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Abstract: The probe-type and substrate-type ultrasonic micro/nano manipulation systems have proven
to be two kinds of powerful tools for manipulating micro/nanoscale materials. Numerical simulations
of acoustofluidic fields in these two kinds of systems can not only be used to explain and analyze
the physical mechanisms of experimental phenomena, but also provide guidelines for optimization
of device parameters and working conditions. However, in-depth quantitative study and analysis
of acoustofluidic fields in the two ultrasonic micro/nano manipulation systems have scarcely been
reported. In this paper, based on the finite element method (FEM), we numerically investigated
the two-dimensional (2D) axisymmetric acoustofluidic fields in the probe-type and substrate-type
ultrasonic micro/nano manipulation systems by the perturbation method (PM) and Reynolds stress
method (RSM), respectively. Through comparing the simulation results computed by the two methods
and the experimental verifications, the feasibility and reasonability of the two methods in simulating
the acoustofluidic fields in these two ultrasonic micro/nano manipulation systems have been validated.
Moreover, the effects of device parameters and working conditions on the acoustofluidic fields are
clarified by the simulation results and qualitatively verified by the experiments.

Keywords: acoustic streaming; acoustofluidics; micro/nano; manipulation; FEM

1. Introduction

In the past two decades, acoustic micro/nano manipulation methods [1–3] have shown tremendous
potential applications in biomedical engineering [4,5], bioanalytical chemistry [6,7], material science [8,9],
micro/nano fabrication [10,11], lab-on-a-chip (LOC) technology [12,13] and so forth. Compared
to other physical micro/nano manipulation methods, such as optical methods [14,15], magnetic
methods [16–18], mechanical methods [19,20], and dielectrophoretic (DEP) methods [21–23], acoustic
micro/nano manipulation methods possess the merits such as simple fabrication, little selectivity to
optical/electrical/magnetic properties of manipulated samples, and good compatibility with other
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LOC components [1,2]. The acoustic micro/nano manipulation devices can be divided into two major
categories, i.e., surface acoustic wave (SAW)-based devices [24,25] and bulk acoustic wave (BAW)-based
devices [1]. For SAW-based devices, diverse manipulation functions, such as trapping [26,27],
patterning [28,29], separation [30,31], concentration [32,33], mixing [34,35], and rotation [36,37] have been
implemented by various groups. For BAW-based devices, manipulation functions such as levitation [38,39],
assembly [40,41], focusing [42,43] and sorting [44] have also been realized by many researchers.

It is well known that in acoustic micro/nano manipulation systems, acoustic radiation force [45] and
acoustic streaming [46–50] are employed to implement micro/nano manipulation functions. Therefore,
both experimental measurement and numerical modeling of these two kinds of acoustic physical
effects are essential for experimental phenomenon explanations and parameter optimizations [51–56].
For acoustic radiation force, numerical simulations based on Gor’kov’s theory [45] have grown to
be relatively mature [57,58]. For acoustic streaming, to date, there have been three mainstream
simulation methods, that is, the limiting/slip velocity method [59–61], the perturbation method
(PM) [46,62–66], and the Reynolds stress method (RSM) [47,67]. The limiting/slip velocity method can
only be applied to simulate acoustic streaming driven by boundary layers [68], but is inapplicable
for simulating Eckart streaming [69]. The PM and RSM are capable of simulating most kinds of
acoustic streaming fields, including Eckart streaming [69], Rayleigh streaming [70] and Schlichting
streaming [71]. Commonly, numerical simulations of 2D acoustic streaming fields are restricted
to 2D rectangular coordinate system-based simulations by assuming that longitudinal lengths of
microchannels [72,73] or depths of chambers [74] are infinite. However, numerical simulations of 2D
axisymmetric acoustic streaming fields have rarely been reported, which may play important roles in
droplet-based acoustofluidics [66,67].

Although both the PM and RSM can be applied to simulate most kinds of acoustic streaming
fields, in the reported literatures in the field of Acoustofluidics, the PM is more inclined to be utilized
for simulating acoustic streaming fields in SAW acoustofluidic devices and systems [32,61,72], while
the RSM is more adopted to simulate acoustic streaming fields in BAW acoustofluidic devices and
systems [1,67,74]. However, there has been no literature with respect to comparisons of simulation
results computed by the PM and RSM, and some researchers even get confused when facing the issue
that how to select the most appropriate method for simulating acoustic streaming fields in specific
acoustofluidic systems. Therefore, it is necessary to physically understand the algorithm difference
between the PM and RSM for engineering simulations of acoustic streaming.

The authors’ group has proposed many acoustic micro/nano manipulation principles [1] based
on the probe-type [75,76] and substrate-type [77,78] ultrasonic devices. For the probe-type ultrasonic
devices, the ultrasonic probe-droplet-substrate system, in which an ultrasonically vibrating micro
manipulating probe (MMP) is inserted into a droplet of micro/nanoscale object suspension on a
stationary substrate, is established to manipulate micro/nanoscale objects at the droplet-substrate
interface near the MMP. Based on the ultrasonic probe-droplet-substrate system, manipulation functions
such as trapping [75], rotation [79], removal [80] and concentration [81] have been implemented. For
the substrate-type ultrasonic devices, the droplet-ultrasonic substrate system, in which a droplet of
micro/nanoscale object suspension is placed on an ultrasonically vibrating substrate, is established
to manipulate micro/nanoscale objects at the droplet-substrate interface. Concentration of silver
nanowires (AgNWs) has been realized by this system [82]. However, quantitative analysis of the
acoustofluidic fields (especially the acoustic streaming fields) in the aforementioned systems is very
insufficient, which hinders the deeper understanding of dynamics of micro/nanoscale objects in the
manipulation processes, as well as the optimization of devices’ parameters.

In this work, based on the finite element method (FEM), we quantitatively investigate the
2D axisymmetric acoustofluidic fields in the probe-type and substrate-type ultrasonic micro/nano
manipulation systems by the PM and RSM, respectively. By numerical simulations and experimental
verifications, the effects of device parameters and working conditions on the acoustofluidic fields have
been elucidated by the computation and verified by the experiments.
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2. Basic Theories and Simulation Methods of 2D Axisymmetric Acoustic Streaming Fields

The fundamental governing equations of acoustic streaming theory of the perturbation method
(PM) and Reynolds stress method (RSM) are firstly introduced, respectively, and then the two simulation
methods are elaborated.

2.1. The Perturbation Method (PM)

Herein, the fluid is assumed to be homogeneous and isotropic, in which the continuity and the
compressible Navier-Stokes (N-S) equations are satisfied as

∂ρ

∂t
+∇ · (ρu) = 0 (1)

ρ(
∂u
∂t

+ u · ∇u) = −∇p + µ∇2u + (µb +
1
3
µ)∇(∇ · u) (2)

where ρ, µ, and µb are the mass density, shear viscosity, and bulk viscosity of the fluid, respectively; p
and u are the pressure and velocity (Eulerian) in the fluid, respectively.

It is assumed by Nyborg’s perturbation theory [46] that the second-order acoustic streaming
field is superposed on the first-order acoustic field. Using this theory, the fluid density, pressure, and
velocity (absence of background flow) can, respectively, be expressed as

ρ = ρ0 + ρ1 + ρ2 + · · · (3)

p = p0 + p1 + p2 + · · · (4)

u = u1 + u2 + · · · (5)

where the subscripts 0, 1 and 2 represent the static (absence of sound), first-order and second-order
quantities, respectively. By substituting Equations (3)–(5) into Equations (1) and (2) and only considering
the equations of the first-order terms, equations for solving the first-order acoustic field can be obtained
as

∂ρ1

∂t
+ ρ0∇ · (u1) = 0 (6)

ρ0
∂u1

∂t
= −∇p1 + µ∇2u1 + (µb +

1
3
µ)∇(∇ · u1) (7)

Repeating the above process, considering the equations of the second-order terms and taking the
time average, the continuity and N-S equations for solving the second-order time-averaged acoustic
streaming field can be expressed as〈

∂ρ2

∂t

〉
+ ρ0∇ · 〈u2〉+∇ ·

〈
ρ1u1

〉
= 0 (8)

ρ0

〈
∂u2

∂t

〉
+ ρ0〈u1 · ∇u1〉+

〈
ρ1
∂u1

∂t

〉
= −∇

〈
p2

〉
+ µ∇2

〈u2〉+ (µb +
1
3
µ)∇(∇ · 〈u2〉) (9)

where 〈A〉 denotes the time average of the quantity A over a full oscillation time period. For the steady

second-order acoustic streaming flow state,
〈
∂ρ2
∂t

〉
= 0 and

〈
∂u2
∂t

〉
= 0, and then Equations (8) and (9)

become
ρ0∇ · 〈u2〉 = −∇ ·

〈
ρ1u1

〉
(10)

−∇
〈
p2

〉
+ µ∇2

〈u2〉+ (µb +
1
3
µ)∇(∇ · 〈u2〉) = ρ0〈u1 · ∇u1〉+

〈
ρ1
∂u1

∂t

〉
(11)

It is seen that the physical quantities of the first-order acoustic field act as the source terms (at
the right-hand sides of Equations (10) and (11)) for the second-order acoustic streaming field (at the
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left-hand sides of Equations (10) and (11)). Thus, the driving force of acoustic streaming FP can be
written as

FP = −

〈
ρ1
∂u1

∂t

〉
− ρ0〈u1 · ∇u1〉 (12)

2.2. The Reynolds Stress Method (RSM)

It is claimed by Lighthill that acoustic streaming is forced by the action of the Reynolds stress,
which is defined as the mean value of the acoustic momentum flux [83]. In acoustic fields, the
second-order tensor form of the Reynolds stress can be expressed as

R =
〈
ρ0u1u1

〉
(13)

The divergence of the Reynolds stress tensor can cause a net force per unit volume, i.e., the driving
force of acoustic streaming FR, to act on the fluid, and it can be written as

FR = −∇ ·R = −∇ ·
〈
ρ0u1u1

〉
= −ρ0

〈
(u1 · ∇)u1 + u1(∇ · u1)

〉
(14)

The steady acoustic streaming field generated by FR satisfies the N-S equation

ρ0(u2 · ∇u2) = −∇
〈
p2

〉
+ µ∇2

〈u2〉+ (µb +
1
3
µ)∇(∇ · 〈u2〉) + FR (15)

The acoustic streaming field also satisfies the continuity equation

∇ · 〈u2〉 = 0 (16)

According to the algorithm of the divergence of the second-order tensor in the 3D cylindrical
coordinate system (r, θ, z), the r-, θ- and z-directional components of FR can be expressed as

Fr = −
∂
〈
ρ0u1r

2
〉

∂r
−

1
r
∂
〈
ρ0u1ru1θ

〉
∂θ

−
∂
〈
ρ0u1ru1z

〉
∂z

−

〈
ρ0u1r

2
〉

r
(17)

Fθ = −
∂
〈
ρ0u1θu1r

〉
∂r

− 2
1
r

∂
〈
ρ0u1θ

2
〉

∂θ
−
∂
〈
ρ0u1θu1z

〉
∂z

−

〈
ρ0u1ru1θ

〉
r

(18)

Fz = −
∂
〈
ρ0u1zu1r

〉
∂r

−
1
r
∂
〈
ρ0u1zu1θ

〉
∂θ

−

∂
〈
ρ0u1z

2
〉

∂z
−

〈
ρ0u1ru1z

〉
r

(19)

where u1r, u1θ and u1z are the r-, θ- and z-directional acoustic velocities in the 3D cylindrical coordinate
system, respectively. Taking the 2D axisymmetric form of the driving force, the r- and z-directional
components of FR can be simplified as

Fr = −
∂
〈
ρ0u1r

2
〉

∂r
−
∂
〈
ρ0u1ru1z

〉
∂z

−

〈
ρ0u1r

2
〉

r
(20)

Fz = −
∂
〈
ρ0u1zu1r

〉
∂r

−

∂
〈
ρ0u1z

2
〉

∂z
−

〈
ρ0u1ru1z

〉
r

(21)

Compared with the expression of components of FR in the 2D rectangular coordinate system [84],
nonlinear terms −

〈
ρ0u1r

2
〉
/r and −

〈
ρ0u1ru1z

〉
/r are generated in Fr and Fz, respectively. Herein, to

investigate the effect of these nonlinear terms on the acoustic streaming fields, we define the driving
force of acoustic streaming without the nonlinear terms as FR1, and the components of FR1 are
expressed as

Fr1 = −
∂
〈
ρ0u1r

2
〉

∂r
−
∂
〈
ρ0u1ru1z

〉
∂z

(22)
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Fz1 = −
∂
〈
ρ0u1zu1r

〉
∂r

−

∂
〈
ρ0u1z

2
〉

∂z
(23)

In this work, numerical simulations of acoustofluidic fields are carried out by the commercial
FEM software COMSOL Multiphysics 5.3a (Burlington, MA, USA). The computational process consists
of the following two steps. In the first step, acoustic field, which mainly includes the acoustic velocity
field and acoustic pressure field, is computed according to the external actuation conditions and
acoustic boundary conditions. In the second step, with the computed result of acoustic field, the
acoustic streaming field is computed according to the fluidic boundary conditions. For the PM, the
right-hand side of Equation (10) is included as a source term by adding a so-called weak contribution
to the governing equations, and Equation (12) acts as a body force term. For the RSM, Equations (20)
and (21) act as the body force terms in the r and z directions, respectively. More detailed descriptions
of the FEM models will be shown in Section 3.

3. Numerical Models

3.1. The Ultrasonic Probe-Droplet-Substrate System for Micro/Nanoscale Particle Removal

A numerical model for the ultrasonic probe-droplet-substrate system for micro/nanoscale particle
removal is illustrated in Figure 1a. In COMSOL Multiphysics, the Thermoacoustics-Solid Mechanics
coupled module is firstly used to compute the acoustic field by exciting the MMP in the z direction.
The acoustic boundary condition is shown in Figure 1b, in which the normal impedance Z0 = ρaircair is
adopted at the droplet-air interface; the droplet-substrate interface is set to be slip; the MMP-droplet
interface is set to be the thermoviscous acoustic-structure boundary. All of the interfaces are set to
be isothermal. In the Laminar Flow module for simulating the acoustic streaming field, the fluidic
boundary condition is shown in Figure 1c, in which all of the interfaces are set to be slip [76,80,81,85–87].

The meshed FEM models of the ultrasonic probe-droplet-substrate system for the PM and RSM
are shown in Figure 1d,e, respectively, in which the radius and height of the droplet are 5 mm and
2 mm, respectively. The maximum element size of the MMP is set to be 5 µm (1/3 of the radius of the
MMP when R = 15 µm) in the models.

For simulating the acoustofluidic field by the PM, as shown in Figure 1d, the computational mesh
is generated from a maximum element size 2δ at the fluid domain boundaries and a maximum element

size in the bulk of the fluid domain given by 10δ, where δ =
√

2µ
ωρ0

is the viscous boundary layer
thickness at 40 kHz (ω is the angular frequency of acoustic field) [1]. This mesh constitution scheme
has proven to be effective and mesh converged and independent [61,62,72,88].

For simulating the acoustofluidic field by the RSM, since the driving force components
(Equations (20) and (21)) contain nonlinear terms, the variation of the driving force for acoustic
streaming may be drastic within the fluid domain near the MMP. Therefore, to precisely compute
the driving force for acoustic streaming in the whole fluid domain as much as possible, based on the
computation capability of the laptop (Lenovo E51-80-ISE, i7-6500U CPU, 16G RAM), the maximum
element size of the fluid domain near the MMP is set to be 10 µm (about 0.34% of the wavelength
of acoustic field at 40 kHz) in 0 < r < 0.5 mm region (Region 1), where removal of micro/nanoscale
particles occurs. As shown in Figure 1e, the maximum element sizes of the rest fluid domain are set
to be 20 µm (about 0.68% of the wavelength of acoustic field at 40 kHz) in 0.5 < r < 1.5 mm region
(Region 2), and 40 µm (about 1.36% of the wavelength of acoustic field at 40 kHz) in 1.5 < r < 5 mm
region (Region 3), respectively. The mesh independence analysis for this mesh constitution scheme can
be found in the Supplementary Materials.
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Figure 1. (a) 2D axisymmetric model of the acoustofluidic field in the ultrasonic probe-droplet-substrate
system. (b) Boundary condition for the acoustic field in the ultrasonic probe-droplet-substrate system.
(c) Boundary condition for the acoustic streaming field in the ultrasonic probe-droplet-substrate system.
(d) Meshed model for the acoustofluidic field in the ultrasonic probe-droplet-substrate system under
the simulation scheme of the PM. (e) Meshed model for the acoustofluidic field in the ultrasonic
probe-droplet-substrate system under the simulation scheme of the RSM.

3.2. The Droplet-Ultrasonic Substrate System for Micro/Nanoscale Particle Concentration

A numerical model for the droplet-ultrasonic substrate system for micro/nanoscale particle
concentration is illustrated in Figure 2a. The Thermoacoustics module is firstly utilized to compute the
acoustic field by harmonically actuating the partial boundary of the fluid in the z direction. The acoustic
and fluidic boundary conditions are shown in Figure 2b,c, respectively.
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Figure 2. (a) 2D axisymmetric model of the acoustofluidic field in the droplet-ultrasonic substrate
system. (b) Boundary condition for the acoustic field in the droplet-ultrasonic substrate system.
(c) Boundary condition for the acoustic streaming field in the droplet-ultrasonic substrate system.
(d) Meshed model for the acoustofluidic field in the droplet-ultrasonic substrate system under the
simulation scheme of the PM. (e) Meshed model for the acoustofluidic field in the droplet-ultrasonic
substrate system under the simulation scheme of the RSM.

The meshed FEM models of the droplet-ultrasonic substrate system for the PM and RSM are
shown in Figure 2d,e, respectively, in which the radius and height of the droplet are 5 mm and
2 mm, respectively.
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For simulating the acoustofluidic field by the PM, as shown in Figure 2d, the computational mesh
is generated from a maximum element size 2δ at the fluid domain boundaries and a maximum element
size in the bulk of the fluid domain given by 10δ.

For simulating the acoustofluidic field by the RSM, as shown in Figure 2e, the maximum element
size of the fluid domain is set to be 10 µm in 0 < r < 0.5 mm region (Region 1). In the rest fluid domain,
the maximum element sizes are set to be 20 µm in 0.5 < r < 1.5 mm region (Region 2), and 40 µm
in 1.5 < r < 5 mm region (Region 3), respectively. The mesh independence analysis for this mesh
constitution scheme can also be found in the Supplementary Materials.

To discretize the computational models, linear, quadratic Lagrangian and quadratic Lagrangian
shape functions are chosen for the acoustic pressure, acoustic velocity and temperature fields in the
Thermoacoustics module, respectively. The quadratic serendipity elements are utilized to discretize
the displacement field of solid in the Solid Mechanics module. In the Laminar Flow module, the
discretization of Laminar Flow is set to be P3 + P2 elements (third-order elements for the velocity
components and second-order elements for the pressure field). For the computation of acoustic field,
the relative tolerance is set to be 0.001 in the Frequency Domain solver. For the computation of acoustic
streaming field, the relative tolerance is also set to be 0.001 in the Steady State solver.

4. Experimental Verification

4.1. The Ultrasonic Probe-Droplet-Substrate System-Based Micro/Nanoscale Particle Removal

In order to experimentally verify the FEM simulation results, an ultrasonic probe-droplet-substrate
system for micro/nanoscale particle removal at the droplet-substrate interface is constructed.
The experimental microscale particles (yeast cells, Angel Yeast Co., Ltd., Yichang, China) and nanoscale
particles (Si nanoparticles, SiNPs, Beijing DK Nano Technology Co., Ltd., Beijing, China) have the
average diameters of 4 µm and 400 nm, respectively. As shown in Figure 3a, the vibration transmission
needle (VTN), which is made of nickel-plated steel (Shanghai Dongfeng Co., Ltd., Shanghai, China), is
bonded to the radiation surface of a Langevin transducer (Suzhou Hainertec Co., Ltd., Suzhou, China),
which vibrates with the piston mode [89]. Thus, the VTN can vibrate flexurally in the z direction. The
MMP with the radius R and length L, which is made of glass fiber (Nanjing Fiberglass Research &
Design Institute Co., Ltd., Nanjing, China), is bonded to the tip of the VTN, and thereby vibrates in
the z direction with the vibration velocity amplitude Vpvib. The MMP is inserted into the droplet of
micro/nanoscale particle suspension on a silicon substrate (Zhejiang Lijing Co., Ltd., Hangzhou, China),
and the distance between the MMP’s tip and substrate surface H is controlled by the manual X-Y-Z
moving stage (LD125-LM-2, Shengling Precise Machinery Co., Ltd., Dongguan, China). The maximum
height and radius of the droplet are 2 mm and 5 mm, respectively. The driving voltage for the device is
sinusoidal, and the device works at its resonance frequency fp. Figure 3b shows the stable removal
effect of yeast cells when R = 15 µm, L = 4 mm, Vpvib = 0.3 m/s, H = 50 µm and fp = 40 kHz (the
concentration of the yeast cell suspension is 1.38 mg/mL).

4.2. The Droplet-Ultrasonic Substrate System-Based Micro/Nanoscale Particle Concentration

A droplet-ultrasonic substrate system for micro/nanoscale particle concentration at the
droplet-substrate interface is also constructed. The experimental microscale particles (yeast cells)
and nanoscale particles (Ag nanoparticles, AgNPs, Beijing DK Nano Technology Co., Ltd., China)
have the average diameters of 4 µm and 400 nm, respectively. As shown in Figure 3c, a vibration
transmission component (VTC), whose radiation head’s radius is RE, is bonded to the radiation surface
of a Langevin transducer, which vibrates with the piston mode in the z direction. The vibration velocity
amplitude of the VTC’s radiation head is defined as Vsvib. A silicon substrate equipped with a steel
ring block, which is used to restrain the flexural vibration of the substrate, is bonded to the VTC’s
radiation head. A droplet of micro/nanoscale particle suspension, of which the maximum height and
radius are 2 mm and 5 mm, respectively, is placed at the center of the substrate. The driving voltage
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for the device is sinusoidal, and the device works at its resonance frequency fs. Figure 3d shows the
stable aggregation of AgNPs when RE = 3 mm, Vsvib = 10 mm/s and fs = 40 kHz (the concentration of
the AgNP suspension is 2.78 mg/mL).
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Figure 3. Experimental setups to verify the simulation results. (a) Schematic diagram of the ultrasonic
probe-droplet-substrate system for micro/nanoscale particle removal. (b) Stable removal effect of yeast
cells when R = 15 µm, L = 4 mm, Vpvib = 0.3 m/s, H = 50 µm and fp = 40 kHz. (c) Schematic diagram of the
droplet-ultrasonic substrate system for micro/nanoscale particle concentration. (d) Stable aggregation
of AgNPs when RE = 3 mm, Vsvib = 10 mm/s and fs = 40 kHz.

5. Results and Discussion

Unless otherwise specified, structural sizes, material parameters and working conditions of the
manipulation systems listed in Table 1 are used in the simulations.



Micromachines 2020, 11, 22 10 of 29

Table 1. Structural sizes, material parameters and working conditions of the manipulation systems
used in the simulations.

Height of the Droplet (mm) Radius of the Droplet (mm) Density of Water ρ0 (kg/m3)

2 5 998

Sound speed in water c0 (m/s) Shear viscosity of water µ
(Pa·s)

Bulk-to-shear viscosity ratio in
water µb/µ

1482 0.001 2.1

Driving frequency of the
ultrasonic probe-droplet-substrate

system fp (kHz)

Vibration velocity of the MMP
Vpvib (m/s)

Distance between the MMP’s tip
and substrate surface H (µm)

40 0.3 50

Radius of the MMP R (µm) Length of the MMP L (mm) Density of the MMP (kg/m3)

15 4 2210

Young’s modulus of the MMP (Pa) Poisson ratio of the MMP
Driving frequency of the

droplet-ultrasonic substrate
system fs (kHz)

7.2 × 1010 0.2 40

Excitation velocity of the
droplet-ultrasonic substrate

system Vsvib (mm/s)

Radius of the excitation part
RE (mm) Density of yeast cells (kg/m3)

6 3 1114

Sound speed in yeast cells (m/s) Density of SiNPs (kg/m3) Sound speed in SiNPs (m/s)

1606 2330 5664

Density of AgNPs (kg/m3) Sound speed in AgNPs (m/s) Sound speed in air cair (m/s)

10,500 2600 343

Density of air ρair (kg/m3)

1.205

5.1. Simulated Acoustofluidic Fields in the Ultrasonic Probe-Droplet-Substrate System for Micro/Nanoscale
Particle Removal

The simulated acoustic streaming fields in the ultrasonic probe-droplet-substrate system for
micro/nanoscale particle removal by the PM and RSM are shown in Figure 4a,b, respectively, and the
local enlarged images show the acoustic streaming patterns at the droplet-substrate interface near
the MMP. It is seen from Figure 4a,b that as the acoustic streaming flows outwards from point o,
micro/nanoscale particles can be dragged outwards and then a round cleaned area can be formed after
a period of sonication (Figure 3b). Finally, a cleaned area with stable removal diameter (SRD) can be
obtained, and the SRD is measured to be below millimeter scale.

In the ultrasonic probe-droplet-substrate system, we compare the drag force induced by acoustic
streaming with the acoustic radiation force applied on the manipulated micro/nanoscale particles
and find that acoustic streaming is dominant when the radius of manipulated particles falls between
100 nm and 10 microns (see Supplementary Materials). Thus, the effect of acoustic radiation force can
be neglected in the ultrasonic probe-droplet-substrate system. The detailed information of the acoustic
streaming fields will be discussed and analyzed in the following sections.
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Figure 4. (a) Acoustic streaming field in the ultrasonic probe-droplet-substrate system computed by the
PM. (b) Acoustic streaming field in the ultrasonic probe-droplet-substrate system computed by the RSM.
(c) Computed acoustic streaming velocity distribution along the r direction at the droplet-substrate
interface in the ultrasonic probe-droplet-substrate system when the driving forces of acoustic streaming
are FR and FR1, respectively.

As emphasized in Section 2.2, to validate the significance and indispensability of the nonlinear terms
in FR, we compare the simulated acoustic streaming fields in the ultrasonic probe-droplet-substrate
system when the driving forces of acoustic streaming are FR and FR1, respectively. Figure 4c shows the
acoustic streaming velocity distribution at the droplet-substrate interface when the driving forces of
acoustic streaming are FR and FR1, respectively. We extract the maximum acoustic streaming velocity
umax in Figure 4c and the mean acoustic streaming velocity umean, which is defined as

umean =

∫ 0.5 mm
0 urdr

0.5 mm
(24)

where ur is the acoustic streaming velocity at the r position. From Figure 4c, the deviations for umax

and umean are calculated to be 8.66% and 5.3%, respectively. Therefore, the nonlinear terms in FR are
non-negligible for simulating acoustic streaming fields in the ultrasonic probe-droplet-substrate system
by the RSM.
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The dependency of acoustic streaming velocity on the vibration velocity amplitude of the MMP
Vpvib is shown in Figure 5. Figure 5a shows the distribution of acoustic streaming velocity along the
r direction at the droplet-substrate interface computed by the PM and RSM under different Vpvib.
It is seen that the acoustic streaming velocity firstly increases with the increase of r and then reaches
umax, after which the acoustic streaming velocity decreases with the increase of r and tends to 0 when
r = 0.5 mm. Figure 5b shows umax, umean and experimentally measured SRD of the cleaned area for yeast
cells and SiNPs versus Vpvib. In Figure 5b, Vpvib was controlled by changing the input power of the
device (Figure 3a), and the standard deviation is obtained by five times of experimental measurements.
It is seen that both umax and umean increase with the increase of Vpvib, which accounts for that the SRD
increases with the increase of Vpvib. In this case, one can realize the pinpoint or relatively large-area
removal of micro/nanoscale particles [90] by easily tuning the input power of the device. Meanwhile,
in Figure 5b, both umax and umean computed by the PM are always larger than those computed by
the RSM when Vpvib is the same. To quantitatively demonstrate the deviation of acoustic streaming
velocity computed by the PM and RSM, we define the deviation as

D =
uPM − uRSM

uRSM
× 100% (25)

where uPM and uRSM are the simulated acoustic streaming velocities by the PM and RSM, respectively,
and the results for umax and umean versus Vpvib are shown in Figure 5c. It is seen from Figure 5c that D of
umax is always smaller than that of umean. Also, D of umax decreases with the increase of Vpvib, while D
of umean changes little. To physically understanding this result, we further process the driving force of
acoustic streaming under the framework of the PM FP. Firstly, we multiply both sides of Equation (6)
by -u1 and take the time-averaged form. Then, we can obtain

−

〈
u1
∂ρ1

∂t

〉
− ρ0〈u1∇ · u1〉 = 0 (26)

We add Equation (26) to Equation (12) and can obtain

FP = −

〈
ρ1
∂u1

∂t

〉
−

〈
u1
∂ρ1

∂t

〉
− ρ0〈u1∇ · u1〉 − ρ0〈u1 · ∇u1〉 = −

〈
∂(ρ1u1)

∂t

〉
+ FR (27)

Obviously, it is seen from Equation (27) that the difference of driving force of acoustic streaming
between the PM and RSM is −

〈
∂(ρ1u1)/∂t

〉
, and we define it as Fadd. The reason for that D of umax

decreases with the increase of Vpvib may be that as Vpvib increases, i.e., the input power for the acoustic
field increases, Fadd becomes less important compared to the main driving force of acoustic streaming
(FR) in this system.

The dependency of acoustic streaming velocity on the driving frequency of the system fp is shown
in Figure 6. Figure 6a shows the distribution of acoustic streaming velocity along the r direction at the
droplet-substrate interface computed by the PM and RSM under different fp. Figure 6b shows umax,
umean and experimentally measured SRD of the cleaned area for yeast cells and SiNPs versus fp. In
Figure 6b, the SRD versus fp was measured with five Langevin transducers with different resonance
frequencies (20 kHz, 28 kHz, 40 kHz, 51 kHz, 60 kHz). It is seen from Figure 6b that both umax and
umean decrease with the increase of fp, which accounts for that the SRD decreases with the increase of
fp. This result indicates that the lower driving frequency is beneficial to removing micro/nanoscale
particles within larger areas. Figure 6c shows D of umax and D of umean versus fp, respectively, and it is
seen that D of umax decreases with the increase of fp. This is because that although Vpvib is kept the
same, the higher input frequency corresponds to the higher input power for the acoustic field [91], in
which case Fadd becomes less significant compared to FR when fp increases in this system.
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Figure 5. (a) Computed acoustic streaming velocity distribution along the r direction at the
droplet-substrate interface in the ultrasonic probe-droplet-substrate system under different Vpvib.
(b) umax, umean and SRD versus Vpvib in the ultrasonic probe-droplet-substrate system. (c)
Deviations of umax and umean computed by the PM and RSM versus Vpvib in the ultrasonic
probe-droplet-substrate system.
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Figure 6. (a) Computed acoustic streaming velocity distribution along the r direction at the
droplet-substrate interface in the ultrasonic probe-droplet-substrate system under different fp. (b) umax,
umean and SRD versus fp in the ultrasonic probe-droplet-substrate system. (c) Deviations of umax and
umean computed by the PM and RSM versus fp in the ultrasonic probe-droplet-substrate system.
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The dependency of acoustic streaming velocity on the distance between the MMP’s tip and
substrate surface H is shown in Figure 7. Figure 7a shows the distribution of acoustic streaming
velocity along the r direction at the droplet-substrate interface computed by the PM and RSM under
different H, from which it is seen that the position where umax occurs moves outwards from point o
when H increases. Figure 7b shows umax, umean and experimentally measured SRD of the cleaned area
for yeast cells and SiNPs versus H, from which it is seen that both umax and umean decrease with the
increase of H, which accounts for that the SRD decreases with the increase of H. In this case, one can
realize the pinpoint or relatively large-area removal of micro/nanoscale particles just by tuning the
distance between the MMP’s tip and substrate surface through controlling the X-Y-Z moving stage.
Figure 7c shows D of umax and D of umean versus H, respectively, and it is seen that D of umax is in the
range of 0.6% to 2.9%, while D of umean is in the range of 1.9% to 4.6%.
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Figure 7. (a) Computed acoustic streaming velocity distribution along the r direction at the
droplet-substrate interface in the ultrasonic probe-droplet-substrate system under different H. (b) umax,
umean and SRD versus H in the ultrasonic probe-droplet-substrate system. (c) Deviations of umax and
umean computed by the PM and RSM versus H in the ultrasonic probe-droplet-substrate system.

The dependency of acoustic streaming velocity on the radius of the MMP R is shown in
Figure 8. Figure 8a shows the distribution of acoustic streaming velocity along the r direction
at the droplet-substrate interface computed by the PM and RSM under different R. Figure 8b shows
umax, umean and experimentally measured SRD of the cleaned area for yeast cells and SiNPs versus R,
from which it is seen that both umax and umean increase with the increase of R, which results in that the
SRD increases with the increase of R. This result indicates that the removal effect of micro/nanoscale
particles can be controlled by using MMPs with different radii. Figure 8c shows D of umax and D of
umean versus R, respectively, and it is seen that D of umax is in the range of 0.6% to 2.8%, while D of
umean is in the range of 1.6% to 3.5%.
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Figure 8. (a) Computed acoustic streaming velocity distribution along the r direction at the
droplet-substrate interface in the ultrasonic probe-droplet-substrate system under different R. (b) umax,
umean and SRD versus R in the ultrasonic probe-droplet-substrate system. (c) Deviations of umax and
umean computed by the PM and RSM versus R in the ultrasonic probe-droplet-substrate system.

The dependency of acoustic streaming velocity on the length of the MMP L is shown in
Figure 9. Figure 9a shows the distribution of acoustic streaming velocity along the r direction
at the droplet-substrate interface computed by the PM and RSM under different L, from which it is
seen that the distribution of acoustic streaming velocity changes little when L varies. Figure 9b shows
umax, umean and experimentally measured SRD of the cleaned area for yeast cells and SiNPs versus L,
from which it is seen that umax, umean and the SRD change little when L changes. This is because that
the vibration of the MMP’s portion outside the droplet does not affect the acoustofluidic field within
the droplet (Figures 1a and 3a). As a result, it can be known that L has little influence on the removal
effect of micro/nanoscale particles at the droplet-substrate interface in this system. Figure 9c shows D
of umax and D of umean versus L, respectively, and it is seen that D of umax is in the range of 0.6% to 1.8%,
while D of umean is in the range of 1.9% to 2.9%.
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Figure 9. (a) Computed acoustic streaming velocity distribution along the r direction at the
droplet-substrate interface in the ultrasonic probe-droplet-substrate system under different L. (b) umax,
umean and SRD versus L in the ultrasonic probe-droplet-substrate system. (c) Deviations of umax and
umean computed by the PM and RSM versus L in the ultrasonic probe-droplet-substrate system.
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5.2. Simulated Acoustofluidic Fields in the Droplet-Ultrasonic Substrate System for Micro/Nanoscale
Particle Concentration

The simulated acoustic streaming fields in the droplet-ultrasonic substrate system for micro/

nanoscale particle concentration by the PM and RSM are shown in Figure 10a,b, respectively, from
which it is seen that there exist vortices in the droplet. At the droplet-substrate interface, as the acoustic
streaming flows from the outside boundary of the droplet to point o, micro/nanoscale particles can be
dragged to point o, and be concentrated in the central area (Figure 3c). Finally, the stable concentration
diameter (SCD) of aggregation of micro/nanoscale particles can be reached.

In the droplet-ultrasonic substrate system, we also compare the drag force induced by acoustic
streaming with the acoustic radiation force applied on the manipulated micro/nanoscale particles and
find that acoustic streaming is also dominant when the radius of manipulated particles falls between
100 nm and 10 microns (see Supplementary Materials). Thus, the effect of acoustic radiation force can
also be neglected in the droplet-ultrasonic substrate system. The detailed information of the acoustic
streaming fields will be discussed and analyzed in the following sections.

We also compare the simulated acoustic streaming fields in the droplet-ultrasonic substrate system
when the driving forces of acoustic streaming are FR and FR1, respectively. Figure 10 shows the acoustic
streaming velocity magnitude distribution at the droplet-substrate interface when the driving forces of
acoustic streaming are FR and FR1, respectively. We extract the maximum acoustic streaming velocity
magnitude uMAX in Figure 10c and the mean acoustic streaming velocity magnitude uMEAN, which is
defined as

uMEAN =

∫ 5 mm
0 uRdr

5 mm
(28)

where uR is the acoustic streaming velocity magnitude at the r position. From Figure 10c, the deviations
for uMAX and uMEAN are calculated to be 2.32% and 2.59%, respectively. Therefore, the nonlinear terms
in FR are also non-negligible for simulating acoustic streaming fields in the droplet-ultrasonic substrate
system by the RSM.
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Figure 10. (a) Acoustic streaming field in the droplet-ultrasonic substrate system computed by
the PM. (b) Acoustic streaming field in the droplet-ultrasonic substrate system computed by the
RSM. (c) Computed acoustic streaming velocity magnitude distribution along the r direction at the
droplet-substrate interface in the droplet-ultrasonic substrate system when the driving forces of acoustic
streaming are FR and FR1, respectively.

The dependency of acoustic streaming velocity magnitude on the excitation velocity amplitude
Vsvib is shown in Figure 11. Figure 11a shows the distribution of acoustic streaming velocity magnitude
along the r direction at the droplet-substrate interface computed by the PM and RSM under different
Vsvib. It is seen that the acoustic streaming velocity magnitude firstly increases with the increase of r, and
then reaches uMAX, after which the acoustic streaming velocity magnitude decreases with the increase
of r and tends to 0 when r = 5 mm. Also, the position where uMAX occurs moves inwards when Vsvib
increases. Figure 11b shows uMAX, uMEAN and experimentally measured SCD of aggregation of yeast
cells and AgNPs versus Vsvib. In Figure 11b, Vsvib was controlled by changing the input power of the
device (Figure 3c), and the standard deviation is obtained by five times of experimental measurements.
It is seen in Figure 11b that both uMAX and uMEAN increase with the increase of Vsvib, which accounts
for that the SCD decreases with the increase of Vsvib. In this case, by easily tuning the input power
of the device, one can tune the scale and density of aggregation of micro/nanoscale particles, both of
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which have significant applications in biochemical sensing [32] and assembly/fabrication of micro/nano
devices [9]. Figure 11c shows D of uMAX and D of uMEAN computed by the PM and RSM versus
Vsvib, respectively, from which it is seen that D of uMAX is always larger than that of uMEAN. It is also
seen from Figure 11c that D of uMAX decreases with the increase of Vsvib. This is because that as Vsvib
increases, i.e., the input power for the acoustic field increases, Fadd becomes less important compared
to the main driving force of acoustic streaming (FR) in this system.
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Figure 11. (a) Computed acoustic streaming velocity magnitude distribution along the r direction at the
droplet-substrate interface in the droplet-ultrasonic substrate system under different Vsvib. (b) uMAX,
uMEAN and SCD versus Vsvib in the droplet-ultrasonic substrate system. (c) Deviations of uMAX and
uMEAN computed by the PM and RSM versus Vsvib in the droplet-ultrasonic substrate system.

The dependency of acoustic streaming velocity magnitude on the driving frequency of the system
fs is shown in Figure 12. Figure 12a shows the distribution of acoustic streaming velocity magnitude
along the r direction at the droplet-substrate interface computed by the PM and RSM under different fs,
from which it is seen that the distributions of acoustic streaming velocity magnitudes change little
when fs varies. Figure 12b shows uMAX, uMEAN and experimentally measured SCD of aggregation of
yeast cells and AgNPs versus fs. In Figure 12b, the SCD versus fs was measured with five Langevin
transducers with different resonance frequencies (20 kHz, 28 kHz, 40 kHz, 51 kHz, 60 kHz). It is seen
from Figure 12b both uMAX and uMEAN change little when fs varies, which accounts for that the SCD
changes little when fs varies. Therefore, it can be known that the driving frequency of the device has
little influence on the concentration effect of micro/nanoscale particles at the droplet-substrate interface
in this system. Figure 12c shows D of uMAX and D of uMEAN versus fs, respectively, from which it is
seen that D of uMAX increases with the increase of fs. This may result from that when fs increases, Fadd

(generated from the time average of the partial derivative of −ρ1u1 with respect to time) becomes more
important compared to the main driving force of acoustic streaming (FR) in this system.

The dependency of acoustic streaming velocity magnitude on the radius of excitation part RE is
shown in Figure 13. Figure 13a shows the distribution of acoustic streaming velocity magnitude along
the r direction at the droplet-substrate interface computed by the PM and RSM under different RE, from
which it is seen that the position where uMAX occurs moves outwards from point o when RE increases.
Figure 13b shows uMAX, uMEAN and experimentally measured SCD of aggregation of yeast cells and
AgNPs versus RE. In Figure 13b, the SCD versus RE was measured with VTCs with different radiation
heads’ radii (Figure 3c). It is seen from Figure 13b that uMAX firstly increases with the increase of RE
and then decreases with the increase of RE, while uMEAN increases with the increase of RE. It is also
seen from Figure 13b that the SCD increases with the increase of RE. This may result from that when
RE increases, the coverage area of the inward acoustic streaming flow increases (Figure 13a), which is
beneficial to concentrating micro/nanoscale particles within larger areas. Figure 13c shows D of uMAX
and D of uMEAN versus RE, respectively, and it is seen that the D of uMAX is in the range of 0.77% to
0.92%, while D of uMEAN is in the range of 0.41% to 0.65%.
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Figure 12. (a) Computed acoustic streaming velocity magnitude distribution along the r direction at
the droplet-substrate interface in the droplet-ultrasonic substrate system under different fs. (b) uMAX,
uMEAN and SCD versus fs in the droplet-ultrasonic substrate system. (c) Deviations of uMAX and uMEAN

computed by the PM and RSM versus fs in the droplet-ultrasonic substrate system.
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Figure 13. (a) Computed acoustic streaming velocity magnitude distribution along the r direction at
the droplet-substrate interface in the droplet-ultrasonic substrate system under different RE. (b) uMAX,
uMEAN and SCD versus RE in the droplet-ultrasonic substrate system. (c) Deviations of uMAX and
uMEAN computed by the PM and RSM versus RE in the droplet-ultrasonic substrate system.
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6. Conclusions

We have numerically simulated and analyzed the 2D axisymmetric acoustofluidic fields in the
ultrasonic probe-droplet-substrate system and droplet-ultrasonic substrate system by the PM and
RSM, respectively. It is found that in the ultrasonic probe-droplet-substrate system for micro/nanoscale
particle removal, the acoustic streaming field changes with the variation of vibration velocity of the
MMP, driving frequency of the device, distance between the MMP’s tip and substrate surface, and
radius of the MMP. It is also found that in the droplet-ultrasonic substrate system for micro/nanoscale
particle concentration, the acoustic streaming field changes with the variation of excitation velocity
and length of excitation part. It is also shown that there exist small differences between the simulation
results of acoustic streaming fields computed by the PM and RSM. The demonstrated simulation
results in this paper may provide some useful guidelines for controlling acoustic streaming fields in
the droplet-based acoustofluidic systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/1/22/s1,
Figure S1 (a) Acoustic streaming velocity distribution along the r direction at the droplet-substrate interface in
Region 1 in the ultrasonic probe-droplet-substrate system under different mesh constitutions computed by the
RSM. (b) umax and umean at the droplet-substrate interface in Region 1 in the ultrasonic probe-droplet-substrate
system under different mesh constitutions computed by the RSM. Figure S2 (a) Acoustic streaming velocity
magnitude distribution along the r direction at the droplet-substrate interface in the droplet-ultrasonic substrate
system under different mesh constitutions computed by the RSM. (b) uMAX and uMEAN at the droplet-substrate
interface in the droplet-ultrasonic substrate system under different mesh constitutions computed by the RSM.
Figure S3 (a) Computed acoustic radiation force field for yeast cells in the ultrasonic probe-droplet-substrate
system under the mesh constitution for the PM. (b) Computed acoustic radiation force field for SiNPs in the
ultrasonic probe-droplet-substrate system under the mesh constitution for the PM. Figure S4 (a) Computed
acoustic radiation force field for yeast cells in the droplet-ultrasonic substrate system under the mesh constitution
for the PM. (b) Computed acoustic radiation force field for AgNPs in the droplet-ultrasonic substrate system
under the mesh constitution for the PM.
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