removal segmentation, leaf
texture analysis and pattern recognition. The segmented leaf
texture was retrieved using a unique fractal based texture
feature and the multiclass SVM was used to classify the
extracted texture pattern. Their experimental results gave an
accuracy of 96.6%. Gujjar and Angadi [69] proposed tech-
niques to detect the diseases black rot, downy mildew, pow-
dery mildew, anthracnose, gray mold, and crown gall. The
authors used the Haar wavelet transfom for feature extraction
and the feedforward network with backpropagation was used
for classification. Their experimental results gave an accuracy
of 93%. Recently in 2017, Pérez-Expósito et al. [70] pro-
posed a predictive decision-support viticulture system with
WSNs termed VineSens to automate the detection of both
primary and secondary downy mildew infections. The central
server checks the infection status daily using environmental
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parameters, and if the accumulated index exceeds a pre-set
threshold (e.g., 80%), an alert is sent to the grower.

D. COMPUTER VISION AND MACHINE LEARNING
STUDIES FOR THE EVALUATION OF BUNCH
COMPACTNESS IN VITICULTURE
Bunch compaction is an emerging focus of computer vision
and machine learning in viticulture because this bunch char-
acteristic has consequences on berry size, yield, fruit split
and disease incidence [71]–[73]. Traditionally, assessment of
bunch compactness requires visual inspection by trained eval-
uators and is comprised of subjective and qualitative values.
Computer vision research for the assessment of quality has
been frequently performed in the laboratory while research
involving the assessment of these properties in the field is still
in its infancy. Works to determine bunch compactness using
vision systems can be found in [74] and [75].

The study by Cubero et al. [74] in 2015 proposed an
approach to assess grape bunch compactness in a non-
invasive, objective and quantitative manner using automated
image analysis. In their approach, color images were taken
of 90 bunches from nine different red varieties. Supervised
segmentation was performed followed by morphological fea-
tures extraction, and a predictive partial least squares (PLS)
model was used to assess bunch compactness. Their experi-
mental results gave an 85.3% correct prediction rate for bunch
compactness. The authors also found that the most discrimi-
nant parameter of the model was highly correlated with the
tightness of the berries in the bunch and the shape of the
bunch. Tightness was proportional to the visibility of berries
and rachis and the number of holes within the bunch, whereas
bunch shape was proportional to the roundness, the compact-
ness, shape factor and aspect ratio. Computer vision methods
to assess bunch compactness were also studied by researchers
from the Universitat Politècnica de València, the Valencian
Institute of Agrarian Research (IVIA) and the Instituto de
Ciencias de la Vid y del Vino (Research Centre of Vine-and-
Wine-related Science) (ICVV) [75]. As in the previous study,
their system could provide information on the characteristics
of grape bunches based on their morphological properties and
color. They used a system with a camera and incorporated
four light sources. Their approach also gave information on
the visibility of the pedicels, the presence of berries deformed
by pressure and the spatial relationships between geometric
characteristics.

E. COMPUTER VISION AND MACHINE LEARNING
STUDIES FOR ASSESSMENT OF GRAPE SEED
MATURITY
Seed maturity is sometimes used as an indicator for the
optimal time for harvest. Traditional methods for identify-
ing maturity is time consuming and subjective because it is
often performed by a visual and sensory analysis. This can
potentially be improved, however, with the application of
emerging image processing and machine learning techniques
specifically targeted for this purpose.

Rodríguez-Pulido et al. [76] presented a study to evaluate
the potential of computer vision to determine the phenolic
maturity of grape seeds. The aim of their study was to find
relationships between the chemical (phenolic composition)
and the appearance (color and morphological) of the seeds.
Their study included descriptors such as lightness, chroma,
seed length, roundness and aspect ratio. The authors iden-
tified 21 phenolic compounds in the seeds and assessed
them in relation to the morphological seed descriptors. The
DigiEye system was used to acquire images of the seeds
from 100 berry samples, and the DigiFood software was
used to obtain morphological and appearance parameters
including the CIELab coordinates from RGB. The authors
concluded that in some cases there were good relationships
between the chemical and appearance data, and that it is
possible to estimate the stage of seed maturity by applying
forward stepwise multiple regression models to this data.
A similar work by Rodríguez-Pulido et al. [77] not only
characterized the seeds but also included an analysis of the
berries themselves. Berry size and developmental stage was
determined by image analysis and the authors established an
objective Browning Index for the seeds. The authors studied
the morphological differences among different varieties by
applying discriminant analysis models to allow the classifi-
cation of the grape seeds with high accuracy.

Avia et al. [78] presented a hybrid segmentation technique
to classify seeds according to their degree of maturity. The
authors used a two-class (mature and immature) classification
strategy. Their hybrid segmentation technique involved a
combination of supervised and unsupervised segmentation
with invariant color models. The supervised segmentation
used the multilayer perceptron (MLP). For feature extraction,
379 different descriptors such as Haralick descriptors, inten-
sity descriptors, local binary patterns, Gabor features, cross-
ing line profiles, Fourier descriptors, and contrast descriptors
were computed. The Sequential Forward Selection algo-
rithm (SFS) was used to determine the most significant
descriptors. The study revealed that two descriptors (Haralick
and Gabor descriptors) could be used to separate the two
classes. Their experiments used a database comprising a total
of 120 seed images (80 for training and 40 for testing). The
classification results showed 100% effectiveness for both
mature and immature classes during training. For the test set,
a 100% effectiveness was obtained for the immature class and
a 93% effectiveness for the mature class.

Zuñiga et al. [79] proposed another grape maturity estima-
tion method based on seed images. Their approach allowed
the classification of three seed classes (immature, mature,
and over-mature). Their method included image acquisition,
segmentation, descriptor computation and classification. For
seed segmentation, the invariant color model [81] was applied
to avoid shadows and highlights. The c3 channel was chosen
based on the favorable results obtained by Avila et al. [80].
The automatic segmentation of this channel was performed
by the Otsu method [83]. The classification architecture com-
prised of three MLPs (one for each class to be identified).
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FIGURE 1. Shiraz berry growth and ripening curves. Image first published in [88].

The MLP training was carried out by the Bayesian Regular-
ization algorithm [82] which provides an objective criterion
to find the number of neurons in the hidden layer of the
network and avoids model overfitting. Their results gave a
recognition rate of 90% for the training and 86% for the test
set.

III. GrapeCS-ML DATABASE
Datasets in an accessible form are required by researchers to
make progress and advancements in computer vision, image
processing and machine learning. A dataset is a collection of
data, images or videos that can be used to evaluate techniques
for specific applications. Examples of datasets appropriate for
general applications in computer vision can be found in [84].
An evaluation of a suitable and unbiased dataset can validate a
proposed technique or algorithm. Interestingly, the evolution
of datasets can also reflect the progress of research in these
fields. Researchers in computer vision gather datasets that are
groomed to be within an attainable level of difficulty. Once
the researchers have saturated performance on those datasets,
they go in search of anothermore complicated dataset in order
to design even better techniques. It is also important to lever-
age multiple datasets because of the bias inherent in any sin-
gle dataset. Viticultural databases include the European Vitis
Database [85] and the Vitis International Variety Catalogue
VIVC [86]. However, these databases were not designed for
computer vision or machine learning research. For example,
the VIVC currently has data for 23000 cultivars. However,
only one or few samples are available for each cultivar. This

is in contrast to the requirements for developing machine
learning algorithms which require many samples from the
same cultivar for training and evaluation.

Here we present a new database called GrapeCS-ML
Database which has been specifically designed to progress
computer vision and machine learning research for viticul-
ture. A detailed explanation of the considerations and pro-
cedures in the database construction are also presented. The
database consists of images of bunches from different grape
varieties captured in three Australian vineyards and contains
different datasets for evaluation. To the best of our knowl-
edge, no such database is currently available for the research
community in computer vision and machine learning for
viticulture technology. The availability of such a database is
important to researchers because data is required for machine
training or learning and testing. We hope that the information
contained in the database will help to spur extensive computer
vision and machine learning research by providing signif-
icant training data for learning algorithms and image pro-
cessing techniques. The database consists of five datasets for
15 grape varieties taken at several stages of development and
includes size and/or Macbeth color references. Altogether,
the database contains a total of 2078 images. Some datasets
also include the corresponding ground truth data (e.g. TSS,
pH, etc.) obtained from chemical laboratory analysis.
Dataset 1: Dataset 1 contains images of Merlot bunches

taken in seven rounds from the period Jan. to Apr. 2017.
Fig. 1 shows a typical growth curve. Initially after flowering,
the grape berries increase in size rapidly but remains hard and
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green. This is followed by a lag phase, and then with onset of
veraison, a second growth period occurs along with softening
and colour development. This phase of grape berry growth
is followed by a period of engustment when the aromas and
flavors of the grape intensify [87]. The images in Dataset 1
allow for the construction of about 250 growth curves. These
data can be used to perform the dynamic analysis to inform on
the optimal berry harvest time based on berry size and color.
Fig. 2 shows some sample images from the dataset.

FIGURE 2. Dataset 1 – Sample images from dataset 1 at various stages of
development.

Dataset 2: Dataset 2 contains the subsets for 13 different
varieties: Merlot, Cabernet Sauvignon (CS), Saint Macaire,
Flame Seedless, Viognier, Ruby Seedless, Riesling, Mus-
cat Hamburg, Purple Cornichon, Sultana, Sauvignon Blanc
and Chardonnay. Each folder consists of images of bunches
at several stages of development of the different varieties.
Fig. 3-6 shows some samples from the dataset. This dataset is

FIGURE 3. Dataset 2 – Sample images from dataset 2 including a volume
reference.

FIGURE 4. Dataset 2 – Sample images from dataset 2 showing
development following veraison and includes a color reference.

FIGURE 5. Dataset 2 – Sample images from dataset 2 including a volume
reference.

FIGURE 6. Dataset 2 – Sample images from dataset 2 at various stages of
bunch development with a color reference included.

designed for research on berry and bunch volume and color
as the grapes mature.
Dataset 3: Dataset 3 contains the subsets for two varieties

(Cabernet Sauvignon and Shiraz) taken at dates close to
maturity. Each image has been taken twice at the same time,
once with the size reference and a second time with the color
reference. Thus, this dataset allows the relationship between
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size and color transitions to be modelled at different stages of
growth. Fig. 7-8 depicts sample images from the dataset.

FIGURE 7. Dataset 3 – Sample images from dataset 3 at various stages of
bunch development.

Dataset 4: Dataset 4 contains subsets of images for two
varieties (Pinot Noir and Merlot) taken at dates close to
maturity, with the focus on the color changes with the onset of
ripening. These images were taken almost daily and includes
the color reference. Thus, this dataset allows color transitions
to be modelled at different stages of development (Fig. 9).
Dataset 5: Dataset 5 contains the images of Sauvignon

Blanc bunches taken on three different dates. Each image also
contains a hand-segmented region defining the boundaries of
the grape bunch to serve as the ground truth for evaluating
computer vision techniques such as image segmentation. The
grape bunches were also analyzed in the laboratory for their
basic composition including total soluble solids (TSS) and
pH. Bunch weight, average berry fresh weight, number of
berries per bunch, berry volume, dominant hue, etc. are also
presented. This dataset can be used to relate the image data
with the chemical composition of the bunches. Fig. 10 pro-
vides an example of samples from the dataset.

IV. COLOR-BASED BERRY DETECTION APPLICATION
USING DATABASE
This section presents an illustration of the usefulness of the
database and gives baseline comparisons for a color-based
berry detection application to detect berry pixels from the
background using various machine learning approaches and

FIGURE 8. Dataset 3 – Sample images from dataset 3 at various stages of
bunch development.

FIGURE 9. Dataset 4 – Sample images from dataset 4 at various stages of
bunch development.

color spaces. The comparisons were performed for white and
red berry cultivars from the images collected in the field.
We performed a segmentation by hand to locate the grape
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bunch region from the background as shown in Fig. 10.
These served as the ground truth images and are included
in the GrapeCS-ML database for use by other researchers.
We then transformed each bunch region into four color spaces
(RGB, YCbCr, HSV, and Lab) and applied seven machine
learning classifiers (SVM, k-NN, logistic regression, classi-
fication tree, boosted tree, SAE) towards the berry detection

FIGURE 10. Dataset 5 – Images and corresponding segmented bunch
regions.

application. The SAE is a learning neural network algorithm
constructed from multiple layers of autoencoders where the
output of each layer is connected to the input of the next
layer [91]. Readers can refer to [90] for more details on
general machine learning algorithms and to [91] for details
on the SAE. For our experiments, the SVM classifier used the
Gaussian kernel, the value of k = 10 was used for the k-NN,
whereas the Boosted tree used the Adaboost [89] method.
Each autoencoder in the SAE was trained separately using a
greedy-based training approach and then stacked onto those
already trained. Table 6 and Table 7 show the classification
rates which were obtained for white berry cultivars and red
berry cultivars respectively. Among the machine learning
approaches, the SVM gave the highest performance among
the classifiers followed by the SAE and k-NN. This showed

TABLE 6. Classification rate (%) for white berry cultivars using various
machine learning approaches and color spaces.

TABLE 7. Classification rate (%) for red berry cultivars using various
machine learning approaches and color spaces.
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that the k-NN with its advantages of lower computational
requirements can be used at a slight decrease in classification
performance. For this application of berry detection using the
GrapeCS-ML Database, a simpler machine learning model
like the k-NN could give as good or even better performance
as a more complex model such as the SAE. Oliveira et al. [92]
gave a similar remark for their application to predict Internet
traffic using the multilayer perceptron and SAE. The logistic
regression classifier gave the lowest performance. For the
different color spaces, the HSV gave the highest performance
for white cultivars while the YCbCr gave the highest per-
formance for red cultivars. The highest classification rate
obtained for white cultivars was 84.4% and the highest clas-
sification rate obtained for red cultivars was 89.1%.

V. CONCLUSION
This paper has provided a comprehensive review on com-
puter vision and machine learning technology for viticulture
applications. We have presented the latest developments in
vision systems and techniques using various representative
studies. These computer vision and machine learning tech-
niques may be applied in smart vineyards, vineyard manage-
ment and winemaking processes. The paper has presented the
GrapeCS-ML Database which has been designed to motivate
researchers to develop practical solutions for deployment in
smart vineyards. We have illustrated the usefulness of the
database for a color-based berry detection application. The
paper has also given baseline comparisons using various
machine learning approaches and color spaces for futurework
by researchers for use in viticulture technology applications
for smart vineyards. An interesting work in the future when
more data have been collected and are available from several
harvest seasons, is to extend the comparisons towards more
complex deep learning techniques such as convolutional neu-
ral networks (CNNs) and deep belief networks (DBNs).
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