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Abstract 

Background:  The contribution of metabolomic factors to the association of healthy lifestyle with type 2 diabetes 
risk is unknown. We assessed the association of a composite measure of lifestyle with plasma metabolite profiles and 
incident type 2 diabetes, and whether relevant metabolites can explain the prospective association between healthy 
lifestyle and incident type 2 diabetes.

Methods:  A Healthy Lifestyle Score (HLS) (5-point scale including diet, physical activity, smoking status, alcohol con‑
sumption and BMI) was estimated in 1016 Hortega Study participants, who had targeted plasma metabolomic deter‑
minations at baseline examination in 2001–2003, and were followed-up to 2015 to ascertain incident type 2 diabetes.

Results:  The HLS was cross-sectionally associated with 32 (out of 49) plasma metabolites (2.5% false discovery rate). 
In the subset of 830 participants without prevalent type 2 diabetes, the rate ratio (RR) and rate difference (RD) of inci‑
dent type 2 diabetes (n cases = 51) per one-point increase in HLS was, respectively, 0.69 (95% CI, 0.51, 0.93), and − 8.23 
(95% CI, − 16.34, − 0.13)/10,000 person-years. In single-metabolite models, most of the HLS-related metabolites were 
prospectively associated with incident type 2 diabetes. In probit Bayesian Kernel Machine Regression, these prospec‑
tive associations were mostly driven by medium HDL particle concentration and phenylpropionate, followed by small 
LDL particle concentration, which jointly accounted for ~ 50% of the HLS-related decrease in incident type 2 diabetes.

Conclusions:  The HLS showed a strong inverse association with incident type 2 diabetes, which was largely 
explained by plasma metabolites measured years before the clinical diagnosis.
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Background
Diabetes is a highly prevalent disease -at least 463 mil-
lion people aged 20–79 years in 2019, and a major cause 
of disability and death [1]. The number of people with 
diabetes is expected to increase [1]. Type 2 diabetes has 
been associated with a number of risk factors that are 
both non-modifiable (age, genetics) and modifiable (envi-
ronmental including lifestyle) [2]. Since genetic variation 
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explained less than ~ 15% of the type 2 diabetes heritabil-
ity, it is suspected that the environment and lifestyle have 
a more relevant role in type 2 diabetes development [2]. 
Diet, physical activity, body mass index (BMI), smoking 
and alcohol consumption have been individually asso-
ciated with increased type 2 diabetes risk [3]. Previous 
studies jointly evaluating multiple healthy lifestyle behav-
iours found greater reductions in type 2 diabetes risk 
compared to the expected reduction from the individual 
lifestyle factors [4, 5].

Metabolomics —the determination of intermedi-
ary molecules and metabolism by-products [6]— offer 
opportunities to understand biological pathways that 
are potentially influenced by lifestyles and can help iden-
tifying strategies for type 2 diabetes precision preven-
tion [7]. Several lifestyle factors have been associated 
with individual metabolic markers [8, 9]. Alternatively, 
individual metabolites have been associated with differ-
ent stages in the type 2 diabetes progression [8, 10]. For 
instance, in a meta-analysis of 19 prospective studies, 
specific branched chain and aromatic amino acids were 
associated with both pre-diabetes and type 2 diabetes 
[10]. Furthermore, some of the metabolites associated to 
type 2 diabetes have also been related to specific lifestyle 
factors -glutamine for alcohol consumption [11], and 
branch-chain amino acids for physical activity [12] and 
obesity [13]. However, the contribution of metabolomic 
profiles to explain the association of a composite measure 
of overall lifestyle with type 2 diabetes risk is unknown.

Therefore, the aim of this study was to assess the asso-
ciation between adherence to a healthy lifestyle (meas-
ured by the Healthy Lifestyle Score [HLS]) with metabolic 
profiles and incident type 2 diabetes. In order to identify 
the most relevant metabolites in our data, we also used a 
probit extension of Bayesian Kernel Machine Regression 
(BKMR-P), which allowed to evaluate the prospective 
association of simultaneously-modelled metabolites with 
type 2 diabetes, as it can handle correlations and high-
order interactions between metabolites mixtures [14, 15]. 
We subsequently evaluated whether  HLS-related  differ-
ences in relevant metabolites can explain the prospective 
association between healthy lifestyle and incident type 2 
diabetes after a 14-year follow-up.

Methods
Study Participants
The Hortega Study is a population-based cohort repre-
sentative of a general population from Valladolid, Spain 
[16]. Details of the study design and data collection 
methods have been described elsewhere [16]. The study 
population consisted of 1502 beneficiaries of the uni-
versal public health system assigned to the University 
Hospital Rio Hortega (UHRH) catchment area. Baseline 

physical examination (2001–2003) included validated 
questionnaires and laboratory assessment of stand-
ard biochemical profiles, and collection of plasma sam-
ples for metabolomics. In 2015, two physician reviewers 
blindly assessed the participants’ medical records and 
adjudicated health events that occurred during follow-
up. The study protocol was approved by the institutional 
review board at UHRH and written informed consent 
was obtained from all participants [16].

Out of the 1502 recruited individuals, we sequentially 
excluded participants missing information on metabo-
lomics (n = 299), smoking status (n = 2), educational 
level (n = 3), BMI (n = 40), diet (n = 141), and leisure time 
physical activity (n = 1) leaving 1016 participants for the 
cross-sectional analysis. The participant characteris-
tics comparing excluded and included participants were 
similar (Supplementary Table S1, Additional File 1). We 
additionally excluded participants with prevalent type 2 
diabetes at baseline (n = 94) and participants lost to fol-
low-up (n = 92), leaving 830 participants for the prospec-
tive analyses of lifestyle- related metabolites and incident 
type 2 diabetes (See Supplementary Fig. S1, Additional 
File 1).

Type 2 Diabetes assessment
Blood samples were collected after a mean fasting time 
of 3 h (range 0–17 h). Glycaemia was determined through 
the glucose oxidase method using a Hitachi 704 ana-
lyzer (Boehringer Mannheim, Germany). Participants 
with non-fasting glucose levels ≥7.8 mmol/l underwent 
second fasting glucose and glycosylated hemoglobin 
(HbA1c) determinations. HbA1c was measured from 
capillary blood samples using a DCA 2000 HbA1c ana-
lyzer (Bayer Diagnostics, Tarrytown, NY, USA). Par-
ticipants were considered as prevalent type 2 diabetes 
cases if they had medical diagnosis before the baseline 
examination or there were records of diabetes medica-
tion use on their medical history; or if their baseline 
fasting plasma glucose was ≥7.0 mmol/l or HbA1c was 
≥48 mmol/mol (≥6.5%). Participants were considered as 
incident type 2 diabetes cases if they were diabetes-free 
at baseline examination and the diagnosis of type 2 dia-
betes on their medical record met the diabetes definition 
during follow-up [16]. The validity of electronical medi-
cal records for the ascertainment of type 2 diabetes in 
the context of epidemiological studies within the Spanish 
universal public health system has been evaluated before 
[17]. In a subsample of public health system beneficiar-
ies from Madrid [17], electronic health records showed 
adequate positive and negative predictive values (87.9 
and 97.3%, respectively) for the identification of type 2 
diabetes.
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Healthy Lifestyle Score
The Healthy Lifestyle Score (HLS) was estimated at 
baseline and included five-components (diet, physi-
cal activity, smoking status, alcohol consumption and 
BMI), following a well-established approach [18]. Scores 
for each component were 0 points (non-adherence) or 1 
point (adherence) with a total range of 0–5 points, with 
a higher score indicating higher adherence to a healthy 
lifestyle. All women and men had daily energy intakes 
ranging 2092 to 14,644 kJ/day (500 to 3500 kcal/day), and 
3347.2 and 16,736 kJ/day (800 to 4000 kcal/day), respec-
tively. The alternate Mediterranean Diet score (aMED) 
measured the degree of adherence to a Mediterranean 
diet [19], instead of the Alternate Healthy Eating Index 
(AHEI) [18], since the aMED score is more appropriate 
to our study population. The aMED score was derived by 
excluding the alcohol consumption item because it was 
already a component of the HLS. As a result, the aMED 
score ranged 0–8 points. Healthy diet (1 point) was 
defined as an aMED score in the top 40% of the distri-
bution (aMED ≥5). Women with alcohol intakes between 
5 and 15 g/day and men with alcohol intakes between 5 
and 30 g/day were given 1 point; all other participants 
received none [18]. Leisure-time physical activity was 
assessed as type of sports practiced and amount of time 
practicing each sport per week. The METs-minute/week 
(Metabolic Equivalent of Task-minute/week) were calcu-
lated using the equivalences in the Compendium of Phys-
ical Activities 2011 [20]. Participants received 1 point if 
they achieved at least 600 METs-minute/week perform-
ing moderate or vigorous leisure time physical activities, 
as recommended by the World Health Organization [21]. 
The BMI was derived from height and weight measured 
in standardized conditions; a BMI 18.5–24.9 kg/m2 was 
considered as healthy (1 point). Participants self-identi-
fied as never smokers were awarded 1 point; former and 
current smokers received none. Finally, we categorized 
the HLS in low (0–1 points), medium (2 points), and high 
adherence (3–5 points) groups.

Metabolites Assessment
Metabolites levels were measured at baseline through 
nuclear magnetic resonance (NMR) using a Bruker 
Avance DRX 600 spectrometer (Bruker GmbH, Ger-
many). The chemical shift region studied was between 
0.50–4.70 ppm (ppm). The obtained spectra were nor-
malized to total aliphatic spectral area after being binned 
into buckets of 0.01 ppm. The signals of the targeted 
metabolites were processed using in-house routines for 
MATLAB V.6.5. The results were confirmed through 
superposition of normalized serum spectra derived from 
two-dimensional NMR methods, namely homonuclear 

correlation spectroscopy and heteronuclear single quan-
tum correlation spectroscopy. An extended lipoprotein 
profile was evaluated using the LIPOSCALE® method 
for NMR spectra [22, 23], and included lipoprotein lipid 
composition and size of the three main classes (VLDL, 
LDL and HDL) and the particle concentration of their 
respective subclasses (large, medium, and small). Parti-
cle concentrations and lipoprotein subtypes were deter-
mined using the distinctive signals of the lipid methyl 
group. Lipid concentration were converted to lipid vol-
umes using common conversion factors [23]. The avail-
able set of metabolites to conduct the study objectives 
included 12 amino acids, 6 fatty acids, 5 products of 
bacterial co-metabolism, 17 lipoprotein subclasses, the 
sphingolipid-related O-phosphoethanolamine, 2 fluid 
balance and 6 energy metabolism-related metabolites. 
We adjusted all metabolites measures to the number of 
fasting hours at the time of plasma sample collection 
using linear regression and recalibrated the resulting 
residuals to the mean metabolite concentrations in the 
study population.

Other variables
Information on education was self-reported. Prevalent 
dyslipidemia was defined as either lipid-lowering medi-
cation use recorded on medical history or as a non-fast-
ing total cholesterol > 5.2 mmol/l. Prevalent hypertension 
was defined as systolic/diastolic blood pressure (aver-
age between two measurements with a 5-min interval 
assessed by trained personal) > 140/90 mmHg; or a medi-
cal record with prior hypertension diagnosis or blood 
pressure-lowering medication use.

Statistical analysis
Descriptive analysis and association of HLS with metabolites
In order to account for the complex sampling design and 
survey weights, we conducted the statistical analyses 
using the “survey” package in R software (version 4.0.2, R 
Core Team 2020). We summarized the participants’ char-
acteristics using descriptive statistics (mean and propor-
tions). We descriptively estimated the survey-weighted 
type 2 diabetes incidence rate by using generalized lin-
ear models as conducted with the svyglm() command 
from the R survey package with family Poisson and link 
log, which included an offset term for the individual log-
transformed person-years of follow-up and no covariates. 
For metabolic data, we calculated median and interquar-
tile range by HLS categories. In non-exploratory analysis, 
the type I error probability threshold was generally set to 
0.05 (two tailed). However, the cross-sectional evaluation 
of adherence to the HLS with individual metabolites in 
separate linear regression models, was exploratory. In 
order to account for multiple exploratory testing in this 
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context, we set a false discovery rate (FDR) significance 
threshold of 2.5% as conducted by the R package “qvalue” 
[24], with a lambda parameter set to 0. We conducted two 
progressively adjusted models: Model 1 adjusted for age 
(years), sex (male, female) and education (≤ high school, 
> high school); and Model 2 included Model 1 and preva-
lent hypertension (no, yes), total plasma cholesterol (mg/
dL) and use of lipid-lowering medication (no, yes).

Association of HLS and incident type 2 diabetes
We estimated adjusted rate ratios (RR) and rate differ-
ences (RD) per 10,000 person-years of incident type 
2 diabetes, by adherence to the baseline HLS (catego-
rized and continuous) using Poisson and Aalen additive 
hazards models, respectively. Given the controversial 
evidence on the protective effect of alcohol consump-
tion on type 2 diabetes risk [25], we conducted sensitiv-
ity analysis: a) including alcohol in both aMED [19] and 
HLS scores definition; b) excluding alcohol from both 
aMED and HLS scores definition; c) with non-drinkers 
being also awarded 1 point in the alcohol consumption 
component of HLS. In secondary analyses, we examined 
the associations of HLS and type 2 diabetes by subgroups 
defined by sex, education, and prevalent dyslipidemia 
and hypertension status introducing interaction terms in 
the regression models.

Association of metabolites with incident type 2 diabetes
First, we estimated fully adjusted rate ratios (RR) and rate 
differences (RD) of incident type 2 diabetes by individual 
HLS-related metabolites using Poisson and Aalen addi-
tive hazard models, respectively. We re-scaled the result-
ing coefficients and confidence intervals to compare the 
90th to the 10th percentiles of each metabolite distribu-
tion in order to improve their interpretability. Second, 
we used BKMR to simultaneously evaluate the associa-
tion of these metabolites with incident type 2 diabetes 
[15]. BKMR uses a flexible kernel to handle high dimen-
sional correlations, to account for non-linearity and to 
provide an estimation of both individual and joint effect 
of compounds mixtures [15]. The R package BKMR con-
ducts Bayesian inference for the probit regression model 
(BKMR-P), which we adapted to time-to-event survey 
data using a data augmentation approach [14]. The pos-
terior inclusion probabilities (PIP) (from 0 to 1) obtained 
from the BKMR-P quantify how much the data favors the 
inclusion of a metabolite in the model.

Subsequently, to evaluate whether relevant metabolites 
contribute to explain the association of HLS and type 2 
diabetes, we estimated the amount of avoided incident 
type 2 diabetes cases per 1-point HLS increase (per 
10,000 person-years) that can be attributed to differences 
in metabolites levels, estimated as the relative change in 

the beta coefficient associated to HLS from the Aalen 
additive hazard models when each metabolite group 
was introduced in the model (i.e. the relative amount of 
association explained by metabolites was estimated as [1 
– (difference in type 2 diabetes rates per one HLS point 
increase in models adjusting for specific metabolites 
group / difference in type 2 diabetes rates per one HLS 
point increase in the reference model without metabo-
lites)] × 100). Additive hazard models are recommended 
to study the contribution of intermediate variables in sur-
vival settings [26].

In confirmatory post-hoc analysis, we used formal 
causal mediation analysis for survival outcomes [26, 27], 
to evaluate whether the sum of estimated relative medi-
ated effects for the most relevant individual metabolites 
did equal the percent explained in the association of HLS 
and incident diabetes with and without relevant metab-
olites entered as a group (as expected when the causal 
mediation assumptions hold, and the individual metab-
olites are not causally correlated). In particular we used 
the product of coefficients method to calculate natural 
indirect effects. The Aalen additive hazards outcome 
model included time to incident diabetes as the outcome, 
HLS as the exposure and most relevant metabolites (i.e., 
those identified by the BKMR analysis) as mediators. 
The mediator models were linear models where each 
relevant metabolite was entered as the dependent vari-
able in separate mediator models and HLS (exposure) 
was entered as the independent variable. Both outcome 
and mediator models were adjusted for age, sex, educa-
tion, prevalent hypertension, total plasma cholesterol, 
use of lipid-lowering medication and the other relevant 
metabolites. As result, absolute mediated effects (natu-
ral indirect effects) were also reported as the number of 
avoided incident type 2 diabetes cases per 1 HLS-point 
increase (per 10,000 person-years) that can be indepen-
dently attributed to differences in specific metabolites 
levels after accounting for other relevant metabolites. 
The relative mediated effect was calculated as the ratio 
between mediated effects and adjusted changes in diabe-
tes cases per 1 HLS-point increase before adding the spe-
cific metabolite to the model. Confidence intervals were 
calculated using a resampling method that takes random 
values from multivariate normal distribution of the esti-
mates [26, 27].

Results
Descriptive analysis
In our study population the mean age was 48.5 years and 
49% of participants were males (Table  1). Participants 
with higher adherence to the HLS were more likely to 
be younger and female, with lower prevalence of dyslipi-
demia and hypertension (Table 1). The median HLS was 
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2 points. Never smoking was the HLS component for 
which the participants had the highest compliance with 
the recommendations, while alcohol consumption had 
the lowest (See Supplementary Table S2, Additional File 
1). Lipoprotein composition and particle concentrations 
including VLDL, LDL and IDL cholesterol and triglyc-
erides; large, medium and small VLDL, and small LDL, 
as well as, −CH2N fatty acids and acetone concentra-
tions progressively decreased across the HLS categories 
(See Supplementary Table S3, Additional File 1). Increas-
ing HLS categories showed increasing concentrations of 
other metabolites such as amino acids, citrate, pyruvate, 
3-hydroxybutyrate, isopropanol, trimethylamines or phe-
nylpropionate (See Supplementary Table  S3, Additional 
File 1). Participants with incident type 2 diabetes were 
more likely to be older, with lower educational level and 
higher prevalence of dyslipidemia and hypertension (See 
Supplementary Table S4, Additional File 1).

Cross‑sectional association of HLS and metabolites
At a FDR of 2.5% HLS was associated with 32 out of 49 
plasma metabolites (Table 2). The most frequently associ-
ated metabolites were the lipoprotein particles subclasses 
and content group (n = 10) (mean difference [MD] [95% 
CI] ranged from − 19.43 [− 29.00, − 9.87] nmol/l for 
small LDL to − 0.005 [− 0.01, − 0.002] mmol/l for IDL 
triglycerides); followed by the amino acids group (n = 8) 
(MD [95%CI] ranged from 0.11 [0.06, 0.17] for alanine, 
to 0.01 [0.004, 0.02] for cysteine); the energy metabolism 
group (n = 5) (MD ranged from − 0.10 [− 0.16, − 0.05] 
for acetone; to 0.02 [0.01, 0.03] for pyruvate); products 

of bacterial co-metabolism (n = 3) (MD were 0.09 [0.05, 
0.14] for phenylpropionate; to 0.05 [0.03, 0.08] for iso-
propanol); and fluid balance (n = 2) (MD were 0.07 [0.03, 
0.11] albumin; and 0.02 [0.01, 0.03] for creatinine).

Prospective association of HLS and type 2 diabetes
The number of incident type 2 diabetes cases after a 
median follow-up time of 13.3 years was 51 (the survey-
weighted incidence rate during the study period was 
40.2 per 10,000 person-years). The fully adjusted RR of 
diabetes comparing the medium and high (2 and 3–5 
points, respectively) to the low (0–1 points) HLS adher-
ence categories were 0.83 (95%CI 0.44, 1.56) and 0.20 
(95%CI 0.04, 0.88), respectively (See Supplementary 
Table  S5, Additional File 1); and their corresponding 
differences in incident rates were − 7.15 (95%CI -34.31, 
20.01) and − 24.47 (95%CI -43.87, − 5.06) (See Supple-
mentary Table S6, Additional File 1). The corresponding 
estimates per 1 HLS point increase was 0.69 (95%CI 0.51, 
0.93) for RR (See Supplementary Table S5, Additional File 
1) and − 8.23 (95%CI -16.34, − 0.13) for RD (See Sup-
plementary Table  S6, Additional File 1). In sensitivity 
analysis, similar results were obtained when alcohol con-
sumption was included in both aMED and HLS, when 
alcohol consumption was excluded from both aMED 
and HLS, and when non-drinkers were awarded 1 point 
in the alcohol consumption component of the HLS (See 
Supplementary Table  S7, Additional File 1). We did not 
observe differential associations by subgroups (See Sup-
plementary Table S8, Additional File 1).

Table 1  Participants characteristics by Healthy Lifestyle Score categories in the Hortega Study (n = 1016)

Abbreviations: BMI Body Mass Index; aMED alternate Mediterranean Diet score; HLS Healthy Lifestyle Score; MET Metabolic Equivalent of Task; SE standard error

Overall Low HLS
(0–1 points)

Moderate HLS
(2 points)

High HLS
(3–5 points)

n (%) 1016 491 (46.41) 310 (30.39) 215 (23.20)

Age, years, mean (SE) 48.54 (17.07) 51.41 (16.96) 49.88 (16.67) 41.03 (15.54)

Sex, Male, n (%) 511 (48.96) 280 (55.50) 126 (39.87) 105 (47.80)

Education, ≤High school, n (%) 725 (68.99) 374 (74.65) 227 (70.55) 124 (55.63)

Energy intake, Kilocalories/day, mean (SE) 2235.80 (705.81) 2193.93 (705.76) 2236.69 (697.55) 2318.41 (709.44)

Prevalent type 2 diabetes, Yes, n (%) 94 (6.99) 59 (8.98) 30 (7.82) 5 (1.94)

Prevalent dyslipidaemia, Yes, n (%) 538 (51.74) 291 (58.94) 167 (52.92) 80 (35.81)

Prevalent hypertension, Yes, n (%) 441 (36.50) 259 (44.42) 131 (37.11) 51 (19.83)

Healthy Lifestyle Score (HLS) components

  BMI, kg/m2, mean (SE) 26.17 (4.18) 27.44 (4.01) 26.11 (4.41) 23.72 (2.92)

  Leisure time physical activity, METs-minute/week, 
mean (SE)

463.57 (1280.05) 149.13 (607.17) 324.36 (770.99) 1274.99 (2160.09)

  8-point aMED (alcohol excluded), mean (SE) 3.70 (1.62) 3.11 (1.30) 4.06 (1.68) 4.42 (1.70)

  Alcohol intake, grams/day, mean (SE) 11.81 (21.97) 15.21 (28.80) 7.93 (13.14) 10.08 (12.20)

  Smoking status, Never smoker, n (%) 466 (43.64) 137 (23.69) 179 (54.92) 150 (68.76)
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Table 2  Mean difference (95%CI) of standardized NMR-metabolites per 1-point increase in HLS in the Hortega Studya

Model 1 Model 2

Group Metabolite MD (95% CI) p-value MD (95% CI) p-value

Lipoprotein profile Cholesterol, mmol/l

  VLDL cholesterol −0.07 (− 0.09, − 0.04) < 0.001 − 0.05 (− 0.07, − 0.03) < 0.001*

  LDL cholesterol −0.11 (− 0.17, − 0.05) < 0.001 −0.03 (− 0.06, 0.002) 0.04

  HDL cholesterol 0.04 (0.02, 0.07) 0.001 0.05 (0.02, 0.07) < 0.001*

  IDL cholesterol −0.02 (− 0.03, − 0.01) < 0.001 −0.01 (− 0.02, − 0.003) 0.006*

Triglycerides, mmol/l

  VLDL triglycerides −0.13 (− 0.19, − 0.08) < 0.001 −0.1 (− 0.14, − 0.05) < 0.001*

  LDL triglycerides −0.007 (− 0.01, − 0.002) 0.006 −0.001 (− 0.005, 0.002) 0.43

  HDL triglycerides −0.003 (− 0.01, 0.0007) 0.11 −0.002 (− 0.01, 0.002) 0.24

  IDL triglycerides −0.007 (− 0.01, − 0.04) < 0.001 −0.005 (− 0.01, − 0.002) 0.003*

Lipoprotein particle concentration

  Large VLDL, nmol/L −0.18 (− 0.27, − 0.09) < 0.001 −0.13 (− 0.21, − 0.06) < 0.001*

  Medium VLDL, nmol/L −1.13 (− 1.64, − 0.62) < 0.001 −0.78 (− 1.24, − 0.33) < 0.001*

  Small VLDL, nmol/L − 7.34 (− 10.21, − 4.47) < 0.001 −5.33 (− 7.85, − 2.80) < 0.001*

  Large LDL, nmol/L −4.58 (− 7.54, − 1.63) 0.002 − 0.98 (− 2.79, 0.83) 0.29

  Medium LDL, nmol/L − 10.11 (− 19.62, − 0.6) 0.04 1.19 (− 4.59, 6.97) 0.69

  Small LDL, nmol/L −35.75 (− 50.87, − 20.63) < 0.001 −19.43 (− 29.00, − 9.87) < 0.001*

  Large HDL, μmol/L 0.001 (− 0.003, 0.01) 0.68 0.003 (0.0002, 0.01) 0.04

  Medium HDL, μmol/L 0.22 (0.06, 0.38) 0.008 0.24 (0.08, 0.4) 0.003*

  Small HDL μmol/L 0.25 (− 0.08, 0.57) 0.13 0.35 (0.02, 0.67) 0.04

Amino acids b Alanine 0.14 (0.08, 0.20) < 0.001 0.11 (0.06, 0.17) < 0.001*

Creatine phosphate 0.02 (0.01, 0.03) < 0.001 0.01 (0.002, 0.02) 0.01*

Creatine 0.02 (0.01, 0.03) < 0.001 0.01 (0.005, 0.02) < 0.001*

Cysteine 0.02 (0.01, 0.02) < 0.001 0.01 (0.004, 0.02) 0.002*

Glutamine 0.11 (0.07, 0.15) < 0.001 0.08 (0.04, 0.12) < 0.001*

N-acetylglutamine 0.08 (0.05, 0.11) < 0.001 0.06 (0.03, 0.08) < 0.001*

Proline 0.12 (0.07, 0.16) < 0.001 0.09 (0.05, 0.12) < 0.001*

Tryptophan 0.03 (0.01, 0.06) 0.02 0.02 (0, 0.05) 0.06

Tyrosine 0.02 (0.01, 0.04) 0.002 0.01 (0, 0.02) 0.08

Isoleucine 0.05 (0.02, 0.08) 0.003 0.04 (0, 0.07) 0.02

Leucine 0.05 (0.02, 0.08) < 0.001 0.04 (0.01, 0.07) 0.01*

Valine 0.05 (0.02, 0.09) 0.003 0.04 (0.01, 0.08) 0.02

Fatty acids b CH2CH2CO −0.19 (−0.29, −0.09) < 0.001 −0.14 (− 0.24, − 0.04) 0.006*

CH2CH3 − 0.13 (− 0.24, − 0.03) 0.009 − 0.07 (− 0.17, 0.03) 0.15

CH2N −3.17 (−4.44, −1.89) < 0.001 −2.17 (−3.33, −1.00) < 0.001*

CH3 −0.38 (− 0.61, − 0.15) 0.001 −0.19 (− 0.37, − 0.003) 0.05

CHCH2CH − 0.03 (− 0.08, 0.03) 0.33 −0.003 (− 0.05, 0.05) 0.92

Isobutyrate 0.04 (0.01, 0.07) 0.003 0.03 (0.01, 0.06) 0.01*

Fluid balance b Albumin 0.11 (0.07, 0.16) < 0.001 0.07 (0.03, 0.11) < 0.001*

Creatinine 0.03 (0.01, 0.04) < 0.001 0.02 (0.01, 0.03) < 0.001*

Energy metabolism b Glycolysis

  Citrate 0.07 (0.04, 0.09) < 0.001 0.05 (0.03, 0.07) < 0.001*

  Lactate −0.34 (−0.6, − 0.09) 0.009 − 0.24 (− 0.48, 0.01) 0.06

  Pyruvate 0.03 (0.02, 0.04) < 0.001 0.02 (0.01, 0.03) < 0.001*

Ketone bodies

  Acetate 0.05 (0.03, 0.07) < 0.001 0.03 (0.01, 0.05) 0.001*

  Acetone −0.13 (− 0.19, − 0.08) < 0.001 −0.10 (− 0.16, − 0.05) < 0.001*

  3-Hydroxybutyrate 0.11 (0.07, 0.15) < 0.001 0.08 (0.04, 0.12) < 0.001*
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Association of metabolites and type 2 diabetes
All the HLS-related metabolites (together represent-
ing 7 metabolites’ groups), except IDL cholesterol and 
triglycerides and creatinine, were individually associ-
ated with incident type 2 diabetes. In Aalen additive 
hazard models, the greatest differences in incident 
type 2 diabetes rates (95%CI) comparing the 90th to 
the 10th percentiles of metabolites distributions were 
observed for small LDL in the lipoprotein particles 
subclasses and contents group (78.19 [16.82, 139.56]); 
for N-acetylglutamine in the amino acids group 
(− 71.46 [− 109.9, − 33.01]); for acetone in the energy 
metabolism group (72.26 [29.49, 115.03]); for trimeth-
ylamines in the products of bacterial co-metabolism 
group (− 68.58 [− 112.14, − 25.01]); and for albumin 
in the fluid balance group (− 70.49 [− 116.19, − 24.78]) 
(Table  3). In Poisson regression models, the associa-
tion of HLS-related metabolites with incident type 2 
diabetes was statistically significant and directionally 
consistent compared to results from Aalen regres-
sion models (Table  3). In BKMR analysis, the overall 
metabolites mixture was significantly and inversely 
associated with the type 2 diabetes risk (See Supple-
mentary Fig. S2, Additional File 1). Phenylpropion-
ate and medium HDL particles, which consistently 
showed and inverse association with incident type 2 
diabetes (See Supplementary Fig. S3, Additional File 
1), followed by small LDL particles, which consist-
ently showed a positive association with incident type 
2 diabetes (See Supplementary Fig. S3, Additional File 
1), displayed posterior inclusion probabilities (PIPs) 
higher than 20% (PIPs were 1, 1 and 0.23 respectively) 
(See Supplementary Table S9, Additional File 1).

Contribution of metabolites to HLS‑related type 2 diabetes
In models adjusting for age, sex, hypertension status, 
total cholesterol and lipid-lowering medication, 1-point 
increase in HLS was associated with 8.23 avoided inci-
dent diabetes cases/10,000 person-years (95% CI, 16.34, 
0.13) after a 14-year follow-up (Table  4). This decrease 
in type 2 diabetes incidence rates (RD) was substantially 
attenuated when HLS and diabetes-related metabolites 
were sequentially introduced by metabolite groups in 
the adjusted Aalen model. Metabolites from the lipopro-
tein profile caused the greatest attenuation in estimated 
number of avoided type 2 diabetes incidence cases with 
a 45.9% change in the HLS coefficient [RD changed from 
− 8.23 (95% CI, − 16.34, − 0.13) to − 4.45 (− 12.65, 3.75) 
after lipoproteins subclasses adjustment], followed by 
amino acids, bacterial co-metabolism, energy, fluid bal-
ance, phosphoethanolamines and fatty acids metabolites 
(corresponding % change in the HLS-regression coef-
ficient was 45.4, 38.0, 36.8, 25.6, 24.2, and 22.5 respec-
tively) (Table  4). When most relevant metabolites (i.e. 
metabolites with a PIP greater than 20% in the BKMR 
analysis) were simultaneously introduced in the model, 
the corresponding attenuation in the HLS-regression 
coefficient was 52.5% (Table  4). In other words, differ-
ences in relevant plasma metabolite measured at baseline 
approximately explained ~ 4 out of the 8 avoided inci-
dent diabetes cases/10,000 person-years attributable to a 
1-point increase HLS, adjusting for age, sex, educational 
level, total cholesterol and lipid-lowering medication. 
Results from confirmatory post-hoc causal mediation 
analysis were supportive of the analysis that evaluated the 
change in the HLS-diabetes association with and with-
out relevant metabolites entered as a group because the 
sum of the relative mediated effects of pheylpropionate, 
medium HDL and small LDL particle concentrations 

Abbreviations: MD mean differences; CI confidence interval; HLS Healthy Lifestyle Score. a n = 1016

Model 1 was adjusted for age (years), sex (men, women) and education (≤ high school, > high school). Model 2 was model 1 additionally adjusted for prevalent 
hypertension (no, yes), total plasma cholesterol (mg/dL) and use of lipid lowering medication (no, yes)
b  We normalized the spectral vector to the total spectral area excluding residual water signals to minimize the effects of variable dilution of the sample. The metabolic 
content is therefore expressed in relative metabolic content (unitless)

* Significant at a 2.5% False Discovery Rate

Table 2  (continued)

Model 1 Model 2

Products of bacterial co-metabolism b Ethanol −0.05 (− 0.16, 0.06) 0.39 −0.06 (− 0.16, 0.04) 0.24

Isopropanol 0.08 (0.05, 0.11) < 0.001 0.05 (0.03, 0.08) < 0.001*

Methanol 0.01 (0.002, 0.02) 0.008 0.01 (−0.0001, 0.01) 0.05

Trimethylamines 0.09 (0.05, 0.12) < 0.001 0.06 (0.03, 0.09) < 0.001*

Phenylpropionate 0.11 (0.07, 0.16) < 0.001 0.09 (0.05, 0.14) < 0.001*

Phosphoethanolamines b O-phosphoethanolamine 0.07 (0.04, 0.10) < 0.001 0.04 (0.02, 0.07) 0.002*
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Table 3  Rate Ratio and Rate Difference per 10,000 person-years, for incident type 2 diabetes (95%CI) comparing the 90th to the 10th 
percentiles of HLS-related metabolites distributionsa

RR (95% CI) RD (95%CI)

Group Metabolite Model 1 p-value Model 2 p-value Model 1 p-value Model 2 p-value

Lipoprotein 
profile

Cholesterol

  VLDL choles‑
terol

2.12 (1.45–3.08) < 0.001 2.09 (1.35–3.24) < 0.001 59.62 (18.18, 
101.06)

0.005 60.66 (16.58, 
104.74)

0.007

  HDL choles‑
terol

0.21 (0.07–0.66) 0.008 0.28 (0.10–0.79) 0.02 −52.40 (−88.35, 
−16.45)

0.004 − 47.56 (− 83.74, 
− 11.37)

0.01

  IDL cholesterol 1.27 (0.75–2.15) 0.38 1.11 (0.61–2.01) 0.74 9.82 (− 15.46, 
35.1)

0.45 6.12 (−24.57, 
36.81)

0.70

Triglycerides

  VLDL triglyc‑
erides

2.07 (1.48–2.91) < 0.001 2.02 (1.38–2.95) < 0.001 58.25 (17.54, 
98.95)

0.005 56.59 (14.06, 
99.12)

0.009

  IDL triglycer‑
ides

1.25 (0.69–2.29) 0.46 1.14 (0.60–2.17) 0.69 9.79 (−18.15, 
37.73)

0.49 8.52 (−22.84, 
39.89)

0.59

Lipoprotein particle concentration

  Large VLDL 1.77 (1.36–2.31) < 0.001 1.67 (1.25–2.24) < 0.001 48.30 (8.03, 88.58) 0.02 45.59 (4.49, 
86.69)

0.03

  Medium VLDL 1.56 (1.20–2.03) < 0.001 1.48 (1.12–1.95) < 0.001 43.70 (8.93, 78.48) 0.01 39.86 (3.85, 
75.87)

0.03

  Small VLDL 2.34 (1.62–3.37) < 0.001 2.40 (1.57–3.68) < 0.001 61.85 (20.86, 
102.85)

0.003 62.69 (19.54, 
105.84)

0.004

  Small LDL 1.70 (1.20–2.40) 0.003 2.71 (1.52–4.82) < 0.001 45.69 (6.59, 84.78) 0.02 78.19 (16.82, 
139.56)

0.01

  Medium HDL 0.15 (0.05–0.49) 0.002 0.22 (0.07–0.66) 0.007 −54.12 (−84.41, 
−23.83)

< 0.001 −46.41 (−76.50, 
−16.31)

0.003

Amino acids Alanine 0.33 (0.20–0.53) < 0.001 0.38 (0.24–0.60) < 0.001 −66.25 
(− 106.80, 
− 25.70)

0.001 −60.72 
(− 100.87, 
− 20.58)

0.003

Creatine phos‑
phate

0.43 (0.22–0.84) 0.01 0.36 (0.18–0.76) 0.007 −36.60 (− 70.68, 
− 2.52)

0.04 −51.06 (−95.96, 
− 6.15)

0.03

Creatine 0.34 (0.20–0.59) < 0.001 0.27 (0.14–0.51) < 0.001 −49.69 (− 82.80, 
− 16.57)

0.003 −68.15 
(−113.77, 
− 22.52)

0.003

Cysteine 0.35 (0.20–0.60) < 0.001 0.29 (0.15–0.55) < 0.001 −43.89 (− 74.10, 
− 13.69)

0.004 −57.78 (−97.34, 
− 18.21)

0.004

Glutamine 0.32 (0.18–0.57) < 0.001 0.29 (0.15–0.53) < 0.001 − 51.97 (−88.04, 
−15.91)

0.005 −62.53 
(− 106.14, 
− 18.91)

0.005

N-acetylglu‑
tamine

0.28 (0.18–0.44) < 0.001 0.27 (0.16–0.44) < 0.001 − 68.69 
(−104.62, 
− 32.76)

< 0.001 −71.46 
(−109.90, 
− 33.01)

< 0.001

Proline 0.34 (0.19–0.62) < 0.001 0.33 (0.18–0.61) < 0.001 − 51.58 (− 88.78, 
−14.37)

0.007 −58.68 
(− 100.91, 
− 16.44)

0.006

Leucine 0.32 (0.20–0.51) < 0.001 0.37 (0.23–0.59) < 0.001 −68.75 (−107.06, 
− 30.45)

< 0.001 −60.81 (− 97.75, 
− 23.87)

0.001

Fatty acids CH2CH2CO- 3.38 (2.07–5.52) < 0.001 3.03 (1.87–4.91) < 0.001 64.57 (27.25, 
101.89)

< 0.001 60.88 (24.37, 
97.39)

0.001

CH2N- 2.79 (1.69–4.60) < 0.001 2.77 (1.62–4.73) < 0.001 53.28 (17.86, 
88.69)

0.003 59.06 (18.42, 
99.70)

0.004

Isobutyrate 0.22 (0.13–0.37) < 0.001 0.27 (0.16–0.46) < 0.001 −73.15 
(− 109.93, 
− 36.38)

< 0.001 −65.92 
(−101.30, 
− 30.54)

< 0.001
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Abbreviations: RR rate ratio; RD rate difference; CI confidence interval. a n = 830

Model 1 was adjusted for age (years), sex (men, women) and education (≤ high school, > high school). Model 2 was model 1 additionally adjusted for prevalent 
hypertension (no, yes), total plasma cholesterol (mg/dL) and use of lipid lowering medication (no, yes)

Table 3  (continued)

RR (95% CI) RD (95%CI)

Group Metabolite Model 1 p-value Model 2 p-value Model 1 p-value Model 2 p-value

Fluid balance Albumin 0.34 (0.20–0.58) < 0.001 0.26 (0.14–0.50) < 0.001 −50.89 (− 84.27, 
−17.52)

0.003 −70.49 
(− 116.19, 
− 24.78)

0.003

Creatinine 0.65 (0.34–1.26) 0.21 0.56 (0.26–1.17) 0.12 − 16.96 (− 46.61, 
12.68)

0.26 −22.07 (− 56.62, 
12.49)

0.21

Energy metabo‑
lism

Glycolysis

  Citrate 0.30 (0.16–0.57) < 0.001 0.27 (0.14–0.55) < 0.001 −49.90 (− 84.40, 
− 15.40)

0.005 − 58.56 (−98.87, 
− 18.26)

0.004

  Pyruvate 0.32 (0.18–0.59) < 0.001 0.31 (0.16–0.58) < 0.001 − 49.48 (− 84.04, 
− 14.92)

0.005 − 56.04 (−94.75, 
− 17.32)

0.005

Ketone bodies

  Acetate 0.28 (0.15–0.52) < 0.001 0.27 (0.15–0.51) < 0.001 − 62.62 
(− 101.68, 
− 23.55)

0.002 − 68.92 
(− 111.80, 
− 26.04)

0.002

  Acetone 3.19 (1.97–5.15) < 0.001 2.88 (1.84–4.51) < 0.001 75.63 (32.20, 
119.05)

< 0.001 72.26 (29.49, 
115.03)

< 0.001

  3-Hydroxybu‑
tyrate

0.36 (0.20–0.64) < 0.001 0.34 (0.18–0.63) < 0.001 − 48.61 (− 84.22, 
− 13.00)

0.007 − 56.27 (− 97.80, 
− 14.74)

0.008

Products of 
bacterial co-
metabolism

Isopropanol 0.47 (0.23–0.93) 0.03 0.39 (0.18–0.85) 0.02 −31.46 (− 63.24, 
0.31)

0.05 −43.23 (− 83.80, 
− 2.66)

0.04

Trimethylamines 0.29 (0.16–0.53) < 0.001 0.23 (0.12–0.45) < 0.001 −52.59 (− 86.57, 
− 18.61)

0.002 −68.58 
(− 112.14, 
− 25.01)

0.002

Phenylpropion‑
ate

0.34 (0.21–0.54) < 0.001 0.39 (0.26–0.59) < 0.001 − 70.33 
(− 112.40, 
− 28.25)

0.001 −66.12 
(− 108.06, 
− 24.19)

0.002

Phosphoethano‑
lamines

O-phosphoetha‑
nolamine

0.38 (0.20–0.72) 0.003 0.33 (0.17–0.65) 0.002 − 42.53 (− 77.86, 
−7.19)

0.02 −56.54 
(− 101.38, 
− 11.69)

0.01

Table 4  Difference in type 2 diabetes incidence per 10,000 person-years per 1-point HLS increasea

Abbreviations: CI, confidence interval
a  Aalen additive models with progressive degrees of adjustment; n = 830, 51 incident type 2 diabetes cases and 779 non-cases
b  Relevant metabolites defined as showing a PIP > 20% in BKMR-P regression
c  Bias-corrected and accelerated 95% confidence intervals from bootstrap based on 1000 resamplings as conducted by the boot R package

Adjustment models Difference in type 2 
diabetes rates
per 10,000 person-
years (95% CI)

Percent
explained, % (95% CI)c

Age, sex, education, prevalent hypertension, total plasma cholesterol, use of lipid lowering medica‑
tion (Reference Model)

−8.23 (− 16.3, − 0.13) Reference

Reference model + lipoprotein subclasses −4.45 (− 12.65, 3.75) 45.9 (3.6, 238.7)

Reference model + amino acids −4.49 (− 13.06, 4.08) 45.4 (7.2, 274.0)

Reference model + fatty acids −6.38 (−15.00, 2.24) 22.5 (−11.2, 164.1)

Reference model + fluid balance −6.12 (− 14.58, 2.34) 25.6 (4.4, 223.7)

Reference model + energy −5.20 (−13.93, 3.54) 36.8 (0.3, 285.2)

Reference model + products of bacterial co-metabolism −5.10 (− 13.82, 3.62) 38.0 (2.8, 266.2)

Reference model + O-phosphoethanolamine −6.24 (− 14.79, 2.31) 24.2 (2.9, 211.3)

Reference model + phenylpropionate, and medium HDL and small LDL particle concentrations b −3.91 (− 12.25, 4.44) 52.5 (15.9, 384.3)
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from the product of coefficient method (from Supple-
mentary Table  S10) was essentially similar to the origi-
nally estimated percent of the HLS-diabetes association 
explained by the 3 metabolites simultaneously entered as 
a group (Table 4).

Discussion
In this population-based cohort with a 14-year follow-
up, the HLS, a composite healthy-lifestyle measure, was 
cross-sectionally associated to plasma metabolomic pro-
files mostly representing lipoprotein subclasses, amino 
acids, energy metabolism, fatty acids, products of bacte-
rial co-metabolism and fluid balance metabolites. While 
most of these metabolites were individually associated 
with type 2 diabetes risk in single-metabolite models, 
phenylpropionate and medium HDL followed by small 
LDL particle concentrations largely drove the prospective 
association of jointly modelled metabolites with diabe-
tes, and explained ~ 50% of avoided type 2 diabetes cases 
attributable to healthy lifestyle. Our results, thus, support 
that early metabolic changes related to lifestyle may have 
an impactful role in type 2 diabetes prevention.

The association of lifestyle and type 2 diabetes is widely 
known. The available evidence is based on several pro-
spective studies of healthy lifestyle scores and incident 
type 2 diabetes [28, 29]; a meta-analysis of 14 prospective 
studies that evaluated the association between combined 
lifestyle factors and incident type 2 diabetes [3]; and a 
meta-analysis of randomized clinical trials that summa-
rized the long-term effect of different combined lifestyle 
interventions in individuals at high risk of type 2 diabe-
tes [30]. However, the contribution of plasma metabolites 
to explain the association of overall lifestyle and incident 
type 2 diabetes had not been evaluated before.

We observed a strong association of HLS with metab-
olites profiles reflecting several metabolic pathways. 
Scarce studies have previously evaluated the associa-
tion between lifestyle —as a composite measure— with 
metabolomics measures. In the EPIC cohort, a modi-
fied healthy lifestyle index (diet, BMI, physical activity, 
lifetime alcohol, smoking, diabetes and hepatitis) was 
related to a serum metabolic signature composed of hex-
oses, glutamic acid, sphingomyelins and a phosphatidyl-
choline [8]. In our study, metabolites involved in related 
metabolic pathways, including several amino acids, as 
well as markers of energy metabolism, were consistently 
associated to healthy lifestyle adherence. Additionally, 
we identified other metabolites types, mainly lipoprotein 
subclasses; but also products from bacterial co-metab-
olism; fluid balance; fatty acids and O-phosphoethan-
olamine, which had not been previously investigated in 
relation to overall lifestyle.

Importantly, most of the identified HLS-related metab-
olites in our study were also prospectively associated with 
type 2 diabetes. Some components of the lipoprotein 
profile that were found to be positively associated to type 
2 diabetes in our study, have been previously reported 
[specifically VLDL cholesterol [31], HDL cholesterol [10, 
31, 32], VLDL triglycerides [31]; large and small VLDL 
[10] and small LDL [32]]. Similarly, components of the 
amino acids (e.g. alanine, creatine, glutamine, proline) 
[33] and the bacterial co-metabolism (phenylpropion-
ate) [34, 35] groups, have been consistently associated 
to type 2 diabetes risk in other studies. However, the 
mechanisms that explain the associations between most 
of plasma metabolites measured in our study and type 2 
diabetes remain largely unclear.

Evidence obtained from animal models shows that the 
exogenous administration of glutamine improves glucose 
tolerance [36], while the administration of creatine [37] 
or cysteine [38] decreases glycemia. Interestingly, this 
is the first study to find an association between plasma 
O-phosphoethanolamine levels with incident type 2 
diabetes. In In-vitro studies, O-phosphoethanolamine 
up-stream precursor Sphingosine-1-Phosphate, coun-
terbalanced insulin-resistance in peripheral tissues such 
as liver and muscle, and protected pancreatic beta cells 
from apoptosis [39]. Moreover, in a study among type 2 
diabetes-free participants, fasting plasma insulin and 
insulin resistant measures have been positively corre-
lated with O-phosphoethanolamine downstream product 
phosphatidylethanolamine [40]. Thus, this finding is con-
sistent with the available evidence in favor of a biological 
role of sphingolipid metabolism on diabetes.

While the fact that the metabolite subgroups are cor-
related makes it difficult to separate the relative contri-
bution of the individual subgroups, in BKMR-P analyses, 
which accommodate highly dimensional correlated vari-
ables simultaneously, phenylpropionate, and the medium 
HDL and small LDL particle concentrations drove most 
of the observed joint association of metabolites with 
diabetes. Microbial-related phenylpropionate is posi-
tively correlated with whole grain and fruit intake [41], 
dietary fiber and microbiome diversity [34], and although 
has been associated to incident type 2 diabetes [34, 35], 
their precise mechanism of action is unknown. However, 
it is hypothesized that its antioxidant properties could 
decrease insulin resistance [34]. Alternatively, type 2 dia-
betes is frequently preceded by a dyslipidemia character-
ized by hypertriglyceridemia with low HDL cholesterol 
levels and reduced LDL size [42], which is induced by 
an increased hepatic secretion of large VLDL particles 
that interact with the cholesteryl ester transfer protein 
and hepatic lipase [42, 43]. The progressive replacement 
of cholesteryl esters by triglycerides in the HDL particle 
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gradually generates smaller and denser particles [44]. 
Additional experimental research, however, is needed 
to further clarify the role of the specific lipoprotein sub-
classes concentrations on type 2 diabetes development.

The present study is not exempt of limitations. For 
instance, the fact that only individuals with suggestive 
evidence of altered non-fasting glucose levels under-
went a second measurement in fasting condition allowed 
for analysis of diabetes status but not for glycaemia as a 
continuous measure, possibly a more powerful endpoint. 
Similarly, no information on insulin sensitivity or secre-
tion was available, which could have provided additional 
insights relative to metabolic pathways in pre-diabetes. 
Moreover, the limited number of type 2 diabetes cases 
may not have enough power to detect interactions. The 
direction of the associations was, however, consistent in 
all the evaluated subgroups. Additionally, the HLS was 
derived mainly from self-reported information, thus non-
differential miss-classification of the HLS components, 
which could attenuate the observed associations, can-
not be ruled out. Alternatively, differential miss-classifi-
cation of habits potentially related to social stigma such 
as alcohol intake may introduce some bias. Nonetheless, 
self-reported dietary information has been widely used 
on several other population cohorts. Importantly, the 
results from our sensitivity analysis support that biases 
introduced by alcohol are unlikely, although informa-
tion on binge drinking pattern was unavailable. An addi-
tional limitation relates to the fact that metabolomic data 
was obtained using a targeted approach and only a pre-
defined set of metabolites was available. Thus, we may 
have missed relevant metabolites. Nonetheless, in our 
data early lifestyle-related metabolic signatures widely 
explained the association between a healthy lifestyle 
and the subsequent occurrence of type 2 diabetes. This 
assertion is backed by study strengths such as the com-
plex sampling design, which makes our study population 
representative of the general population from a Span-
ish region, the prospective study design, and the long 
follow-up.

Conclusions
In our population-based sample, we observed a strong, 
inverse, association of HLS with incident type 2 diabe-
tes, which was substantially explained by differences 
in lifestyle-related plasma metabolites measured years 
before the type 2 diabetes clinical diagnosis. Our data 
support that lifestyle-related metabolic changes have 
a relevant biological role in type 2 diabetes develop-
ment, and suggest that metabolomics can contribute to 
the early identification of individuals who could benefit 

from intensified lifestyle-related precision interven-
tions for the type 2 diabetes prevention and control.
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