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Abstract. We perturb with an additive noise the Hamiltonian system asso-

ciated to a cubic anharmonic oscillator. This gives rise to a system of stochas-
tic differential equations with quadratic drift and degenerate diffusion matrix.

Firstly, we show that such systems possess explosive solutions for certain initial

conditions. Then, we carry a small noise expansion’s analysis of the stochastic
system which is assumed to start from initial conditions that guarantee the

existence of a periodic solution for the unperturbed equation. We then investi-

gate the probabilistic properties of the sequence of coefficients which turn out
to be the unique strong solutions of stochastic perturbations of the well-known

Lamé’s equation. We also obtain explicit expressions of these in terms of Ja-
cobi elliptic functions. Furthermore, we prove, in the case of Brownian noise,

a lower bound for the probability that the truncated expansion stays close to

the solution of the deterministic problem. Lastly, when the noise is bounded,
we provide conditions for the almost sure convergence of the global expansion.

1. Introduction. We investigate the second order stochastic differential equation

ẍ(t) = x(t)2 − B + σŻ(t), x(0) = y ẋ(0) = η (1)

where σ is a positive constant, B ∈ R and {Z(t)}t≥0 is a continuous square integrable
martingale starting at zero and defined on the probability space (Ω,F ,P) which is
assumed to fulfil the usual completeness requirement. The rigorous formulation of
equation (1) is achieved by considering the Itô-type stochastic Hamiltonian system{

dx(t) = ξ(t)dt, x(0) = y

dξ(t) =
(
x2(t)− B

)
dt+ σdZ(t), ξ(0) = η.

(2)

2020 Mathematics Subject Classification. Primary: 60H10, 60H25; Secondary: 37H10.
Key words and phrases. cubic anharmonic oscillator, stochastic differential equations, small
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This very simple model comes essentially from the Hamiltonian

H(x, ξ) = ξ2/2− x3/3 + Bx, (3)

of a cubic anharmonic oscillator perturbed by noise. We may assume the initial
data (y, η) to be deterministic.
The function (3) belongs to a class of Hamiltonians very thoroughly studied, see
e.g. Delabaere and Trinh [8], Ferreira and Sesma [9] and the references therein,
providing examples of quantum systems of interest in quantum field theory and
in general theoretical physics. Perhaps slightly less known is the fact that (3) also
arises as the major ingredient in a special canonical form in the theory of hyperbolic
operators with double characteristics of non-effectively hyperbolic type according to
Hörmander’s classification [12], generating at the same time a number of problems
on the regularity of the corresponding solutions and on the behaviour of the solutions
of the associated Hamilton equations. In fact, a specific question the result of this
paper aims to address is what can be said, studying the hyperbolic operator in
Rn+1 3 x = (x0, x1, . . . , xn), about its wellposedness properties:

P (x,D) = D2
0 − 2x1D0Dn +D2

1 + x3
1D

2
n + white noise .

For the deterministic part it is known (see Bernardi and Nishitani [6], [7]) that the
Cauchy problem is, surprisingly, not well posed in the C∞ category, a fact which has
been proved to be related to the behavior of the solutions of the Hamilton equations,
the bicharacteristic strips in the cotagent bundle. The motivation was here to
analyze how the effect of a suitable noise was going to reinforce or dampen this
deterministic setup, through its equivalent formulation as a second order stochastic
ODE. All this of course is meant to be a preliminary base to the full study of the
(lack of ) well posedness of the Cauchy problem for this class of hyperbolic stochastic
partial differential equations with multiple characteristics.

System (2) is characterized by a drift vector which is linear in the first compo-
nent and quadratic in the second one and a degenerate diffusion matrix as the first
equation is not perturbed by the noise. The local lipschitzianity of the drift entails
existence of a path-wise unique strong solution up to a possible almost surely finite
stopping time at which the solution explodes. System (2) presents some distinguish-
ing features that prevent the use of standard techniques in the analysis of existence
and uniqueness of weak/strong solutions. First of all, due to the super-linear growth
of the drift coefficient we are not allowed to employ (when we consider Brownian
perturbations) the Girsanov theorem to construct weak solutions; this is one of the
key tools for the investigation of almost sure properties of the solution (see Markus
and Weerasinghe [16], [17]). Moreover, the Hamiltonian (3) is not bounded below
and therefore classical methods based on the positivity of the energy have to be
excluded (see Albeverio et al. [1], [2]).
We mention that in the paper Appleby et al. [3] (see also the references quoted there)
the authors address the general problem of stabilization and destabilization by a
Brownian noise perturbation that preserves the equilibrium of the corresponding
noise free ordinary differential equation. However, the additive noise case consid-
ered in the current work is not covered by that investigation.
Our approach is as follows: firstly, we show that systems of the type (2) possess
in general explosive solutions. This is accomplished via a careful analysis of the
behaviour of a concrete example where the solution of the stochastic equation is
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compared with an explosive solution of a related deterministic problem. The par-
ticular polynomial growth in (2) prevents one from using the well known Lyapunov
auxiliary functions techniques usually employed in determing stability or explosive-
ness of the solutions, see e.g. Theorem 3.6 in [15], page 77. Motivated by this fact,
we then focus on initial conditions for the system (2) that guarantee existence of a
periodic (hence global) solution for the associated deterministic problem (i.e. when
σ = 0). The analysis of the system (2) corresponding to those initial conditions is
carried out via a small noise expansion’s technique in the spirit of Gardiner’s book
[10]. See also [22] for a general presentation of aymptotics analysis of SDEs via
Fokker-Planck equation. More precisely, we set

Xσ(t) :=
∑
n≥0

σnxn(t), t ≥ 0. (4)

A formal substitution of this expression into equation (1) results in an equality be-
tween two power series. If we impose the coefficients of the corresponding powers of
σ to be equal, we end up with a sequence of nested random/stochastic Cauchy prob-
lems for the sequence of functions {xn(t)}t≥0,n≥0 . In fact, via a direct verification
one gets that {x0(t)}t≥0 is associated with the deterministic equation

ẍ0(t) = x0(t)2 − B, x0(0) = y ẋ0(0) = η. (5)

This equation is the deterministic version of (2); its solution is the periodic func-
tion mentioned above. The function {x1(t)}t≥0 is linked to the linear stochastic
differential equation

ẍ1(t) = 2x0(t)x1(t) + Ż(t), x1(0) = 0 ẋ1(0) = 0 (6)

where {x0(t)}t≥0 solves (5). Equation (6) can be interpreted as a stochastic Lamé’s
equation, see e.g. Arscott [4], Arscott and Khabaza [5], Volker [21] and the website
[25] for the deterministic case. We will see later in fact that, once x0(t) is solved in
(5), (6) can be written as

ẍ1(t) + (h− ν(ν + 1)k2sn2(t, k))x1(t) = Ż(t) , (7)

where sn(t, k) is the Jacobi elliptic function with modulus k and h, ν are suitable
constants depending on B essentially.
For n ≥ 2 the function {xn(t)}t≥0 solves the random differential equation

ẍn(t) = 2x0(t)xn(t) +

n−1∑
j=1

xj(t)xn−j(t), xn(0) = 0 ẋn(0) = 0. (8)

We note that also in this case the equation to be solved is linear, the function
{x0(t)}t≥0 solves (5) and the functions involved in the sum are the coefficients of
lower order terms (with respect to the unknown) from the expansion (4).
Once the coefficients of expansion (4) are analysed, our investigation focuses on
studying the truncated and global expansions. We first consider the case where
{Z(t)}t≥0 is a standard one dimensional Brownian motion: here, we prove lower
bounds for the probability that the truncated expansion stays in a certain neighbour-
hood of x0 (the solution of the deterministic problem). Then, under an assumption
of boundedness for the noise {Z(t)}t≥0 we obtain the almost sure convergence for
the global expansion (4).
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Remark 1. The techniques employed in this paper carry over the case of a multi-
plicative noise term as well, that means we are able to treat with only minor and
straightforward modifications also the second order stochastic differential equation

ẍ(t) = x(t)2 − B + σx(t)Ż(t), x(0) = y ẋ(0) = η (9)

where now the white noise is multiplied by the unknown x(t). In fact, proceeding as
explained above with the formal substitution of the power series (4) in the equation
(9) one immediately finds that {x0(t)}t≥0 is again associated with the determinis-
tic equation (5) while {x1(t)}t≥0 is now linked to the linear stochastic differential
equation

ẍ1(t) = 2x0(t)x1(t) + x0(t)Ż(t), x1(0) = 0 ẋ1(0) = 0. (10)

We observe that the noise term in (10) is additive and corresponds to a minor
modification of {Zt}t≥0. Therefore, equation (10) can be treated as equation (6).
Moreover, for n ≥ 2 the function {xn(t)}t≥0 now solves the random differential
equation

ẍn(t) = 2x0(t)xn(t) +

n−1∑
j=1

xj(t)xn−j(t) + xn−1(t)Ż(t), xn(0) = 0 ẋn(0) = 0.

(11)

The term xn−1(t)Ż(t) in (11), which is not present in (8) can be defined as a
pathwise integral since the function t 7→ xn−1(t) is almost surely continuously dif-
ferentiable; as for the solution of (11), the new term can be absorbed by the sum
on the right hand side and the analysis follows from the one employed for (8).
We also remark that the linearity of equations with index n ≥ 1 derives from the
asymptotic expansion approach. In fact, this feature is preserved even in the pres-
ence of multiplicative noises involving non linear functions of x(t). See [10] for more
details.

The paper is organized as follows: In Section 2 we prove through a detailed study
of an example that systems of the type (2) possess in general explosive solutions;
Section 3 is devoted to the small noise expansion corresponding to the stochastic
system related to the deterministic problem with a periodic solution: more pre-
cisely, we analyse the coefficients of the power series (4) as solutions to certain
stochastic/random differential equations, we provide explicit solutions and describe
their fundamental probabilistic properties. In Section 4 we take the noise to be
a Brownian motion and present several probabilistic lower bounds in terms of the
(explicit) two independent solutions of the Lamé’s equation for both the coefficients
of series (4) and truncated expansion. Finally, in Section 5 under an assumption
of boundedness of the noise we obtain the almost sure uniform convergence of the
global expansion on a compact time interval whose length depend on the diffusion
coefficient σ.

2. Explosive solutions. In this section we prove that in general systems of the
type (2) possess explosive solutions. To this aim we consider the system{

dx(t) = ξ(t)dt, x(0) =
√

3 + δ

dξ(t) = (x2(t)− 1)dt+ σdB(t), ξ(0) = 0,
(12)
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which corresponds to (2) for B = 1, y =
√

3 + δ, η = 0 and {Zt}t≥0 being a one
dimensional Brownian motion {Bt}t≥0; here δ is a fixed positive constant. We will
show that the solution of (12) explodes in finite time with positive probability. Our
analysis relies on the behaviour of the auxiliary deterministic system{

du(t) = v(t)dt, u(0) =
√

3

dv(t) = (u2(t)− 1)dt, v(0) = 0.
(13)

Lemma 2.1. The unique solution of system (13) is given by

u(t) =

√
3

cn2
(

t
31/4 , q

) , t ∈ [0, τ [

where cn(·, q) denotes the elliptic Jacobi cosine function and τ = 4
√

3t0 with t0 =
1.85407 being the first positive zero of cn(x, q) with q2 = 1/2.

-2 -1 1 2 3 4

-4

-2

2

4

Figure 1. Energy surface ξ2/2− (x3/3− x) = 0 of system (13)

Proof. System 13 is equivalent to{
ü(t) = u2(t)− 1,

u(0) =
√

3, u̇(0) = 0.

Integrating once more we end up with

(u̇(t))2 = 2u(t)

(
u2(t)

3
− 1

)
and, choosing the positive square root (i.e. working with t ≥ 0), we get∫ u

√
3

ds√
(s− 3)s(s+ 3)

=
√

2/3t.

On the other hand, from formula (3.131.7) in [11] we have that∫ u

√
3

ds√
(s− 3)s(s+ 3)

=

√
2

31/4
F (µ, q)

where q =
√

1/2, µ = arcsin

√
1−

√
3
u and F (µ, q) =

∫ q
0

dα√
1−q2 sin2 α

is the elliptic

integral of the first kind of parameters µ and q. Therefore, combining the two
previous identities we get

t

31/4
=

∫ arcsin

√
1−

√
3
u

0

dα√
1− q2 sin2 α

.
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To conclude the proof, we recall that the Jacobi sine function sn(u, q) is defined via
the equation sn(x, q) = sinφ where

x =

∫ φ

0

dα√
1− q2 sin2 α

.

Hence, we get sn
(

t
31/4 , q

)
=

√
1−

√
3
u and simple algebraic simplification yields the

exact solution of system (13)

u(t) =

√
3

cn2
(

t
31/4 , q

) , t ∈ [0, τ [.

2 4 6 8 10
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Figure 2. graph of cn(x, q)
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Figure 3. graph of the solution of system (13)

We now compare the stochastic solution of system (12) with the deterministic u
just found.

Proposition 1. There exists an event E ⊆ Ω such that P(E) > 0 and for all ω ∈ E
we have

x(t) ≥ u(t) for all t < τ.

In particular, if we set

τ∞ := lim
R→+∞

τR := lim
R→+∞

inf{t ≥ 0 : |x(t)| ≥ R},

we obtain P(τ∞ < +∞) > 0.
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Proof. We start rewriting (12) as

ẋ(t) =

∫ t

0

(x2(s)− 1)ds+ σB(t), x(0) =
√

3 + δ

and (13) as

u̇(t) =

∫ t

0

(u2(s)− 1)ds, u(0) =
√

3.

Then, denoting z(t) := x(t)− u(t) for t < τ (remember that τ > 0 is the first pole
of the function u), we see that z(0) = δ and

ż(t) =

∫ t

0

(x2(s)− u2(s))ds+ σB(t)

=

∫ t

0

z(s)(2u(s) + z(s))ds+ σB(t).

Integrating once more and using the identity∫ t

0

∫ s

0

h(r)drds =

∫ t

0

(t− r)h(r)dr,

we get

z(t) = δ + 2

∫ t

0

(t− r)u(r)z(r)dr +

∫ t

0

(t− r)z2(r)dr + σ

∫ t

0

B(r)dr

≥ δ + 2

∫ t

0

(t− r)u(r)z(r)dr + σ

∫ t

0

B(r)dr. (14)

Let us now focus on the term
∫ t

0
B(r)dr above. We recall that for each t ≥ 0 the

random variable mt := inf0≤s≤tBs is continuous with probability density function

x 7→
√

2
πte
− x22t 1]−∞,0](x). Therefore, for any ε > 0 the event Eε := {mτ ≥ −ε} has

positive probability; moreover, for any t ∈ [0, τ ] and ω ∈ Eε we have∫ t

0

B(r)dr ≥ tmt ≥ tmτ ≥ −tε ≥ −ετ

and hence

inf
t∈[0,τ ]

∫ t

0

B(r)dr ≥ −ετ.

In particular,

Eε ⊆
{
ω ∈ Ω : inf

0≤t≤τ

∫ t

0

B(r)dr ≥ −ετ
}

=: Fε

which implies P(Fε) > 0. Now, for ω ∈ Fε we get from (14) that

z(t, ω) ≥ δ + 2

∫ t

0

(t− r)u(r)z(r, ω)dr − σετ

which gives for ε in ]0, δ
2στ [,

z(t, ω) ≥ δ/2 + 2

∫ t

0

(t− r)u(r)z(r, ω)dr. (15)

To conclude, we argue that the continuous function [0, τ) 3 t → z(t, ω) is non-
negative for ω ∈ Fε. In fact, if we suppose that there exists t1 < τ such that
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z(t1, ω) < 0, then calling t2 the first zero of z(t, ω) in the interval [0, t1] we would
get from (15)

0 ≥ δ/2 + 2
√

3

∫ t2

0

(t2 − r)u(r)z(r, ω)dr

which is impossible since in that interval (t2− r)u(r)z(r, ω) is always non-negative.
Therefore, the stochastic process x(t) solution of (12) is given by x(t) = u(t) + z(t)
for all t ∈ [0, τ [; furthermore, the non negativity of z(t) on that interval implies
x(t, ω) ≥ u(t) for ω ∈ Fε. Since, limt→τ u(t) = +∞, we get τ∞ ≤ τ on Fε and the
proof is complete.

Remark 2. Following the details of the proof above, one sees that the explosive
behaviour of x(t) is not determined by some specific features of the driving noise.
Therefore, a similar argument can be utilized to extend Proposition 1 to equations
perturbed by different types of noise.

Figure 4. Explosive solution for the system (12) with x(0) = 0

3. Small noise expansion: analysis of the coefficients. In this section we
investigate the properties of the coefficients in the expansion (4) described in the
Introduction. For a general survey of asymptotic expansions in powers of σ see e.g.
Gardiner [10] page 182.

3.1. The equation for x0: deterministic case. We begin with the study of the
deterministic system

ẍ0(t) = x0(t)2 − B, x0(0) = y ẋ0(0) = η

which is equivalent to {
ẋ0(t) = ξ0(t), x0(0) = y

ξ̇0(t) = x2
0(t)− B, ξ0(0) = η.

(16)

The constant B and the initial data (y, η) will be chosen in such a way that the third
order polynomial x3/3−Bx+H(y, η) has three real roots. This implies the existence
for (16) of a periodic solution, whose behavior under the stochastic perturbation is
our concern here.

Then, slightly changing our notations, we start directly with the three real roots of
the polynomial and we denote them by c, −a− c, a with c < 0 < a; imposing

x3/3− Bx+H(y, η) = (x− a)(x+ a+ c)(x− c)/3
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Figure 5. Graph of Hamiltonian with c = −1, a = 1

we get

B = (a2 + c2 + ac)/3 and H(y, η) = ac(a+ c)/3.

Therefore, the Hamiltonian system we are going to analyze is{
ẋ0(t) = ξ0(t), x0(0) = y

ξ̇0(t) = x2
0(t)− (a2 + c2 + ac)/3, ξ0(0) = η,

(17)

with y ∈ [c,−a − c]. We assume without loss of generality that 2c + a < 0, which
entails c < −a− c < a. Now, rewriting the conservation of energy

H(y, η) = ẋ0(t)2/2− x0(t)3/3 + Bx0(t)

as

ẋ0(t)2/2 = x0(t)3/3− Bx0(t) +H(y, η)

we get

ẋ0(t)2/2 = (x0(t)− a)(x0(t) + a+ c)(x0(t)− c)/3, x0(0) = y

which in turn implies∫ x0(t)

y

dv√
(v − a)(v + a+ c)(v − c)

=
√

2/3t. (18)

The integral in equation (18) is related to elliptic integrals. It is in fact known (see
for instance the book by Gradshteyn and Ryzhik [11]) that∫ u

c

dv√
(v − a)(v − b)(v − c)

=
2√
a− c

∫ γ

0

dα√
1− q2 sin2 α

(19)

whenever c < u ≤ b < a. Here γ and q are defined by the formulas

γ =: arcsin

√
u− c
b− c

and q :=

√
b− c
a− c

.

In the sequel we set

F (γ, q) :=

∫ γ

0

dα√
1− q2 sin2 α

(20)

for the so-called elliptic integral of the first kind. We also recall that

u = F (γ, q) is equivalent to sn(u, q) = sin γ, (21)
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where sn(u, q) denotes the Jacobi elliptic sine function with modulus q. While
referring to Gradshteyn and Ryzhik [11] or the website [24] for a complete exposition
of the Jacobi elliptic functions, we sum up in the Appendix (A) some of the essential
features we will be using in the following. Therefore, comparing (18) with (19)
(where we set b = −a− c) we get√

2

3
t =

2√
a− c

F

(
arcsin

√
c− x0(t)

2c+ a
, q

)
− 2√

a− c
F

(
arcsin

√
c− y
2c+ a

, q

)
,

with q =
√

2c+a
c−a . It is then easy to see that the last identity combined with (21)

gives

x0(t) = c− (a+ 2c)sn2

(√
a− c

6
t+ iy, q

)
, (22)

where we denote

iy := F

(
arcsin

√
c− y
2c+ a

, q

)
. (23)

We have therefore proved the following.

Theorem 3.1. The unique solution {x0(t)}t≥0 of the deterministic Hamiltonian
system (17) where

c < 0 < a, 2c+ a < 0 and y ∈ [c,−a− c]

is explicitly given by formula (22) with q =
√

2c+a
c−a and iy defined by (23).

2 4 6 8 10

-1.0

-0.8

-0.6

-0.4

-0.2

Figure 6. Graph of (22) with c = −1, a = 1

Here the oval part in Figure 1, parametrised by (x0, ẋ0):

-1.0 -0.8 -0.6 -0.4 -0.2

-0.4

-0.2

0.2

0.4

Figure 7. Graph of H(y, η) = 0
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3.2. The equation for x1: a stochastic Lamé’s equation. We now want to
solve

ẍ1(t) = 2x0(t)x1(t) + Ż(t), x1(0) = 0 ẋ1(0) = 0 (24)

which is equivalent to the system of stochastic differential equations{
dx1(t) = ξ1(t)dt, x1(0) = 0

dξ1(t) = 2x0(t)x1(t)dt+ dZ(t), ξ1(0) = 0

with x0(t) given by (22). We first investigate the homogeneous equation

ẅ(t)− 2x0(t)w(t) = 0 (25)

and search for two independent solutions. We observe that according to formula
(22) equation (25) can be rewritten as

ẅ(t)− 2

(
c− (a+ 2c)sn2

(√
a− c

6
t+ iy, q

))
w(t) = 0.

It is then equivalent to study equation

ü(t)− 12

a− c
(
c− (a+ 2c)sn2 (t, q)

)
u(t) = 0 (26)

and set

w(t) := u

(√
a− c

6
t+ iy

)
, t ≥ 0.

The first solution we are going to find is related to the Lamé’s equation which we
now briefly recall. Lamé’s equation is usually given as

ü(t) + (h− ν(ν + 1)q2sn2(t, q))u(t) = 0. (27)

For fixed q and ν an eigenvalue of (27) is a value of h for which (27) has a nontrivial
odd or even solution with period 2K or 4K where K = K(q) = F (π2 , q) (recall
equality (20)). Comparing (27) with (26) we see that

h =
12c

c− a
= 4 + 4q2 (28)

due to the equality q =
√

2c+a
c−a . Moreover, since t 7→ sn(t, q) is periodic of period

4K and t 7→ sn2(t, q) is periodic of period 2K, we conclude that h given in (28) is
an eigenvalue of (27) corresponding to case (8) at pag. X in Arscott and Khabaza
[5] and hence

u1(t) = sn(t, q)cn(t, q)dn(t, q), t ≥ 0 (29)

is the first solution of (26) we are looking for. It is a special Lamé’s polynomial of
order three satisfying u1(0) = 0 and u̇1(0) = 1.

We now need another independent solution. It is a very elementary fact that if u1

solves the equation ü(t) + αu(t) = 0, then u2(t) := u1(t) ·
∫ t ds

u2
1(s)

solves the same

equation. Since ∫
dt

[sn(t, q)cn(t, q)dn(t, q)]
2 =

C(t, q)

D(t, q)
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Figure 8. Graph of u1 with q = 2/
√

5

with

C(t, q) :=− dn(t, q)

[
−1 + q2 +

(
2 + q2(−5 + (3− 2q2)q2)

)
cn2(t, q)

+ 2q2

(
1 + (−1 + q2)q2

)
cn4(t, q)

+

(
(2− q2)(−1 + q2)x+ 2(q4 − q2 + 1)E(t, q)

)
× sn(t, q)cn(t, q)dn(t, q)

]
and

D(t, q) := (−1 + q2)2sn(t, q)cn(t, q)dn2(t, q)

we get that

u2(t) = C(t, q) +D(t, q)u1(t, q) (30)

is a second independent solution of (26). Here

C(t, q) := α0(q) + α1(q)cn2(t, q) + α2(q)cn4(t, q)

D(t, q) := β0(q)t+ β1(q)E(t, q)

and

α0(q) := −1 + q2

α1(q) := −2q6 + 3q4 − 5q2 + 2

α2(q) := 2q2(q4 − q2 + 1)

β0(q) := −q4 + 3q2 − 2

β1(q) := 2(q4 − q2 + 1).

The coefficient of t in (30) is given by

µ(q) := β0(q) + β1(q)
E(q)

K(q)

with E(q) denotes the complete elliptic integral of the second kind. This coefficient
behaves like this when 0 < q < 1:
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Figure 10. Graph of µ(q) with q ∈ (0, 1)

Going back to equation (25) we have found two linearly independent solutions:

w1(t) = u1

(√
a− c

6
t+ iy

)
and w2(t) = u2

(√
a− c

6
t+ iy

)
.

It is easy to verify that the Wronskian determinant of (u1, u2) is −(1 − q2)2 6= 0

and that of (w1, w2) is −
√

a−c
6 (1 − q2)2. Without loss of generality multiplying

w1 and w2 by suitable constants we may assume that their Wronskian determinant
is 1. Moreover, since u1 is periodic of period 2K we get that w1 is periodic of

period 2
√

6/(a− c)K. A simple application of standard Floquet-Lyapunov results,
see e.g Yakubovich and Starzhinskii [23] page 97, tells us that (27) has one periodic
solution (here w1) and it is unstable, due to a double eigenvalue in the monodromy
matrix. We omit the trivial details.

Theorem 3.2. Equation (24) has a unique global strong solution adapted to the
filtration {FZt }t≥0. The solution is a continuous process which can be explicitly
represented as

x1(t) = w2(t)

∫ t

0

w1(s)dZ(s)− w1(t)

∫ t

0

w2(s)dZ(s)
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or equivalently

x1(t) =

∫ t

0

K(t, s)dZ(s) with K(t, s) := w2(t)w1(s)− w1(t)w2(s). (31)

Proof. It is clear from (31) and the basic properties of the stochastic integrals that
{x1(t)}t≥0 is continuous and adapted to the filtration {FZt }t≥0. We have to verify
that it solves equation (24) (uniqueness follows from the linearity of the equation).
An application of the Itô formula gives

dx1(t) =

(
ẇ2(t)

∫ t

0

w1(s)dZ(s)

)
dt+ w2(t)w1(t)dZt

−
(
ẇ1(t)

∫ t

0

w2(s)dZ(s)

)
dt− w1(t)w2(t)dZt

=

(
ẇ2(t)

∫ t

0

w1(s)dZ(s)− ẇ1(t)

∫ t

0

w2(s)dZ(s)

)
dt

and hence,

ẋ1(t) = ẇ2(t)

∫ t

0

w1(s)dZ(s)− ẇ1(t)

∫ t

0

w2(s)dZ(s).

Then, via a second application of Itô formula (where we now use the facts that w1

and w2 solve the homogeneous system and have Wronskian equal to 1) we get

dẋ1(t) =

(
ẅ2(t)

∫ t

0

w1(s)dZ(s)

)
dt+ ẇ2(t)w1(t)dZ(t)

−
(
ẅ1(t)

∫ t

0

w2(s)dZ(s)

)
dt− ẇ1(t)w2(t)dZ(t)

=

(
ẅ2(t)

∫ t

0

w1(s)dZ(s)− ẅ1(t)

∫ t

0

w2(s)dZ(s)

)
dt+ dZ(t)

=

(
2x0(t)w2(t)

∫ t

0

w1(s)dZ(s)− 2x0(t)w1(t)(t)

∫ t

0

w2(s)dZ(s)

)
dt+ dZ(t)

=2x0(t)x1(t)dt+ dZ(t).

The proof is complete.

Example 1. If we consider

ẍ0(t) = x0(t)2 − 1/3, x0(0) = 0 ẋ0(0) = 0

we see that

x0(t) = −(6− 3 sn2(t, 1/2))/2.

With such choice for the coefficients equation (24) becomes

ẍ1(t) = −(6− 3 sn2(t, 1/2))x1(t) + Ż(t), x1(0) = 0 ẋ1(0) = 0. (32)

The picture below gives a clear idea of the oscillatory nature of the solution process
(32) for Z being a one dimensional standard Brownian motion.
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Figure 11. Graph of three paths of process (32) with {Z(t)}t≥0

being a one dimensional standard Brownian motion

3.3. The equations for xn with n ≥ 2: Lamé’s equations with random
coefficients. We now want to solve

ẍn(t) = 2x0(t)xn(t) +

n−1∑
j=1

xj(t)xn−j(t), xn(0) = 0 ẋn(0) = 0 (33)

which is equivalent to the system of differential equations with random coefficients{
ẋn(t) = ξn(t), xn(0) = 0

ξ̇n(t) = 2x0(t)xn(t) +
∑n−1
j=1 xj(t)xn−j(t), ξn(0) = 0

with x0(t) given by (22). We remark that the non homogeneous term
∑n−1
j=1 xj(t)xn−j(t)

depends on the random processes {xm(t)}t≥0 for m < n. Therefore, equation (33)
is described inductively by solving the linear equations associated to lower terms in
the expansion (4). We have the following.

Theorem 3.3. For every n ≥ 2 equation (33) has a unique global strong solution
adapted to the filtration {FZt }t≥0. The solution can be explicitly represented as

xn(t) =w2(t)

∫ t

0

w1(s)

n−1∑
j=1

xj(s)xn−j(s)

 ds

− w1(t)

∫ t

0

w2(s)

n−1∑
j=1

xj(s)xn−j(s)

 ds

or equivalently

xn(t) =

∫ t

0

K(t, s)

n−1∑
j=1

xj(s)xn−j(s)

 ds.

Proof. The proof is obtained via straightforward modifications of the proof of The-
orem 3.2.
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4. Estimates for the truncated series: the Brownian case. In this section
we assume {Zt}t≥0 to be a one dimensional standard Brownian motion which we
denote by {Bt}t≥0. This specification will allow us to get explicit estimates on the
probabilistic behaviour of the truncated expansion. We start with the following.

Proposition 2. For any T > 0 and n ≥ 1 we have

P
(
|xn(t)| ≤ γn(t)

σn
for all t ∈ [0, T ]

)
≥ 1− σ2(n−2)+

√
2/π

(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
where (n− 2)+ := max{n− 2, 0} while {γn}n≥1 is defined recursively as

γ1(t) := |w1(t)|+ |w2(t)|, t ≥ 0 (34)

and for n ≥ 2,

γn(t) :=

∫ t

0

|K(t, s)|

n−1∑
j=1

γj(s)γn−j(s)

 ds, t ≥ 0.

Proof. We will prove the theorem by induction dividing the proof in two steps.

Step One: n = 1. We recall that

x1(t) =

∫ t

0

K(t, s)dB(s)

= w2(t)

∫ t

0

w1(s)dB(s) + w1(t)

∫ t

0

w2(s)dB(s).

We fix a positive constant T and observe that

|x1(t)| ≤ |w2(t)|
∣∣∣∣∫ t

0

w1(s)dB(s)

∣∣∣∣+ |w1(t)|
∣∣∣∣∫ t

0

w2(s)dB(s)

∣∣∣∣
≤ |w2(t)| sup

t∈[0,T ]

∣∣∣∣∫ t

0

w1(s)dB(s)

∣∣∣∣+ |w1(t)| sup
t∈[0,T ]

∣∣∣∣∫ t

0

w2(s)dB(s)

∣∣∣∣ .
We now denote

A1 :=

{
ω ∈ Ω : sup

t∈[0,T ]

∣∣∣∣∫ t

0

w1(s)dB(s)

∣∣∣∣ ≤ 1/σ

}
and

A2 :=

{
ω ∈ Ω : sup

t∈[0,T ]

∣∣∣∣∫ t

0

w2(s)dB(s)

∣∣∣∣ ≤ 1/σ

}
.

On the set A1 ∩A2 the inequality

|x1(t)| ≤ |w1(t)|+ |w2(t)|
σ

for all t ∈ [0, T ]
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holds true; we can therefore write recalling (34) that

P
(
|x1(t)| ≤ γ1(t)

σ
for all t ∈ [0, T ]

)
≥ P(A1 ∩A2)

= 1− P (Ac1 ∪Ac2)

≥ 1− P (Ac1)− P (Ac2) . (35)

Now, according to Doob’s maximal inequality for i = 1, 2 we have

P (Aci ) = P

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

wi(s)dB(s)

∣∣∣∣ > 1/σ

)

≤ σE

[∣∣∣∣∣
∫ T

0

wi(s)dB(s)

∣∣∣∣∣
]

= σ
√

2/π‖wi‖L2([0,T ]) (36)

(the last equality is an explicit evaluation of the L1(Ω)-norm of the Gaussian random

variable
∫ T

0
wi(s)dB(s)). Hence, combining the upper bound (36) with the lower

bound (35) we conclude that

P
(
|x1(t)| ≤ γ1(t)

σ
for all t ∈ [0, T ]

)
≥ 1− σ

√
2/π

(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
.

Step two: n ≥ 2. We now assume the statement to be true for any i ≤ n− 1 and
prove it for i = n. According to the representation

xn(t) =

∫ t

0

K(t, s)

n−1∑
j=1

xj(s)xn−j(s)

 ds, t ≥ 0

we can bound |xn(t)| as follows

|xn(t)| ≤
∫ t

0

|K(t, s)|

n−1∑
j=1

|xj(s)||xn−j(s)|

 ds.

We now denote for i ≤ n− 1

Ai :=

{
ω ∈ Ω : |xi(t)| ≤

γi(t)

σi
for all t ∈ [0, T ]

}
and observe that according to the inductive hypothesis

P(Ai) ≥ 1− σ2(i−2)+
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
or equivalently,

P(Aci ) ≤ σ2(i−2)+
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
. (37)
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We also note that on the set A1 ∩ · · · ∩An−1 we have

|xn(t)| ≤
∫ t

0

|K(t, s)|

n−1∑
j=1

|xj(s)||xn−j(s)|

 ds

≤
∫ t

0

|K(t, s)|

n−1∑
j=1

γj(s)

σj
γn−j(s)

σn−j

 ds

=
γn(t)

σn

for all t ∈ [0, T ]. Therefore,

P
(
|xn(t)| ≤ γn(t)

σn
for all t ∈ [0, T ]

)
≥ P (A1 ∩ · · · ∩An−1)

= 1− P
(
Ac1 ∪ · · · ∪Acn−1

)
≥ 1− P (Ac1)− · · · − P

(
Acn−1

)
= 1−

n−1∑
i=1

P(Aci )

≥ 1− σ
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

) n−1∑
i=1

2(i−2)+

= 1− σ2(n−2)+
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
where in the last inequality we utilized the bound (37). The proof is complete.

We now prove a lower bound for the probability that the n-th order truncated
expansion stays close to the solution of the deterministic equation during a given
time interval [0, T ].

Theorem 4.1. For n ≥ 1 we let

Xσ
n (t) := x0(t) + σx1(t) + · · ·+ σnxn(t), t ≥ 0.

Then, for any T > 0 we have

P (|Xσ
n (t)− x0(t)| ≤ Γn(t) for all t ∈ [0, T ])

≥ 1− σ2(n−1)+
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
where

Γn(t) :=

n∑
i=1

γi(t), t ≥ 0

and {γn}n≥1 is the sequence of functions defined in Theorem 2.

Proof. We proceed as before. For i ≤ n we introduce the events

Ai :=

{
ω ∈ Ω : |xi(t)| ≤

γi(t)

σi
for all t ∈ [0, T ]

}
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and observe that according to Theorem 2 we have

P(Aci ) ≤ σ2(i−2)+
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
.

We also note that on the set A1 ∩ · · · ∩An we have

|Xσ
n (t)− x0(t)| ≤

n∑
i=1

σi|xi(t)|

≤
n∑
i=1

γi(t)

= Γn(t)

for all t ∈ [0, T ]. Therefore,

P (|Xσ
n (t)− x0(t)| ≤ Γn(t) for all t ∈ [0, T ])

≥ P (A1 ∩ · · · ∩An)

= 1− P (Ac1 ∪ · · · ∪Acn)

≥ 1− P (Ac1)− · · · − P (Acn)

= 1−
n∑
i=1

P(Aci )

≥ 1− σ
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

) n∑
i=1

2(i−2)+

= 1− σ2(n−1)+
√

2/π
(
‖w1‖L2([0,T ]) + ‖w2‖L2([0,T ])

)
.

5. Estimates for the global series: the bounded case. In this section we
study the global behaviour of the series

Xσ(t) = x0(t) +
∑
n≥1

σnxn(t) (38)

under the additional assumption that for all t ≥ 0 the random variable Z(t) is
bounded. The next theorem shows that in this case the series (38) converges almost
surely for all t in a suitably small interval.

Theorem 5.1. Let {Zt}t≥0 satisfy for all t ≥ 0 the condition Z(t) ∈ L∞(Ω,F ,P).
Then, there exists Tσ > 0 such that the series (38) converges almost surely for any
t ∈ [0, Tσ]. More precisely, the uniform bound

sup
t∈[0,Tσ]

|Xσ(t)− x0(t)| ≤ 1

2N (Tσ)
almost surely, (39)

or equivalently,

sup
t∈[0,Tσ ]

|Xσ(t)| ≤ sup
t∈[0,Tσ]

|x0(t)|+ 1

2N (Tσ)
almost surely

holds with

N (T ) := ‖w2‖L∞([0,T ])‖w1‖L1([0,T ]) + ‖w1‖L∞([0,T ])‖w2‖L1([0,T ]).
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Proof. We start as before observing that

x1(t) =

∫ t

0

K(t, s)dZ(s)

= −
∫ t

0

∂2K(t, s)Z(s)ds

(recall the kernel K defined in (31)). This implies

|x1(t)| ≤
∫ t

0

|∂2K(t, s)||Z(s)|ds

= sup
s∈[0,t]

‖Z(s)‖L∞(Ω)

∫ t

0

|∂2K(t, s)|ds

= sup
s∈[0,t]

‖Z(s)‖L∞(Ω)

(
|ẇ2(t)|

∫ t

0

|w1(s)|ds+ |ẇ1(t)|
∫ t

0

|w2(s)|ds
)

≤ sup
s∈[0,t]

‖Z(s)‖L∞(Ω)

(
‖ẇ2‖L∞([0,t])‖w1‖L1([0,t]) + ‖ẇ1‖L∞([0,t])‖w2‖L1([0,t])

)
=M(t)

where to ease the notation we set

M(t) := sup
s∈[0,t]

‖Z(s)‖L∞(Ω)

(
‖ẇ2‖L∞([0,t])‖w1‖L1([0,t]) + ‖ẇ1‖L∞([0,t])‖w2‖L1([0,t])

)
.

The first step is to prove by induction that for any fixed T > 0 we have

|xn(t)| ≤ cnM(T )nN (T )n−1 almost surely for all n ≥ 1 and t ∈ [0, T ] (40)

where {cn}n≥1 denotes the sequence of Catalan numbers which are defined recur-
sively as

c1 = 1, c2 = 1, cn :=

n−1∑
j=1

cjcn−j .

Inequality (40) is trivially true for n = 1 (note that the function t 7→ M(t) is
increasing). We now assume the property to be true for all j ≤ n− 1; then,

|xn(t)| =

∣∣∣∣∣∣
∫ t

0

K(t, s)

n−1∑
j=1

xj(s)xn−j(s)

 ds

∣∣∣∣∣∣
≤
∫ t

0

|K(t, s)|

n−1∑
j=1

|xj(s)||xn−j(s)|

 ds

≤
∫ t

0

|K(t, s)|

n−1∑
j=1

cjM(T )jN (T )j−1cn−jM(T )n−jN (T )n−j−1

 ds

=M(T )nN (T )n−2

∫ t

0

|K(t, s)|

n−1∑
j=1

cjcn−j

 ds

≤ cnM(T )nN (T )n−1
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completing the proof of (40). Therefore, recalling that∑
n≥1

cny
n =

1−
√

1− 4y

2
, y ∈ [0, 1/4]

we can write for t ∈ [0, T ] that

|Xσ(t)− x0(t)| ≤
∑
n≥1

σn|xn(t)|

≤
∑
n≥1

σncnM(T )nN (T )n−1

=
1

N (T )

∑
n≥1

cnσ
nM(T )nN (T )n

=
1−

√
1− 4σM(T )N (T )

2N (T )
(41)

provided that

M(T )N (T ) ≤ 1

4σ
.

Hence, since M(0) = N (0) = 0 and the functions T 7→ M(T ) and T 7→ N (T ) are
increasing, continuous and unbounded (by the properties of w1 and w2), we deduce
that the equation

M(T )N (T ) =
1

4σ

has a unique solution Tσ > 0 and thatM(T )N (T ) ≤ 1
4σ for all T ≤ Tσ. Therefore,

choosing T = Tσ in (41) we obtain

sup
t∈[0,Tσ ]

|Xσ(t)− x0(t)| ≤ 1

2N (Tσ)
almost surely.

Example 2. We may choose

Z(t) := sin(B(t))et, t ≥ 0

where {B(t)}t≥0 is a one dimensional standard Brownian motion. The process
{Z(t)}t≥0 is clearly continuous and starts at zero; moreover, using the Itô formula
one verifies immediately the martingale property. In this case we have

sup
s∈[0,t]

‖Z(s)‖L∞(Ω) = et, t ≥ 0.

Appendix A. Appendix. Here we collect very briefly a number of elementary
identities and formulas for some of the special functions needed. In particular, the
function defined in (30) and the second solution of the deterministic Lamé equation
relies on the Jacobi Epsilon function, which is detailed below. Of course a very
comprehensive collection of results for Jacobian Elliptic Functions is contained in
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the website [24].

sn2(x, q) + cn2(x, q) = 1

dn2(x, q) + q2sn2(x, q) = 1

dn2(x, q)− q2cn2(x, q) = 1− q2 = q′2

am(x, q) =

∫ x

0

dn(t, q)dt

sn(x, q) = sin(am(x, q))

E(φ, q) =

∫ φ

0

√
1− q2 sin2 θdθ.

Jacobi’s Epsilon function:

E(x, q) =

∫ x

0

dn2(t, q)dt (= E(am(x, q), q) for −K ≤ x ≤ K) .

Asymptotics of Jacobi’s Epsilon function and relation to Theta functions:

E(x, q) =
E(q)

K(q)
x+

dθ4
dξ ((ξ, p))

θ2
3(0, p)θ4(ξ, p)

, (42)

with ξ = x/θ2
3(0, p) and p = exp{−πK ′(q)/K(q)}, K ′(q) = K(q′), q′2 +q2 = 1. The

logarithmic derivative in (42) can be expressed as:

dθ4
dz (z, p)

θ4(z, p)
= 4

∞∑
n=1

pn

1− p2n
sin(2nz)
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