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Noise-robust text-dependent speaker identification
using cochlear models

Md. Atiqul Islam,a) Ying Xu, Travis Monk, Saeed Afshar, and Andr�e van Schaik
International Centre for Neuromorphic Systems in the MARCS Institute for Brain, Behaviour, and Development,
Western Sydney University, Penrith, New South Wales, 2751, Australia

ABSTRACT:
One challenging issue in speaker identification (SID) is to achieve noise-robust performance. Humans can accurately

identify speakers, even in noisy environments. We can leverage our knowledge of the function and anatomy of the

human auditory pathway to design SID systems that achieve better noise-robust performance than conventional

approaches. We propose a text-dependent SID system based on a real-time cochlear model called cascade of asym-

metric resonators with fast-acting compression (CARFAC). We investigate the SID performance of CARFAC on

signals corrupted by noise of various types and levels. We compare its performance with conventional auditory fea-

ture generators including mel-frequency cepstrum coefficients, frequency domain linear predictions, as well as

another biologically inspired model called the auditory nerve model. We show that CARFAC outperforms other

approaches when signals are corrupted by noise. Our results are consistent across datasets, types and levels of noise,

different speaking speeds, and back-end classifiers. We show that the noise-robust SID performance of CARFAC is

largely due to its nonlinear processing of auditory input signals. Presumably, the human auditory system achieves

noise-robust performance via inherent nonlinearities as well. VC 2022 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/10.0009314

(Received 30 March 2021; revised 16 November 2021; accepted 27 December 2021; published online 28 January 2022)

[Editor: Michael I Mandel] Pages: 500–516

I. INTRODUCTION

Biometric authentication has a wide range of applications

including human-machine interfaces, online banking, shop-

ping, forensic testing, and crime investigation. Nowadays,

iPhone’s Siri, Google Assistant, Samsung’s Bixby, and other

smartphone assistants use audio biometric authentication.

Recently, biometric authentication has been implemented on

several neuromorphic systems such as TrueNorth (Modha,

2014), Loihi-Intel (Davies et al., 2018), and BrainChip’s

Akida (Turchin, 2019). These hardware implementations

should expand applications of biometric authentication in

mobile devices, cars, computers, and beyond.

Speaker identification (SID) is a biometric authentica-

tion system that uses speaker utterances to identify a target

speaker. Each speaker utterance is unique because of vocal

fold size, larynx length, vocal tract physiology, and articula-

tion habits (Ghazanfar and Rendall, 2008). A rigorous SID

system should have the ability to extract characterizing fea-

tures from speech. These features should enable a better

speaker model at the back-end and result in higher SID

accuracy regardless of background noise, variances in

speech, or our choice of back-end classifier.

In general, most SID systems use fast Fourier transform

(FFT)-based front-ends to generate spectral features, such as

mel-frequency cepstral coefficient (MFCC) (Davis and

Mermelstein, 1990), gammatone frequency cepstral coeffi-

cient (GFCC) (Shao et al., 2007), and power normalized

cepstral coefficient (PNCC) (Nayana et al., 2017). These

methods achieve almost 100% SID accuracy when speech is

noiseless. However, the accuracies of these systems fall rap-

idly in the presence of background noise. This accuracy

reduction occurs because the FFT distributes frequency

bands linearly and their spectral distortion under noisy con-

ditions affects the system accuracy (Li and Huang, 2011).

Other front-ends use voice production mechanisms, such as

perceptual linear prediction (PLP) (Makhoul, 1975) and a

2D autoregressive model-based frequency domain linear

prediction (FDLP) (Ganapathy et al., 2012). These systems

use all-pole models to provide close to 100% SID accuracy

given clean speech. However, in the presence of noise, these

front-ends poorly classify speakers as they also use FFT-

based power spectra to extract speech features.

In contrast, the human auditory system is not only capa-

ble of performing a variety of speech processing tasks but is

also highly robust to background noise (Hansen and Hasan,

2015). At the input stage of the human auditory system, the

cochlea decomposes, converts, and amplifies sound waves

nonlinearly into electrical signals that are input to the ner-

vous system. Helmholtz, who is considered as the first to

hypothesize that the ear performs spectral analysis (Von

Helmholtz, 1863), proposed that the function of the basilar

membrane (BM) in the cochlea can be emulated with a

series of resonators with different frequencies covering the

audible range. Rhode (1971, 1978) was first to observe
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extensive cochlear nonlinearities in a squirrel monkey and a

guinea pig. Another study (Allen, 2001) showed that

cochlear nonlinearities are critical in determining the range

of auditory processing of hearing sub-systems. For example,

nonlinear compression is necessary to detect and recognize

high-frequency sounds, two-tone suppression produces a

sharp formant for spoken vowels, and level-dependent non-

linearity handles a wide dynamic range of sound levels in

hearing.

More recently, several cochlear models have been pro-

posed that emulate the physiological and psychoacoustic

characteristics of the human auditory periphery system

(Lyon, 2011b; Saremi and Stenfelt, 2013; Verhulst et al.,
2012; Zilany and Bruce, 2006). In a previous study (Saremi

et al., 2016), seven recent cochlear models were compared

in terms of compatibility with the evaluation of cochlear

excitation patterns, frequency selectivity, nonlinear response

growth, amplitude modulation processing, computational

cost, level-dependent tuning, and input-output functions.

The evaluation was executed for frequencies of 0.5, 1, 2, 4,

and 8 kHz which are used for clinical hearing assessment.

The evaluated results were compared with the available

physical experimental results. The study concluded that the

cascade of asymmetric resonator with fast acting compres-

sion (CARFAC) and auditory nerve (AN) cochlear models

(Zilany and Bruce, 2006) best fit those physical experimen-

tal results among seven cochlear models (Saremi et al.,
2016). The CARFAC closely fit experimental data in 12 out

of 13 experiments. It could have fit all 13 experiments by

changing the value of one parameter (Voffset) in the model

(Saremi and Lyon, 2018). The study also showed that the

computational time of the CARFAC is substantially lower

than the other nonlinear cochlear models for a specific task

(Saremi et al., 2016). Despite the best fit to human auditory

physiological and psychoacoustic data, nobody has applied

the CARFAC or the AN models to a SID task.

We explore the CARFAC model as a front-end in a SID

system and compare its performance to that of the AN

model and other conventional FFT feature generators. The

CARFAC model simulates the cochlea as cascaded asym-

metric resonators with an automatic gain control (AGC)

feedback loop. It models instantaneous and dynamic nonli-

nearities that capture the full range of nonlinear processing

in the human auditory pathway. We hypothesize that these

nonlinearities will yield accurate SID, even when input sig-

nals are corrupted with noise.

We pair our front-ends with simple and transparent

back-end classifiers such as linear support vector machines

(SVM) (Chang and Lin, 2011; Cristianini and Shawe-

Taylor, 2000) and Gaussian mixture models (GMM) with

the universal background model (UBM). Recent works dem-

onstrate remarkable performances of deep neural networks

on SID tasks (Nassif et al., 2021; Snyder et al., 2018;

Sztah�o et al., 2019). Our purpose is not to maximize SID

accuracies with state of the art back-ends, but rather to

investigate whether and how nonlinearities in biologically

inspired front-ends might help back-ends learn better

speaker models given noisy speech. We also want to investi-

gate how various elements of the auditory pathway model

contribute to this task, and better understand how the human

auditory system achieves noise robustness. While deep neu-

ral networks represent state of the art back-ends across a

range of tasks, the reason for their superior performance is

often obscure, and the system is usually treated as a black

box. Their large number of hidden activation units obfuscate

the effects of cochlear nonlinearities on SID accuracy,

which is what we want to investigate. Moreover, the training

of a deep neural network often requires significant training

data which is not always available, e.g., for the datasets we

consider here. However, for completeness, we will also use

the extreme learning machine (ELM) back-end (Huang

et al., 2006) to indicate the possible SID performance of

CARFAC when paired a neural network. The ELM requires

less data for training without sacrificing much performance

capability (Al-Kaltakchi et al., 2021).

We compare the SID performance of the CARFAC

model with three other SID pre-processing front-ends. The

first is MFCC, which is a standard FFT-based front-end

often used as a baseline for comparison (Alam and Zilany,

2019; Li and Huang, 2011; Zhang et al., 2018). The second

is FDLP, which emphasizes acoustic cues related to the

human voice production system, and generally produces a

higher SID accuracy than MFCC front-ends (Ganapathy

et al., 2012). The third is the AN model, which has been

shown to outperform MFCCs, GFCCs, and FDLP in SID

tasks under noisy conditions (Ganapathy et al., 2012). We

compare the SID performances of these four front-ends

under a wide range of conditions. We corrupt input signals

with white, pink, and a variety of non-stationary types of

noise. We also vary the signal-to-noise ratios (SNRs) of

those noise types. We use two text-dependent datasets in

two different languages as input. We then explore how dif-

ferent nonlinearities in the CARFAC model impact its SID

performance. Our results show that the CARFAC model

consistently outperforms the other three feature generation

front-ends, particularly when input signals are noisy. This

outperformance is consistent across datasets, types of back-

ground noise, and back-end classifiers. More broadly, our

results show that the inherent nonlinear processing capabili-

ties of biological auditory systems are at least partially

responsible for their robust SID performance in noisy envi-

ronments. The necessity of cochlear nonlinearities changes

with the noise types, and becomes more essential under non-

stationary noise conditions.

II. METHOD AND MATERIALS

We briefly describe our SID front-ends, back-end clas-

sifiers, and datasets.

A. Front-end feature extraction

In this section, we describe the CARFAC, AN, MFCC,

FDLP, and GFCC extraction process from an input audio

signal.
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1. The CARFAC front-end

Figure 1 presents a block diagram of the CARFAC

front-end. In the training stage (top of Fig. 1), we present

clean speech to the CARFAC model. We calculate the

energy (energy calculation block, Fig. 1) of its output, i.e.,

the BM and the inner hair cell (IHCs) responses. We then

train the back-end classifiers, either a GMM-UBM or an

SVM, with the CARFAC output energy. The classifier then

learns a map between a speaker’s BM features and their

identity.

The testing stage (bottom of Fig. 1) is similar to the

training stage. The key difference is that the input signal is

corrupted by some types of noise at some SNR values. The

noisy signal is added to the original input utterance, and we

calculate the CARFAC output energy as we did in the train-

ing stage. We present those front-end features to the trained

back-end classifier to guess the speaker’s identity. We next

discuss some of the blocks in Fig. 1 in more detail.

a. The CARFAC block. The CARFAC model is

described in Lyon (2017). It uses a cascade of second-order

asymmetric resonators (the CAR section) to model the BM

response to a transduced traveling wave. The transfer func-

tion of the CAR is

H ¼ Y

X
¼ g

z2 � 2a0 � hc0ð Þrzþ r2

z2 � 2a0rzþ r2
; (1)

where g ¼ 1� 2a0r þ r2=1� 2a0 � hc0ð Þr þ r2
� �

, a0

¼ cos 2pfc=fsð Þ; c0¼ sin 2pfc=fsð Þ; and h<2ð1þaoÞ=co. Here,

fs and fc are the sampling frequency and the cut-off fre-

quency. The parameter r is determined by the FAC section.

Without the FAC section, the value of r is set to 1. The val-

ues of h control the pole-zero distance. Consequently, h also

controls the gain and bandwidth of the CAR filter. The

CARFAC also models the IHC function that represents the

sound as transduced on the auditory nerve. We will soon

compare the effect of training the back-end on either BM or

IHC output on SID performance.

The FAC section in the CARFAC includes the outer

hair cells and automatic gain control with smoothing filters

(Lyon, 2017). The resonator pole and zero locations control

the damping factor, which in turn changes the gain and

bandwidth of the BM filter. It emulates the level-dependent

compressive nonlinearity in the model (Lyon, 2017). The

impact of the h values on the BM response is shown in Fig.

SuppPub1A (Islam, 2022). In this study, we use h¼0.35*C0,

because empirical results suggest that value achieves high

SID accuracy. In our simulations, we set the values of fs to

16 kHz and fc is determined by the Greenwood function

(Greenwood, 1961) to map 25 channels from 125 Hz to

3 kHz. We set the upper-frequency limit at 3 kHz because

most SID cues, such as the speaker’s fundamental fre-

quency, pitch, and formants (f1 and f2), are below this fre-

quency (Stemple et al., 2018). The CARFAC damping

factor is a parameter that controls the compression of BM

responses. In human hearing research, typical values of the

damping factor range from 0.1 to 0.4 (Lyon, 2017). We set

the damping factor to 0.15 to compute the minimum pole-

zero radius that achieves maximum damping, which in turn

facilitates high SID accuracy as shown in Fig. SuppPub1B

(Islam, 2022).

b. The CARFAC energy calculation block. The energy

of the CARFAC output is the feature that we use to identify

speakers. The CARFAC response was discretized over 25

separate channels. We calculated the energy of each channel

by constructing time windows that overlapped each other.

We then calculated the BM energy E in channel i using

E ið Þ ¼
XL

j¼1

C i; 1þ j : jþ Lð Þ2; (2)

where j is the starting index for each time window, L is the

window duration, and CðiÞ contains the output samples of

channel i. Empirically, we found that a 50 ms window dura-

tion with 50% overlap provided high SID accuracy for both

clean and noisy input speech. We also observed that the two

lowest frequency channels contained the most energy, and

eliminating them revealed richer speaker-defining features

in the other channels. So the size of the output BM energy

was 23�F, where F is the number of frames in the input

signal.

Figure 2(A) shows examples of the CARFAC energy,

i.e., the BM energy (right column), as well as the input sig-

nals that generated them (left column). The left column

shows waveforms of a speech utterance corrupted by differ-

ent types of noise as indicated. The right column shows the

BM energies of those waveforms, which are the inputs for

our back-end classifier. The x axis is time, and the y axis is

the channel number. Comparing the top three rows of the

right column of FIG. 2(A), we see that CARFAC filters out

the superimposed noise well. The outputs for speech cor-

rupted by white noise and pink noise strongly resemble

those of noiseless speech (top row). Figure 2(B) shows how

the output BM energy can be used as features to identify

speakers. The left three panels of Fig. 2(B) show waveforms

for the same utterance spoken by three different people.
FIG. 1. (Color online) The block diagram of the CARFAC-based speaker

identification system.
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The right three panels of Fig. 2(B) show the output BM

energies for those three waveforms. The three examples are

clearly different, illustrating that the CARFAC generates

speaker-distinguishing features from their input signals.

2. The AN front-end

The details of the AN model and related equations can

be found in Zilany and Bruce (2006). Updated versions of

this model are presented in Zilany et al. (2014) and Bruce

et al. (2018). Both the neurogram (Alam and Zilany, 2019;

Islam et al., 2016) and the synapse response (Zilany, 2018)

from the AN model have been used in SID systems. The

extraction of these responses from an input signal is very

time-consuming in software simulations. They require a

very high sampling rate for the AN model to emulate the

cochlear response faithfully. The neurogram-based SID

result is comparable to those obtained with MFCCs (Islam

et al., 2016).

To address these limitations, we only use the BM

response of the AN model in this work. This feature extrac-

tion is illustrated in Fig. 3. It uses only the signal path filter

(chirping C1 block, Fig. 3) along with feedback nonlinearity

from the AN model (lower blocks, Fig. 3). Our version of

the AN model does not require the linear filter (C2) or the

IHC sections of its antecedent [see Fig. 1 in Ref. Zilany and

Bruce (2006)]. These simplifications halve the computation

time compared to computing neurograms (Islam et al.,
2016) while improving its resultant SID accuracies.

The control path (control path filter block, Fig. 3) con-

trols the gain and bandwidth of the C1 filter and is responsi-

ble for the cochlea’s level-dependent nonlinearity. The C1

FIG. 2. (Color online) The CARFAC features in response to given input signals are shown in (A). Responses are shown for clean and noisy signals (0 dB sig-

nal-to-noise ratio) to show the noise-robustness of CARFAC. (B) Utterances from three speakers and their BM responses are shown to illustrate the speaker

distinguishing capability of CARFAC.

FIG. 3. (Color online) Block diagram for BM feature extraction from the AN model. The signal path filter and the control path from the AN model are

shown in the block diagram. This figure has been modified from Zilany and Bruce (2006).
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filter is a 10th order Chirp filter and the control path filter is

a third-order Gammatone filter. The control path filter has a

lower time constant than the C1 filter, which results in a

two-tone suppression nonlinearity in the signal path. The

Boltzman nonlinear function (NL block, Fig. 3) followed by

a low pass filter (LP block, Fig. 3) with an 800 Hz cut-off

frequency compresses a wide range of sound levels in the

C1 filter. The OHC nonlinear function (OHC block, Fig. 3)

converts the low-pass filter output to a time-varying time-

constant for the C1 filter. In this way, the control path con-

trols the gain and bandwidth of the C1 filter based on the

input signal and emulates two-tone suppression and com-

pression nonlinearity in the model.

Like previous SID applications of the AN model (Islam

et al., 2016; Zilany, 2018), we used 25 channels with a fre-

quency ranging from 125 Hz to 3 kHz in a logarithmic scale

to simulate the BM response. To facilitate a fair comparison

with the CARFAC model, we compute the BM energy via

Eq. (1) with the same window length and overlap as used in

the CARFAC model.

3. The FDLP front-end

Figure 4 presents a block diagram of the FDLP feature

extraction process. A full description of the FDLP and the

equations it implements can be found in Ganapathy et al.
(2012). FDLP has been used in SID (Alam and Zilany,

2019; Islam et al., 2016) and gender detection (Islam, 2016)

applications. The FDLP estimates high-energy peaks of a

spectrogram. Initially, high frequencies in the input signal

are boosted in a pre-emphasis stage (top row, Fig. 4). A

DCT converts the input into the frequency domain. The full-

band DCT signal is split into successive sub-bands using a

windowing technique to create a power spectrum. Next, an

IFFT is applied to the power spectrum to generate autocorre-

lation coefficients for a recursion process. This recursion

process uses the Levinson-Durbin algorithm (Franke, 1985)

to produce the auto-regressive (AR) model coefficients

according to the model order for a prescribed autocorrela-

tion sequence. Here, the model order is 40 following the

study of Ganapathy et al. (2012) to fit the temporal envelope

to pitch pulses.

The generated AR model coefficients are transformed

into a power spectrum by applying a FFT, and then the

resultant power spectrum matrix is inverted. This inverted

power spectrum for a full-band signal is called an FDLP

envelope (bottom row, Fig. 4). Each band of the envelope is

buffered using a 50 ms frame size with 50% overlap

between frames. A Hamming window then estimates the

short-term energy in each band. A log operation generates a

log-energy spectrum, and another DCT is applied to convert

it into 13 cepstral coefficients. We calculate the differences

across those coefficients (del, bottom row, Fig. 4), and the

difference of those differences (ddel, bottom row, Fig. 4).

Together with the cepstral coefficients in the extracted fea-

ture vector, our FDLP feature dimensionality is 39�F,

where F is the number of frames in the signal. Empirical

results found that including both del and ddel in the FDLP

feature provides a better SID result. The bottom-left plot in

Figure 4 shows an example of the FDLP feature output. This

FDLP feature is then forwarded to the back-end to evaluate

the FDLP method’s SID accuracy.

4. The MFCC front-end

MFCCs (Davis and Mermelstein, 1990) are often used

as a benchmark in SID applications. We use the same fre-

quency ranges for all algorithms, with 25 channels of trian-

gular filters, and a 50 ms frame with 50% overlap between

frames. We exclude the delta and delta-delta features that

we included in the FDLP front-end because they cause a

reduction of MFCC performance as we have empirically

FIG. 4. (Color online) Block diagram

of the FDLP feature extraction from an

input speech. Abbreviations: discrete

cosine transform (DCT), fast Fourier

transform (FFT), inverse FFT (IFFT),

and frequency domain linear prediction

(FDLP).
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found in this study. We used the RASTAMAT toolbox of

MATLAB (Ellis, 2005) to extract MFCCs from input speech.

All extracted front-end features were normalized such

that each channel mean is zero and each channel standard

deviation is one. This normalization reduces the variation

between clean and noisy speech features and enhances SID

performance. These normalized speech features are input for

the back-end classifier to identify the speaker.

5. The GFCC front-end

Gammatone frequency cepstral coefficients (GFCC)

have been applied to many SID tasks (Shao and Wang,

2008; Zhao et al., 2012; Zhao and Wang, 2013). Our imple-

mentation of the GFCC front-end is similar to Shao and

Wang (2008). We used a Gammatone filter with 25 channels

in a frequency range from 125 Hz to 3 kHz, in the same

manner as the other front-ends. We applied a cube root and

DCT to the resultant spectral features. We then omitted the

lowest frequency channel, which contained the highest

energy and was prone to noise [see also Zhao et al. (2012)].

The output GFCC feature size was then 24� n, where n is

the number of samples per channel. We have utilized this

GFCC for a comparison with cochlear methods applying

cube root and DCT (described later).

B. Back-end speaker models

In our experiment, we used either the GMM-UBM or

the SVM as a back-end classifier. We briefly discuss each in

turn. The GMM-UBM has enjoyed previous success in SID

systems (Islam, 2017; Islam et al., 2016; Reynolds et al.,
2000; Togneri and Pullella, 2011; Zilany, 2018). The gen-

eral GMM, denoted kUBM, is generated in the UBM step. It

is parameterized by the mean vector li, weights Wi, and a

covariance matrix
P

i obtained from all mixture components

M as kUBM¼fWk; lk;
P

kg, where k¼ 1,2,…, M. We used

M¼ 128 mixture components to build the kUBM models. The

expectation-maximization (EM) algorithm (Dempster et al.,
1977) trains kUBM iteratively [33]. On each EM iteration, the

model’s likelihood is increased for each training utterance

sample (xtj t ¼ 1,2,3,…, T) in the full dataset by the follow-

ing formulas:

Wk ¼
1

T

XT

t¼1

p kjxt; kð Þ; (3)

lk ¼

XT

t¼1

p kjxt; kð Þxt

XT

t¼1

p kjxt; kð Þ
; (4)

r2
k ¼

XT

t¼1

p kjxt; kð Þx2
t

XT

t¼1

p kjxt; kð Þ
� l2

k : (5)

Here, T is the total number of samples in the training dataset

pooling from all speakers and r2
k is the variance matrix, i.e.,

the diagonal elements of the covariance matrix for all mix-

ture components. The initial GMM in the UBM step consists

of the training dataset’s mean vector, variance matrix, and

weight vector.

Each individual GMM step starts by calculating the

posterior probability p kjxtð Þ of the training vectors

ðxtjt ¼ 1; 2; 3;…; Tt) for the UBM distribution components.

Here, Tt is the total number of training samples for each

speaker. p kjxtð Þ for each component k in the UBM is

p kjxtð Þ ¼
Wkpk xtð Þ
XM

k¼1

Wkpk xtð Þ
; (6)

where pk xtð Þ is the Gaussian distribution of mixture k. The

probability counts Lk, mean lNew
k and variance rNew2

k for all

training samples from each speaker for the mixture k are

computed using p kjxtð Þ,

Lk ¼
XTt

t¼1

p kjxtð Þ; (7)

lNew
k ¼ 1

Lk

XTt

t¼1

p kjxtð Þxt; (8)

rNew2

k ¼ 1

Lk

XTt

t¼1

p kjxtð Þx2
t : (9)

This step is similar to the expectation step in UBM develop-

ment (Reynolds et al., 2000). Next, the estimated new

parameters for the GMM and the old parameters of the

UBM are used to tune the new GMM parameters for a

speaker,

WG
k ¼

aLk

T
þ 1� að ÞWk

� �
c; (10)

lG
k ¼ alNew

k þ 1� að Þlk; (11)

rG2

k ¼ arNew2

k þ 1� að Þ r2
k þ l2

k

� �
� lG2

k ; (12)

where a is the adaptation coefficients for the weights,

means, and variances, respectively. This coefficient balances

the UBM parameters and new estimates. In Eq. (10), c is a

scaling factor that ensures
PM

k¼1 WG
k ¼ 1. The adaptation

coefficient a ¼ Lk= Lk þ vð Þ, where v is the relevance or

adaptation factor, which we empirically set to v¼ 10.

Finally, the hypothesized GMM speaker model is kGMM

¼ fWG
k ; l

G
k ; r

G2

k g; k ¼ 1; 2;…;M. Then the log-likelihood

for a test sequence of feature vectors X is computed as

^ Xð Þ ¼ log p XjkGMMð Þ; (13)

where X ¼ xtjt2 1; 2; 3;…; T1f g and T1 is the number of

testing samples. Each testing sample has a log-likelihood
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score against each speaker model. The maximum testing

score against a speaker model and index of that model yields

the most likely identity of the target speaker. A confusion

matrix of speakers counts the diagonal indices of the highest

matched speaker against all speaker models. The SID score

is computed using speakers S and testing samples from each

speaker, R,

SID accuracy ¼

Xn

m¼1

Xn

l¼1

Dml

R� S
; (14)

where m and l are the rows and columns indices of the con-

fusion matrix (D), respectively.

The SVM (Cortes and Vapnik, 1995) is a supervised

classifier and widely used for object classification. In the

training stage, a nonlinear SVM kernel maps input training

data into a higher dimensional feature space to make them

linearly separable by hyperplanes. These hyperplanes help

to classify data points depending on their location relative to

the hyperplanes. The data points closest to the hyperplane

are called support vectors (SVs) and control the orientation

and location of hyperplanes. The SVM determines SVs to

maximize the margin between SVs and the hyperplane. In

the testing stage, the SVM returns predicted labels and prob-

abilities for the testing set. We used the predicted labels to

compute SID accuracies. The predicted label is matched

with the given label for the testing sample and the maximum

matching label indicates the identity of the target speaker.

We used the C-support vector classifier (C-SVC), pro-

posed in Cortes and Vapnik (1995) and available in the

LIBSVM library (Chang and Lin, 2011) to classify speakers.

We used the radial basis function (RBF) kernel. To train the

SVM we must tune two parameters C and c. The parameter

c is inversely proportional to the span of the kernel and C is

inversely proportional to the margin between SVs. We used

a cross-validation algorithm (Cortes and Vapnik, 1995) to

find the values of C and c that give the best result for each

of our SID systems. Empirically, we found that C¼ 2 and

c¼ 0.09 yield a better SID accuracy for the cochlear front-

ends, and C¼ 2 and c¼ 0.05 for the MFCC and FDLP

front-ends.

C. Datasets

We use two datasets as input to our SID systems. The

first is the University of Malaya (UM) speech dataset (Islam

et al., 2015), which contains 39 native Malaysian speakers.

The second is the Bangla dataset (Islam and Sakib, 2019),

which contains 40 Bangladeshi speakers. Both datasets are

publicly available (Islam et al., 2022).

In both datasets, each speaker produces 10 samples of a

short phrase. The utterances from both datasets have a wide

dynamic range from 20 to 90 dB. The spoken phrase in the

Bangla dataset is “Ami vat khai (I eat rice)” and it is

“University Malaya” in the UM dataset. Their average dura-

tions are 3 and 2.5 s, respectively. Phrases from the UM

dataset were recorded in a soundproof booth in Kuala

Lumpur, Malaysia. Phrases from the Bangla dataset were

recorded with a mobile phone in a quiet environment in

Noakhali, Bangladesh.

Both datasets are text-dependent and comprise brief

samples. Each of these characteristics is desirable for our

experiments because they simplify the SID task, so we can

focus on the feature generation process (i.e., the front-end).

Text-independent SID tasks are generally more challenging

than text-dependent ones, requiring more data and longer

utterances to train the back-end classifier (Poddar et al.,
2015). Having more training data and longer utterances

improves the noise-robustness of the classifier. So, the

noise-robustness of the front-end feature extractor and its

impact on SID accuracy is obscured if we train our system

on large datasets. Our smaller datasets with shorter utteran-

ces reduce the ability of the classifier to compensate for sig-

nal noise. While our SID task is text-dependent with small

datasets, it still has applications in areas such as voice acti-

vation of smart devices, or identifying a suspect from a

voice lineup.

The Bangla dataset has slow, normal, and fast modes of

utterances from each speaker. This speaking speed variation

allows us to investigate their effects on SID performance.

Each mode of utterance contains 10 samples from 40 speak-

ers. Our results typically refer to the normal mode of utter-

ance. In one subsection, we will investigate how SID

performance depends on speaking speed.

Our SID systems were trained on clean speech, i.e.,

speech uncorrupted by noise. We randomly chose seven of

the ten samples from each speaker to train the back-ends.

We used the remaining three samples for testing. We added

various types of background noise at various signal-to-noise

ratios (SNRs) to that testing data. Our noise types were

white (Gaussian), pink (1/f spectrum), or traffic (nonstation-

ary) noise. Our SNRs ranged from –5 to 15 dB in increments

of 5 dB. We also evaluated performances on clean testing

data.

III. RESULTS

We apply cross-validation in all experiments with 6

independent trials. In the following figures, the solid bars

display the average SID accuracy over those trials. The error

bars display the maximum and minimum values of our 6

trials.

A. Comparing SID performances on noisy speech

Figure 5 presents the performances of the CARFAC

model when we use BM energy (green bars) or IHC output

(blue bars) to train the back-end. We use the same channel

number and frequency information to fairly compare their

performances. The results were generated using the GMM-

UBM back-end. Figure 5 shows that the GMM-UBM learns

a more accurate speaker model when trained on BM energy

than IHC output. The IHC output requires similar computa-

tion time as BM energy for the CARFAC front-end, but
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significantly more time for the AN model. Also, FFT-based

approaches simulate the BM response from an audio signal.

Therefore, we use CARFAC’s BM energy to train the back-

ends for all subsequent experiments.

Figure 6 compares the SID performances of the

CARFAC, AN, FDLP, and MFCC front-ends (Fig. 6 legend)

on the UM dataset. We used the GMM-UBM (top row) and

SVM (bottom row) as back-end classifiers. The columns of

Fig. 6 specify the type of background noise added to the

testing dataset, and the x axes of the panels indicate the

SNR. Figure 6 shows that all four front-ends have similar

performances when the testing dataset had no added back-

ground noise (clean, far-right bars in Fig. 6). But their per-

formances on noisy data vary. For example, the MFCC

front-end noticeably drops in SID accuracy, even for rela-

tively high SNRs. That drop is consistent across noise types

FIG. 5. (Color online) Results are shown for the IHC, and BM responses from the CARFAC model for the clean and noisy conditions using the GMM-UBM

as a back-end model.

FIG. 6. (Color online) The SID accuracies for the CARFAC and alternative methods using the UM dataset. Results are shown for white noise (left column),

pink noise (middle column), and traffic noise (right column) with a range of SNRs (x axes) using a GMM-UBM (top row) or SVM (bottom row) classifier.
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and our choice of back-end classifier. The FDLP front-end

maintains a high SID accuracy if the SNR is high. For pink

and traffic noise types, the FDLP front-end has the highest

SID accuracy when the SNR is 15 dB, as previously reported

(Islam et al., 2016). But their performances dramatically

decrease as the SNR decreases. In particular, the SID accu-

racy at –5 dB SNR is on average below 36% for all noise

types and both back-end classifiers, and often much lower

than that.

The AN front-end yields higher SID accuracies than the

MFCC and FDLP front-ends at low SNRs (except for traffic

noise), but only if we use the SVM as a classifier. The

CARFAC front-end also yields high SID accuracies at low

SNRs, but its performance is less sensitive to our choice of

classifier. However, with the GMM-UBM back-end,

CARFAC outperforms all others when data is noisy (i.e.,

low SNR), for all noise types. All SID front-ends suffer low

performances with traffic noise at –5 dB SNR. Traffic noise

is a fluctuating noise and affects the whole speech spectrum.

There is a significant difference between clean and noisy

speech features, particularly at very low SNRs. It is difficult

to identify speakers accurately because training and testing

data strongly differ. Later we will investigate how nonli-

nearities in cochlear front-ends can improve SID accuracy

on noisy, nonstationary speech.

Figure 7 presents analogous results to Fig. 6, but on the

Bangla dataset. We again observe the same principal results

from Fig. 6. The MFCC front-end (blue bars, Fig. 7) classi-

fies speakers accurately only for clean testing data. The

FDLP front-end (black bars) classifies accurately for pink

and traffic noise at high SNRs. The AN front-end (gray

bars) outperforms MFCCs at lower SNRs irrespective of

back-end classifiers. When the SVM is used as the back-end

classifier, the CARFAC front-end (green bars) significantly

outperforms all others at low SNRs for all noise types. All

front-ends struggle to correctly classify speakers with traffic

noise at low SNRs (leftmost bars of right panel). However,

the CARFAC front-end can achieve more than 50% correct

SID accuracy under traffic noise with the SVM classifier.

Collectively, Figs. 6 and 7 show that CARFAC classi-

fies noisy speech better than alternative front-ends, particu-

larly when the noise is stationary. Figures 6 and 7 also show

that CARFAC is robust to noise types up to 5 dB SNR,

which is the threshold for a good conservational SNR level

(Rindel, 2019). These results of CARFAC are invariant to

our choice of dataset or back-end classifier. Moreover,

CARFAC’s classification accuracy generally varied less

over six independent trials. We observe this trend for both

datasets and both classifiers. In contrast, the performance of

alternative methods varied depending on the input dataset.

B. Noisy speech at different speaking speeds

SID systems usually use input speech at normal conver-

sational speeds. We investigated the impact of speaking

speed on the SID performance of our four front-ends using

the SVM as a back-end. We used the Bangla dataset for this

investigation because it contains samples spoken at three

different speeds.Figure 8 displays spectrograms of input

speech from the Bangla dataset for a sample spoken quickly

(left panel), normally (middle panel), and slowly (right

panel). Figure 8 illustrates three reasons why our front-ends

might classify speakers for slow and normal speech more

accurately than for fast speech.

First, the spectrogram of fast speech contains less spec-

tral energy for the last word of a phrase (at time¼ 1 s, left

panel, Fig. 8) than the spectrograms of normal and slow

speeds (at times 1.5 and 2 s, middle and right panels, Fig. 8).

FIG. 7. (Color online) The SID accuracies for the CARFAC-based and alternative methods using the Bangla dataset. The layout is analogous to Fig. 6.
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The last word of fast speech often provides less information

about the identity of a speaker than other speaking speeds.

Second, the final word in an utterance is sometimes slurred,

so it provides less spectral information about the speaker’s

identity. For example, the right panel of Fig. 8 shows clear

boundaries marking the final phoneme in the sample (at

time¼ 2 s), whereas the left panel of Fig. 8 shows that the

final boundary is smeared. Third, the second and third for-

mants are less distinguishable in the fast utterance than they

are in the normal and slow utterance (red arrows, Fig. 8).

Figure 9 presents the performances of our four SID

front-ends on slow (left panel), normal (middle panel), or

fast (right panel) utterance speeds. We used the SVM as the

back-end. Figure 9 shows that speaking speed affects the

SID performance for all front-ends, but some front-ends are

affected more than others. The SID accuracy of MFCCs

(blue bars) barely increases or decreases as speaking speed

increases or decreases for all noise levels. Curiously, the

FDLP (black bars) classifies less accurately for slow speech

than fast speech. Cochlea-inspired front-ends (green and

gray bars) yield higher classification accuracies for normal

and slow utterance speeds than they do for fast speed. This

result is particularly true at –5 dB SNR. The AN model has

also a similar pattern of results to CARFAC for different

speeds of utterances. However, the CARFAC front-end sig-

nificantly outperforms the other three given very noisy input

data (i.e.,–5 dB SNR), regardless of speaking speed.

C. Varying the number of channels

Figure 10 compares the SID accuracies of our front-

ends while varying their number of channels. Specifically,

we set the channels of each front-end to 15, 25, 35, and 45

channels (left to right panels). All front-ends used the fre-

quency information ranging from 125 Hz to 3 kHz. We used

the SVM as a back-end classifier for each front-end, and we

used the Bangla dataset as input in all experiments. The

noise in our testing dataset was pink noise with SNR as indi-

cated. Figure 10 shows that, as we increase the number of

channels above 15, the SID performance of the CARFAC

(green bars) becomes better. In contrast, the AN model

(gray bars) provides poor SID accuracy while the number of

channels is varied from 25, particularly at –5 dB SNR (left

gray bars, first, third, fourth panels). These results suggest

that the CARFAC front-end needs a higher number of chan-

nels to produce a better result. In contrast, the variation of

channel numbers affects the performance of the AN model

significantly, particularly at –5 dB SNR. For example, the

CARFAC produces a better SID performance than the AN

model using only 25 channels. This variation of channel

numbers causes a change of spectral information. Thus it

seems the bio-inspired front-ends are more sensitive to

changes in channel numbers. In contrast to cochlear meth-

ods, the MFCC (blue bars) and FDLP (black bars) front-

ends have less variation of performance with the change of

the number of channels, regardless of SNRs. Their similar

FIG. 9. (Color online) The effect of speaking speed on SID accuracy for our front-ends. Each method results are simulated for pink noise (SNRs: –5 dB,

5 dB, 15 dB), and clean condition.

FIG. 8. (Color online) Spectrogram of three speaking speeds of the same utterance to illustrate the effect of speaking speed on energy distribution and for-

mant patterns.
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responses to variations in channel numbers indicates that the

performance of the MFCC and FDLP is robust to channel

numbers.

D. CARFAC nonlinearities and their effect
on performance

The CARFAC front-end implements nonlinear compu-

tations in two ways. First, it performs level-dependent

multi-rate nonlinearities through the AGC operation that

models cochlear functions (Lyon, 2017). Second, an instan-

taneous nonlinear function (NLF) interacts with the input

waveforms and produces a combination tone, like the cubic

distortion tone (CDT) in the cochlea.

To investigate the effect of these nonlinearities on the

SID task, we compared the performances of four variants of

the CARFAC model. The first is the linear CAR section of

CARFAC, i.e., the front-end does not implement nonlinear

operations. The second and third are the linear CAR section

combined with an AGC and NLF components, respectively.

The fourth is the full CARFAC front-end which includes

both nonlinearities functions (Lyon, 2017).

Figure 11 compares the performances of these four

CARFAC variants on the Bangla dataset with the SVM as a

back-end classifier. We generated a separate SVM speaker

model for each CARFAC variant using their training sam-

ples. Figure 11 shows that the full CARFAC front-end

(green bars) identifies speakers most accurately across all

noise types and SNRs, particularly when compared to the

linear CAR (red bars) under clean and noisy conditions.

This result suggests that the necessity of cochlear nonlinear-

ities is essential to identify a speaker more accurately.

The variants of CARFAC produce similar performances

above 5 dB SNR irrespective of types of noise. The CAR

with AGC (gray bars) produces a similar or better result

than the CAR with NLF (purple bars) at –5 dB SNR, particu-

larly under pink (middle panel) and traffic (right panel)

noise. This result indicates that the compressive nonlinearity

(AGC) might be more useful than the instantaneous NLF to

classify speaker accurately under noisy conditions. This

observation is particularly true given low SNRs with time-

varying noise signals (cf. leftmost gray and purple bars of

the right panel). The CAR with NLF outperforms the linear

CAR at –5 dB SNR, particularly for pink and white noise.

The NLF function produces distortion tones that decrease

the similarity between clean and noisy speech features and

cause a reduction of SID accuracy of the CAR with the NLF

method. However, both of those nonlinearities are less

effective at classifying noisy speech if they operate in isola-

tion as shown in FIG. 11. The full CARFAC front-end adds

a two-tone suppression effect via the AGC, which sup-

presses the instantaneous distortion. Figure 11 suggests that

the two cochlear nonlinearities working in tandem can boost

SID performance, particularly in the presence of noise.

E. Additional nonlinearities applied to cochlear
features

The CARFAC and the AN models are not the only

front-ends to utilize nonlinear computations. The FFT-based

FIG. 11. (Color online) An evaluation of the contribution of each stage from the CARFAC in the SID system performance.

FIG. 10. (Color online) The effect of channel numbers on SID performance given clean and noisy speech. We added pink noise to testing data (at SNRs

–5 dB, 5 dB, and 15 dB), and also tested performances on noiseless testing data (clean, all panels).
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GFCC is analogous to the MFCC in operation, for example,

applying a cube root exponent (as an instantaneous nonline-

arity) and a DCT on the Gammatone spectral features to

extract nonlinear input features. However, the cube root is

an instantaneous nonlinearity, and not dynamic like the

FAC section of the CARFAC model. We applied a cube

root to mimic Stevens’s power-law (Stevens, 1972; Stevens,

1957) to the front-end features. We wondered whether

applying analogous nonlinearities to the AN model and

CARFAC’s output features would boost SID performance.

Figure 12 illustrates the effect of applying a cube root

exponent and DCT to the CARFAC’s output features. The

left panels in Fig. 12 display a typical CARFAC energy fea-

ture. The middle panels separately apply a cube root expo-

nent and DCT to CARFAC’s output features. The cube root

exponent dynamically adapts signal intensity. It amplifies

unvoiced speech and suppresses the intensity of loud parts

in the input (left-middle panel). These effects increase the

variation between speakers, which we expect will yield

higher SID accuracy. The standalone DCT emphasizes only

voiced speech (right-middle panels) which helps to achieve

a higher SID accuracy, particularly under noisy conditions.

The DCT also compresses energies toward lower-frequency

channels and decorrelates input features. The DCT causes

cochlear energy features to be symmetrically distributed, as

the Gaussian distribution is. Therefore, we expect that the

GMM can more accurately model speakers with compressed

high-frequency channel information, particularly in noisy

environments. The right panels in Fig. 12 illustrate the com-

bined effect of the cube root and DCT. The cube root nonli-

nearly amplifies the input signal and boosts the unvoiced

portion, as shown in Fig. 12 (third column) and Fig. 13 (sec-

ond column). In contrast, the DCT emphasizes the voiced

signal, which increases the similarity between clean and

noisy signals.

Figure 13 shows that the DCT transforms data to be

approximately symmetric about the origin (third and fourth

panels) compared to CARFAC’s BM energy (first panel) or

cube root output (second panel). Thus, the DCT should dis-

tribute input data in a way that helps symmetric generative

functions (e.g., GMMs) to learn more accurate speaker mod-

els. However, the application of the DCT followed by the

cube root amplifies unvoiced input (i.e., noise) via the cube

root. We expect SID performance would suffer as a result.

FIG. 12. (Color online) The effect of the cube root (second column) and DCT (third column) on CARFAC’s BM features (left). The cube root and DCT

effect is shown in the right column. All features are shown for two speakers (top and bottom rows).

FIG. 13. (Color online) The effect of cube root and DCT on the data distribution.
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Figures 12 and 13 show that the combined nonlinearities

provide better compression and decorrelation than isolated

nonlinearities (right panel in Fig. 12).

Figure 14 compares the SID performances of our four

CARFAC variants (from FIG. 11) and the AN front-end

(light gray bars). We applied the cube root exponent and a

DCT to the extracted features.

We then trained the SVM classifier with those trans-

formed features from the Bangla dataset. Figure 14 also

compares our CARFAC variants with GFCCs (blue bars),

which employs the cube root and DCT nonlinearities on

spectral features (Shao and Wang, 2008).

Figure 14 shows that the inclusion of the cube root and

DCT nonlinearities significantly improves the SID perfor-

mance of all CARFAC variants (compared to Fig. 11). All

cochlear models, including the full CARFAC and AN front-

ends, achieve significantly higher SID performance on traf-

fic noise at –5 dB than we observed previously (cf. Figs. 6

and 7). The CARFAC variants, the original CARFAC

model, and the AN outperform the GFCC at �5 dB when

the cube root and DCT are applied under all noise types. All

CARFAC variant front-ends achieve a much higher SID

accuracy than the AN model at low SNR, regardless of noise

types. Comparing Figs. 11 and 14, we see that that the SID

performance of cochlear models is sensitive to changes in

the additional nonlinear computations that they implement.

For example, adding the cube root followed by the DCT to

the output CARFAC features improves SID performance on

non-stationary noisy data (compare the right panels of Figs.

11 and 14). Comparing Figs. 11 and 15, the CAR section

followed by the cube root and DCT outperforms the

CARFAC model without these nonlinearities. Hence, apply-

ing a static nonlinearity (e.g., a cube root) followed by DCT

can improve performance beyond the dynamic/adaptive

nonlinearity of CARFAC.

Figure 15 displays results of analogous experiments to

Fig. 14, but with a GMM-UBM back-end classifier. We

used clean data to train the back-end. Both Figs. 14 and 15

display similar results. Cochlear front-ends may be well-

suited for physiological and psychoacoustic data, but they

require additional and specific nonlinearities to optimize

performance in SID tasks.

Figures 14 and 15 show that the cochlear front-ends can

classify speakers more accurately when we apply the cube

root and DCT to their output. We also investigate how accu-

rately cochlear front-ends classify speech given other types

of nonstationary noise such as airport, factory, restaurant,

train, cocktail party, street, and exhibition noise as a back-

ground. We applied the cube root and DCT to the

CARFAC, AN model, and CAR output features to compare

FIG. 14. (Color online) The nonlinearity effect on SID system performance is shown for CARFAC-based and alternative methods. The results are simulated

for clean and noisy signals using the SVM classifier.

FIG. 15. (Color online) The nonlinearity effect on SID system performance is shown for CARFAC-based and alternative methods. The results are simulated

for clean and noisy signals using the GMM-UBM classifier.
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their performance under other non-stationary noise. We

obtained similar results to traffic noise conditions [results

are shown in Fig. SuppPub2 in Ref. Islam (2022)].

Therefore, the cochlear models need to incorporate conven-

tional compressive nonlinearities such as the cube root fol-

lowed by DCT to produce a higher SID accuracy under all

types of noise.

F. Performance with ELM

Finally, we use the ELM as a back-end to present pre-

liminary SID results for a biologically inspired cochlear

front-end coupled with a state of the art back-end. We chose

the ELM as our back-end instead of a deep neural network

because the former requires significantly less training data

than the latter. Figure 16 presents our results. To facilitate a

fair comparison, we used the same input features for the

ELM as we did for the GMM-UBM and SVM, but we

resized the input features to be 22� 22. Empirically we

observed that other resizing, such as 28� 28 or 64� 64,

yields lower SID accuracy than 22� 22. For the ELM, we

used the root mean square propagation training technique

and the initial learning rate was 0.01. The regularization rate

was 0.00005. The maximum epoch was 30 with a batch size

of 22. We used these settings for both the UM (top row) and

Bangla (bottom row) datasets. We also used the same set-

tings for the GMM-UBM and SVM back-ends on both

datasets.

Figure 16 shows that the ELM (blue bars) produces

similar results to the GMM-UBM (dark green bars), particu-

larly under noisy conditions, while the SVM back-end (light

green bars) generally outperforms both. Presumably the

ELM requires more training data to achieve similar SID

accuracies as simpler back-ends. Figure 16 shows that ELM

performance remains consistent irrespective of SNR, except

for the traffic noise (blue bars, right panel). Applying the

cube root and DCT to CARFAC’s output BM features (red

bars) can further boost SID accuracy. This improvement

indicates that the nonlinearities in the front-end can play an

important role in identifying speakers from noisy data.

Training the ELM or DNN on more data should further

enhance SID accuracies. But our goal is to show how non-

linear processing in the front-end can help the back-end

learn more noise-robust speaker models, whether or not we

have sufficient data to train a state-of-the-art backend.

G. Understanding the effect of frequency
and amplitude on SID performance

In the CARFAC model, the response shows a frequency

dependent amplitude, and its frequency scale is arranged

with the Greenwood function (Greenwood, 1961), which are

different from the widely used log mel-spectrum and mel-

cepstrum. We use the mel-filter bank output (mel-spectrum)

to investigate the effect of frequency scale, and the log mel-

filter bank output (log mel-spectrum) to understand the

effect of amplitude compression. The generated result is

shown in Fig. 17.

In this work, we compare the CARFAC with the log

mel-spectrum and mel-spectrum accuracy in the SID task.

The linear mel-spectrum produces poorest performance

under clean condition. The log mel-spectrum produces bet-

ter performance than the mel-spectrum, but poorer perfor-

mance under noisy conditions, as shown in Fig. 17. This

poor performance due to the low variance of log output for a

high change of amplitude in an input. The application of

DCT on the log mel-spectrum improves SID performance

FIG. 16. (Color online) Results for the UM (top row) and Bangla (bottom row) datasets using the CARFAC as the front-end and the ELM (blue bars), the

GMM-UBM (dark green bars), and the SVM (light green bars) as a back-end. We also incorporated additional cube root and DCT operations to CARFAC’s

output BM features (red bars).
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substantially, as shown in Fig. 17. The mel-spectrum shows

more logarithmic in frequency scale and keeps a unit gain in

amplitude. The log mel-spectrum shows more logarithmic in

both frequency scale and amplitude. As shown in Fig. 17,

we found in this experiment, the CARFAC outperforms all

variants of mel-spectrum or mel-cepstrum with the inherent

frequency mapping and frequency gain.

IV. DISCUSSION

Humans are excellent at identifying speakers, even in

noisy environments. We investigated whether cochlea-

inspired front-ends could outperform more conventional

approaches to SID tasks when inputs are corrupted by noise.

We showed that the CARFAC front-end is very effective at

filtering out stationary noise, even at low SNR. So, its back-

end classifier learns accurate representations of speakers

from noisy input, even from small (text-dependent) input

datasets. We showed that traditional SID front-ends, i.e.,

MFCCs and FLDP, comparatively struggle at this task. We

showed these results on two datasets, with two back-end

classifiers, with various noise types and amplitudes, with

different channel numbers, and with different speaking

speeds.

We also investigated the impact of cochlear nonlinear-

ities in SID performance, particularly if the corrupting noise

was nonstationary. Compression, two-tone suppression, and

level-dependent critical bandwidth variation (emulated by

AGC) are apparently more important to SID tasks than

instantaneous nonlinearities (NLF), particularly for time-

varying noise at low SNRs. However, combining a compres-

sive nonlinearity and an instantaneous nonlinearity is more

effective than either in isolation. Other nonlinearities such

as the cube root exponent can compress the input signal.

When we applied the cube root to the linear CAR section,

we found that the resultant SID performance rivaled or sub-

stantially exceeded that of CARFAC on noisy non-

stationary data. Presumably, the cube root can optimize

loudness more effectively than the FAC section of

CARFAC. Then perhaps we can construct better models of

cochlear loudness compression that would further improve

the SID performance of the CARFAC model. For example,

we could use the cube root to emulate the function of the

outer hair cells and an instantaneous nonlinearity. In

future work, we can investigate the effect of the CARFAC

amplitude and the frequency scale on a SID task. An investi-

gation of SID performance applying the CARFAC using

per-channel energy normalization (Lyon, 2011a) and learn-

able audio front-end (Zeghidour et al., 2021) can be done in

the future.

We used simple classifiers to focus our experiments on

the relationship between nonlinearities in cochlear front-

ends and SID accuracy. We generally obtained higher SID

accuracies when we paired an SVM with a nonlinear kernel

with our cochlea models. This observation suggests that

nonlinearities in the back-end can also enhance SID per-

formances, as certain nonlinearities in our cochlea models

do. A channel decorrelation technique such as DCT in the

front-end features can further enhance the performance of

back-end classifiers, particularly in noisy conditions. A

differencing operation between adjacent channels, such as

principal component analysis could also be helpful for fea-

ture decorrelation purposes and will be investigated in future

work. Incorporating noisy data in speaker training or speech

enhancement (Taherian et al., 2020) may also help to

achieve noise-robust SID performance. The application of a

neural network as a back-end (Chen and Salman, 2011) for

FIG. 17. (Color online) The performance of the MFCC front-end applying only Mel-filter-bank outputs (red bars), log-Mel-filter-bank outputs (yellow bars),

and MFCCs (blue bars). The CARFAC results are added to show their noise-robustness compared to Mel-spectrum variants. Results are shown for UM (top

row) and Bangla (bottom row) datasets using the GMM-UBM as a classifier.
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CARFAC may further enhance SID performance due to its

nonlinear operations, particularly when a large training data-

set is available.

The CARFAC front-end, and cochlea-inspired algo-

rithms in general, offer promising approaches to perform

text-dependent SID tasks in real-world (i.e., noisy) condi-

tions (Islam et al., 2016). One extension of this study would

be to compare performances of similar algorithms on text-

independent datasets. Our preliminary investigations found

that CARFAC with the cube root and DCT improves perfor-

mance over the CARFAC-only version for a text-

independent SID task using the TIMIT dataset (results not

shown). Applying joint speech separation (Mowlaee et al.,
2012; Mowlaee et al., 2010) in a text-independent SID task

can convert it to a text-dependent SID task by adding a

speech separation block (Rix et al., 2001). Then CARFAC

might achieve noise-robust performance in this converted

task. A low-powered, real-time implementation of the

CARFAC model is available (Xu et al., 2018). If we can

tweak it to achieve robust performance on text-independent

SID tasks, we could implement real-time recognition sys-

tems with direct applications to e.g., smartphone access,

crime investigation, and telephone banking. Additionally,

we could apply the implemented SID system in edge com-

puting systems with restrictions on hardware, power, train-

ing data, and bandwidth. We can also apply it in situations

where noise is significant and large deep neural networks

struggle from a lack of training data. Biology and neurosci-

ence have a history of inspiring machine learning algorithms

for a wide variety of applications (Monk et al., 2016, 2018).

Cochlear models for SID tasks should be added to that list.
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