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Abstract
Aim: To provide novel evidence on the average impact of climate and land use 
changes on habitat suitability for tropical plants and to test previous conclusions on 
the relative importance of these two drivers in shaping future availability of habitat 
for tropical plant species.
Location: Brazil’s Atlantic Forest domain.
Time period: Plant occurrences recorded between 1960 and 2014. Baseline climate 
from 1960 to 2000 and land use from 2015. Projected scenarios of climate for 2041–
2060 and land use for 2050.
Major taxa studied: Angiosperms.
Methods: We modelled the habitat suitability of 2,232 species of angiosperms from 
the Atlantic Forest domain, endemic to Brazil, and estimated how future climate and 
land use may affect species-level habitat suitability under a moderate and a business-
as-usual scenario for the year 2050.
Results: Our results suggest that climate change alone will, surprisingly, have only a 
modest negative impact on the mean habitat suitability, decreasing it by 2% (median 
= −5 to −7%, variation associated with scenarios). Land use change alone had a more 
consistent negative impact on habitat suitability, causing mean and median reduc-
tions of 4 to 6%. When the effects of climate and land use are combined, the mean 
habitat suitability was reduced by 4% (median = −9 to −11%).
Main conclusions: The combined impacts of climate and land use changes were sub-
stantial, although smaller than expected. Habitat suitability decreased for most spe-
cies, but it increased substantially for some species, suggesting that the distribution 
of impacts across species is markedly right skewed. The impacts were typically detri-
mental to small-ranged species and neutral or beneficial to widespread species. Land 
use change rather than climate change will likely cause more losses to the habitat of 
Atlantic Forest plant species within the next several decades.
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1  | INTRODUC TION

Projected impacts of climate change on plant species vary across 
studies, regions and scenarios (Bellard et  al.,  2012). Projections 
often point to substantial reductions in habitat suitability and spe-
cies’ range size (Bellard et  al.,  2012; Gomes et  al.,  2019; Thomas 
et al., 2004; Velazco et al., 2019; Warren et al., 2018). The few pro-
jections focusing on tropical plants suggest they are highly vulner-
able to climate change (Colombo & Joly, 2010; Colwell et al., 2008; 
Gomes et al., 2019; Miles et al., 2004; Siqueira & Peterson, 2003; 
Velazco et al., 2019). For instance, studies focusing on tropical plants 
in South America predicted that potential range size would decline 
on average 50% for Cerrado trees (based on 162 species, Siqueira 
& Peterson, 2003), 20%–50% for Atlantic Forest trees (based on 38 
species, Colombo & Joly,  2010), 35%–45% for Cerrado plant spe-
cies (based on 1,553 species, Velazco et al., 2019) and 47%–53% for 
Amazonian trees (based on 4,935 species, Gomes et al., 2019) by the 
year 2050. These and other studies support the expectation that 
tropical species are highly sensitive to climate change, as much as 
temperate and boreal species (Wright et al., 2009).

However, responses of tropical plant species to climate change are 
complex and hard to predict (Corlett,  2016). On one hand, tropical 
plants already live under warm temperatures and are often adapted 
to narrow ranges of environmental conditions, suggesting they have 
limited ability to withstand additional warming and adapt to changes 
(Sheldon, 2019; Wright et al., 2009). On the other hand, a simple (and 
uncertain) model of biome shifts suggested that tropical regions may 
be less vulnerable to vegetation change in response to climate change 
than temperate and boreal ecosystems (Gonzalez et  al.,  2010), and 
many tropical lineages may have evolved under global climatic condi-
tions that were warmer than today (McElwain, 2018).

It will be important for conservation planning to know how cli-
mate change will affect species and how it compares with other major 
threats. Some studies suggest that climate change has been, and will 
continue to be for decades, a less important driver of biodiversity loss 
in tropical forests than land use change (de Chazal & Rounsevell, 2009; 
IPBES,  2019; Sala et al., 2005; Schipper et  al.,  2020; WWF, 2018), 
though the relative importance of each driver may differ across phy-
togeographic domains (Silva et  al.,  2019). If climate change alone is 
predicted to cause very large losses of suitable habitat and yet be less 
important than land use change, then the loss of suitable habitat due 
to their combination may be profound. Deforestation in the Amazon 
between 1900 and 2013 may have brought a quarter of Amazonian 
trees to extinction risk (ter Steege et al., 2015). Thus, realistic predic-
tions of the impact of these drivers on habitat suitability and potential 
range size should include both climate and land use changes.

Predicting how tropical plant species will respond to future cli-
mate remains a challenge for myriad reasons. Projected changes in 
climate differ among regions and across emissions scenarios, includ-
ing changes in levels, timing and variation in temperature and rainfall, 
potentially leading to distinct ecological responses across the world 
(Walther et  al.,  2002). Projections of finer-scaled and variable as-
pects of climate change are much more uncertain than coarser-scale 

projections of changes in mean temperature. Responses to changes 
in temperature and precipitation also vary considerably among spe-
cies. Niche breadth and geographic range size seem partly respon-
sible for differences in species’ responses to climate change (Slatyer 
et al., 2013). Species adapted to narrow niches are likely to lose habitat 
and unlikely to gain habitat as climate changes (Thuiller et al., 2005). 
The environmental conditions required by specialist plant species are 
less likely to be available within dispersal range among the future com-
binations of temperature, precipitation, soil and other environmental 
attributes (Sheldon, 2019; Slatyer et al., 2013; Thuiller et al., 2005). In 
addition, species with smaller geographic range sizes are likely more 
vulnerable to extinction from climate change (Schwartz et al., 2006; 
Silva et al., 2019) because they are susceptible to losing larger portions 
of their occupied habitat due to changes in habitat suitability.

Responses to land use change may also vary among species. As 
land use intensifies, species with more acquisitive traits (i.e. fast-
growing, short-lived) often prevail over species with conservative 
traits (i.e. slow-growing, long-lived; Carreno-Rocabado et al., 2016). 
Specifically, habitat fragmentation, a common and well-studied out-
come of land use change in tropical forest regions, selects species 
that are tolerant of edge effects and other fragmentation-induced 
disturbances, leading to the proliferation of fast-growing and short-
lived species (Laurance et al., 2006), and biotic homogenization of 
plant assemblages (Lôbo et al., 2011; Newbold et al., 2018; Staude 
et al., 2020; Tabarelli et al., 2012).

Herein, we aim to provide more comprehensive evidence than 
published heretofore concerning projected changes in habitat suit-
ability of tropical plants due to climate and land use changes, and to 
test previous conclusions on the scale of these changes and the rela-
tive importance of these two drivers to the future availability of trop-
ical plant habitat. Specifically, we investigate how projected changes 
in climate and land use affect the habitat suitability of 2,232 plant 
species of Brazil’s Atlantic Forest—a relatively well-known and highly 
threatened tropical region (Joly et al., 2014; Ribeiro et al., 2009). We 
hypothesize that: (a) projected climate change is highly detrimental to 
species habitat suitability as concluded by previous investigation (e.g. 
Colombo & Joly, 2010; Colwell et al., 2008; Gomes et al., 2019; Miles 
et al., 2004; Siqueira & Peterson, 2003; Velazco et al., 2019); (b) pro-
jected land use change will cause substantially larger losses of habitat 
suitability than projected climate change, as suggested by previous 
studies (de Chazal & Rounsevell, 2009;  IPBES, 2019; Jetz et al., 2007; 
Sala et al., 2005; Schipper et al., 2020; Silva et al., 2019; WWF, 2018); 
and (c) species with smaller range sizes are more negatively affected 
by climate and land use changes (Newbold et  al.,  2018; Schwartz 
et al., 2006; Silva et al., 2019; Staude et al., 2020; Thuiller et al., 2005).

2  | METHODS

2.1 | Atlantic Forest species

This study focuses on plant species of Brazil’s Atlantic Forest 
phytogeographic domain, a highly diverse tropical forest region 
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(Joly et  al.,  2014). Atlantic Forest originally covered 17% of Brazil 
(> 1,450,000 km2), extending along the coast from the state of Ceará 
(3° S) to Rio Grande do Sul (34° S), and beyond Brazil (Galindo-Leal & 
Câmara, 2003). Proximity to the Atlantic Ocean moderates climatic 
conditions, and the region includes equatorial and warm temperate 
climates (Kottek et al., 2006), with annual mean temperature rang-
ing from 13 to 27 ℃, and annual precipitation ranging roughly from 
1,000 to 2,500 mm. It encompasses mostly forests, but also non-
forest vegetation types (IBGE, 2008). The 500-year history of forest 
clearing and expansion of agriculture and built infrastructure has left 
the natural vegetation severely fragmented in the region (Galindo-
Leal & Câmara, 2003; Ribeiro et al., 2009). The high levels of plant 
diversity (> 15,000 angiosperm species; Brazil Flora Group, 2019), 
endemism (50% of angiosperms are endemic to Atlantic Forest; 
Zappi et  al.,  2015), habitat loss (84%–89% of original vegetation 
cover is lost; Ribeiro et al., 2009) and extinction risk (40% of evalu-
ated species are threatened; Martinelli & Moraes, 2013) make the 
Atlantic Forest a biodiversity hotspot with global priority for conser-
vation (Mittermeier et al., 2004).

2.2 | Occurrences and species sample

We downloaded 3,786,000 raw occurrences of plants from the 
Species Link Network (http://www.splink.org.br, see the list of her-
baria providing records in Supporting Information Appendix S1). We 
cleaned the species names by removing unusual characters, remov-
ing uncertain identifications, and retaining only the binomials (i.e. 
species level). We checked synonyms and used accepted names 
according to Brazilian Flora 2020 (Brazil Flora Group, 2019). We 
matched synonyms and corrected minor spelling errors in the spe-
cific epithets using the function get.taxa() from the R package ‘flora’ 
v.0.2.7 (Carvalho, 2016). We discarded records without an accepted 
name in Brazilian Flora 2020, which mainly involved illegitimate, in-
valid or rejected names.

We kept only species occurring in the Atlantic Forest and en-
demic to Brazil, according to Brazilian Flora 2020 (http://flora​dobra​
sil.jbrj.gov.br, Brazil Flora Group, 2019). Occurrences dated before 
1960 or lacking collection date were removed to avoid temporal 
mismatch with climate data. The centroid of the most local adminis-
trative unit (i.e. municipality or district) was used as the location for 
each occurrence. This choice allowed us to include more occurrences 
and avoid errors in geographic location because specific geographic 
coordinates were typically not available or unreliable. Administrative 
units are typically small in the Atlantic Forest region, with a median 
distance between closest administrative units of 10 km (see more 
details in Leão et al., 2020). We used the Global Administrative Areas 
version 2.5 (http://www.gadm.org) as reference for limits of munic-
ipalities and districts.

Only species occurring in 15 or more unique locations had their 
habitat suitability modelled. This procedure ensured that each spe-
cies had robust range size estimates (Rivers et al., 2011) and a mini-
mum variation in the environmental predictors, which is important to 

fit reliable habitat suitability models (Thibaud et al., 2014). Although 
15 records is not as restrictive as the minimum of 20–30 often sug-
gested (Guisan et  al.,  2017), use of this threshold improved sub-
stantially the variation of range sizes in our sample (Supporting 
Information Figure S1). The resulting sample includes 104,000 
unique species-year-coordinate records of 2,232 plant species of the 
Atlantic Forest and endemic to Brazil.

2.3 | Species’ observed area of occupancy

Observed area of occupancy was estimated according to the slid-
ing scale method described in Leão et al. (2020). In this method, the 
area of occupancy is the sum of the grid cell area occupied by the 
species, where the grid cell size varies in proportion to the scale of 
the species’ geographic range extent. The cell width is set as 1/10th 
of the maximum distance between occurrences with a minimum cell 
size of 5 km × 5 km and maximum of 50 km × 50 km. This method is 
a hybrid between traditional area of occupancy (with fixed cell size) 
and extent of occurrence, helping to find appropriate cell sizes for 
the estimation of area of occupancy according to the species’ range 
extent. Use of limits for minimum and maximum cell size avoids un-
derestimation of the area for species with few occurrences and over-
estimation for species with very sparse distribution.

2.4 | Environmental data

The environmental data initially included the following predictors: (a) 
19 bioclimatic variables derived from ‘current’ climate at 5-min spatial 
resolution (approximately 9 km at the equator; Fick & Hijmans, 2017; 
Hijmans et al., 2005); (b) 21 predicted soil attributes from SoilGrids 
with 1-km spatial resolution (Hengl et al., 2014); and (c) an elevation 
mosaic of NASA Shuttle Radar Topography Mission (SRTM) images 
with 90-m spatial resolution (Jarvis et al., 2008). We applied several 
steps of variable selection to remove correlated predictors and focus 
on the most important predictors. First, we calculated the correla-
tion among all variables within South American boundaries. When 
predictors had Pearson correlation above .8, we selected the most 
directly relevant to plant growth. This procedure selected 22 predic-
tors that are likely important to describe the habitat suitability for 
plants, which were used in a preliminary modelling stage to evaluate 
their importance for prediction of habitat suitability using random 
forests (Supporting Information Table  S1). For the final modelling 
stage, we chose six predictors from the nine having importance val-
ues above the mean, according to the mean increase in node purity in 
the random forest models. Predictors with largest mean increase in 
node purity are the ones contributing most to improving predictions 
of species distribution in the models, and are likely among the best 
available predictors to describe the habitat of those species. These 
predictors represented important aspects of temperature (tem-
perature seasonality and annual mean temperature), precipitation 
(precipitation of warmest quarter and annual precipitation) and soil 

http://www.splink.org.br
http://floradobrasil.jbrj.gov.br
http://floradobrasil.jbrj.gov.br
http://www.gadm.org
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(clay fraction and available water capacity) (Supporting Information 
Table S1), and their interaction should provide good discrimination 
of the plant habitat suitability at the geographic scale of this study.

2.5 | Future climate data

Future climate conditions were obtained from the projections of 
three Coupled Model Intercomparison Project phase 6 [CMIP6: 
BCC-CSM2-MR, CNRM-ESM2-1 and MIROC6; WorldClim v.2.1 
(Fick & Hijmans, 2017)] and two CMIP5 models [HadGEM2-ES and 
MIROC5; WorldClim v.1.4, (Hijmans et  al.,  2005)]. The new CMIP6 
models have higher equilibrium climate sensitivity (ECS), which 
means they generate global scenarios with typically more warm-
ing for a given concentration of atmospheric CO2 than correspond-
ing CMIP5 models (Hausfather, 2019). The three CMIP6 models we 
chose have ECS values that are relatively low (2.6C, MIROC6), me-
dium (3C, BCC-CSM2-MR) and high (4.8C, CNRM-ESM2-1) among 
the choices available on WorldClim v.2.1 on August 2020 (ECS val-
ues from Hausfather, 2019). We included HadGEM2-ES and MIROC5 
(CMIP5 models) because they have been commonly used and exten-
sively tested in South America and Brazil (Chou et al., 2014; Follador 
et al., 2018; Yin et al., 2013), thus facilitating integration of our re-
sults with previous knowledge. The derived bioclimatic variables were 
used to assess the effects of climate change in the year 2050 (average 
for 2041–2060, Supporting Information Figures S2 and S3) on two 
representative concentration pathways (RCP4.5 and RCP8.5; Fick & 
Hijmans, 2017; Hijmans et al., 2005). RCP4.5 is a moderate scenario in 
which radiative forcing stabilizes around 2100; it assumes that human 
societies will make an active effort to reduce greenhouse gas emis-
sion by increasing the contribution of non-fossil energy sources and 
mitigating emissions from land use (Thomson et al., 2011). RCP8.5 is 
a high emission scenario (‘business as usual’), in which human popula-
tion and demand for energy grow fast, while economic development 
and improvement in energy technology move slowly, leading to the 
highest radiative forcing among the RCP scenarios (Riahi et al., 2011).

2.6 | Land use data

Current (2015) and projected future (2050) land use were obtained 
from the land use harmonization data set (LUH2 v2f), which de-
scribes the fraction of 0.25 × 0.25 degree grid cells occupied by each 
of the land use states (Hurtt et al., 2020; http://luh.umd.edu). The 
possible land use states, grouped for analysis purposes, were pri-
mary vegetation (forested primary land, non-forested primary land), 
secondary vegetation (potentially forested secondary land, poten-
tially non-forested secondary land), pastures and rangeland, crops, 
and urban. We used the projections SSP2-RCP4.5 from MESSAGE-
GLOBIOM and SSP5-RCP8.5 from REMIND-MAGPIE (Hurtt et al., 
2020; http://luh.umd.edu), which are land use scenarios based on 
narratives for potential future development pathways known as 
shared socioeconomic pathways (or SSPs, Popp et  al.,  2017; Riahi 

et al., 2017), and representatives of a ‘moderate’ scenario and a ‘busi-
ness as usual’ scenario, respectively.

2.7 | Environmental suitability model

As this research focused on prediction, we relied on two environmen-
tal modelling techniques suited for this purpose (Elith et al., 2008; 
Prasad et al., 2006): random forests and boosted regression trees. 
These two approaches are machine learning tree-based methods 
that typically show superior performance on prediction, selection of 
relevant variables and fitting of complex models without overfitting 
the data compared to more traditional regression methods based on 
stepwise selection (Elith et al., 2008; Hastie et al., 2013). We used 
the recommended default parameters for the two modelling tech-
niques as performed in R v.3.6.3 (R Core Team, 2020) packages ‘bio-
mod2’ v.3.4.6 (Thuiller et al., 2020), ‘randomForest’ v. 4.6–14 (Liaw & 
Wiener, 2002) and ‘gbm’ v. 2.1.5 (Greenwell et al., 2019).

In addition to the internal cross-validation performed by each 
machine learning technique, we performed an external fivefold cross-
validation (Guisan et al., 2017; James et al., 2013). Five models were 
generated for each species and modelling technique based on dif-
ferent training data sets (80% of the data) and evaluated on a test 
data set (20% of the data). We randomly selected the same number 
of pseudo-absences as the number of occurrences for a given species, 
with a minimum of 100 pseudo-absences (Barbet-Massin et al., 2012).

We generated ensemble predictions based on the weighted sum 
of probabilities from each model as evaluated by the true skill sta-
tistic (TSS; Guisan et al., 2017; Thuiller et al., 2020). Our inferences 
focus on these ensemble predictions. In an effort to exclude poten-
tially unreliable predictions, models with TSS below .8 were not used 
to build the ensemble predictions.

2.8 | Land use model

We used evidence from site-level surveys to build a model that ac-
counts for the effects of each land use state on habitat suitability 
based on the reported impacts of each land use on species richness 
(Newbold et  al.,  2015) and beta diversity (Newbold et  al.,  2016), 
and how these impacts differ among range size groups (Newbold 
et al., 2018). These three components are included in our model as 
coefficients weighting the effects of each land use by range size 
group. For each spatial unit the land use suitability is a function of the 
sum of the proportion of each land use weighted by their coefficient:

where γ = loss of habitat suitability proportional to the overall loss of 
species richness relative to the primary vegetation baseline (Newbold 
et  al.,  2015); β = relative compositional similarity to the primary 

(1)
Land use suitabilityrc=�1r�1�1primary vegetationc+�2r�2�2secondary vegetationc+

�3r�3�3 pastures& rangelandc

+�4r�4�4cropsc+�5r�5�5urbanc

http://luh.umd.edu
http://luh.umd.edu
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vegetation (see fig. 3b in Newbold et  al.,  2016); α = relative differ-
ence in species richness among range size groups within each land use 
(Newbold et al., 2018); r = index for range size group: first, second and 
third quantiles of range size; and c = index for spatial grid cell (Table 1).

2.9 | Projections into future

We predicted future habitat suitability using the projections for fu-
ture climate in the models trained on current climate and the projec-
tions for future land use accordingly. We followed steps that allowed 
us to estimate the independent and combined effects of climate and 
land use changes on habitat suitability (Figure 1).

We further estimated the habitat suitability within proximity of 
known occurrences. This is a more realistic metric and useful for con-
servation purposes because it avoids the oversimplistic assumptions 
that species can occur anywhere with suitable environment or do 
not occur elsewhere than suggested by observed occurrences. The 
buffer radius equals the maximum distance between occurrences, 
which makes it proportional to the species’ range extent.

Given the seven steps to verify the independent effects of climate 
and land use (Figure 1), two modelling techniques and the ensemble, 
five samples associated with the fivefold cross-validation, five climate 
models, and two future scenarios, we generated 605 projections for 
each species, summing to more than 1,300,000 projections.

2.10 | Full habitat suitability model and changes in 
suitability

The full habitat suitability model is a function of both the environ-
mental suitability (i.e. the suitability given climate and soil) and the 

land use suitability (described above). The habitat suitability for the 
species s was calculated as the sum across grid cells of the product 
between the environmental suitability and the land use suitability 
(given the range size group r):

The change in habitat suitability was calculated as the difference 
between the habitat suitability under climate and land use for the 
years 2050 and 2015 proportional to the suitability in the year 2015, 
and averaged across climate models m:

2.11 | Statistical analyses

We summarized the distribution of changes in habitat suitability 
per species using the mean and median, as both convey information 
informative to the distribution of values (and enabling direct com-
parison with prior studies that largely provided mean projections). 
Differences between the mean and median highlight the skewness 
in predicted changes in habitat suitability, which is an important as-
pect of the impacts of climate and land use change, as can be visual-
ized in the frequency distribution plot (Figure 3).

We fitted simple ordinary least-squares regression models to un-
derstand how changes in habitat suitability relate to species’ area 
of occupancy and to test the hypothesis that species with smaller 
range sizes are more negatively affected by changes in climate and 
land use. For each model, we checked for the relationship between 

(2)

Habitat suitabilitys =

n
∑

c=1

enviromental suitabilitysc ∗ land use suitabilityrc

(3)
Change in habitat suitability

=
1

n

n
∑

m=1

2050habitat suitabilitys−2015habitat suitabilitys

2015 habitat suitabilitys

Land use
Range 
size γ β α γ*β*α

Primary vegetation Q1 1 1 1.03 1.03

Primary vegetation Q2 1 1 1.05 1.05

Primary vegetation Q3 1 1 0.92 0.92

Secondary vegetation Q1 .92 .94 0.87 0.76

Secondary vegetation Q2 .92 .94 1.02 0.88

Secondary vegetation Q3 .92 .94 1.10 0.96

Pastures and rangeland Q1 .7 .75 0.79 0.42

Pastures and rangeland Q2 .7 .75 1.02 0.54

Pastures and rangeland Q3 .7 .75 1.19 0.62

Urban Q1 .69 .87 0.77 0.46

Urban Q2 .69 .87 0.90 0.54

Urban Q3 .69 .87 1.32 0.80

Cropland Q1 .65 .79 0.68 0.35

Cropland Q2 .65 .79 0.98 0.50

Cropland Q3 .65 .79 1.34 0.69

TA B L E  1   Values of the coefficients 
weighting the impacts of each land use on 
the habitat suitability. γ = loss of habitat 
suitability proportional to the overall loss 
of species richness relative to the primary 
vegetation baseline (Newbold et al., 2015); 
β = relative compositional similarity to the 
primary vegetation (see fig. 3b in Newbold 
et al., 2016); α = relative difference 
in species richness among range size 
groups within each land use (Newbold 
et al., 2018). Range size groups refer to 
first, second and third quantiles
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studentized residuals and fitted values and the predictor and trans-
formed area of occupancy either to the logarithmic scale (base 2) 
or square root, choosing the transformation that performed best in 
minimizing undesirable trends in residuals and spreading the data 

more symmetrically. Predictor and response variables were stan-
dardized to have means of zero and standard deviations of one, so 
regression coefficients are comparable between models. Summary 
statistics, figures and regression models were generated in R v.3.6.3 

F I G U R E  1   Steps followed to project the effects of predicted future climate and land use changes on species’ habitat suitability. The 
future scenario is based on the shared socioeconomic pathway SSP2 and representative concentration pathway RCP4.5. 

F I G U R E  2   Box plot of the predicted effects of climate and land use on the species’ habitat suitability given the two scenarios for climate 
and land use change in the year 2050. The scenario based on the shared socioeconomic pathway SSP2 and the representative concentration 
pathway RCP4.5 represents moderate levels of change, while the SSP5 RCP8.5 represents extreme levels of change. Effects are mean values 
from five climate models. Lines inside the boxes show median effects, the lower and upper limits of the boxes show first and third quantiles, 
respectively, and whiskers show range from minimum to maximum values excluding outliers (not shown). CC = climate change; LUC = land 
use change 
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(R Core Team, 2020) with support of the packages ‘ggplot2’ v.3.3.0 
(Wickham, 2016), ‘car’ v.3.0–7 (Fox & Weisberg, 2019) and ‘doBy’ v. 
4.6.5 (Højsgaard & Halekoh, 2020).

3  | RESULTS

Projected climate and land use changes showed distinct impacts on 
future habitat suitability of Atlantic Forest species. When simulating 

the effects of climate change alone, keeping land use constant, 
the mean species’ habitat suitability decreased by 2% under SSP2-
RCP4.5 (median = −5%, min. = −31%, max. = 114%) and by 2% under 
SSP5-RCP8.5 (median = −7%, min. = −33%, max. = 129%) (Figure 2). 
Land use change had a more negative mean impact. Simulating the 
effects of land use change alone, keeping climate constant, reduced 
the mean species’ habitat suitability by 4% under SSP2 (median 
= −4%, min. = −9%, max. = 0%) and by 6% under SSP5 (median = 
−6%, min. = −14%, max. = 0%). The combined effects of climate and 

F I G U R E  3   Frequency distribution of predicted percent change in habitat suitability (year 2015 to 2050) under SSP2-RCP4.5 and SSP5-
RCP8.5 scenarios, and by effects of climate change, land use change, combined climate and land use change, and climate and land use 
changes within proximity of observed occurrences. The scenario based on the shared socioeconomic pathway SSP2 and the representative 
concentration pathway RCP4.5 represents moderate levels of change, while the SSP5 RCP8.5 represents extreme levels of change. CC = 
climate change; LUC = land use change 
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land use change reduced the mean species’ habitat suitability by 4% 
under SSP2-RCP4.5 (median = −9%, min. = −34%, max. = 129%) 
and 5% under SSP5-RCP8.5 (median = −11%, min. = −36%, max. = 
145%). When considering changes in habitat suitability within the 
proximity of observed occurrences, the combined effects of climate 
and land use reduced the estimated species’ habitat suitability by 6% 
under SSP2-RCP4.5 (median = −10%) and 10% under SSP5-RCP8.5 
(median = −14%) (Figure 2).

A striking aspect of the predicted impacts is the right-skewed 
distribution of changes in habitat suitability. Few species gained 
large amounts of habitat suitability—due to projected increases in 
climate suitability—while the majority of the species lost substantial 
amounts of habitat suitability (Figure  3). Future habitat suitability 
was at least 10% smaller for 48% of the species under SSP2-RCP4.5 
and for 58% of the species under SSP5-RCP8.5. In contrast, future 
habitat suitability was at least 10% larger for only 14% of the species 
under SSP2-RCP4.5 and 16% of the species under SSP5-RCP8.5.

Changes in habitat suitability were strongly associated with ob-
served area of occupancy. Species with smaller area of occupancy 
lost larger percentages and larger absolute amounts of suitable hab-
itat (Figure 4, Supporting Information Figure S4). Among the species 
with the 25% smallest observed area of occupancy, 59%–72% were 
predicted to lose at least 10% of habitat suitability, while only 11%–
12% were predicted to gain 10% or more of habitat suitability (vari-
ation associated with scenarios SSP2-4.5 and SSP5-8.5; Figure 5). In 
contrast, among the species with the 25% largest area of occupancy, 

31%–38% were predicted to lose at least 10% of habitat suitability, 
while 17%–23% were predicted to gain 10% or more of habitat suit-
ability (Figure 5).

The strong relationship between species’ area of occupancy 
and percent change in habitat suitability was driven mainly by 
land use change (β = 0.46–0.44, R2 = .21–.20, t-value = 24–23, p-
value <<  .0001, variation associated with scenarios SSP2-RCP4.5 
and SSP5-RCP8.5), and negligibly by climate change (β  =  0.028–
0.044, R2  <  .01, t-value = 1–2, p-value = n.s.–.04; Figure  4). The 
selective impact of land use change reflects both a site-level effect 
(vide the α coefficient in the land use model), and an independent 
effect observed on the macroscale (i.e. without the α coefficient: 
β = 0.04–0.08, R2 = .01–.02, t-value = 1.9–3.8, p-value = .05–.0001). 
Random forests models suggested a positive relationship between 
species’ area of occupancy and percent change in habitat suitability 
(β = 0.09–0.10, R2 = .01, t-value = 4–5, p-value < .0001), though with 
effect size much smaller, more variable and less predictable than the 
effect of land use change (see above). In contrast, the boosted re-
gression trees suggested there is no relationship between area of 
occupancy and percent change in habitat suitability (β = −0.007–
0.014, R2 << .01, t-value = 0–1, p-value = n.s.), causing the ensem-
ble models to show only a marginally significant weak range-size 
sensitivity in the independent effects of climate change. However, 
the combined impacts of climate and land use changes when exclud-
ing areas distant from observed occurrences were always strongly 
and positively dependent on species’ area of occupancy (ensemble: 

F I G U R E  4   Relationship between observed area of occupancy and percent change in species’ habitat suitability discriminated by the 
effects of climate change, land use change, combined climate and land use change, and climate and land use changes within proximity 
of observed occurrences under scenario SSP5-RCP8.5. CC = climate change; LUC = land use change; RCP representative concentration 
pathway; SSP = shared socioeconomic pathway 
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β = 0.188–0.289, R2 = .04–.08, t-value = 9–14, p-value <<  .0001), 
supporting our expectation that the impacts of climate and land use 
changes are more detrimental to small-ranged species and more 
beneficial to widespread species (Figure 4, Supporting Information 
Figure S4).

4  | DISCUSSION

4.1 | Impacts of land use change versus climate 
change

Our results show that land use change will likely be responsible for 
larger total losses of the habitat of Atlantic Forest plants than climate 
change over the next few decades. This finding agrees with previous 
studies suggesting that land use change is more important than cli-
mate change as a driver of biodiversity loss in tropical forest regions 
(de Chazal & Rounsevell, 2009;  IPBES, 2019; Jetz et al., 2007; Sala 
et al., 2005; Schipper et al., 2020; WWF, 2018), and in the Atlantic 
Forest region (Silva et al., 2019).

Climate change (i.e. assuming all other drivers of change are 
held constant) posed, on average, a lower threat than expected to 
the habitat suitability for Atlantic Forest plants. For instance, our 
predicted impacts of climate change were not as negative as those 
for Cerrado trees (species were predicted to lose 35%–60% of their 
area of distribution; Siqueira & Peterson, 2003; Velazco et al., 2019), 
Amazon trees (50% average loss in species area of occupancy; 
Gomes et al., 2019; Miles et al., 2004), European plants (average of 
30% loss in suitable habitat; Thuiller et al., 2005), or plants across 
the globe (8%–67% of the species predicted to lose > 50% of their 

‘climatic range’; Warren et al., 2018). Much of the variation among 
these estimates is likely explained by differences in methods, in-
cluding modelling assumptions, techniques and predictors, global 
climate models and future scenarios used. However, the marked 
contrasts with our results might indicate that Atlantic Forest plants 
may be under relatively lower threat from climate change compared 
to species in other habitats (Silva et al., 2019). The proximity of the 
Atlantic Forest to the Atlantic Ocean buffers the effects of climate 
change, making temperature and humidity relatively stable (Torres 
& Marengo, 2014).

4.2 | Effect of species’ geographic range size

Our results support the hypothesis that range-restricted species 
are more negatively affected by the combined effects of climate 
and land use change, and by the independent effects of land use 
change (Newbold et al., 2018; Silva et al., 2019; Staude et al., 2020). 
However, the evidence for the existence of a range size pattern in 
the independent effects of climate change was inconsistent, fail-
ing to support our expectation (Schwartz et  al.,  2006; Thuiller 
et al., 2005). Species with the smallest range sizes were most sensi-
tive to the combined changes in climate and land use, particularly 
when disregarding changes in habitat suitability deemed too far 
away from observed occurrences. This pattern may be related to 
two key factors. First, small areas are more vulnerable than large 
areas to being affected in their entirety by changes in the environ-
ment (Gaston & Fuller, 2009; Staude et al., 2020). Second, species 
confined to a small area are less able to take advantage of increases 
in habitat suitability that are sparsely spread over a large area. In 

F I G U R E  5   Proportion of species with habitat suitability predicted to increase at least 10%, remain similar (between 10% decrease and 
10% increase) or decrease at least 10% under two scenarios of climate and land use changes. Species were grouped by observed area of 
occupancy into small (smallest 25%), medium (intermediate 50%) and large (largest 25%). The scenario based on the shared socioeconomic 
pathway SSP2 and the representative concentration pathway RCP4.5 represents moderate levels of change, while the SSP5 RCP8.5 
represents extreme levels of change. This figure is based on the ensemble of modelling techniques and averaged across climate models. For 
variation across climate models and modelling techniques, see Supporting Information Figure S5 
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contrast, widespread species were most resistant and often ben-
efited from projected changes in climate. Given the relatively large 
niche breadth of widespread species (Slatyer et al., 2013), it is likely 
that future combinations of environmental conditions will be more 
inclusive of their environmental tolerances, as compared to narrowly 
distributed species.

4.3 | Other considerations

Our results do not indicate gains or losses in geographic range size. 
They attempt to show changes in habitat suitability, which are quite 
different. We expect that changes in habitat suitability indicate some 
of the pressures (positive or negative) that climate and land use may 
exert on species. Whether species’ range will change in response to 
these pressures is beyond the scope of this study (but critical to con-
servation). Species may withstand environmental changes and per-
sist in their current area of occupancy despite apparent decreasing 
suitability (Spicer & Gaston, 1999), and species may not expand their 
range into areas with increasing suitability due to dispersal limitation 
(Corlett & Westcott, 2013).

The time-lag between reduction in habitat suitability and loss of 
area of occupancy may be large enough to hinder our perception of 
impacts, particularly for long-lived trees. This time-lag is somewhat 
analogous to the relaxation time associated with extinction debt 
(Figueiredo et al., 2019; Halley et al., 2016). Given the longevity and 
generation length of the species, the time-lag may range from a few 
to hundreds of years. The time-lag should be shorter in cases where 
the species’ range is clearly limited by climate, as observed in some 
montane species (Morueta-Holme et al., 2015).

Though our results suggest that Atlantic Forest plants may lose 
lower proportions of their habitat from climate change compared to 
estimates from elsewhere, this should not be taken as evidence that 
climate change is not a major threat in the region. On the contrary, 
centuries of exploitation have already caused the loss of the over-
whelming majority of the original habitat (Galindo-Leal & Câmara, 
2003; Ribeiro et al., 2009), endangered a large fraction of the plant 
species (Martinelli & Moraes,  2013), and likely built up a large ex-
tinction debt (Joly et al., 2014; Nic Lughadha et al., 2020). Additional 
losses of habitat suitability for species that are already vulnerable 
may substantially increase their extinction risk (Moat et al., 2019), and 
climate change will affect even the species that have been protected 
from land use changes, such as those in montane regions, rocky out-
crops, hilltops and steep slopes, and legally protected areas.

In addition, the large variation in the projected impacts of cli-
mate change has an important implication for those species with the 
largest deviations from predicted averages. In particular, the species 
losing the largest proportions of their habitat suitability may become 
subject to threat of extinction. It is also important to highlight that 
our sample does not include species with fewer than 15 unique re-
cords, thus it excludes the majority of the Atlantic Forest species and 
the species with smallest range sizes, which are the ones most likely 
be at risk of extinction (Supporting Information Figure S1).

Losses of habitat suitability will be much larger in the high 
emissions and most intensive land use scenario (SSP5-RCP8.5) 
than the SSP2-RCP4.5 scenario, particularly due to the impacts of 
land use change. The new CMIP6 models forecast more extreme 
changes in climate, and therefore greater losses in habitat suit-
ability (see Supporting Information Figures S4b and S5), which is 
particularly concerning because previous estimates were based 
on climate models that typically project smaller changes in climate 
(Hausfather, 2019). Avoiding the SSP5-RCP8.5 scenario should thus 
be largely beneficial to the conservation of plant species in the re-
gion. For a more thorough explanation of caveats, including those 
inherent to modelling habitat suitability, please refer to Supporting 
Information Appendix S2.

4.4 | Conclusion

Land use change rather than climate change will likely cause more 
losses to the habitat of Atlantic Forest plants during the next 
several decades. Although the importance of climate change as a 
driver of biodiversity loss is increasing through time (IPBES, 2019; 
Schipper et  al.,  2020), decisions and actions affecting land use 
change in the coming decades rather than climate change (e.g. 
protected areas, forest management, land use planning, and 
forest restoration) will likely continue to be more critical to the 
short-term conservation of Atlantic Forest species. Whether a 
species loses or gains suitable habitat depends substantially on 
current range size and scenarios for climate and land use changes. 
The evidence indicates that small-ranged species are particularly 
vulnerable to loss of habitat, while widespread species are more 
resistant and may often benefit from climate change. Overall, 
we can expect that the combined effects of climate and land 
use change will impoverish the Atlantic Forest region. As habi-
tat suitability decreases for most but increases for a few spe-
cies, the similarity among plant assemblages is bound to increase 
through time, accelerating the ongoing homogenization of plant 
communities in Brazil’s Atlantic Forest region (Lôbo et al., 2011; 
Tabarelli et al., 2012; Zwiener et al., 2018) and globally (Newbold 
et al., 2018; Staude et al., 2020).
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