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A B S T R A C T   

As long as critical levels of vaccination have not been reached to ensure heard immunity, and new SARS-CoV-2 
strains are developing, the only realistic way to reduce the infection speed in a population is to track the infected 
individuals before they pass on the virus. Testing the population via sampling has shown good results in slowing 
the epidemic spread. Sampling can be implemented at different times during the epidemic and may be done 
either per individual or for combined groups of people at a time. The work we present here makes two main 
contributions. We first extend and refine our scalable agent-based COVID-19 simulator to incorporate an 
improved socio-demographic model which considers professions, as well as a more realistic population mixing 
model based on contact matrices per country. These extensions are necessary to develop and test various sam-
pling strategies in a scenario including the 62 largest cities in Spain; this is our second contribution. As part of the 
evaluation, we also analyze the impact of different parameters, such as testing frequency, quarantine time, 
percentage of quarantine breakers, or group testing, on sampling efficacy. Our results show that the most 
effective strategies are pooling, rapid antigen test campaigns, and requiring negative testing for access to public 
areas. The effectiveness of all these strategies can be greatly increased by reducing the number of contacts for 
infected individual.   

1. Introduction 

While vaccination has started several months ago in a significant part 
of the world, it is not progressing at the fast pace that was expected. In 
parts of the world outside North America and Europe, vaccination rates 
are still abysmally low [39]. New variants are adding complexity and 
insecurity about the effectiveness of the different vaccines available. In 
the absence of a vaccine, emphasis should be placed on policies that 
protect the most-vulnerable population while herd immunity is hoped to 
be achieved in the less vulnerable people [16]. Mitigation strategies that 
can slow the propagation of the virus in the susceptible population are 
the target of continuous modification. An effective way to this is to test 

part of the population that is not (yet) symptomatic, during a process 
called sampling. Reducing virus transmission is directly proportional to 
the percentage of the population that is tested. In terms stated by the 
ECDC, “Ideally, all people with COVID-19 symptoms should be tested as soon 
as possible after symptom onset” [7]. This practice has been implemented 
in hospitals and first care centers, so symptomatic individuals are tested 
immediately when they decide to get medical attention. In case of 
positive test results, infected individuals are quarantined to limit the 
virus spread. This measure has a high impact limiting the virus propa-
gation because it helps distinguish COVID-19 infections from common 
sickness with similar symptoms such as fever or cough produced by 
influenza. However, not all individuals who develop symptoms seek 
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medical attention. Additionally, a seemingly large percentage of infec-
ted people are asymptomatic, and they add to the ranks of 
pre-symptomatic individuals who are, unknowingly, transmission vec-
tors. Identifying these individuals before they further infect other sus-
ceptible people can have a very large positive impact on the 
development of the epidemics [27]. A more precise understanding of the 
effects of different possible sampling strategies would contribute to 
design policies that can slow down the propagation and reduce the 
number of affected individuals, while trying to optimize the resources of 
the health system. 

This work builds on EpiGraph [23], a fully distributed agent-based 
simulator for influenza and COVID-19 diseases. Agent-based ap-
proaches have the potential to model each individual’s characteristics 
and interaction patterns, which can result in much more realistic sim-
ulations compared to other approaches [5,15]. One of the distinguishing 
features of EpiGraph is that it relies on realistic data for both individuals 
and their interaction patterns, which we extract by scaling from existing 
social networks and contact matrices. Interconnections are 
time-dependent in order to realistically capture the temporal nature of 
interactions and the specifics or each profession or social activity. This 
paper makes the following main contributions:  

● Design and implementation of a more refined social interaction 
model which reflects profession-dependent connections to increase 
the realism of population mixing. We also use contact matrices 
extracted from public surveys to reflect age-dependent interactions 
of each individual. Lastly, we make the code and related data 
available as open source in [42].  

● Development of different COVID-19 sampling (i.e. testing) strategies, 
which we compare with a basic scenario in which a baseline of 

sampling and mitigation strategies are applied. The scenario includes 
the 62 largest cities of Spain, and testing strategies are applied over 
the whole population. In total, we evaluate 12 different sampling 
strategies including several variants changing configuration param-
eters, such as the testing frequency, quarantine time, and the per-
centage of quarantine breakers. 

The rest of the paper is organized as follows. After the simulation 
framework introduction, in Section 2 we describe the new features 
developed in EpiGraph. Section 3 shows how EpiGraph was calibrated 
using the available data of the Spanish Third wave, at early of 2021. 
After that, the results of the impact of different sampling policies are 
shown. Section 4 provides a discussions of the findings as well as the 
limitations of the work. Finally, Section 5 presents the main conclusions 
of our work. 

2. Materials and methods 

Our simulator’s structure is detailed in Algorithm 1. Each city sim-
ulates a population mix based on the Spanish census data [25], and 
defines social connections between its individuals. For each simulation 
step (equal to 10 minutes - line 1) and every city in the simulated ter-
ritory (line 2), the algorithm updates the health status of each infected 
individual as indicated by EpiGraph’s Epidemic Model (line 5). The next 
step ComputeSpreadGraph (line 6) computes how the infectious agent 
spreads through the Social Model. We call non-pharmacological in-
terventions applied at individual-level (Individual_NPIs, line 8) a 
non-pharmacological action taken by an individual to mitigate the virus 
propagation like using face masks. An example of this kind of inter-
vention is when an individual starts using a surgical face masks at work, 
but not during family time. 

In line 10, dynamic transmissions are evaluated - as opposed to the 
permanent graph-based transmissions (line 6). Dynamic connections are 
generated for individuals belonging to certain collectives that have 
short-duration interactions with different people. Examples of these 
collectives are health professionals and catering workers that are in 
contact with different patients or customers. Note that momentary 
connections change over the time, i.e. some of the individuals involved 
may be different every time. 

Algorithm 1. EpiGraph transmission algorithm. Variable simu-
lation_time represents the simulation duration, simulated_territory is the 
simulated area including several cities, each one of them, denoted as city 
with a social interaction model for the population. Individual contains 
characteristics and health status of each individual belonging to each 
city.  

We call non-pharmacological interventions applied at collective- 
level (Collective_NPIs, line 11) an intervention —such as school closing 
or a total or partial lockdown— that is imposed (or lifted) by the health 
authorities at a certain time during the simulation and that involves a 
specific collective. Line 12 of Algorithm 1 simulates the exchange of 
individuals between cities by calling the Transportation Model, which is 
based on the gravity model proposed by Viboud et al. [37]. This model 
computes the number of travelers depending on the size of the origin and 
destination cities, as well as the geographical distance between them. 
The geographical information that EpiGraph takes into account includes 
latitude, longitude, and distance between urban regions, and was 
extracted from the Google Maps web service using the Google Distance 
Matrix API [11]. The Transportation Model captures regular medium 
and long-distance commute for work and study, together with occa-
sional vacations. Finally, in line 13 the Vaccination Model captures both 
the COVID-19 vaccine availability and characteristics as well as the 
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vaccination policies that determine which individuals are vaccinated at 
any time and with what vaccine type. 

2.1. Social interaction model 

EpiGraph is an agent-based model that captures individuals with 
their attributes, groups of individuals, and interactions patterns. We use 
demographic information to reproduce the social habits of four different 
main group types: students, workers, stay-at-home people, and elders. 
Individuals form part of groups, each of a single group type. A group can 
represent a certain number of individuals that interact during work 
hours - for instance, groups are the students belonging to the same 
classroom, workers of the same company, or stay-at-home people or 
elderly people that perform group activities. 

The way the individuals establish social contacts1 is time-dependent 
and reflects the temporal nature of the different types of interactions 
that each individual has throughout the day. For each one of the group 
types, we consider three different temporal distributions of the in-
dividual’s activities, those related to weekdays, Saturdays, and holidays 
(including Sundays). These patterns are specific to the place being 
modelled to correctly capture typical work hours, school time, family 
time, and leisure. 

EpiGraph creates different graphs to model connections within each 
work group, school group, stay-at-home (informal meetup) group, and 
elderly (informal meetups) group. Rather than assuming a distribution 
or generating synthetic interaction graphs, we use real information from 
social networks to model the social interaction patterns. We have used 
the Enron Email Corpus (70,578 nodes and 312,620 edges) for gener-
ating the work, elderly and informal-meetup groups while the Facebook 
(250,000 edges and 3,239,137 edges) network was used to generate the 
school groups. 

The social interaction model includes two more types of social con-
tacts for leisure and family activities. Leisure contacts are modelled via 
inter-group contacts. These contacts are between individuals belonging 
to different groups (for instance, work and school groups) and mostly 
occur after the main daily activity and before family time, as well as 
during the weekends. These contacts represent interactions with friends 
as well as casual contacts with unknown people. The third class of 
contacts are family contacts, interactions with family members who may 
or may not be part of the same group. The family connections graph is 
completely connected. However, connections are time-dependent which 
means that some of them (related to individuals that are not at home at a 
given time) are only active during a certain time interval. For a more 
detailed description of these features, please see Ref. [33]. 

In this work we have enhanced the social model with information of 
contact matrices [26]. These matrices, extracted from public surveys, 
contain statistical information of the average number of contacts be-
tween individuals of certain age ranges. There are four matrices corre-
sponding to school, work, household and community contacts. Fig. 1 
(left) shows the aggregated contact matrix values that corresponds to 
Spain. For example, based on this figure, individuals that are between 10 
and 20 years old have an approximate average of 2 and 8 contacts per 
day with other individuals in the range of ages of 0–10 years, and 10–20 
years, respectively. 

We have developed a new graph scaling algorithm based on the 
random walk algorithm [20] that starts from as many nodes as the 
desired group size, chosen randomly, and randomly explores different 
paths in the graph. This means that the connection pattern of each group 
is unique, while maintaining certain graph-related properties such as the 
variable distribution of the number of contacts per individual [22]. In 

the newly developed algorithm, the resulting graphs are generated using 
a similar approach, but with certain average connectivity < k > that is 
specified by the contact matrices. The school contact matrix was used to 
generate school groups with the same number of contacts per age as this 
contact matrix. In a similar way, the work sub-matrix was used to define 
the connectivity for the work, stay-at-home and elders (informal 
meetup) groups. Finally, the community sub-matrix was used to 
generate the connectivity related to the leisure contacts reflecting the 
contacts that are neither related to school nor work connections, for 
instance, child-worker, child-elderly or worker-elderly connections. 
Fig. 1(right) shows the resulting contact matrix that has been obtained 
from the contact model created by the simulator. Note that the real and 
simulator-generated matrices have a similar structure - although not 
identical. It turns out that we are able to generate a very good approx-
imation of reality, given that we start from data sources that are very 
different from real interaction networks - something we cannot possibly 
hope to have. Our sources are virtual networks (Enron Email Corpus and 
Facebook graphs), which we scale to obtain matrices that preserve the 
patterns of the source networks while adapting them to the number of 
age-based contacts from the contact matrices. 

In order to increase the realism of population mixing, the work group 
has been broken down in different professions. In the same way, we 
distinguish different sub-collectives for the group of elderly people.2 

Another new feature is ad-hoc connections for certain profession and 
collectives that have specific connection patterns. These connections 
may be static or dynamic. Static connections are generated during the 
social model creation and do not change during the simulation. They are 
created when the connection graph is generated, before the simulator 
execution. Then, during the simulation these connections are evaluated 
by ComputeSpreadGraph() in Algorithm 1 for a certain time slot. Dy-
namic connections are not generated offline but during the simulation, 
and they change every time that they are evaluated. They reflect 
changing communication patterns that may be in contact with certain 
individual at a given time, and other individuals at another time. Dy-
namic connections are evaluated by the ComputeSpreadDynamic() 
function in Algorithm 1. The following list describes the different ad-hoc 
connections implemented in EpiGraph:  

● Ad-hoc school static connections. Each educator is in contact with all 
the students of a certain class during work hours. These connections 
are not active during the whole time slot, but are rather sporadic 
during this period, in order reflect the fact that educator and students 
share the same space but are not permanently in contact. Note that 
the educator also remains in contact with the work, leisure and 
family groups (each one of them at their respective time slot). In this 
case, the work group represents the contacts with the other educators 
belonging to the same center.  

● Ad-hoc elderly caregiver static connections. Elderly caregivers are in 
contact with a certain group of elderly people at a nursing home 
during work hours in the same way that educators are in contact with 
students. These contacts are also sporadic, i.e., are not active during 
the complete work slot but are the same during all the simulation. 
This means that a certain caregiver has the same related group of 
elderly people that is connected with.  

● Ad-hoc health-care dynamic connections. Each worker belonging to 
the health sector is in contact with 30 patients per day.3 For non 
front-line health workers, the patients are chosen at random among 
the existing population, so the risk of meeting a COVID-19 infected 
individual is the same as for any other profession. In contrast, front- 

1 We define a social contact (also called contact or interaction) between two 
individuals based on co-location in time at a distance that is small enough to 
make disease transmission possible. 

2 In the supplementary material you can find more details about the collec-
tives belonging to these groups.  

3 This value corresponds to the daily average number of patients per doctor in 
Spain. 
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line health workers have also dynamic connections with 3.3 times 
more risk of meeting a COVID-19 infected patient [31].  

● Ad-hoc catering dynamic connections. Each worker belonging to this 
sector is in contact during work hours with 10 other individuals per 
hour. The contacts (that represent the customers) are chosen at 
random among the population, excluding the ones that are in bed, 
quarantined or hospitalized. We consider three levels of catering 
contacts: pre-pandemic, pandemic with a more reduced number of 
contacts per hour, and lockdown with catering services closed.  

● Ad-hoc public security dynamic connections. They represent the 
contacts of police and other security forces, in which each officer is in 
contact during work hours with other individuals per hour, that 
represent the general public. The contacts are chosen at random 
among the population, excluding the ones that are in bed, quaran-
tined or hospitalized.  

● Ad-hoc occasional meeting dynamic connections. They represent 
meetings between different groups related to social events. We 
consider three different classes of occasional meetings: (1) occasional 
work meetings represent meeting between people belonging to 
different work groups. Here, once per day we select a varying 
number of work groups (between 2 and 4) at random and we connect 
them during a 4-h time period. Note that only a small fraction of the 
existing work groups are connected by this procedure; the remaining 
ones do not participate in occasional meetings; (2) occasional school 
meetings are similar to work meetings, where student groups are 
chosen instead of work groups. They represent occasional social 
gathering between students; (3) occasional leisure meetings repre-
sent groups of friends that gather. Like for the rest of the occasional 
meetings, these connections are created once a day from only a small 
fraction of the existing contacts. 

Note that all these ad-hoc contacts are complementary to the existing 
individual graph-based contacts. This allows an individual to have two 
different types of interactions during work hours: the ones related to the 
graph - that connect him with other work colleagues (for instance, ed-
ucators belonging to the same school, health professional belonging to 
the same hospital or catering employees working at the same restaurant) 
but also the ad-hoc ones that connects the individual with other in-
dividuals in other group types, for instance, educators with students, 
health professional with patients and catering workers with customers. 

2.2. COVID-19 model 

The epidemic model is a compartmental stochastic SEIR model 
extended with latent, asymptomatic, dead, hospitalized and vaccinated 
states. Rather than the more common analytic models based on differ-
ential equations, Epigraph probabilistically decides the duration of the 
different compartments and the transitions between them. In addition, 
the basic reproduction numbers R0s are different for each compartment. 
Fig. 2 is an extended version of the figure presented in Ref. [33]. It shows 
the different infection phases, which are described below:  

● Incubation stage. At the beginning of this stage individuals are 
infected but they have no symptoms and are not yet able to transmit 
the virus. This stage is represented as primary exposed EP. From this 
stage the infection can enter one of two phases, based on a proba-
bility PEI: a secondary exposed stage ES where slight symptoms 
appear and the individual becomes infectious with a certain RES

0 , or 
an asymptomatic stage (described below).  

● In the asymptomatic stage (compartment A), infected individuals 
do not notice symptoms but are able to transmit the disease with a 
certain RA

0 reproduction number. After a certain time, they pass to 
the recovered compartment in which the subject acquires viral 
immunity.  

● In the first symptomatic stage - called primary infection state IP - 
symptoms appear. Individuals will then transition to phase IS, where 

Fig. 1. (Left) Global input contact matrix used in 
the social model. Each column represents the 
average number of contacts of the individuals 
belonging to the age interval shown at the top of the 
column. These contacts are broken down by age 
intervals in the different rows. (Right) Global con-
tact matrix related to EpiGraph’s social model used 
in the experiments. Each column represents the 
average number of contacts of the individuals 
belonging to the age interval shown at the top of the 
column. These contacts are broken down by age 
intervals in the different rows.   

Fig. 2. Compartmental model used by EpiGraph. It consists of the following 
states: susceptible (S), primary exposed (EP), secondary exposed (ES), asymp-
tomatic (A), primary infected (IP), hospitalized (H), recovered (R) and dead (D) 
individual. Each state shows the basic reproduction number of the state (non- 
existing R0s means that are not applicable). The edges show the transition 
probabilities (which are normalized) between the compartments. Duration of 
the main infection stages consists of an incubation that includes EP and ES; 
infectious includes IP and IS; hospitalized is represented as H; and asymptomatic 
is A. Note that the asymptomatic stage starts after the primary exposed stage 
(EP), which in this approximation lasts only one day. States ST, EP

T , ES
T , AT, IP

T , IS
T 

and HT are related to treated individuals i.e. individual that have 
been vaccinated. 
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symptoms persist. IP, IS and IV have associated basic reproduction 
numbers of RIP

0 , RIS
0 and RIV

0 .  
● A certain fraction of the individuals are hospitalized (hospitalized 

stage). The probability of entering this stage is given by the 
parameter PH(age), which increases with age. From this state, an 
individual may transition to either the recovered or the dead stage. 
During hospitalization, we use RH

0 for modelling the transmission in 
hospitals.  

● The individuals that reach the dead stage are removed from the 
simulation. The transition probability, PD(age), is also age-dependent 
and is applied over the portion of hospitalized individuals.  

● The treated stages shown in the lower part of the figure represent 
the infection stages for vaccinated individuals. A non-infected 
vaccinated individual has associated the treated Susceptible state 
(ST). In case of being infected, the first related state is the treated 
Exposed primary (EP

T). Then, in case of a vaccination failure, the 
transition will include the states ES

T, IP
T, IS

T and HT, in a similar way 
that non-vaccinated individuals. Note that the probability of vacci-
nation failure is pI

T , which depends on the type of vaccine that has 
been used, the virus variant that has infected the individual and in 
some cases other factors, like the age of the individual. On the con-
trary, when there is no vaccination failure, then the individual 
transits to the Asymptomatic treated state AT. 

The time spent in a given state is generated following a normal dis-
tribution to simulate the time ranges specific to each stage of the 
infection and the fact that each individual may go through phases of 
different lengths. We also consider that a percentage of the sick in-
dividuals stay in bed, thus reducing the number of people that they 
interact with. We have used the same COVID-19 parameters (R0s values, 
transition probabilities, etc.) as the ones previously depicted in Refs. 
[33]. 

2.3. Sampling strategies 

In this work we evaluate the effect of new sampling strategies with 
the aim of identifying the strategy that achieves the larger reduction in 
COVID-19 cases. Some strategies are specially focused on certain col-
lectives. We choose the health, social-health, defense and catering col-
lectives as target for these strategies given that they have a higher 
incidence of COVID-19 cases. All the sampling strategies are parame-
terizable by the number of daily tests, the minimum testing frequency (i. 
e. the minimum time between two tests carried out for the same indi-
vidual), the quarantine time, and the percentage of quarantine breakers 
(i.e. the fraction of people who do not comply with social distancing 
during quarantine time). Works like [8,12] points out the relevance of 
the testing frequency. By properly setting this parameter, health au-
thorities avoid testing the same individual within a short period of time 
(wasting tests that could be used with other individuals) or extending 
too much the time between successive tests, which would increase the 
risk of not detecting positive cases. Other determinant factor in the virus 
spread is quarantine time. Individuals that are COVID-19 positive in 
Spain are recommended to quarantine until at least three days after 
symptoms disappear and during at least a 10 days [24]. On the other 
hand, in case of contact with a positive, Spanish health authorities 
recommend a 10-day self-isolation period, starting since the last contact 
with the confirmed case [24]. The WHO (World health organization) 
recommends that all contacts of individuals with a confirmed or prob-
able COVID-19 be quarantined in a designated facility or at home for 14 
days from their last exposure [40]. In our experiments, we used a default 
value of quarantine of 10 days and a sensitivity value for the PCR tests of 
100%. The different sampling strategies we consider in this work are 
enumerated below.  

● Strategy 1, baseline strategy. This strategy reproduces the testing 
strategy applied in Spain: a given number of tests (0.25% of the 
simulated population) are performed daily and a percentage of these 
(around 9%) are positive. We model this strategy by a combination of 
random testing over the simulated population and a selective iden-
tification of positive cases The goal here is to achieve positive testing 
ratios similar to the existing ones in Spain at this time (around 9%). 
To achieve this, tests in the simulation are of two types: they are 
either randomly applied to the population or they are carried out 
selectively, but exclusively over the existing positive cases, in 
random fashion. The size of each of the two sets is empirically 
adjusted to achieve a percentage of positive tests as close to the 9% 
real ratio. Some of the remaining sampling strategies - described 
below - are applied in combination with this baseline. Note that 
when combining strategies, if a certain individual is tested in the 
context of the baseline approach, he/she cannot be tested again 
during the same period by any of the other testing strategies.  

● Strategy 2, random testing without selective identification. In this 
strategy extra tests are performed in combination with the baseline 
strategy. More specifically, an additional 0.3% of the population is 
randomly tested daily. In this strategy a selective identification of 
positive cases is not performed. This means that, unlike in the 
baseline strategy, we do not impose any restriction on the fraction of 
the tests that we assume to return positive. Note that this represents 
the simplest testing strategy, in which the available extra tests are 
used with all individuals chosen at random.  

● Strategy 3, extra tests are targeted to the health, social-health home, 
and defense workers in combination with the baseline strategy. 
There collectives represent 7.5% of the simulated population and 
they represent public-sector employees that have a higher risk of 
being in contact with COVID-19 infected individuals. With this 
strategy 0.3% of the target group is tested daily.  

● Strategy 4, extra tests target catering workers in combination with 
the baseline strategy. The catering group is about 4.3% of the 
simulated population for Spain. It represents private-sector em-
ployees that are also more likely to be infected. As in the previous 
strategy, base tests are performed over the entire population and, at 
the same time, extra test focus on this target group with a high 
incidence of cases, where 0.3% of the workers is tested daily.  

● Strategy 5. In the previous strategies only positive individuals are 
quarantined. This strategy, on the other hand, introduces a variation 
in the baseline strategy in which family contacts of a positive indi-
vidual are also quarantined during a 10-day period. No extra tests are 
performed in this strategy; this maintains 0.25% of the simulated 
population being randomly tested daily, with a positive rate of 9%.  

● Strategy 6 that represents a variation of Strategy 5. All contacts of 
positive individuals are quarantined instead of only family contacts; 
this includes household, leisure, and work contacts.  

● Strategy 7 implements the pooling method [34,41] in combination 
with the baseline strategy. This method consists in testing various 
samples with a single test. A positive result means that there is at 
least one infected individual among the set (called pooled group). If 
that is the case every member of the pooled group is individually 
tested in order to identify the positives. A negative result means that 
there are no infected individuals in the pooled group. This group is 
formed by individuals that are normally in close contact, such as 
family or colleagues. In this strategy we focus on work contacts and 
set a maximum pooling size group of 20 individuals with about 1.7% 
of the workers that are sampled daily. Quarantined individuals are 
not included in the pooling process. The number of extra daily test is 
the same as in Strategy 2.  

● Strategy 8 applies the pooling method (Strategy 7) only for catering 
workers in combination with the baseline strategy. About 1.57% of 
catering workers are sampled daily by the pooling method; this 
represents 0.23% of the workers in this profession. 
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● Strategy 9 represents a rapid antigen tests that is carried out in 
combination with the baseline strategy. This additional campaign 
takes place during one single week in which the additional daily 
number of tests is 5 times larger than the ones used per week in the 
Strategy 2. This increases the daily tested workers to 0.86% which 
are selected at random. This strategy is particularly useful when the 
percentage of newly infected individuals is raising sharply and al-
lows the quick identification of a larger number of pre-symptomatic 
and asymptomatic people, which are subsequently quarantined. 
After the test campaign period (one week), the number of tests is 
reduced to the default value of 0.17% of workers that are daily 
tested.  

● Strategy 10 is a variation of the previous one in which the test 
campaign (of strategy 9) is selectively used on catering workers in 
combination with the baseline strategy. During an entire week, the 
additional number of daily tests is 5 times larger than the usual 
number. This accounts for 1.4% of the catering workers being tested 
daily, while baseline tests are performed randomly over the popu-
lation. In a similar way than the previous strategies, an individual 
cannot be tested twice during a period shorter than the test window 
time, no matter if the test campaign is active or not.  

● Strategy 11, avoiding leisure contacts for non-tested individuals in 
combination with the baseline strategy. In this strategy a negative 
PRC is required to be allowed access to public places like restaurants, 
or leisure places [6]. For instance, an individual is not allowed to 
have social life without a previous negative PRC. This restriction is 
applied to all leisure contacts, including the ones related to children. 

● Strategy 12 describes the ideal situation in which the baseline sce-
nario targets only infected individuals. There is still a limited number 
of daily tests (0.3% of the population) but all of them are positive (in 
case of existing enough infected individuals). 

We also tested other sampling strategies, that we discarded mostly 
because they showed very low impact on the propagation of the infec-
tion or, as in the case of individuals with a high number of contacts, 
because knowing this information is unrealistic. 

3. Results 

3.1. Model validation 

Our experiments consist of a simulated population of 19,574,086 
individuals (which lives in the 63 most populated Spanish cities), whose 
geographical locations are shown in Fig. 3. Sampling strategy 1 is used in 
this scenario in order to reproduce the existing testing policy in Spain 
during the simulation period. To set the number of daily tests for the 
sampling strategies that are carried out in Spain, we assume that 0.25% 

of the Spanish population has been tested daily since March 2020 - on 
average, with only 9% of these tests returning positive. These percent-
ages are similar to the existing values for Spain. Note that in this baseline 
scenario the detected individuals that are infected with SARS-CoV-2 are 
quarantined. In our experiments, we set the testing frequency parameter 
to 15 days. An individual that has a positive test is originally quaran-
tined for 10 days from work and leisure contacts, although the subject 
does maintain household contacts. We set the percentage of quarantine 
breakers to 0 by default, although for some representative strategies we 
will study the effect of different values for quarantine time and quar-
antine breaker percentages. In our experiments, all individuals use face 
masks in work, school and leisure times, but not when they are at home. 
In addition, we have applied the same social distancing restrictions as 
the existing in Spain for the simulation period. 

EpiGraph was calibrated to set up the conditions of the epidemic in 
Spain during the third wave, at the beginning of 2021. Simulation starts 
on December 27th, 2020 with a given percentage of infected individuals, 
and runs throughout to April 11th, 2021. Concretely, we use the per-
centage of officially reported infections on December 27th for each of 
the Spanish provinces. These values, ranging from 0.123% in Canarias 
province to 0.613% in Extremadura province, only represent a fraction 
of the real cases, which is what EpiGraph needs as input. Due to this fact, 
we corrected the starting values by a scale factor that reflects the non- 
reported cases. According to the Spanish health authorities, only 
around 70% of the infected individuals were detected, which results in a 
scale factor of 1.42. Other works [9], estimate a larger scale factor. Fig. 4 
shows the aggregated number of infected individuals. Real and simu-
lated data are shown in red and blue, respectively. The real data was 
obtained from Ref. [17]. Note that in our experiments, each city includes 
demographic information which corresponds to the region it is located 
in, and contains the population pyramid, job sector distribution, number 
of family members per household, etc. The method we use for the cali-
bration manually tunes the scale factor which adjusts the initial number 
of infected individuals for each region. The rest of the parameters related 
to the epidemiological model and the NPIs are the same for all the 
considered cities and were not involved in the calibration process. 

For the beginning of the simulation, on December 27th, 2021, we use 
the prevalence values of 11% for workers, 9.1% for students, 8.6% for 
unemployed and 1.01% for elderly people. These values, collected from 
Ref. [29], correspond to the percentage of population that was already 

Fig. 3. The 63 most populated cities in Spain are represented in the image. 
Note that each Spanish province has at least one representative city. 

Fig. 4. Model validation: daily real (in red color) and simulated (in blue color) 
data related to the number of infections of the COVID-19 spread in Madrid 
metropolitan area for the Spanish Third Wave. Simulation starts on December 
27th of 2020. 

M. Guzmán-Merino et al.                                                                                                                                                                                                                     



Computers in Biology and Medicine 139 (2021) 104938

7

infected with COVID-19 before the start of the third wave. In this work, 
we assume that these individuals have become immune to COVID-19 
and they will not be able to be reinfected during the entire simulation 
time. In order to provide more precise and realistic results, EpiGraph 
uses the vaccination model that reproduces the vaccination campaign 
started in Spain on December 27th and takes into account the different 
vaccines, their efficacy to each COVID-19 variant, and the number of 
number of doses employed with each collective and profession during 
each simulated day. 

EpiGraph uses stochastic processes to perform the simulations, which 
may result in differences between results every time the simulation runs. 
In order to quantify the deviation in the results, we have repeated the 
same simulation 20 times obtaining a median percentage of 5.3% of the 
population that was infected at the end of the simulation, with a vari-
ance (of 0.477% for Spain). Note that this value is similar to the reported 
number of 6.7%. Fig. 5 shows the breaks down by groups for the per-
centage of infections at the end of the simulation. Note that some col-
lectives with a high degree of contacts (like catering workers and 
defense professionals) have a higher proportion of infection cases. Other 
collectives that are at high risk of being in contact with infected in-
dividuals (like front-line health professionals) have a smaller proportion 
of infections because they have been prioritised in the vaccination 
program and they have been vaccinated at early stages of the simulation. 
The rest of this section summarizes the main features of the most 
important modules in EpiGraph: the social interaction and virus evolu-
tion models. 

3.2. Sampling policy evaluation 

Fig. 6 shows the results for all the considered strategies, in the 
context of the third COVID-19 wave in Spain between January and 
March 2021. Each value is the average of 20 simulations. This figure 
shows with blue bars the percentage of infected population. The related 
values are shown on the left y axis. Samples and PCR tests are respec-
tively represented by the orange (solid) and green (dotted) lines, with 
values shown on the right y axis. These values represent the total 
number of tests carried out during the entire simulation. Note that both 
lines take the same value in all cases except in strategies 7 and 8, in 
which pooling is applied and several samples are tested with a single 
PCR test. Fig. 7 also shows the final percentage of infected individuals, 
but here this information is broken down by groups. 

The baseline scenario (Strategy 1), corresponds to the scenario 
shown in Fig. 4. We can observe that as expected, Strategy 12 is the one 

Fig. 5. Percentage of infected population broken down by groups. The acronyms stand for: ELDERCG: care giver for elderly people, HEALTH: non-front-line health 
professionals, FLHEALTH: front-line health professionals, ELDERNA - ELDERDC - ELDERNH: the elderly people that live by themselves, are attended in daily centers, 
or live in nursing homes. 

Fig. 6. Simulation outcome for each of the sampling strategy. The percentage 
of infected population is represented by blue bars and the related values are 
shown on the left y axis. Samples and PCR tests are represented by the orange 
and green lines, with values shown on the right y axis. 

Fig. 7. The percentage of infected population related to each sampling strategy 
broken down by groups. ELDERCG stands for care giver for elderly people, 
HEALTH represents the non-front-line health professionals, FLHEALTH stands 
for the front-line health professionals, and ELDERNA, ELDERDC and ELDERNH 
represent the elderly people that are non-attended, attend daily centers and live 
in nursing homes, respectively. 
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that achieves a larger reduction in total number of contagious because it 
is ideally targeted to infected individuals. When considering the 
remaining strategies, the best results are achieved with strategies 6 and 
9. Self-isolation of infected individual’s contacts is the best way to 
reduce the virus spread. When considering Strategy 6, self-isolation does 
not require extra testing, which makes it the most economic strategy. 
However, tracing infected individuals contacts is not easy to implement, 
and a perfect self-isolation is usually not a realistic option. On the other 
hand, Strategy 9 needs more tests than the rest of the strategies, which 
makes it the most expensive in terms of resources. The test campaign 
implemented here takes place when the number of infected people 
starting to increase, which in our simulation occurs between week 2 and 
4 (see Fig. 4). Strategy 5 also shows a significant reduction in the per-
centage of infected individuals while only family contacts of infected 
individuals are required to isolate. Note that according to our study, 
specially targeted strategies (3 and 4) do not achieve a significant 
reduction in the overall number of contagious although they slightly 
reduce the COVID-19 incidence in the collectives. For Strategy 3, the 
contagious in health, social-health home, and defense professional are 
reduced in 6.75%, 4.83% and 6.86%, respectively. In Strategy 4 the 
number of infections in catering workers does not significantly change. 
The reason is that the main reason of contagious is between the catering 
workers and the clients, and there is no testing among the client col-
lective. Similar results are obtained with Strategy 10. In this figure we 
can observe that the pooling method (Strategy 7) and the requirement of 
negative PCRs for leisure activities (Strategy 11) are also effective in 
reducing the COVID-19 incidence, although by different mechanisms: 
Strategy 7 increases the number of tests while Strategy 11 reduces the 
transmission risk during leisure time. 

Fig. 8 evaluates, for Strategy 1, the effect of the percentage of 
quarantine breakers on the final number of infections. We can observe 
that, even for a small increment in the percentage of quarantine brea-
kers, the final percentage of infected individuals experiences a sharp 
increase until reaching a maximum value that corresponds to the 
maximum level in disease propagation among all strategies. The effect in 
the change the test window size (defined as the minimum time required 
between two tests applied to the same individual) is shown in Fig. 9. We 
observe that in our experiments, this parameter does not seem to have a 
strong impact on the infection reduction. 

In this work we evaluate when test campaigns proposed in Strategy 9 
that occur at different time of the infection spread. In Fig. 10 shows the 
distribution of the number of infected cases for different campaign 
starting times. Note that the test campaign only last one week. Fig. 11 
shows final infected population percentage for each case. We can 
observe that the efficacy of this strategy is strongly dependent of the 
time that is applied. An early use of this strategy provides the maximum 
contention in the infection spread. 

4. Discussion 

In this section we will first discuss the suitability of different models 
for simulating the sampling strategies. We then focus on the effective-
ness and suitability of the sampling strategies. Simulation tools proved 

Fig. 8. Percentage of infected population while increasing the Quarantine 
breakers percentage. While changing quarantine breakers percentage, the rest 
of parameters remain as before: Test Window is 15 days and Quarantine Period 
is 10 days. 

Fig. 9. Percentage of infected population while increasing the test window 
period. While changing test window period, the rest of the parameters remain 
as before: Quarantine Breakers is 0%, and Quarantine Period equal to 10 days. 

Fig. 10. Infected wave comparison when changing test campaign week in 
Strategy 9. The test campaign starting on week 3 is represented with the blue 
line, week 5 with the brown line, week 6 with the green and 7 with the grey. 
The red line represents the real infection curve for Spain. 

Fig. 11. Infected comparison when changing test campaign week in Strategy 9. 
The rest of parameters remain as the previous ones: Test Window is 15 days, 
Quarantine Breakers is 0%, and Quarantine Period is 10 days. 
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to be a useful tool to support decision-making on part of health au-
thorities and have been broadly used for modelling COVID-19 propa-
gation in different scenarios. Forecasting models such as the COFFEE 
from Los Alamos National Laboratory [3] do not explicitly model the 
effects of interventions or other ‘what-if’ scenarios; they are therefore 
unable to set hypothesis and test them. This is necessary to be able to 
evaluate and find the best sampling strategies. Other works are based on 
learning over existing data, which is not a good option when only scarce 
data is available. For instance, DELPHI (Differential Equations Leads to 
Predictions of Hospitalizations and Infections) [21] models the potential 
impact of various policies on future infections by estimating the average 
effect of each measure as implemented across states, via training. 
Youyang Gu’s COVID-19 model [13] applies machine learning to derive 
the basic reproduction number (R0) from data published by Johns 
Hopkins University’s Center for Systems Science and Engineering 
(CSSE), and hooks this to a compartmental model. Their infection esti-
mates include all infected individuals of the SARS-CoV-2 virus, not just 
those that took a COVID-19 test and tested positive. 

In [30], the authors use a deterministic SEIR framework to model the 
propagation of the virus and the effect of non-pharmaceutical in-
terventions (social distancing mandates and mask use) until the Spring 
of 2021. Some of the limitations of this approach are the absence of age 
structure and mixing within location (assumption of a well-mixed pop-
ulation), and the inability to model super-spreader-like events. These are 
very important factors when applying sampling strategies - and the 
measures following the detection of positive cases. Flaxman et al. [10] 
describes an extension of a semi-mechanistic Bayesian hierarchical 
model that infers the impact of interventions and estimates the number 
of infections over time. The working assumption is that changes in R0 
are an immediate response to interventions rather than broader gradual 
changes in behavior, and are calculated backward from temporal data. 
Covasim [18] includes demographic information about age structure 
and population size; realistic transmission networks in different social 
layers, including households, schools, workplaces, and communities; 
age-specific disease outcomes; and intra-host viral dynamics, including 
viral-load-based transmissibility. Different from our work, the contacts 
are not based on existing patterns; scalability issues are partly side-
stepped by dynamic scaling. 

In [4], the authors claim that sampling strategies must be focused on 
target groups to increase the effectiveness of the sampling policies; these 
may be an age group [14,36] or a high-risk group such as those of people 
in nursing homes, where both residents and staff are in close contact [8, 
12]. According to our experiments, these policies may contribute to 
reducing the incidence within certain collectives, but to reduce the 
overall incidence it is necessary to continue testing the population from 
other collectives. While there is agreement about quarantine times for 
those infected and their contacts, various studies such as [2,19,38] 
suggest introducing additional testing to reduce this time, approaches 
known as test-and-release strategies. In Ref. [2], the authors propose 
that when an individual that has been in contacts with a confirmed 
SARS-CoV-2 case gets a negative on day 5, then it is possible to the lift 
the of quarantine two days later (on day 7), reducing the 
social-distancing time imposed to the individual. They also show that 
performing test-and-release on day 6 has almost the same benefit as a 10 
day quarantine for returning travelers. 

One of the drawbacks of RT-PCR testing is that produces false results 
in a significant percentage of the cases. In order to increase the diagnosis 
accuracy, complementary techniques [35] can be used in combination 
with sampling. Due to the economic cost of the testing campaigns, other 
alternatives have been explored to reduce these costs with minimum 
detection loss of positive cases. In this context, the pooling method 
seems to be a promising approximation [28]. According to our experi-
ments, this pooling (Strategy 7) is able to achieve a significant reduction 
in the percentage of infections because of a much larger number of 
samples taken compared to other strategies. In Ref. [1], the authors 
describe sojourn time, the duration before clinical symptoms become 

apparent but during which it is detectable by a screening test. Its clinical 
relevance is that it represents the duration of the temporal window of 
opportunity for early detection. Via a simple sensitivity analysis, they 
determine the most important parameters in the model, which turn out 
to be the fraction of cases that are asymptomatic. This model allows to 
consider infection by asymptomatic individuals. 

In this work we have made several assumptions which we summarize 
here. First, the NPIs are the same for all the cities, i.e. they are homo-
geneously applied to the entire country despite the fact that there may 
be some differences between the regions. Given that these differences 
are small, we believe that they should not have a big impact on the 
simulation outcome. Secondly, the contact matrices (for population 
mixing) apply to a pre-COVID-19 scenario. Given that the social model 
of the simulator reflects distancing policies that restrict contacts be-
tween certain population groups, population mixing is reduced to what 
could realistically happen in a pandemic scenario. Thirdly, we assume 
that the sensitivity value of the PCR tests is 100%. A smaller sensitivity 
would produce a larger number of undetected cases. However, given 
that current testing achieves very high values, the effect of this 
assumption should not be significant. 

EpiGraph has several limitations, some of them related to the disease 
model. In the current version of EpiGraph, a recovered individual ac-
quires indefinite immunity to the virus, which makes it impossible to be 
re-infected for the duration of the simulation, which can be inaccurate, 
specially for long-term simulations. EpiGraph does not consider attri-
butes such as previous pathologies, and other factors not well under-
stood for now, that may also come into play when we evaluate risk of 
developing COVID-19 severe symptoms. Adding such attributes is 
straightforward. Our transmission model does not include other trans-
missions models such as surface contact, which are relevant for COVID 
when the population is not using masks or not washing their hands 
often. 

Another limitation is related to the transportation model. In the 
model, the movement of individuals between cities depends on the 
distance between the cities and the population size. Having real 
knowledge about mobility patterns, for instance about those individuals 
using public transportation means, would provide a much more realistic 
approximation in this model. In our experiments we only model the 
largest urban regions in Spain; we could add more information related to 
smaller cities and towns, including rural regions. 

5. Conclusion 

This work evaluates the efficacy of sampling to reduce virus propa-
gation by implementing strategies to study the effect of different pa-
rameters such as target groups, testing frequency, quarantine time, or 
group testing. Our evaluation is based on simulation to measure the 
quantitative and qualitative effect that these strategies and parameters 
have on slowing down the propagation of COVID-19. The first contri-
bution of this work is the introduction of a social model that reflects 
social mixing patterns that are crucial when modeling interactions in a 
realistic environments. These patterns include breaking down some 
collectives (i.e. elderly people and workers) into sub-groups and pro-
fessions, some of them with specific interaction structure (e.g. teacher- 
students, doctor-patient, etc). We also apply a new technique which 
uses contact matrices to determine the number of connections of each 
individual with others, depending on their ages. Contact matrices are 
specific to each country (Spain in our experiments). 

We perform the evaluation of each of the sampling strategies by 
simulating the propagation over a network of 19,574,086 people (from 
the 63 most populated Spanish cities) that has realistic social and de-
mographic characteristics, representative of Spain. The simulator was 
initially calibrated based on the existing prevalence values at the 
beginning of the third wave in Spain (at the end of 2020). The results we 
presented show that the most effective strategies are either pooling, 
rapid antigen test campaigns, or negative test requirements for access to 
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public areas, when followed by policies for reducing the number of 
contacts for infected individuals. 
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