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Abstract

Transcriptome-based exon capture approaches, along with next-generation sequencing,

are allowing for the rapid and cost-effective production of extensive and informative phylo-

genomic datasets from non-model organisms for phylogenetics and population genetics

research. These approaches generally employ a reference genome to infer the intron-exon

structure of targeted loci and preferentially select longer exons. However, in the absence of

an existing and well-annotated genome, we applied this exon capture method directly, with-

out initially identifying intron-exon boundaries for bait design, to a group of highly diverse

Haloniscus (Philosciidae), paraplatyarthrid and armadillid isopods, and examined the perfor-

mance of our methods and bait design for phylogenetic inference. Here, we identified an iso-

pod-specific set of single-copy protein-coding loci, and a custom bait design to capture

targeted regions from 469 genes, and analysed the resulting sequence data with a mapping

approach and newly-created post-processing scripts. We effectively recovered a large and

informative dataset comprising both short (<100 bp) and longer (>300 bp) exons, with high

uniformity in sequencing depth. We were also able to successfully capture exon data from

up to 16-year-old museum specimens along with more distantly related outgroup taxa,

and efficiently pool multiple samples prior to capture. Our well-resolved phylogenies high-

light the overall utility of this methodological approach and custom bait design, which offer

enormous potential for application to future isopod, as well as broader crustacean, molecu-

lar studies.
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Introduction

Phylogenetic and population genetic research on non-model organisms has largely relied on a

limited selection of readily available genetic markers to address fundamental, and often diffi-

cult, evolutionary questions. Recent molecular studies have, nonetheless, highlighted that a

large number of independently evolving loci are often required to produce robust, well-

resolved phylogenies, and explore complex phylogenetic and biogeographic scenarios [1–3].

Continual advances and improvements in high-throughput next-generation sequencing

(NGS) technologies are now helping to alleviate this issue by enabling the rapid and cost-effec-

tive production of substantial molecular datasets for phylogenetic, systematics, and population

genetic investigations [4–6]. A variety of approaches are now available to help generate these

datasets, with the majority classed as reduced representation sequencing, where sets of prefera-

bly orthologous loci (or clusters of orthologous groups) from a subset of the genome are

obtained across taxa of interest [7]. Reduced representation approaches include RAD sequenc-

ing that targets unspecified loci associated with restriction enzyme sites [8], and those targeting

highly specific loci with designed DNA or RNA baits (also termed probes), which are comple-

mentary to targeted DNA regions, including ultra-conserved element (UCE) sequencing [9],

anchored hybrid enrichment (AHE) [10, 11], and transcriptome-based exon capture [12].

Transcriptome-based exon capture, in particular, uses the transcript sequences assigned to

clusters of orthologous groups (OGs) to infer custom baits, which target protein-coding exons

across taxa, and is especially useful for generating sequence data from non-model organisms

lacking reference genomes [7, 12–18]. This method can further be employed to obtain geno-

mic data from historical museum specimens, which may be critical for phylogenetics and taxo-

nomic research, but typically contain degraded DNA, making it difficult to produce

meaningful data using traditional Sanger sequencing techniques [19–22]. Established methods

commonly employ a closely related genome to identify intron-exon boundaries and to prefer-

entially distinguish long exon regions (>120 bp) during bait design [7, 12]. Boundary identifi-

cation, nonetheless, becomes difficult when references are too divergent from the taxon of

interest due to issues associated with aligning exons and since intron-exon structure may not

be preserved in distantly related species [23].

In these instances, transcriptome sequences can be used directly to infer orthologous loci

and design baits, precluding the need to differentiate exons using a genome reference a priori.
A study by Portik et al. [24] effectively employed this transcriptome-based exon capture

method to generate a large and informative phylogenomic dataset across divergent frog line-

ages. This approach allowed for exons of various lengths to be captured (because bait tiling

may span multiple short exons), together with highly variable non-coding flanking sequences.

Nevertheless, very few studies have used this direct approach to target exons without a refer-

ence genome, and further baseline information and empirical data, as well as detailed and

reproducible bioinformatic methods, are fundamental for the successful design of future cap-

ture experiments [25]. In this study, we examine the performance and efficiency of transcrip-

tome-based exon capture for the non-model isopod genus Haloniscus Chilton, 1920 [26], and

the application of our bait design across more distantly related outgroup isopod taxa for phylo-

genetic inference. Orthologous gene and bait sets with broad taxonomic applicability are of

major interest in phylogenetics, particularly as this promotes consistency and comparison

across multiple studies [11, 18, 27].

Earlier phylogenetic studies on Haloniscus from Australian groundwater-dependent ecosys-

tems have revealed extensive species diversity and short-range endemism, and have further

proposed that this genus, which contains epigean and subterranean lineages, represents a relic-

tual group with a complex evolutionary history [28–30]. However, molecular datasets have
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been limited to either a single mitochondrial (cytochrome c oxidase subunit I: COI) or two

genes (COI and 18S rRNA), resulting in poor topological resolution. Therefore, questions

regarding the origins and biogeographic history of the genus remain unresolved and require

further investigation with additional independent markers. The selection of a larger ortholo-

gous gene set and development of a custom bait design targeting Haloniscus, as well as more

distantly related isopods, will allow for a better understanding of their evolution and the rela-

tionships among species.

We, therefore, aimed to produce an effective and thorough methodological phylogenomic

framework for: inferring an isopod-specific set of single-copy protein-coding OGs from

sequenced transcriptomes, developing a custom bait design to capture exons from a large

number of loci (>400), conducting all laboratory-based protocols, and for processing the

resulting sequence data using a mapping approach. Due to the absence of an existing closely

related, and well-annotated reference genome, we used RNA transcript sequences for bait

design without first predicting exon boundaries. The overall success and efficacy of our bait

design was evaluated by determining the: i) number and length of exons, ii) sequencing depth

(or coverage per base) for targeted exons, iii) percentage of missing data across exons, and iv)

utility of the baits across more distantly related outgroup taxa, comparing the results of analy-

ses using the mapping approach to those generated with an assembly pipeline. We further

aimed to assess the influence of preserved specimen age and pool sizes (prior to capture and

sequencing) on depth of coverage as well as the effect of pooling sizes on raw sequencing yield

and PCR duplication. The successful inclusion of older or poorly preserved museum speci-

mens in molecular phylogenetic analyses is of significant interest, particularly since these taxa

may be rare, difficult to collect or now extinct [22]. Pooling multiple samples may, further-

more, help to reduce costs without decreasing capture efficiency [24]. Finally, we provide our

transcriptome assemblies, final OGs, bait design, concatenated alignments, and post-process-

ing scripts for a completely reproducible framework, without the need for outsourcing to

external providers.

Materials and methods

The methodological pipeline for this study comprised eight steps (Fig 1): (1) transcriptome

sequencing; (2) contig assembly; (3) transcript assignment to OGs and verification of their

orthology; (4) assessment of putative phylogenetic informativeness of OGs and final selection

of OGs for downstream analyses; (5) bait design; (6) DNA extraction of preserved specimens,

library preparation, and pooling; (7) exon capture reactions and sequencing; and (8) data pro-

cessing, data evaluation, and phylogenetic analyses. Custom Perl and Linux shell scripts were

created for the data processing, and are available on Bitbucket (https://bitbucket.org/tbertozzi/

scripts) and Figshare (doi: 10.25909/5ef570329cbdd).

Transcriptome sequencing and contig assembly

Six isopod species were selected for transcriptome sequencing, including one undescribed

Haloniscus species (Philosciidae), and five additional species: Porcellionides pruinosus (Brandt,

1833) (Porcellionidae), Paraplatyarthrus sp. (Paraplatyarthridae), Paraplatyarthrus subterra-
neus Javidkar & King, 2015, Ceratothoa sp. (Cymothoidae), and Armadillidium vulgare
(Latreille, 1804) (Armadillidiidae) (see S1 Table for details). Specimens were preserved in

RNAlater (Qiagen) and total RNA was extracted from whole isopod bodies with an RNeasy

Plus Micro or Mini Kit (Qiagen) according to the standard protocol for tissue extraction. RNA

(pooled from multiple specimens in some cases due to very small individuals, S1 Table) was

quantified using a Quantus Fluorometer (Promega). Double-stranded cDNA was synthesised
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and subsequently PCR-amplified using SMARTer cDNA Synthesis and Advantage 2 PCR Kits

(Clontech), with PCR optimisation procedures verified using agarose gels. cDNA libraries

were sent to the Australian Genome Research Facility (AGRF) in Adelaide, South Australia for

Paraplatyarthrus sp., P. subterraneus, P. pruinosus, and Haloniscus sp., and to GATC (Eurofins

Genomics) in Constance, Germany for A. vulgare and Ceratothoa sp. to be sequenced on the

Illumina HiSeq2000 platform with TruSeq adapters, generating 100 bp paired-end reads.

For the Haloniscus sp. assembly (conducted by DNS), raw RNA-seq reads were quality con-

trolled with FastQC v0.11.4 [31], and transcripts were filtered and trimmed in Cutadapt v1.1

[32] to remove low quality reads (Phred scores<30), Illumina TruSeq barcoded adapters,

SMARTer adapters, poly-A tails, and sequences less than 25 bp following trimming. Reads

were then de novo assembled using Trinity v2013-08-14 [33, 34] with default settings. Assem-

bled contigs were quality assessed using Bowtie [35], which aligned contigs back against raw

reads to specify the proportion of proper paired reads obtained. The five remaining isopod

transcriptomes were contributed to this project as part of a collaboration and were processed

by authors TB and AZ using the methods detailed in S1 File.

Orthology assignment

We targeted single-copy protein-coding OGs, as recognised by The Hierarchical Catalogue of

Orthologs (OrthoDB: http://www.orthodb.org/), from an earlier published orthologue set

based on 12 reference arthropod species [36]. This reference set, built on OrthoDB v5.0 [37],

consisted of 1,478 OGs from the crustacean Daphnia pulex Leydig, 1860, the arachnid Ixodes
scapularis Say, 1821, and 10 hexapod taxa where complete genomes and official gene sets were

readily available. We optimised this reference set by reducing the number of species to four

(D. pulex, I. scapularis, the red flour beetle Tribolium castaneum (Herbst, 1797), and the ter-

mite Zootermopsis nevadensis Hagen, 1853), removing the remaining hexapods to lessen the

bias towards insect taxa.

Fig 1. Schematic overview detailing the methodological framework used for orthology assignment, bait design and sequence data generation.

https://doi.org/10.1371/journal.pone.0256861.g001
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We inferred gene orthology in our six de novo sequenced and assembled isopod transcrip-

tome libraries with a pre-release version of Orthograph (beta4.1 available at https://mptrsen.

github.io/Orthograph/) [38] that assigned transcripts to OGs based on the reference set of four

species detailed above. We used default parameters except for the following: maximum num-

ber of blast searches and blast hits = 50, minimum transcript length = 25, and also enabled the

extension of the open reading frame (ORF) with a minimum overlap of 30% (extend-orf = 1

and orf-overlap-minimum = 0.3). Transcript sequences, where orthologue criteria were ful-

filled, were summarised into individual files for each distinct OG, and two reference species, T.

castaneum and I. scapularis, were removed since the majority of best reciprocal hits were to D.

pulex and Z. nevadensis. Internal stop codons, along with Selenocysteine “U”, were masked

with “X” (and “NNN” on a nucleotide level) using a custom Perl script (provided with the

Orthograph package). For downstream analyses, we only included OGs that contained hits to

all six transcriptomes, totalling 531 single-copy protein-coding genes. Amino acid sequences

for each OG were aligned with MAFFT v.7.220 [39], and equivalent nucleotide multiple

sequence alignments were inferred using a modified version of PAL2NAL v14.1 [40] (see [36]

for further details on the modification) with the amino acid alignments as blueprints.

Assessing phylogenetic informativeness of OGs

We applied the matrix reduction program MARE v0.1.2-rc [41, 42] to determine putative phy-

logenetic informativeness of all 531 OGs, and then assessed which OGs showed the highest

information content (IC). MARE uses extended geometry quartet mapping to infer informa-

tiveness (or “tree-likeness”: the number of resolved quartets divided by the number of quartets

drawn for each partition, i.e. for each OG in this study) from amino acid alignments within a

user-provided supermatrix. The analysis yielded a reduced (optimised) matrix, but with an

increased overall IC. Here, we retained OGs with an IC>0.5 (479 OGs in total) for use in

downstream analyses.

Bait design

The dataset, comprising 479 aligned OGs each with all eight reference species (the six tran-

scriptomes, along with D. pulex and Z. nevadensis) on a nucleotide level, was used to design

baits for targeted exon capture with the software BaitFisher v1.2.7 [27]. We specified a bait

length of 120 bp and tiling design of seven baits spanning a total region of 300 bp, with a bait

offset every 30 bp. The clustering threshold was set to 0.15. BaitFisher removed 10 OGs that

were not suitable for bait design since the sequences were either too short (<300 bp) or an

appropriate bait region could not be detected as the region likely consisted of too many gaps

or Ns and the software could not place a full bait within the OG alignment. BaitFisher permits

inclusion of a reference genome and annotation file to infer known exons; however, due to the

absence of a related isopod genome at the time of design, we generated the baits directly from

our multiple sequence alignments. The bait design was then optimised with BaitFilter v1.0.4

[27], following the method that maximises the number of sequences baits are inferred from.

This process resulted in 15,053 baits for 24,258 sequences (37.95% of baits saved, with respect

to a bait design where baits are constructed for each gene and species of interest, rather than

for each cluster of similar gene sequences). Custom RNA baits were manufactured by Arbor

Biosciences (Ann Arbor, MI, U.S.A.) for use with a MYbaits v3 kit.

Library preparation and pooling

Genomic DNA was extracted from 36 whole specimens using the Gentra Puregene DNA Puri-

fication protocol (Gentra Systems Inc.) according to the manufacturer’s protocol. The
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specimens included 31 Haloniscus taxa, representing the majority of known lineages as

inferred by COI mtDNA data [28, 30] with H. anophthalmus unlikely to belong to the genus,

and five outgroup isopod species (S2 Table). An additional Haloniscus sample from Windi-

murra (Western Australia) was included using pooled DNA extracts from three different indi-

viduals (see S2 Table). DNA was quantified by Quantus Fluorometer (Promega) with the

QuantiFlour dsDNA System Kit (Promega), and each sample was diluted to 1–10 ng/μL (reli-

ant on initial DNA concentration) in 100 μL of molecular grade water. A Bioruptor Pico

(Diagenode) was utilised to shear the DNA for 1–4 min using 30 s on/30 s off cycling. Each

sonicated sample was analysed by electrophoresis on an Agilent 2200 TapeStation (Agilent

Technologies) to determine whether fragments were appropriately sized (average size of 300–

500 bp) for later sequencing. For samples exhibiting a broad fragment size distribution, a size

selection step was completed with the SPRI bead method and polyethylene glycol to remove

fragments less than 150 bp (protocol outlined by Li et al. [43]).

Genomic libraries were then prepared following Meyer and Kircher [44], with some modi-

fications to the indexing PCR reaction. A unique combination of i7 and i5 indexes (1–10 from

Meyer and Kircher [44], and 1–23 from Glenn et al. [45]) was added to each library in 25 μL

reactions consisting of 1X KAPA HiFi Taq Ready Mix, 0.2 μM of each indexing primer, and

10 μL of library (the remaining library retained as a back-up). Thermal cycling conditions

involved an initial denaturation step at 98 ˚C for 45 s, then 18 cycles at 98 ˚C for 15 s, an

annealing temperature of 65 ˚C for 30 s, and an elongation of 72 ˚C for 60 s, followed by a final

elongation phase at 72 ˚C for 10 min. Libraries were purified and the concentrations were

measured with a Qubit Fluorometer (Life Technologies) and qPCR amplification (KAPA

Library Quantification Kit, Illumina). The resulting 25 μL of amplified library had a concentra-

tion of at least 10 ng/μL, but the final results varied extensively due to starting concentration

and sample quality.

These library preparation steps were completed across three rounds. In the first round, we

optimised the number of libraries that could be pooled together in a single in-solution capture

reaction by testing four different pooling strategies, with capture pools containing either one,

two, three or four libraries (totalling 10 libraries). Three separate libraries, each with distinct

dual indexes, were created using one sample (ID: BES18659, libraries: 27813, 27814, and

27815) and allocated across three pools of different sizes (see results for further details) to

determine whether increasing the number of libraries that were pooled would negatively influ-

ence the final number of reads obtained. It was found that pooling four libraries prior to cap-

ture did not influence the number of reads and, as such, we created two pools of four libraries

for the second round of exon capture (with one sample GAB00764.1 repeated across two

libraries), and four pools of four libraries and two pools with three libraries for the third. This

equated to 40 libraries in total across the three distinct rounds of library preparation prior to

exon capture.

Exon capture reactions and sequencing

Pooled libraries were concentrated down to 7 μL using a CentriVap DNA Concentrator (Lab-

conco) for sequence capture. MYbaits capture reactions were performed following the v3.01

manual, with heat-denatured concentrated library pools combined with the designed baits and

universal blocking oligos (included in the MYbaits kit), and hybridised for approximately 16–

20 hrs at 65 ˚C. Reactions were then purified using Dynabeads MyOne Streptavidin C1 beads

(Life Technologies) and post-capture products were amplified using KAPA HiFi DNA Poly-

merase (Kapa Biosystems) with the following protocol: 98 ˚C for 2 min, followed by 12 cycles

at 98 ˚C for 20 s, 60 ˚C for 30 s, and 72 ˚C for 30 s, and a final extension of 5 min at 72 ˚C.
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Pools were purified with 90 μL of AMPure XP beads (Agencourt), resuspended in 30 μL of elu-

tion buffer, and quantified with the Qubit Fluorometer (Life Technologies) and/or a standard

quantitative PCR run with the LightCycler 96 Real-Time PCR System (Roche Diagnostics) for

equimolar pooling. The fragment size distribution for each pool was, additionally, visualised

on the TapeStation. Following the first round of capture, the four pools were combined in

equimolar ratios and sequenced on the Illumina MiSeq platform with 300 bp paired-end

reads. For the second and third capture rounds, equimolar pools were also sequenced on the

Illumina MiSeq platform, but instead with 150 bp paired-end reads due to the low average

fragment size (<300 bp) in the final pools. Illumina sequencing of the captured DNA libraries

was conducted by AGRF (Adelaide, South Australia).

Exon capture data processing

Raw sequence reads were quality tested using FastQC v0.11.4 [31], and filtered with the

BBDuk v35.92 software package, BBTools (https://sourceforge.net/projects/bbmap/files), by

trimming adapters and removing low quality reads. Overlapping paired reads were merged

using PEAR v0.9.10 [46] to avoid inflated coverage estimates. For each sequenced library,

cleaned reads were mapped to the Haloniscus transcript OGs used in bait design with BWA

v.0.7.15 [47] and SAMtools v1.3.1 [48]. The Haloniscus targeted OGs were concatenated into

one continuous sequence of all 469 targets, each separated by a string of 1000 Ns using a cus-

tom script: catFasta.pl. The script provides the option of simultaneously creating a BED4 file,

which defines the start and end position of each target, the target sequence length, and the

name of each target. Output BAM files from the mapping step were assessed with the Integra-

tive Genomics Viewer (IGV) [49]. Since an annotated reference genome was not used during

bait design to separate intron-exon boundaries, the Haloniscus reference OGs were split into

exon targets manually based on the BAM alignments (see S1 Fig for example) to reflect the

boundaries. Reads were then mapped once again, but this time to the revised reference, simi-

larly generated with the custom concatenation script, and duplicate reads were removed with

Picard tools v2.2.4 (http://broadinstitute.github.io/picard/). Sequencing depth (or coverage

per base) files were produced with BEDTools v2.25.0 [50].

Variant calling was performed using FreeBayes v1.0.2 [51] after initially trialling SAMtools

v1.3.1 with BCFtools v1.4.1 [48] and HaplotypeCaller in GATK v.3.7 [52]. BCFtools frequently

reported lower values for variant sequencing depth than expected, i.e. differing from those cal-

culated with BEDTools and as seen in alignments with IGV, which led to issues in later steps

when filtering based on depth. Whereas, the GATK variant caller provided higher depth

results, but the VCF file contained much fewer variants, even after adjusting parameters. Over-

all, VCF files produced by FreeBayes included expected variant numbers and sequencing

depth values to those within the BAM alignments. Complex polymorphisms in FreeBayes out-

put files were decomposed to individual SNP and indel calls using vcfallelicprimitives in vcflib

(https://github.com/vcflib/vcflib) and variants with <10x coverage (or sequencing depth) were

removed with vcffilter (vcflib). Heterozygous calls were filtered with filterVCF.pl based on a

minimum minor allele frequency of 0.2. Consensus sequences were generated with the script,

applyVariants.pl. The script produced consensus sequences inferred using the mapped reads

by applying variants in a VCF file to the Haloniscus reference sequence used in mapping. The

script also masked bases with<10x (user-defined) coverage based on the ‘per base’ coverage

files generated with BEDTools, and included IUPAC ambiguity codes for heterozygous sites.

A custom Perl script, groupTargets.pl, then used the fasta files created with applyVariants.

pl to group the same target sequence from different isopod sequenced libraries into individual

files ready for alignment. The Bash script, runMuscle.sh, and MUSCLE v3.8.31 [53] were used
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to align the sequences in each target file. Potential paralogous loci and messy alignments were

identified and removed based on an elevated proportion of heterozygous sites (>3%) with the

custom script, FilterMergedLoci.pl, and also checked manually. With this script, sequences

with an excess of variable sites were replaced with a string of Ns equal in length to the original

sequence.

Exon capture evaluation

To examine capture efficiency, sequencing depth (coverage per base) values were calculated

for each position along the mapped transcripts for all sequenced libraries with BEDTools (dis-

cussed above). The per base pair coverage estimates corresponding to each of the 469 target

OGs were plotted for all 40 sequenced libraries, with intron-exon boundaries delineated by

vertical lines. Using these outputs, the median sequencing depth values were calculated across

the sequenced libraries for all exons within each OG, and separated according to sequencing

batch (runs 1–3). Results were summarised for the ‘targeted’ exons, chosen from exons with

the highest median sequencing depths from 50 randomly-selected OGs. Average differences in

median sequencing depth between runs were estimated using a generalised linear mixed

model fitted to the data on a log link scale and negative binomial variance distribution. Indi-

vidual exon and sequencing identifiers were integrated as random effects to account for aver-

age differences in sequencing depth values among each of these factors. Marginal mean

sequencing depth (with 95% confidence intervals) was estimated for each run, and contrasts

were used to infer differences in sequencing depth across the runs.

Differences in median sequencing depth values for exons of a random subset of 50 targeted

OGs were examined. Pool sizes (with 1–4 libraries) prior to exon capture, specimen preserva-

tion age (number of years since collected and preserved in 100% ethanol), raw paired-end data

yield, and the percentage of missing data across exons within the concatenated alignment

(dataset B, see below for details) were used as additional covariates. The percentage of PCR

duplication amongst reads for each sequenced library was similarly examined against pool size

prior to capture, with the amount of duplication calculated by dividing the number of dupli-

cate reads (obtained with Picard tools as described previously) by the total number of raw

paired-end reads (as filtered reads were merged using PEAR). We did not formally test for the

relationships with specimen preservation age or pooling sizes prior to capture. The distribu-

tion of specimen preservation ages varied considerably between runs, sometimes over a short

range, and, for some runs, a single sample differed substantially in age from the remaining

samples in that run. For pool sizes, some runs consisted of merely one or two different pooling

selections, while additional runs comprised pools with a larger range of sizes.

The exon sequencing depth uniformity across sequenced libraries, and among sequencing

runs, was assessed by calculating the median absolute deviation and robust coefficient of dis-

persion (the median absolute deviation divided by the median) for targeted exons from the 50

randomly-selected OGs, and plotting the results. This calculation examines the amount of var-

iation in sequencing depth across bases within exons. All calculations and analyses for capture

evaluation detailed in this section were conducted using R v3.6.0 [54] (script available on Fig-

share at doi:10.25909/5ef570329cbdd).

Phylogenetic analyses

The target alignments discussed previously were concatenated using a custom script, catA-

lignedLoci.pl, for phylogenetic analysis. The concatenation order was based on the BED4 can-

didate file, which was produced with the artificial reference prior to mapping. The script

created a “candidate partition” file, including the target/exon boundaries, and further allowed
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for a threshold to be indicated to filter out targets that contained too many missing sequences

(i.e. all Ns). Three distinct datasets were produced, each with differing thresholds for missing

data: the first with a threshold of 25 (dataset A), which only included exon alignments with up

to 25% of sequences missing entirely, the second with a threshold of 50 (dataset B), and the

third dataset with a threshold of 75 (dataset C), which included exons from taxa with up to

75% of sequences missing. We employed PartitionFinder v2.1.1 [55] to determine suitable par-

titioning schemes for the three different datasets with the rcluster algorithm [56] (parameters:

models = all, model_selection = aicc, branchlengths = linked, rcluster-percent = 10.0, rcluster-

max = 1000, raxml), and the exon partition files discussed above. Maximum likelihood (ML)

phylogenies were then inferred with RAxML v8.2.10 [57] using the deduced partitions, the

GTRGAMMA model using the standard four rate categories, and 1,000 rapid bootstrap infer-

ences (all remaining settings as default). The phylogenies were rooted using the six outgroup

taxa, and Figtree v1.4.2 [58] was used to visualise the phylogenies. PartitionFinder and RAxML

were run on the CIPRES Science Gateway v3.3 [59].

HybPiper assembly comparison

To assess the efficacy of our mapping approach (see the ‘Exon capture data processing’ section

above), we ran our capture data through a pre-existing assembly pipeline, HybPiper v1.3.1

[60], which uses a suite of Python scripts to wrap and connect bioinformatics tools to extract

target sequences from high-throughput sequencing reads. HybPiper assigned our cleaned

sequencing reads to target OGs within a target file, which contained all 469 OGs with

sequences from the eight reference taxa used in orthology prediction (contrasting the use of

only the Haloniscus reference OGs in the mapping approach detailed above), using BLASTx

v2.7.1 [61]. HybPiper subsequently assembled OGs with SPAdes v3.12.0 [62] and used Exoner-

ate v2.4.0 [63] to align contigs to the target file sequences. Sequences for all 40 sequenced

libraries were then retrieved for each target, with HybPiper generating an unaligned fasta file

for each OG. Potential paralogs, as indicated by the presence of multiple long contigs, were

identified by using HybPiper scripts, and removed from the analysis. The Bash script, runMus-

cle.sh, together with MUSCLE v3.8.31 [53] were used to align the sequences in each OG file,

and HybPiper was used to concatenate the targets into a single long sequence for each

sequenced library (inserting gaps for missing OGs) for phylogenetic inference. Summary sta-

tistics were obtained with HybPiper scripts. Phylogenetic analysis of the output concatenated

dataset (D) was then conducted with PartitionFinder and RAxML using the methods detailed

above.

Ethics statement

Specimen collection in Australian National Parks was completed under: Northern Territory

Permit No. 54946 (‘Permit to Take Wildlife for Commercial Purposes’, approved by Parks and

Wildlife Commission Northern Territory), South Australian Permit No. Z25519 (‘Permit to

Undertake Scientific Research’, approved by The Government of South Australia, The Depart-

ment for Environment and Heritage), and Western Australian Permit No. SF0009792

(‘Licence to Take Fauna for Scientific Purposes’, approved by The Government of Western

Australia, Department of Parks and Wildlife). Additional approval was obtained for sample

collection across sites in the Northern Territory at Newhaven Sanctuary from the Australian

Wildlife Conservancy National Science and Conservation Manager, John Kanowski, and Cen-

tral Mt Wedge from the Central Land Council and Traditional Owners (‘Special Purposes Per-

mit’, with involvement from Jeff Hulcombe and the An
¯

angu Luritjiku Rangers). For field

collection at South Australian Great Artesian Basin springs, general permission was obtained
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to conduct fieldwork across private land from Greg Campbell (Chief Executive) of S. Kidman

& Co Pty Ltd, and culturally sensitive land from Traditional Owner representatives, Reg Dodd

and Dean Ah Chee. Additionally, many station managers and mining officers permitted access

to perform fieldwork on private property. None of the fieldwork conducted for the purpose of

this study involved collecting protected species.

Results

Transcriptomes, orthology and bait design

An average of 24.1 million (M) (21.3–27.9M) paired-end reads were sequenced for each tran-

scriptome library, which assembled into approximately 6.2 × 104 contigs (4.0 x 104–1.37 x 105)

(Table 1). The larger contig values acquired for A. vulgare and Ceratothoa sp. (Table 1), despite

the comparable number of paired-end raw reads to the other transcriptomes, can be explained

by the inclusion of many short contigs by IDBA-Tran, which remain ambiguous and are

unlikely to be true transcripts. Searching for 1,478 single-copy OGs, similar numbers were

inferred amongst our isopod transcriptomes (806–1272, see Table 1). The six assembled tran-

scriptomes, along with the results from the MARE filtering analysis, our 469 OG alignments,

and the bait design are available on Figshare at doi:10.25909/5ef570329cbdd.

Exon capture data

An average of 833,844 (73,241–2,898,504) paired-end reads were sequenced for all 40 libraries,

with run 1 (10 pooled libraries) averaging 1,656,743 (764,956–2,898,504) paired-end reads, run 2

(8 pooled libraries) averaging 1,261,684 (747,169–2,058,751) paired-end reads, and run 3 (22

pooled libraries, including outgroup taxa) averaging 304,221 (73,241–717,722) paired-end reads

(see Table 2). Following the removal of low-quality reads and adapters, the percentage of retained

clean paired-end reads ranged from ~92–98.5% (Table 2). Mapping the cleaned reads directly to

the Haloniscus sp. transcript OGs employed for bait design revealed many exon sequences of var-

ious lengths, and their associated non-coding flanking sequences (e.g. S2 Fig). Since the bait

region was constrained to a length of 300 bp, the complete coding sequence for each target OG

was not generally captured (see S3 Fig). Nevertheless, approximately 1,150 exons (median: 798

exons across libraries) were captured across all targeted OGs and sequenced libraries, with a

median of two exons captured per target OG (range: 1–4 exons). Only nine OGs were not cap-

tured across any sequenced libraries. The length of exons captured varied substantially, ranging

from 15–2,013 bp, with a median length of 153 bp for individual captured exons (S4 Fig).

Sequencing depth, duplication and missing data

Sequencing depth (coverage per base) summary plots (Fig 2A–2E for examples, and S3 Fig)

revealed variation between exons, OGs, and across individual sequenced libraries. The most

Table 1. Summary statistics for sequencing and de novo assembly of the isopod transcriptomes used in orthology assignment.

Isopod species Pairs of raw reads De novo assembled transcripts Number of identified OGs

Haloniscus sp. 21,354,576 43,455 942

Paraplatyarthrus sp. 24,795,047 40,461 895

Paraplatyarthrus subterraneus 21,896,830 46,114 1,011

Porcellionides pruinosus 23,941,206 37,368 806

Armadillidium vulgare 27,943,392 66,407 1,272

Ceratothoa sp. 24,786,465 137,713 1,260

https://doi.org/10.1371/journal.pone.0256861.t001
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Table 2. Exon capture sample, mapping and sequencing run statistics.

Sample ID Sequencing

library ID

Run Ingroup or

outgroup

Raw paired-

end reads

Clean paired-

end reads

retained (%)

Duplication

(%)

Missing

data (%)

Preservation age

(years)

Pool size/

capture

Libraries/

run

BES18775 27809 1 Ingroup 1,152,943 95.4 11.2 4.6 0.5 3 10

BES18774 27810 1 Ingroup 820,103 95.8 7.1 4.4 0.5 4 10

BES6573 27811 1 Ingroup 764,956 95.8 6.5 15.5 15.0 2 10

BES18645 27812 1 Ingroup 2,267,263 95.6 18.8 2.7 1.9 4 10

BES18659 27813 1 Ingroup 2,898,504 95.6 17.8 2.8 1.9 2 10

BES18659 27814 1 Ingroup 2,305,287 95.7 17.4 2.8 1.9 4 10

BES18659 27815 1 Ingroup 1,285,005 95.6 9.8 3.7 1.9 1 10

BES18601 27816 1 Ingroup 2,678,874 95.8 19.4 2.8 1.9 3 10

BES18754 27817 1 Ingroup 963,373 95.7 3.5 7.4 0.5 3 10

BES18644 27818 1 Ingroup 1,431,124 96.1 15.6 3.6 1.9 4 10

BES16434 28076 2 Ingroup 747,169 97.0 9.1 5.9 4.8 4 8

GAB01433 28077 2 Ingroup 875,801 97.3 20.0 7.9 7.1 4 8

GAB01616 28078 2 Ingroup 897,834 97.7 20.2 5.3 7.1 4 8

GAB00736 28079 2 Ingroup 2,058,751 94.3 29.0 4.5 8.8 4 8

GAB00764.1 28080 2 Ingroup 1,574,884 97.2 17.7 2.8 8.8 4 8

BES17062 28081 2 Ingroup 1,207,963 97.4 9.9 3.9 4.2 4 8

GAB01007.1 28082 2 Ingroup 1,696,723 97.3 24.0 3.7 8.0 4 8

GAB00764.1 28083 2 Ingroup 1,034,347 97.6 14.0 3.8 8.8 4 8

BES18773 1 3 Ingroup 282,187 96.9 0.8 37.5 1.9 4 22

BES18759.3 2 3 Ingroup 73,241 91.9 0.5 86.1 1.9 4 22

BES6655 3 3 Ingroup 135,325 94.2 1.4 83.7 16.2 4 22

BES16348 4 3 Ingroup 246,978 98.1 4.8 29.0 5.8 3 22

BES8623.1 5 3 Ingroup 230,473 95.2 0.6 70.0 15.9 4 22

BES16400.2 6 3 Outgroup 374,913 96.3 0.1 71.8 5.8 4 22

BES13246 7 3 Ingroup 620,284 95.9 0.7 19.4 10.2 4 22

BES13396 8 3 Ingroup 271,685 93.7 1.2 19.0 10.2 4 22

BES14385 9 3 Ingroup 109,362 98.4 0.7 52.8 10.2 4 22

BES13314 10 3 Ingroup 280,826 98.5 1.2 21.2 10.2 4 22

GAB00795 11 3 Ingroup 391,058 98.0 2.9 12.4 9.8 4 22

GAB00765 12 3 Ingroup 332,292 97.7 4.3 11.2 9.8 3 22

BES10201 13 3 Outgroup 89,157 98.4 0.1 99.4 14.2 4 22

BES6601.2 15 3 Ingroup 376,860 94.5 0.6 98.1 16.2 4 22

BES10410 16 3 Ingroup 509,729 92.1 1.8 40.5 13.2 4 22

BES6667.2 17 3 Ingroup 310,648 96.5 0.2 97.1 16.1 4 22

BES13452 18 3 Ingroup 382,589 97.8 0.2 44.6 10.2 4 22

BES8956,

BES13133.1,

BES13133.2

19 3 Ingroup 122,173 97.8 3.8 70.4 15.9 3 22

Ja243 20 3 Outgroup 346,847 98.3 0.6 66.8 6.4 3 22

B002 21 3 Outgroup 249,046 96.6 0.1 89.0 1.0 3 22

BES15525.10 22 3 Outgroup 239,462 98.4 1.3 38.8 7.0 4 22

BES15537.2 23 3 Outgroup 717,722 98.5 2.4 48.6 7.1 3 22

Note: sequencing of samples BES18659 and GAB00764.1 was repeated using multiple libraries prior to exon capture.

https://doi.org/10.1371/journal.pone.0256861.t002
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substantial differences in exon sequencing depth occurred amongst sequenced libraries from

the three different sequencing runs (χ2 = 99.7, df = 2, p< 0.0001; Fig 2C and 2F, and S5 Fig).

The third run comprised sequenced libraries with an 11.6 fold lower median coverage (95%

CI = 7.2, 18.9) across exons than the average median coverage values of runs 1 and 2 (which

have equivalent median sequencing depth; ratio of coverage = 1.1, 95% CI = 0.5, 2.2). In addi-

tion, partitioning random variation in sequencing depth among target OGs versus among

sequenced libraries in the analysis (after accounting for differences resulting from sequencing

run) revealed that 60% of the variation can be explained by individual sample differences,

while only 15% is caused by gene to gene variation. Certain sequenced libraries, including

27813, 27816 and 12, consistently encompassed the highest sequencing depth values across

exons within their respective runs, whereas sequenced libraries, such as 27809, 27811, 28076

and 15, repeatedly revealed some of the lowest values across exons (see S3 and S5 Figs).

Sequenced libraries from run 1 further appeared to contain greater variation in sequencing

depth values within distinct exons than runs 2 and 3 (see Fig 2C and 2F for examples).

Assessment of pooling selections prior to exon capture reactions (pool size/capture,

Table 2) and their impact on median sequencing depth revealed no evident differences across

particular pool sizes (S6 Fig). Although sample sizes for smaller pools were low and, as such,

not rigorously tested here, a pool size of 2 revealed distinctly different results for sequencing

depth across the two sequenced libraries included, with sequencing depth values constantly

higher for one sequenced library over the other (S6 Fig). Furthermore, the replicate samples of

BES18659 (27813, 27814 and 27815; S2 Table) had consistently high depth values for 50

Fig 2. Example plots of sequencing depth per base across orthologous groups (OGs): EOG54MW8B (3 exons; upper row A–C) and EOG54MW7V (4 exons; lower row

D–F). Examples from run 1 (includes sequenced libraries: 27816, 27817, 27818) and run 2 (sequenced libraries: 28076, 28077) are given in A and D, and from run 3

(sequenced libraries: 11, 12, 13, 15, 16) in B and E. Introns are delineated by vertical lines in A, B, D and E. Boxplots in C and F highlight the distribution of sequencing

depth for each exon within the OG grouped by the three different sequencing runs. Run 1 is indicated in green, run 2 in orange, and run 3 in purple. Horizontal lines in

C and F are median sequencing depths, vertical lines show boxplot whiskers, and solid points represent outliers.

https://doi.org/10.1371/journal.pone.0256861.g002
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randomly-selected exons irrespective of pool size (S6 Fig). Nevertheless, the sequencing depth

values were persistently lower across exons for the single sequenced library, 27815 (pooled

alone), which is consistent with the number of raw paired-end reads acquired for each of these

libraries (Table 2). A comparison of the median sequencing depth values across exons com-

pared with the number of raw paired-end reads obtained for each sequenced library revealed a

largely positive linear relationship for the first two runs, but highlighted a less prominent pat-

tern for run 3 (S7 Fig). Furthermore, the number of raw paired-end reads obtained was not

correlated with pool sizes prior to capture (Fig 3A).

Levels of PCR duplication were reasonably low within runs, ranging from 3.5–19.4% in run

1, 9.1–29% in run 2 and 0.1–4.8% in run 3, and did not differ substantially amongst ingroup

and outgroup species (Table 2). An assessment of the relationship between percentage duplica-

tion levels versus pool size per capture revealed no correlation, with similar values and no

apparent pattern across pools 1–4 (Fig 3B). The amount of missing data in terms of coverage

across exons (calculated based on the dataset B concatenated alignment) differed considerably

between sequencing run 3 and the batches with fewer pooled libraries, ranging from 2.7–

15.5% for run 1, 2.8–7.9% for run 2 and 11.2–99.4% for sequencing run 3 (Table 2). The raw

paired-end data yield for sequenced libraries in run 3 did not appear to directly correspond to

the amount of data acquired in the final alignment, with sequenced libraries 11 and 12 com-

prising 391,058 and 332,292 raw paired-end reads and 12.4 and 11.2% missing data, respec-

tively, and sequenced libraries 15 and 17 consisting of a similar raw data yield, but a

substantially larger amount of missing data (98.1 and 97.1%, respectively) (Table 2). The six

outgroup taxa, which are more distantly related to the reference used for mapping, revealed

similar levels of missing data to some of the ingroup sequenced libraries included in run 3

(Table 2).

Fig 3. Plots of pooling sizes (1–4) prior to capture experiments against (A) raw paired-end reads and (B) duplication levels (%). Points are colour-coded by sequencing

run, with run 1 indicated in green, run 2 in orange, and run 3 in purple.

https://doi.org/10.1371/journal.pone.0256861.g003
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We assessed whether the differences in missing data within sequencing runs (particularly

run 3) were related to the preservation age of specimens. For run 1, the majority of samples

were collected 0.5–2 years prior and were characterised by a similarly low percentage of miss-

ing data. However, one older sample, which was collected around 15 years prior, consisted of

the highest level of missing data for the run at 15.5% (Fig 4A and Table 2). For run 2, speci-

mens ranged from 4–8.8 years old, and the level of missing sequence data for all sequenced

libraries corresponded to that of the more freshly collected and preserved specimens from run

1 (Fig 4A and Table 2). For the third run, the percentage of missing data varied and did not

appear to correlate with specimen preservation age; nevertheless, sequencing libraries with the

oldest samples (14–16 years old) all comprised a large degree of missing data (Fig 4A and

Table 2). Run 3 sequenced libraries were further compared on the basis of ingroup and out-

group status (Fig 4B), with most outgroup taxa comprising a reasonably large amount of miss-

ing data (38.8–99.4%) independent of preservation age. Furthermore, sequencing depth

against age was examined for exons from 50 randomly-selected OGs, with no apparent rela-

tionship (S8 Fig). This lack of a correlation was particularly evident for run 1, which exhibited

a large degree of variation in median sequencing depth among the sequenced libraries despite

similar preservation ages, and highlighted the individual specimen effect on variation (S8 Fig).

Exon sequencing depth uniformity

Coefficient of dispersion (CD) across sequencing runs for the targeted (regions of the target

OG where overlapping baits were placed) exons for 50 randomly selected OGs was consistently

higher and more variable in run 3 for sequencing depth (S9 Fig). The primarily low CD values

of 10–15% for sequenced libraries in runs 1 and 2, and 20–30% for those in run 3, nevertheless,

revealed largely consistent sequencing depth along positions within the majority of exons

Fig 4. Preservation age of specimens (years) included in the exon captures against (A) missing data (%), and (B) missing data (%) for run 3 sequenced libraries only.

Points in (A) are colour-coded by sequencing run, with run 1 indicated in green, run 2 in orange, and run 3 in purple. Points in (B) are coloured by ingroup (light

blue) and outgroup (dark blue) status.

https://doi.org/10.1371/journal.pone.0256861.g004

PLOS ONE Isopod exon capture bait design

PLOS ONE | https://doi.org/10.1371/journal.pone.0256861 September 17, 2021 14 / 24

https://doi.org/10.1371/journal.pone.0256861.g004
https://doi.org/10.1371/journal.pone.0256861


examined, indicating high uniformity (S9 Fig). These exons were typically short, between 94–

234 bp long; however, CD values for the smaller number of long exons (EOG5FXPQ3: 852 bp

and EOG505QG8: 876 bp, S9 Fig) were much higher (>60%), signifying greater levels of varia-

tion and lower uniformity.

Phylogenetic analyses

The three final alignments (containing up to 25% (A), 50% (B), and 75% (C) missing

sequences) included sequence data for all 40 sequenced libraries, and consisted of 420, 807,

and 1026 exons, respectively (alignments available on Figshare at doi:10.25909/

5ef570329cbdd). For dataset A, these exons were included from 335 of the 469 targeted OGs,

constituting 88,402 bp of DNA sequence data. Datasets B and C consisted of exons from 440

(143,445 bp) and 451 (174,006 bp) OGs, respectively. The inferred ML trees revealed identical

topologies (Fig 5 and S10 Fig), with the majority of branches showing bootstrap support of

100%. Support values were largely consistent across the three phylogenies, discounting some

of the more recent splits (see Fig 5A–5F), where bootstrap support varied between trees and

did not necessarily increase with the addition of further exon data. Support for clades A and B

(Fig 5) decreased noticeably between dataset A and the remaining two datasets (B and C),

whereas support for clade F increased. The phylogenetic positions of the six outgroup taxa

Fig 5. Maximum likelihood (ML) phylogeny of Haloniscus and outgroup isopod taxa inferred using RAxML. The phylogeny represents trees reconstructed using

three datasets (datasets A–C) for which the resultant topologies were identical (see S10 Fig for all trees). ML bootstrap values are summarised on branches (i.e. datasets A,

B and C, respectively, with each value separated by a forward slash unless all values are identical). Letters A–G represent branches with support values that differ

significantly across the phylogenies and/or are referred to in the text. Isopod taxa are listed by species name and/or collection locality. Included abbreviations are as

follows: WA = Western Australia, SA = South Australia, and NT = Northern Territory.

https://doi.org/10.1371/journal.pone.0256861.g005
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were principally well-resolved, except for clade G (Fig 5), which is likely due to the large

amount of missing data for H. anophthalmus (BES10201 (library 13), Table 2).

HybPiper assembly comparison

Sequence data assembly using HybPiper, which involved an initial mapping step where

cleaned reads were assigned to target OGs from the eight reference species (see S1 Table),

revealed that sequencing runs 1 and 2 generated a larger amount of data for sequenced librar-

ies compared to run 3. The number of mapped reads and correspondingly the number of OGs

recovered was typically higher for sequenced libraries of runs 1 and 2 (S3 Table). Results for

libraries included in run 3 were more varied, with some sequenced libraries, including 4, 10,

11 and 12, containing over 400 captured genes, while others, such as 2, 13, 15 and 17, were

found to comprise the largest amount of missing data (S3 Table). Sequenced libraries for out-

group species revealed variable results following the HybPiper pipeline, with between 12

(sequencing ID: 13) and 441 (sequencing ID: 22) total OGs captured. The final alignment

(dataset D) consisted of sequences for all 40 isopod sequenced libraries, and comprised

sequences from 454 (after removal of 11 OGs with paralogous sequences) concatenated OG

files, totalling 253,786 bp (alignment available on Figshare at doi:10.25909/5ef570329cbdd).

The inferred ML phylogeny (S11 Fig) revealed a consistent topology to the trees reconstructed

using the mapping approach (Fig 5 and S10 Fig), with the majority of branches exhibiting

bootstrap support values of 100%. Lower support values tended to be associated with clades

containing taxa with a large amount of missing data.

Discussion

We employed a custom transcriptome-based exon capture approach without a reference genome

to effectively generate an informative phylogenomic dataset for the genus Haloniscus and more

distantly related paraplatyarthrid and armadillid isopods. Transcriptome sequences were used

without initially distinguishing intron-exon boundaries prior to bait design, which resulted in the

recovery of numerous coding exons of various lengths, together with a considerable amount of

non-coding (intron) flanking data. The inferred bait set represents a significant step forward from

earlier molecular datasets used to explore Haloniscus evolution and systematics, which utilised

one mitochondrial (COI [28, 29]) or two genes (COI and 18S rRNA [30]), with bootstrap support

values generally poor for internal splits within Haloniscus phylogenetic trees. The well-resolved

phylogenies produced here, therefore, indicate that this custom bait set provides considerable

potential for application in future isopod molecular studies, particularly in light of the broad taxo-

nomic applicability of our baits [27]. We examine the overall efficacy of our bait design and the

performance of this transcriptome-based exon capture approach in more detail below.

This transcriptome-based exon capture approach has several key advantages, most notably

helping to overcome the lack of an available reference genome to recognise intron-exon

boundaries prior to bait design. Tiling across these boundaries has allowed for the recovery of

many short (<100 bp) and longer (>300 bp) exons, with high uniformity in sequencing depth

(S9 Fig) and a large amount of variable non-coding flanking (intron) data. We recovered a sig-

nificant quantity of short exons (median length: 153 bp), which would not typically be targeted

in exon capture studies that use a reference genome and larger exons for bait design [7], but

that dominate the majority of arthropod genes. Moreover, calculations for the coefficient of

dispersion have highlighted that the bait design (which spans intron boundaries) promoted

consistent sequencing depth values across, primarily short, exons. Portik et al. [24] reported

comparable findings, contrasting with studies that utilised a reference genome in bait design

to define and tile across exons, which have uncovered an ‘edge effect’, where fewer tiled baits
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towards the ends of exons leads to a decrease in sequencing depth at the exon edges [7, 15].

The pipeline outlined here, however, differs from that used by Portik et al. [24] by using: Bait-

Fisher, which permits a large number of loci to be targeted for multiple reference species with

a smaller number of baits (reducing overall costs) [27], and Orthograph, which reliably infers

OGs using a best reciprocal hit approach [38]. Lastly, the intron sequence data, while not

examined here, is likely to be valuable for population genetics, species delimitation, and phylo-

genetic analyses.

For our exon capture approach, sequencing depth was consistently high across targeted

exons for all libraries incorporated within the first and second sequencing runs, but was signif-

icantly lower for the third. While the general coverage levels for the first two runs considerably

outweighed the amount needed per exon for inclusion in the final alignments, the overall

amount of missing data (across exons in the dataset B alignment) for the majority of sequenced

libraries included in the third run was considerably larger than for libraries within the previous

sequencing rounds. These differences in sequencing depth and missing data recovered in the

third run likely resulted from the higher number of pooled libraries prior to sequencing and,

consequently, we recommend either a more conservative pooling selection or an alternative

high-throughput platform, such as the Illumina HiSeq or NovaSeq, especially when the

amount of intron data being sequenced is unknown. The third run, however, also consisted of

many isopod specimens stored for a long period of time (collected and preserved in ethanol

>14 years prior) with likely degraded DNA as well as more divergent outgroup taxa, which

may have further influenced the ultimate success of this exon capture run [7, 20, 24].

Analyses of specimen storage time (age) uncovered no apparent relationship with either the

level of sequencing depth across exons or missing data (Fig 4A and S8 Fig). Overall, the per-

centage of missing data varied considerably across sequenced libraries within the third

sequencing run, with data from some of the more recently collected specimens (i.e. sequencing

ID: 2 (BES18759.3), which contained a corresponding low number of raw paired-end reads)

consisting of few recovered exons (Fig 4). Nevertheless, the oldest specimens in the first and

third runs all contained the highest proportion of missing data and, therefore, it is probable

that specimen preservation age (likely combined with storage conditions [20], although not

examined here) played a role in the success of these capture experiments. Overall, the bait

design and this capture protocol successfully enriched exon data from up to 16-year-old isopod

specimens, which is comparable to findings from previous phylogenomics studies [19, 64, 65].

The outgroup isopods exhibited an expected higher percentage of missing data (see [7, 24]),

especially for library 21 (B002, Armadillidae). However, we acknowledge that this level of miss-

ing data may be a result of the mapping approach used (mapped to Haloniscus reference OGs)

in data processing rather than to the efficacy of the baits, since similar numbers of raw paired-

end reads were obtained for these outgroups and the Haloniscus sequenced libraries included

in the run, which suggests that assembly methods may have been preferential to mapping for

these outgroup taxa. Further analyses using the assembly pipeline, HybPiper, yielded similar

results to those produced with the Haloniscus reference mapping approach, with capture runs

1 and 2 performing better overall (i.e. with greater numbers of OGs recovered) compared to

run 3, and Haloniscus sequenced libraries revealing generally consistent results across the anal-

yses. The results for the outgroups, however, were improved using the assembly method, with

comparable results revealed to those for the Haloniscus sequenced libraries within that run

(but with sequenced libraries 13 (Haloniscus anophthalmus) and 21 (Armadillidae) still record-

ing the lowest number of recovered OGs). The increased number of OGs recovered is likely

due to the inclusion of the eight reference species, with broad taxonomic depth, within the

pipeline rather than only a single Haloniscus reference taxon in mapping. The designed baits

were, therefore, able to enrich exon capture data from a range of oniscidean isopod families,
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including Philosciidae, Paraplatyarthridae, and Armadillidae (not represented in the bait

design), and are suitable for high-level phylogenetic practice. The output trees (based on data-

sets Fig 5A–5D and S11 Fig), furthermore, were largely identical topologically, confirming the

utility of the Haloniscus mapping approach, particularly when the reference is closely related

to the target species.

We further provide additional empirical data on the question surrounding how many

libraries may be pooled in a single reaction prior to capture without overly impacting the qual-

ity of the sequence data obtained (as in [24]). We tested pools consisting of 1–4 libraries (12

pooled reactions total), and considered potential effects on sequencing depth, raw paired-end

data yield and PCR duplication levels. While low sample sizes precluded rigorous testing, we

uncovered no discernible patterns in the exon sequencing depth or raw sequencing yield

across sequenced libraries from different pool sizes (Fig 3A and S6 Fig). However, unlike Por-

tik et al. [24], we uncovered no trend in duplication levels across pooling sizes (Fig 3B), but

instead, duplication was predominantly lower across sequenced libraries in the third run,

which included a lower number of raw paired-end reads for distinct libraries. Therefore, our

results suggest that at least four libraries (or potentially more) may be pooled in a single cap-

ture reaction, which has important implications for reducing the costs of a study by improving

the efficiency of experiments and increasing the number of samples that can be included in a

project [12]. However, the limits of this pooling strategy have not been tested here and should

be examined in future studies. Rather than library pooling selections or the preservation age of

specimens, our results have indicated that undetermined characteristics of the samples

included in the capture runs, such as field handling or storage conditions, likely accounted for

the variation (after excluding sequencing run) in general sequence data quality.

Overall, the exon capture methods and bioinformatics data processing approach used here

have been effective in obtaining a large set of single-copy orthologous groups, successful bait

design that enriches targeted loci from diverse Haloniscus and other more distantly related iso-

pod species, and generating a large and informative phylogenomic dataset. While the final

alignments employed for ML tree inference contained differing levels of missing data, the phy-

logenies revealed identical topologies and were largely consistent with previous taxonomic and

phylogenetic research [28,30,66]. In contrast to previous studies, however, most of the phylo-

genetic relationships inferred here were fully resolved, showing maximal bootstrap support,

particularly for internal branches, which provides further confidence in this approach. Lower

node support for some of the recently diverged isopod taxa (Fig 5 and S11 Fig) may have been

influenced by methods used to initially select OGs (as per [67]); however, the issue may be

equally attributed to samples of poorer quality and, thus, requires further investigation. Addi-

tional phylogenetic analyses, as well as the implications of these results for the systematics and

biogeographic history of Haloniscus, will be examined in a subsequent paper. By providing our

transcriptomes, filtered OGs, bait design, and custom bioinformatics scripts with automated

post-processing steps, we make our approach transparent and, therefore, useful and adaptable

for future studies. While detecting and separating out the many exons manually is a time-con-

suming process, automated scripts have recently been published [15] that infer intron-exon

boundaries from alignments. Finally, our methodological outline permits these target capture

methods to be carried out completely in-house, without the need for outsourcing, whereas pre-

vious protocols have not always disclosed complete workflows.

Supporting information

S1 Fig. A short read alignment (in integrative genomics viewer) highlighting the position

of an intron-exon boundary. Each bar represents a single read. Bases matching the reference
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sequence are shown in grey, while soft-clipped bases (mismatched bases) are coloured. The

Haloniscus reference sequence is indicated above the blue bar at the bottom of the figure.

(PDF)

S2 Fig. Alignments of short reads (in integrative genomics viewer) to three putative exons

(blue bars) after inferring intron-exon boundaries from the Haloniscus reference sequence

used in bait design. (A) Bases matching the reference sequence are shown in grey, while mis-

matched bases or bases beyond the reference are coloured, representing introns and single

nucleotide polymorphisms, (B) position of baits regions. The reads and the reference are from

different species, but both are from the Haloniscus genus.

(PDF)

S3 Fig. Sequencing depth summaries for all 469 targeted orthologous groups (OGs), and

isopod sequenced libraries. Each page shows one OG and the sequencing depth results for all

libraries. Vertical lines indicate intron positions.

(PDF)

S4 Fig. A frequency distribution for the length of exons (bp) captured across the three

sequencing runs. Run 1 is indicated in green, run 2 in orange, and run 3 in purple.

(TIF)

S5 Fig. Distribution of sequencing depth across isopod sequenced libraries at each exon

within all orthologous groups (OGs), grouped by the three sequencing runs. Run 1 is

depicted in green, run 2 in orange, and run 3 in purple. The ID of each OG is specified above

plots. Horizontal lines are median sequencing depths, vertical lines depict boxplot whiskers,

and solid points represent outliers.

(PDF)

S6 Fig. Plots of pooling sizes (1–4) prior to capture against median sequencing depth

across isopod sequenced libraries for exons of 50 randomly targeted orthologous groups

(OGs), separated by sequencing run (1–3). The ID of each OG is specified above plots, and

points are coloured according to sequencing ID.

(PDF)

S7 Fig. Plots of raw paired-end reads against median sequencing depth across isopod

sequenced libraries for exons of 50 randomly targeted orthologous groups (OGs), sepa-

rated by sequencing run (1–3). The ID of each OG is specified above plots, and points are col-

oured according to sequencing ID.

(PDF)

S8 Fig. Plots of specimen preservation age (time in years) against median sequencing

depth across isopod sequenced libraries for exons of 50 randomly targeted orthologous

groups (OGs), separated by sequencing run (1–3). The ID of each OG is specified above

plots, and points are coloured according to sequencing ID.

(PDF)

S9 Fig. Distribution of the robust coefficient of dispersion (CD) across isopod sequenced

libraries at each exon for 50 randomly targeted orthologous groups (OGs), separated by

sequencing run. Run 1 is depicted in green, run 2 in orange, and run 3 in purple. The ID of

each OG is specified above plots. Horizontal lines show median CD, vertical lines depict box-

plot whiskers, and solid points represent outliers.

(PDF)
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S10 Fig. Maximum likelihood (ML) phylogenies of Haloniscus and outgroup isopods

inferred using RAxML and varying levels of missing data. Dataset A has a 25% missing

sequence threshold, dataset B a 50% threshold, and dataset C a 75% threshold. ML bootstrap

values are indicated on branches, with letters A–G representing support values that differ sig-

nificantly across the phylogenies and/or are referred to in the text. Isopod taxa are listed by

species name and/or collection locality. Included abbreviations are as follows: WA = Western

Australia, SA = South Australia, and NT = Northern Territory.

(PDF)

S11 Fig. Maximum likelihood (ML) phylogeny of Haloniscus and outgroup isopod taxa

inferred using RAxML and dataset D (HybPiper). ML bootstrap values are indicated on branches

and isopod taxa are listed by species name and/or collection locality. Included abbreviations are as

follows: WA = Western Australia, SA = South Australia, and NT = Northern Territory.

(PDF)

S1 File. Continued details for transcriptome sequencing and contig assembly methods.

(DOCX)

S1 Table. Taxon sampling for transcriptome sequencing, and the number of individuals

pooled for each library.

(XLSX)

S2 Table. Taxon sampling for exon capture with detailed collection data. This information

includes Western Australian Museum Biospeleology Collection (BES) and Great Artesian

Basin (GAB) sample identifiers. Note: the sample from Windimurra consists of pooled DNA

extracts from three different individuals. Included abbreviations are as follows: WA = Western

Australia, SA = South Australia, and NT = Northern Territory.

(XLSX)

S3 Table. Summary statistics for HybPiper data assembly. Note: sequencing of samples

BES18659 and GAB00764.1 was repeated using multiple libraries prior to exon capture.

(XLSX)
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