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Abstract. Statistical approaches to study extreme events re-
quire, by definition, long time series of data. In many scien-
tific disciplines, these series are often subject to variations
at different temporal scales that affect the frequency and in-
tensity of their extremes. Therefore, the assumption of sta-
tionarity is violated and alternative methods to conventional
stationary extreme value analysis (EVA) must be adopted.
Using the example of environmental variables subject to cli-
mate change, in this study we introduce the transformed-
stationary (TS) methodology for non-stationary EVA. This
approach consists of (i) transforming a non-stationary time
series into a stationary one, to which the stationary EVA
theory can be applied, and (ii) reverse transforming the re-
sult into a non-stationary extreme value distribution. As
a transformation, we propose and discuss a simple time-
varying normalization of the signal and show that it en-
ables a comprehensive formulation of non-stationary gener-
alized extreme value (GEV) and generalized Pareto distribu-
tion (GPD) models with a constant shape parameter. A val-
idation of the methodology is carried out on time series of
significant wave height, residual water level, and river dis-
charge, which show varying degrees of long-term and sea-
sonal variability. The results from the proposed approach are
comparable with the results from (a) a stationary EVA on
quasi-stationary slices of non-stationary series and (b) the es-
tablished method for non-stationary EVA. However, the pro-
posed technique comes with advantages in both cases. For

example, in contrast to (a), the proposed technique uses the
whole time horizon of the series for the estimation of the ex-
tremes, allowing for a more accurate estimation of large re-
turn levels. Furthermore, with respect to (b), it decouples the
detection of non-stationary patterns from the fitting of the ex-
treme value distribution. As a result, the steps of the analysis
are simplified and intermediate diagnostics are possible. In
particular, the transformation can be carried out by means of
simple statistical techniques such as low-pass filters based on
the running mean and the standard deviation, and the fitting
procedure is a stationary one with a few degrees of freedom
and is easy to implement and control. An open-source MAT-
LAB toolbox has been developed to cover this methodol-
ogy, which is available at https://github.com/menta78/tsEva/
(Mentaschi et al., 2016).

1 Introduction

Extreme value analysis (EVA) attains a great importance in
several applied sciences, particularly in earth science, be-
cause it is a fundamental tool to study the magnitude and
frequency of extreme events and their changes (e.g., Alfieri
et al., 2015; Forzieri et al., 2014; Jongman et al., 2014; Re-
sio and Irish, 2015; Vousdoukas et al., 2016a). Climatic ex-
treme events are usually associated with disasters and dam-
ages with significant social and economic costs. A correct
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statistical evaluation of the strength of extreme events related
to their average return period is crucial for impact assess-
ment, for the evaluation of the risks affecting human lives
and activities, and for planning actions regarding risk man-
agement and prevention (e.g., Hirsch and Archfield, 2015;
Jongman et al., 2014).

Often it is necessary to apply EVA to non-stationary time
series, i.e., series with statistical properties that vary in time
due to changes in the dynamic system. In particular, climate
change can induce variations in the statistical properties of
time series of climatic variables. For example, an intensifi-
cation of the meridional thermal gradient at middle latitudes
on a global scale would lead to an increase of the climatic
variability (e.g., Brierley and Fedorov, 2010), resulting in a
reduction of the average return period of storms with a given
strength. Consequently, in the study of climate change, an ac-
curate statistical estimation of middle to long-term extremes
is inherently connected to the application of non-stationary
methodologies.

While a general theory about non-stationary EVA has not
yet been formulated (Coles, 2001), there are several studies
describing methodologies for the estimation of time-varying
extreme value distributions on non-stationary time series,
which rely on the pragmatic approach of using the standard
extreme value theory as a basic model that can be further en-
hanced with statistical techniques (e.g., Coles, 2001; Davison
and Smith, 1990; Hüsler, 1984; Leadbetter, 1983; Méndez et
al., 2006).

An established technique consists in expressing the pa-
rameters of an extreme value distribution as time-varying
parametric functions (M) of time for some custom param-
eters (αi , βi , γi . . . ). By means of a fitting process such as
the maximum likelihood estimator (MLE), it is then possi-
ble to fit the values of (αi , βi , γi . . . ) to model the extremes
of the non-stationary series. Appropriate implementations of
such a methodology, hereinafter referred to as the established
method (EM), produce meaningful results, as proved by a
number of contributions (e.g., Cheng et al., 2014; Gilleland
and Katz, 2016; Izaguirre et al., 2011; Méndez et al., 2006;
Menéndez et al., 2009; Mudersbach and Jensen, 2010; Russo
et al., 2014; Sartini et al., 2015; Serafin and Ruggiero, 2014).

A drawback of this approach is that there is no general
indication on how to formulate the function M . As a rule
the model should be as simple as possible. For this reason,
typically several formulations of M are tested, and then the
best model is chosen through a balance between high likeli-
hood and low degrees of freedom, for example by means of
the Akaike criterion (Akaike, 1973). Furthermore, the choice
of M depends on the statistical model chosen for the ex-
treme value analysis: for example, for the same series the M
used for the generalized extreme value (GEV) model is dif-
ferent from the M used for the generalized Pareto distribu-
tion (GPD) model. Moreover, the EM requires non-stationary
statistical fitting techniques that are relatively complex to
implement and control, because the detection of the time-

varying properties of the series is incorporated into the fitting
of the extreme value distribution.

Another commonly used approach for dealing with non-
stationary series is to divide them into quasi-stationary slices
and apply the stationary theory to each slice (e.g., Vous-
doukas et al., 2016a). This technique is referred to in the text
as “stationary on slice” (SS). Although this technique enables
the detection of meaningful trends for short return periods, it
has the drawback of reducing the size of the sample used
for the EVA, implying larger uncertainty in the estimation of
long return periods.

This study aims to contribute to the field of non-stationary
EVA by introducing the transformed-stationary (TS) extreme
value methodology, which decouples the analysis of the non-
stationary behavior of the series from the fitting of the ex-
treme value distribution. For this purpose, it introduces a
standard methodology to model the variations of the statis-
tical properties of the series.

The remainder of the paper is structured as follows. In
Sect. 2, the TS methodology is described and discussed in
a general and theoretic way and implementation details are
outlined. In Sect. 3, the validation of the methodology is pre-
sented. Section 4 illustrates a comparison with other common
approaches for the EVA of non-stationary series, such as EM
and SS for modeling time series characterized by seasonal
cycles and time series showing long-term trends. In Sect. 5,
the results are discussed and in Sect. 6, the most important
conclusions are drawn.

2 Methods and data

2.1 Theoretical background

The TS methodology consists of three steps: transforming a
non-stationary time series y(t) into a stationary series x(t),
performing a stationary EVA, and back-transforming the re-
sulting extreme value distribution into a time-dependent one.

The transformation y(t)→ x(t) we propose is

x(t)= f (y, t)=
y(t)− Ty(t)

Cy(t)
, (1)

where Ty(t) is the trend of the series, i.e., a curve represent-
ing the long-term, slowly varying tendency of the series, and
Cy(t) is the long-term, slowly varying amplitude of a con-
fidence interval that represents the amplitude of the distri-
bution of y(t). In particular, if Cy(t) equals the long-term
varying standard deviation Sy(t) of the series y(t), Eq. (1)
reduces to a simple time-varying renormalization of the sig-
nal:

x(t)= f (y, t)=
y(t)− Ty(t)

Sy(t)
. (2)

For simplicity, in the remainder of this paper we will limit
our analysis to Eq. (2), knowing that all the considerations
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can be easily extended to any time-varying confidence inter-
val Cy(t).

Equation (2) guarantees that the average of x(t) and its
standard deviation are uniform in time, which is a necessary
condition for x(t) to be stationary. In particular, the trans-
formed signal x(t) has a mean equal to 0 and a variance equal
to 1. It is worth noting that the transformed series x(t) is not
necessarily stationary: a series with a constant trend and a
uniform standard deviation may still have a time-dependent
auto-covariance that would invalidate the hypothesis of sta-
tionarity (i.e., the condition of a series with statistical mo-
ments constant in time). Before proceeding with the analysis,
therefore, a stationarity test should be carried out to ensure
that x(t) is stationary and that its annual maxima can be fit-
ted by a stationary extreme value distribution. For example,
a simple test can be performed to ensure that higher order
statistics such as skewness and kurtosis are roughly constant
along the series.

Once the hypothesis of stationarity of x(t) is verified, we
can estimate the distribution GEVX(x) that best fits its ex-
tremes, for example through MLE. GEVX(x) is then given
by

GEVX(x)= Pr(X < x)= exp

{
−

[
1+ εx

(
x−µx

σx

)]−1/εx
}
, (3)

where the shape (εx), scale (σx), and location (µx) parame-
ters do not depend on the time. To find the time-dependent
distribution GEVY (y, t) that fits the non-stationary time se-
ries y(t) we can write that

GEVY (y)= Pr[Y (t) < y] = Pr
[
f−1(X, t) < y

]
= Pr[X < f (y, t)] = GEVX[f (y, t)], (4)

where f (y, t) is the transformation from y to x given by
Eq. (1), and f−1(x, t) is its inverse:

f−1(x, t)= y(t)= Sy(t) · x+ Ty(t). (5)

It is always possible to compute GEVY (y, t) from GEVX(x)
because f (y, t) is a monotonically increasing function of y
for every time t , because the standard deviation Sy(t) is al-
ways positive.

Using Eqs. (3) and (5) in Eq. (4), we find

GEVY (y, t)= GEVX[f (y, t)]

= exp

−
1+ εx

 y−Ty (t)

Sy (t)
−µx

σx

−1/εx


= exp

{
−

[
1+ εx

(
y− Ty(t)−µx · Sy(t)

σx · Sy(t)

)−1/εx
]}

. (6)

Therefore, if x(t) is fitted by the stationary distribu-
tion GEVX(x) then y(t) is fitted by the time-dependent dis-
tribution GEVY (y, t) with shape, scale, and location param-
eters given by

εy = εx, (7)

σy(t)= Sy(t) · σx, (8)
µy(t)= Sy(t) ·µx + Ty(t). (9)

It can be shown that the time-dependent GEV parameters
given by Eqs. (7)–(9) are the same as the time-varying
parameters εns, σns, and µns of a non-stationary distribu-
tion GEVns that would be obtained from a non-stationary
MLE on the series y(t), and which are given by

εns = const., (10)
σns = Sy(t) · a, (11)
µns = Sy(t) · b+ Ty(t), (12)

for varying parameters a and b. In fact, if pGX(x) is the prob-
ability density function (PDF) associated with the distribu-
tion GEVX(x), then the MLE for GEVX(x) is estimated so
that∑

log
[
pGX(x)

]
=max, (13)

which involves vanishing derivatives of Eq. (13) on the GEV
parameters εx , σx , and µx . For example, considering the
scale parameter σx , we see that∑ ∂

∂σx
log

[
pGX (x,σx)

]
= 0. (14)

The non-stationary MLE maximizes the log-likelihood of the
non-stationary PDF pGns(y, t) associated with GEVns, in
function of the parameters a and b. For example, consider-
ing the parameter a, we impose∑ ∂

∂a
log

[
pGns(y,a, t)

]
= 0. (15)

Let us assume that pGns(y, t) coincides with the PDF pGY (y,
t) associated with the distribution GEVY (y, t) given by
Eq. (6) and that a= σx . Considering that

pGY (y, t)=
∂

∂y
GEVY (y, t)= pGX(x)

∂

∂y
f (y, t)=

pGX(x)

Sy(t)
,

(16)

we obtain∑ ∂

∂a
log

[
pGns(y,a, t)

]
=

∑ ∂

∂σx
log

[
pGY (y,σx, t)

]
=

∑ ∂

∂σx
log

[
pGX (x,σx)

Sy(t)

]
=

∑ ∂

∂σx

{
log

[
pGX (x,σx)

]
− log

[
Sy(t)

]}
=

∑ ∂

∂σx
log

[
pGX (x,σx)

]
= 0, (17)

where the last step is possible because Sy(t) does not depend
on σx .
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The same principle can be applied differentiating∑
log[pGY (x, µx , t)] = 0 on the location parameter µx to

maximize the log likelihood, finding the condition∑ ∂

∂µx
log

[
pGY (x,µx, t)

]
=

∑ ∂

∂µx
log

[
pGX (x,µx)

]
= 0. (18)

Therefore, if x is stationary, the condition of maximum like-
lihood for pGX(x) coincides with the condition of maximum
likelihood for pGY (y, t), and applying MLE for fitting the
stationary parameters (σx , µx) is equivalent to fitting the pa-
rameters (a, b) of by Eqs. (10)–(12) by non-stationary MLE.
The equivalence between the two methodologies suggests
that the TS approach is dual to the EM approach, meaning
that any implementation of EM is equivalent to an imple-
mentation of the TS approach for some transformation f (y,
t) : y(t)→ x(t) (see Appendix A for a more detailed discus-
sion). One can also prove that Eq. (1) allows a general TS
formulation with a constant shape parameter, i.e., all the TS
models with a constant εy can be connected to Eq. (1) (see
Appendix A). This last result is remarkable, because it shows
that Eq. (1) is exhaustive for all the TS models with a con-
stant shape parameter.

The findings drawn above are general and can be applied
also to peak over threshold (POT) methodologies, because
the GPD is formally derived from the GEV as the conditional
probability that an observation beyond a given threshold u is
greater than x. In particular, the POT/GPD parameters are
given by

uy(t)= Sy(t) · ux + Ty(t), (19)
εy = εx = const., (20)
σGPDy(t)= σy(t)+ εy

[
uy(t)−µy(t)

]
= Sy(t) · σGPDx, (21)

where ux(t) and uy(t) are the thresholds of the x and y time
series, εy = εx is the shape parameter, σGPDx and σGPDy(t)

are the GPD scale parameters of x, and y, σy , and µy are the
scale and location parameters of a GEV associated with the
GPD, which have been included in Eq. (19) to make it clear
how the parameter σGPDy(t) can be derived.

It is worth noting that the TS methodology is neutral for a
stationary series, i.e., the application of this methodology to a
stationary series leads to the same results as a stationary EVA
with the same underlying statistical model. That is because
in such case Ty and Sy are constant, and Eq. (2) reduces to a
constant translation and scaling.

2.2 Modeling seasonality

Often, we would like to model extreme events that show sea-
sonality, for example with local winter extremes that differ in
magnitude from summer extremes. A simple way to add the
seasonal cycle to Eqs. (7)–(9) is by expressing the trend Ty(t)

and the standard deviation Sy(t) as

Ty(t)= T0y(t)+ sT(t), (22)
Sy(t)= S0y(t) · sS(t), (23)

where T0y(t) and sT(t) are, respectively, the long-term vary-
ing and seasonal components of the trend, S0y(t) is the long-
term varying standard deviation and sS(t) is the seasonal-
ity factor of the standard deviation. In the notation, the sub-
script 0 denotes the long-term varying components. Applying
Eqs. (22)–(24) to Eq. (2), we obtain

x(t)=
y(t)− T0y(t)− sT(t)

S0y(t) · sS(t)
. (24)

The time-varying GEV parameters can be expressed as

εy = εx = const., (25)
σy(t)= S0y(t) · sS(t) · σx, (26)
µy(t)= S0y(t) · sS(t) ·µx + T0y(t)+ sT(t), (27)

and the time-varying POT/GPD parameters can be expressed
as

uy(t)= S0y(t) · sS(t) · ux + T0y(t)+ sT(t), (28)
εy = εx = const, (29)
σGPDy(t)= S0y(t) · sS(t) · σGPD. (30)

2.3 Implementation

The implementation of the TS methodology is illustrated
in Fig. 1. The fundamental input is represented by the
series itself, and the core of the implementation consists
of a set of algorithms for the elaboration of the time-
varying trend T0y(t), standard deviation S0y(t), and season-
ality terms sT(t) and sS(t).

In this study, we propose algorithms based on running
means and running statistics (see Sect. 2.2.1). Hence, an im-
portant aspect is the definition of a time window W for the
estimation of the long-term statistics T0y(t) and S0y(t) and
of a time window Wsn for the estimation of the seasonality.
The computation of T0y(t) and S0y(t) acts as a low-pass fil-
ter removing the variability within W . Therefore, W should
be chosen short enough to incorporate in the analysis the
variability above the desired timescale but long enough to
exclude noise, short-term variability, and sharp variations in
the statistical properties of the transformed series. For ex-
ample, in studies of long-term climate changes a reasonable
choice is to impose W = 30 years, because this is the gen-
erally accepted time horizon for observing significant varia-
tions in climate (e.g., Arguez and Vose, 2011; Hirabayashi et
al., 2013). It is worth stressing that the chosen value of W
should be verified a posteriori to ensure that the transformed
series is stationary. The time window Wsn is used to esti-
mate the intra-annual variability of the standard deviation
(see Sect. 2.2.1). In Fig. 1, the input corresponding to the
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Figure 1. TS methodology: block diagram.

seasonal time window Wsn is drawn in a dashed box because
its value is easier to choose than the value of W . For the
examined case studies, a value of 2 months for Wsn always
resulted in a satisfactory estimation of the seasonal cycle.

In this implementation of the TS methodology, the esti-
mation of the long-term statistics is separated from the esti-
mation of the seasonality. This allows to study the long-term
variability of the extreme values as is typically done when
studying extremes on an annual basis, as well as the combi-
nation of long-term and seasonal variability to evaluate ex-
tremes on a monthly basis.

After the estimation of T0y(t), S0y(t), sT(t), and sS(t) we
can apply Eq. (2) and perform a stationary EVA on the trans-
formed series. It is important to stress that the stationary EVA
is performed on the whole time horizon. The stationarity of
the transformed signal allows us to apply different techniques
for the EVA. In this study, we illustrate the GEV and GPD ap-
proaches, but an interesting development would be the elabo-
ration of non-stationary techniques for other approaches such
as those described by Goda (1988) or Boccotti (2000), based
on the TS methodology.

The final step of the implementation is the back-
transformation of the fitted extreme value distribution into a
non-stationary one as given by Eqs. (10)–(12) and (25)–(27)
for GEV and by Eqs. (19)–(21) and (28)–(30) for GPD.

2.3.1 Estimation of trend, standard deviation, and
seasonality

There are several possible ways of estimating the slowly
varying trend and standard deviation and their seasonality.
We propose here a simple methodology based on a running
mean and standard deviation. We formulate the trend T0y(t)

as a running mean of the signal y(t) on a multi-yearly time
window W ,

T0y(t)=

t t=t+W/2∑
t t=t−W/2

y(tt)/Nt , (31)

where Nt is the number of observations available during
the time interval [t −W/2, t +W/2]. The seasonality of the
trend relative to a given month of the year can be estimated
as the average monthly anomaly of the de-trended series. For
a given month of the year the seasonality is then

sT(month[t])=
∑
years

[
y(tt)− T0y(tt)

]
|t t∈month(t)

Nmonth
, (32)

where the subscript t t ∈month[t] indicates that the averaging
operation is limited to time intervals within each considered
month of the year. For example, the seasonality of January is
computed as the average for all months of January of the de-
trended signal. To estimate the slowly varying standard devi-
ation, we execute a running standard deviation with the same
time window used to estimate T0y(t):

S0y(t)|ROUGH =

t t=t+W/2∑
t t=t−W/2√

[y(tt)− y(tt ∈ [t −W/2, t +W/2])]2/NWsn, (33)

where the subscript ROUGH stresses the fact that this ex-
pression is sensitive to outliers and that its direct employment
leads to a relevant statistical error, as explained in Sect. 2.2.2.
To overcome this problem, we smooth S0y(t)|ROUGH with a
moving average on a time window smaller than W , for ex-
ample W/L with L= 2:

S0y(t)=

t t=t+W/2L∑
t t=t−W/2L

LS0y(tt)|ROUGH/Nt . (34)

It is worth stressing that, in general, a further smoothing of
the results of running means and standard deviations is ap-
propriate if it reduces the error and improves the detection of
the slowly varying statistical behavior of the time series. This
is because the estimation of T0y(t) and S0y(t) involves a low-
pass filter to smooth the signal on timescales lower than W
and remove high-frequency variability.
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To estimate the seasonality we perform another running
standard deviation Ssn(t) on a time windowWsn much shorter
than 1 year, in the order of the month:

Ssn(t)=

t t=t+Wsn/2∑
t t=t−Wsn/2√[

y(tt)− y
(
t t ∈

[
t −Wsn/2, t +Wsn/2

])]2
/Nt . (35)

The seasonality of the standard deviation can then be com-
puted as the monthly average of the ratio between Ssn(t)

and S0y(t):

sS(month[t])=
∑
years

[
Ssn(tt)/S0y(tt)

]
|t t∈month(t)

Nt t∈month(t)
. (36)

The estimated seasonality terms sT and sS are periodic with
a period of 1 year. In order to smooth them and remove any
possible noise in the signal, we take into account only their
first three Fourier components computed in a period of 1
year, corresponding to components with a periodicity of 1
year, 6 months, and 3 months.

2.3.2 Statistical error

Since there is an inherent error in the estimation of the trend,
standard deviation and seasonality given by Eqs. (32)–(36),
we need to estimate this error and propagate it to the sta-
tistical error of the parameters of the non-stationary GEV
and GPD distributions. In general, given a sample d of data
with size N , average s, variance var(s), and standard devia-
tion S(s) we have

var(d)= var(d)/N ⇒ Err[d] = S(d)/
√
N, (37)

var[var(d)] ≈ 2var(d)2/N ⇒ Err[S(d)] ≈ S(d) · 4
√

2/N. (38)

Equation (37) represents the error on the average and can
be obtained by propagating the intrinsic error of each obser-
vation, given by the standard deviation S(s), to expression
s=

∑
si/N . Equation (38) represents the error on the stan-

dard deviation and can be evaluated considering that with a
Gaussian approximation quantity S=

∑
N

s2
i /var(s) follows a

chi-squared distribution with standard deviation 2N .
Using Eqs. (37) and (38), we can estimate the error on

T0y(t) and S0y(t)|ROUGH as

Err
[
T0y

]
≈ S0y/

√
Nt , (39)

Err
[
S0y

]
|ROUGH ≈ S0y ·

4
√

2/Nt . (40)

As mentioned in Sect. 2.2.1, Eq. (40) tends to return rather
high values of the error relative to S0y(t). For example, if we
are considering a time window of 20 years with an observa-
tion every 3 h, we have

Nt ≈ 59 000⇒
Err

[
S0y

]
|ROUGH

S0y
≈ 7.6 %. (41)

Using expression Eq. (34) for the estimation of S0y(t) over-
comes this issue because we can estimate the uncertainty in
S0y(t) as the error of the standard deviation averaged over
the time window W/L, which is significantly lower than the
error given by Eq. (41). Using Eq. (37), we find

E
[
S0y

]
≈

Err
[
S0y

]
|ROUGH

√
Nt/L

= S0y ·
4

√
2L2

N3
t

. (42)

We can estimate the error on the seasonality of the trend sT
by adding the error estimated for T0y(t) to that of the monthly
mean. As the statistical error of independent Gaussian vari-
ables sum vectorially, we obtain

Err [sT]=
√

Err2[mntmean(y)] +Err2 [T0y
]
, (43)

where the mntmean(y) operator represents the monthly aver-
age of y. If, for example, one considers the month of January,
it is the average computed on all months of January in the
time series. Assuming the error on mntmean(y) as approxi-
mately constant within the year, it follows that

Err[mntmean(y)] ≈ S0y/
√
Nmonth ≈ S0y ·

√
12/Ntot, (44)

whereNmonth is the number of observations corresponding to
the considered month, Ntot is the total number of elements of
the series y(t), Nmonth≈Ntot/12. Therefore, Eq. (43) can be
rewritten as

Err [sT]≈ S0y
√

12/Ntot+ 1/Nt . (45)

The error on sS can be estimated as the error of the average
ratio sS/S0y . Using Eq. (38), the error of the ratio sS/S0y is
given by

Err
[
Ssn

S0y

]
≈

√√√√(Err [Ssn]
S0y

)2

+

(
Ssn

S2
0y

Err
[
S0y

])2

≈
Ssn

S0y

√√√√√ 2
Nsn
+

√
2S2

N3
t
≈ sS

4

√
2
Nsn

, (46)

where Nsn is the average number of observations within the
time window Wsn and assuming Nt�Nsn. We can then es-
timate the error on sS as the error of the monthly average of
sS/S0y :

Err [sS]≈ Err
[
Ssn

S0y

]
/
√
Nmonth ≈ sS

√
12
Ntot

4

√
2
Nsn

= sS
4

√
288

N2
totNsn

. (47)

Using Eqs. (40), (45), and (47) we can estimate the error on
the time-varying GEV parameters as

Err
[
εy
]
= Err [εx] , (48)
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Err
[
σy
]
=

√(
S0y · sS ·Err [σx ]

)2
+
(
S0y ·Err [sS] · σx

)2
+
(
Err

[
S0y

]
· sS · σx

)2
, (49)

Err
[
µy
]
=

√(
S0y · sS ·Err [µx ]

)2
+
(
S0y ·Err [sS] ·µx

)2
+
(
Err

[
S0y

]
· sS ·µx

)2
+Err2

T, (50)

and the error on the time-varying GPD parameters as

Err
[
uy
]
=

√(
S0y · sS ·Err [ux ]

)2
+
(
S0y ·Err [sS] · ux

)2
+
(
Err

[
S0y

]
· sS · ux

)2
+Err2

T, (51)
Err

[
εy
]
= Err [εx] , (52)

Err
[
σGPDy

]
=

√(
S0y · sS ·Err [σGPDx ]

)2
+
(
S0y ·Err [sS] · σGPDx

)2
+
(
Err

[
S0y

]
· sS · σGPDx

)2
, (53)

where

Err2
T = Err2 [T0y

]
+Err2 [sT] . (54)

2.4 Data and validation

To assess the generality of the approach, the TS methodology
has been validated on time series of different variables, from
different sources and with different statistical properties.

The analysis of annual and monthly maxima has been car-
ried out on time series of significant wave height at two lo-
cations: the first located in the Atlantic Ocean, west of Ire-
land (−10.533◦ E, 55.366◦ N), and the second close to Cape
Horn (60.237◦ E, −57.397◦ N). The data have been obtained
by means of wave simulations performed with the spectral
model Wavewatch III® (Tolman, 2014) forced by the wind
data projections of the RCP8.5 scenario (van Vuuren et al.,
2011) of the CMIP5 model GFDL-ESM2M (Dunne et al.,
2012) on a time horizon spanning from 1970 to 2100. This
data set is referred to from now on as GWWIII. Here, the
TS methodology is used in order to examine its applicability
to climate change studies. The annual and monthly analyses
have been repeated on a series of water level residuals off-
shore of the Hebrides Islands (Scotland, −7.9◦ E, 57.3◦ N)
obtained from a 35-year hindcast of storm surges at Euro-
pean scale (Vousdoukas et al., 2016a, b) forced by the ERA-
Interim reanalysis data (Dee et al., 2011). This data set is
further referred to as JRCSURGES.

For the annual maxima of the considered series, we fur-
ther compare the TS methodology with the SS technique
as implemented by Alfieri et al. (2015) and Vousdoukas et
al. (2016a). For this purpose, we extracted time series from
projections of streamflow in the Rhine and Po rivers cover-
ing a time horizon from 1970 to 2100 (Alfieri et al., 2015),
from now on referred to as JRCRIVER. Also, the two series
of significant wave height of west Ireland and Cape Horn
extracted from the GWWIII data set have been used in this
comparison.

Finally, we compare the TS methodology and the EM for
monthly maxima using time series of significant wave height
extracted from a 35-year wave hindcast database (Mentaschi
et al., 2015) near the locations of La Spezia and Ortona. The
analysis of this data set, further referred to as WWIII_MED,
focuses on a comparison between seasonal cycles modeled
by the two approaches.

3 Results

3.1 Waves: annual extremes

The validation of the TS methodology was performed first on
the time series of significant wave height of west Ireland and
Cape Horn from the GWWIII data set. We verified first the
non-seasonal transformation given by Eq. (2) and the time-
dependent GEV and GPD given by Eqs. (7)–(9) and (19)–
(21), respectively. By ignoring the seasonality, this formula-
tion is suitable for finding extremes and peaks on an annual
basis. For technical reasons the two series do not have data in
two time intervals, from 2005 to 2010 and from 2092 to 2095.
The impact of the missing data on the analysis is small, how-
ever, especially if we choose a time window W large enough
for the estimation of the trend and standard deviation using
Eqs. (31) and (33). In particular, for this analysis we chose
a time window of 20 years, which is long enough to ensure
the accuracy of the results and short enough to include the
multi-decadal variability of a 130-year time series.

The results of the analysis for the two time series are il-
lustrated in Figs. 2 and 3. Panel (a) of each figure shows the
original time series and its slowly varying trend and stan-
dard deviation. Panel (b) illustrates the normalized series ob-
tained through the transformation given by Eq. (1), allow-
ing an evaluation at a glance of the stationarity of the nor-
malized series. The mean and the standard deviation of the
normalized series plotted in panel (b) are 0 and 1, respec-
tively. Higher order statistics such as skewness and kurtosis
are included in the graphics to support the assumption of sta-
tionarity of the normalized series. From the normalized time
series we extracted the annual maxima and estimated the cor-
responding non-stationary GEV as given by Eqs. (7)–(9) (see
Figs. 2c and 3c). Moreover, we performed a POT selection of
the extreme events on the normalized series. The threshold
was defined in order to have on average five events per year,
following Ruggiero et al. (2010), corresponding for both of
the series to the 97th percentile. From the resultant POT sam-
ple we estimated the corresponding non-stationary GPD as
given by Eqs. (19)–(21) (see Figs. 2d and 3d). In Fig. 2c
and d and Fig. 3c and d, the shape parameters ε estimated
by the MLE for the GEV and the GPD are also reported.
Inter-decadal oscillations in the annual maxima are modeled
for both of the series, though they are more pronounced for
the west Ireland time series. Moreover, for both series there
is a tendency for the annual maxima to increase. This is more
pronounced for the Cape Horn series, where the increase in
the annual maxima of significant wave height estimated by
GWWIII is about 2 m.

It is worth noting that for both of the considered series,
the statistical mode of GEV and GPD grows faster in time
than the slowly varying trend Ty(t). This is due to the fact
that the growth of the location parameter µy(t) of the non-
stationary GEV (Eq. 7) and of the threshold uy(t) of the non-
stationary GPD (Eq. 19) are related not only to the growth of
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Figure 2. Long-term analysis of the projections of significant wave height in Cape Horn: (a) series, its trend, and standard deviation; (b) the
normalized series with higher order statistical indicators; (c) non-stationary GEV of annual maxima; (d) non-stationary GPD of annual peaks.
In (c) and (d) the values of the shape parameter ε best fitted for the GEV and GPD distributions are reported.

Ty(t) but also to the growth of Sy(t). The upper tail of the
distributions grows even faster because the scale parameter
is also proportional to Sy(t).

The impact of the statistical error in the slowly varying
trend and the standard deviation on the uncertainty of the
distribution parameters have been examined using Eqs. (48)–
(50) and (51)–(53), which, for the non-seasonal analysis, re-
duce to

Err
[
εy
]
= Err [εx] , (55)

Err
[
σy
]
=

√(
Sy ·Err [σx]

)2
+
(
Err

[
sy
]
· σx

)2
, (56)

Err
[
µy
]
=

√(
Sy ·Err [µx ]

)2
+
(
Err

[
Ty
]
·µx

)2
+Err2 [Ty], (57)

for the GEV, and to

Err
[
uy
]
=

√(
Sy ·Err [ux ]

)2
+
(
Err

[
Sy
]
· ux

)2
+Err2 [Ty], (58)

Err
[
εy
]
= Err [εx] , (59)

Err
[
σGPDy

]
=

√(
Sy ·Err

[
σGPDx

])2
+
(
Err

[
Sy
]
· σGPDx

)2
, (60)

for the GPD. The result is that for the non-seasonal analy-
sis the error due to the estimation of the trend and standard
deviation is negligible with respect to the error associated
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Figure 3. Long-term analysis of the projections of significant wave height in Cape Horn: (a) series, its trend, and standard deviation; (b) the
normalized series with higher order statistical indicators; (c) non-stationary GEV of annual maxima; (d) non-stationary GPD of annual peaks.
In (c) and (d) the values of the shape parameter ε best fitted for the GEV and GPD distributions are reported.

with the stationary MLE. In Table 1, the values of the dif-
ferent components of the compared error in Eqs. (55)–(57)
and (58)–(60) are reported together with the total error es-
timated for each parameter of the non-stationary GEV and
GPD. Since the threshold ux of the stationary GPD was se-
lected to have on average five events per year, the error has
been computed as the uncertainty related to this definition.
The percentage contribution to the squared error is also re-
ported in Table 1 in a single column because the percent-
ages estimated for the two series are roughly equal. The er-
ror for both GEV and GPD and for the two series is clearly
dominated by the error associated with the estimation of

the parameters of the stationary distributions ([Sy ·Err[σx]]
and [Sy ·Err[µx]] for the GEV and [Sy ·Err[σGPDx]] and
[Sy ·Err[ux]] for the GPD).

3.2 Waves: monthly extremes

The seasonal formulation of the approach is suitable to esti-
mate extreme value distributions on a monthly basis. Hence,
we applied Eq. (24) to estimate the normalized series, then
fitted a stationary GEV of monthly maxima by means of a
MLE that was back-transformed into a non-stationary GEV
through Eqs. (25)–(27). It is worth stressing that for the sta-
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Figure 4. Seasonal analysis of the projections of significant wave height in west Ireland: (a) series, its trend, and standard deviation; (b) the
normalized series with higher order statistical indicators; (c) non-stationary GEV of annual maxima; (d) non-stationary GPD of annual peaks.
In (c) and (d) the values of the shape parameter ε best fitted for the GEV and GPD distributions are reported. For the sake of clarity, only a
5-year time slice is reported.

tionary MLE, the entire normalized series was used, cover-
ing a time horizon of 130 years. For the GPD, we selected
the threshold in order to have on average 12 events per year,
corresponding to the 93rd percentile for both series. Results
are displayed in Fig. 4 for the location of west Ireland and
in Fig. 5 for Cape Horn. To make the seasonal cycle distin-
guishable in these figures, we plotted only a slice of 5 years
from 2085 to 2090. The meaning of the four panels in Figs. 4
and 5 is the same as in Figs. 2 and 3. The non-stationary
extreme value distribution estimated for the location of west
Ireland presents a strong seasonal cycle with higher and more

broad-banded extremes during winter. For Cape Horn, the
seasonal cycle is weaker, with the extremes of significant
wave height slightly lower during the local summer. The es-
timated PDF for the seasonal GEV and GPD are significantly
lower than those estimated for the non-seasonal analysis be-
cause in the seasonal analysis we consider monthly extremes,
while in the non-seasonal one we consider annual extremes.

It is worth stressing that in the study of the monthly max-
ima, the long-term trend is also estimated even if it cannot
be appreciated in Figs. 4 and 5 due to the short time horizon
represented.
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Figure 5. Seasonal analysis of the projections of significant wave height in Cape Horn: (a) series, its trend, and standard deviation; (b) the
normalized series with higher order statistical indicators; (c) non-stationary GEV of annual maxima; (d) non-stationary GPD of annual peaks.
In (c) and (d) the values of the shape parameter ε best fitted for the GEV and GPD distributions are reported. For the sake of clarity, only a
5-year time slice is reported.

Table 2 reports the components of the statistical error due
to the uncertainty in the estimation of the seasonality, to-
gether with the components of the stationary MLE. The error
components relating to the uncertainty in the estimation of
T0y and S0y were omitted as they are negligible compared
with the error associated with the fitting of the stationary ex-
treme value distribution (see Sect. 3.1). In Table 2, we can see
that, as for the non-seasonal analysis, the error for both GEV
and GPD and for the two series is clearly dominated by the
uncertainty associated with the estimation of the parameters
of the stationary distributions, though in this case the error re-

lated to the stationary MLE is significantly smaller than that
found for the non-seasonal analysis due to the larger sample
of data.

3.3 Residual water levels

To verify the performance of the TS methodology on a se-
ries from a different source, of a different size, and with dif-
ferent statistical characteristics, we tested it on a series of
water level residuals extracted from the JRCSURGES data
set for an off-shore location of the Hebrides Islands, Scot-
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Table 1. Average error components for the long-term analysis of the
projections of significant wave height extracted at west Ireland and
Cape Horn, for non-stationary GEV and GPD. The error is domi-
nated by the component due to the stationary MLE.

Yearly maxima: trend-only analysis

Error West Cape Horn %
component Ireland error (m) (err2)
(average) error (m)

Non-stationary GEV

Sy ·Err[σx ] 0.0371 0.0372 100 %
Err[Sy ] · σx 5.876× 10−4 5.818× 10−4 < 0.1 %
Err[σy ] 0.0371 0.0372 100 %

Sy ·Err[µx ] 0.0538 0.0536 97.7 %
Err[Sy ] ·µx 3.6× 10−3 3.4× 10−3 0.4 %
Err[Ty ] 7.4× 10−3 7.0× 10−3 1.85 %
Err[µy ] 0.053 0.054 100 %

Non-stationary GPD

Sy ·Err[σGPDx ] 0.0418 0.0310 100 %
Err[Sy ] · σGPDx 1.12× 10−3 8.9× 10−4 < 0.1 %
Err[σGPDy ] 0.0418 0.0310 100 %

Sy ·Err[ux ] 0.1489 0.1376 100 %
Err[Sy ] · ux 1.9× 10−3 1.7× 10−3 < 0.1 %
Err[uy ] 0.1491 0.1278 100 %

land (−7.9◦ E, 57.3◦ N). This series is characterized by a flat
trend Ty(t) because the model results are approximately con-
stant averaged. Therefore, almost all the variability is mod-
eled by the TS methodology in the standard deviation Sy(t).
Since the time horizon of this series is shorter than that
of the GWWIII projections, a time window of 6 years was
adopted for the computation of the trend to better identify its
inter-annual variability. The results of the TS analysis of the
yearly maxima are shown in Fig. 6. The series displays also a
strong seasonal behavior with annual maxima usually occur-
ring during the local winter (for brevity, the seasonal analysis
is not illustrated).

An interesting aspect is that the estimated standard devi-
ation Sy(t) presents a strong correlation (ρ= 0.79) with the
annual means of the North Atlantic Oscillation (NAO) index.
This is illustrated in Fig. 7, where the scatter plot of Sy(t)
vs. the annual means of the NAO index (Fig. 7a) and the two
time series (Fig. 7b) are represented. As a consequence, the
estimated annual maxima are also correlated with the NAO
index.

Table 2. Average error components for the seasonal analysis of the
projections of significant wave height extracted at west Ireland and
Cape Horn, for non-stationary GEV and GPD. The error is domi-
nated by the component due to the stationary MLE.

Monthly maxima: seasonal analysis

Error West Ireland Cape Horn %
component error (m) error (m) (err2)
(average)

Non-stationary GEV

S0y · sS ·Err[σx ] 0.0135 0.0138 99.7 %
S0y ·Err[sS] · σx 7.2× 10−4 7.6× 10−4 0.3 %
Err[σy ] 0.0135 0.0138 100 %

S0y · sS ·Err[µx ] 0.019 0.020 96.6 %
S0y ·Err[sS] ·µx 0.0014 0.0017 0.7 %
Err[sT] 4.86× 10−6 5.25× 10−6 < 0.1 %
Err[µy ] 0.0204 0.0214 100 %

Non-stationary GPD

S0y · sS ·Err[σGPDx ] 0.025 0.029 100 %
S0y ·Err[sS] · σGPDx 9.4× 10−4 9.9× 10−4 < 0.1 %
Err[σGPDy ] 0.0253 0.0293 100 %

S0y · sS ·Err[ux ] 0.1061 0.1205 100 %
S0y ·Err[sS] · ux 0.0011 0.0014 < 0.1 %
Err[uy ] 0.1063 0.1207 100 %

4 Comparison with other approaches

4.1 Stationary methodology on time slices for long
trend estimation

A comparison was carried out between the TS methodology
and the SS technique, consisting of a stationary analysis on
quasi-stationary slices of data. This analysis was carried out
on river discharge projections for the Po and the Rhine ex-
tracted from the JRCRIVER data set and on the projections
of significant wave height extracted from the GWWIII data
set for the locations of west Ireland and Cape Horn. The TS
methodology was applied with a time window of 30 years to
estimate a non-stationary GPD of annual maxima. The SS
technique was carried out using a GPD approach on time
slices of 30 years from 1970 to 2000, 2020 to 2050, and 2070
to 2100. For both methodologies, the threshold was selected
to have on average five peaks per year.

Results are illustrated in Fig. 8, where the return levels of
the projected discharge of the Rhine are shown for three time
slices. In Fig. 8 the continuous black line and the green band
represent the return levels and the 95 % confidence interval
estimated by the TS methodology, where the dashed black
line represents the return levels estimated by the stationary
EVA on the considered slice (labeled in the legend as SS).
The return levels estimated for short return periods by the two
methodologies are close, while they tend to spread for high
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Figure 6. Long-term analysis of the residual water levels modeled at the Hebrides Islands: (a) series, its trend, and standard deviation; (b) the
normalized series with higher order statistical indicators; (c) non-stationary GEV of annual maxima; (d) non-stationary GPD of annual peaks.
In (c) and (d) the values of the shape parameter ε best fitted for the GEV and GPD distributions are reported.

Figure 7. Time-varying standard deviation Sy(t) estimated by means of the TS methodology vs. the yearly average of the NAO index,
indicated by scatter plot (a) and time series (b).
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Figure 8. Return level plots for the discharge of the Rhine River at its mouth, TS (black continuous line), 95 % confidence interval for the
TS methodology (green band), and SS methodology (black dashed line) for the time slices 1970–2000, 2020–2050, and 2070–2100.

Figure 9. Return levels modeled by the TS methodology (x axis) vs. those modeled by the SS methodology (y axis) for the discharge of the
Rhine and Po rivers and the significant wave height in west Ireland and Cape Horn. The three series of dots represent the three time slices.
Dots’ color represents the return period. The blue lines represent the maximum 30-year return level.

return periods. This fact is also evident from Fig. 9, where the
return levels estimated by the two methodologies are plotted
against each other for the river discharge of the Rhine and
the Po and for the significant wave height of west Ireland and
Cape Horn. We can see that for the analyzed time series the
two methodologies are in good agreement for return periods
below 30 years while they spread for larger return periods.
Some quantitative data about this fact are shown in Table 3,
which reports the normalized bias NBI of the return levels of
the two methodologies, defined as

NBI=
(
RLTS−RLcmp

)
/RLcmp, (61)

where RLTS and RLcmp are the return levels obtained by the
TS and the SS methodology, respectively. Table 3 also in-
cludes the maximum deviation between the return levels es-
timated by the TS and by the SS methodology, as well as
the 95 % confidence interval amplitude expressed as a per-
centage of the return level. The NBI and the maximum de-
viations were obtained by comparing results of the two tech-
niques on the three 30-year time windows. From Table 3 we
can see that the maximum deviation for return periods up to
30 years is always below 6 %, while for higher return periods
it increases up to 13 % for the discharge of the Po. More-
over, the confidence intervals estimated for SS are always
larger than those for TS, especially for large return periods.
This is mainly due to the fact that for the stationary analy-

sis on the quasi-stationary time slices we consider a sample
of only 30 years, which leads to wider uncertainty ranges
especially in the estimation of large return periods such as
100 and 300 years. This also explains the sharp variations
of high return levels that we find between the three time win-
dows using the SS approach. These variations are likely more
related to the uncertainty in estimating the levels associated
with long return periods rather than to climatic changes. The
TS methodology allows a more accurate estimation of high
return levels because it uses the whole sample of 130 years,
and this represents one of the strengths of the TS methodol-
ogy vs. SS. It is finally worth noting that the relative confi-
dence interval estimated by both methodologies for the series
of river discharge is larger than that estimated for the series
of significant wave height. This is because for wave height
data the minimum distance between two peaks has been set
to at least 3 days, while for river discharge it has been set to
7 days.

4.2 Established non-stationary method for seasonal
variability

Section 3 shows that the TS methodology is mathematically
equivalent to a particular implementation of the EM method-
ology as described for example by Coles (2001), Izaguirre et
al. (2011), Menéndez et al. (2009), and Sartini et al. (2015).
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Table 3. Long-term variations of the extremes of projected river discharge for the Rhine and Po rivers, and of projected significant wave
height for west Ireland and Cape Horn: normalized bias (NBI) and maximum difference (max diff) between the return levels estimated with
the TS methodology and the SS approach, and mean 95 % confidence interval amplitude expressed as percentage of the return level, for
return periods of 5, 10, 30, 100, and 300 years.

Return period 5 years 10 years 30 years 100 years 300 years

Rhine NBI −1.07 % −1.51 % −2.35 % −3.43 % −4.53 %
(River dis.) Max diff −3.58 % −4.40 % −5.92 % −7.81 % −9.69 %

Mean conf. int. (TS) 4.90 % 5.54 % 6.68 % 8.01 % 9.27 %
Mean conf. int. (SS) 17.99 % 21.34 % 26.87 % 33.16 % 39.04 %

Po NBI 1.47 % 2.06 % 2.92 % 3.69 % 4.25 %
(River dis.) Max diff 5.87 % 4.88 % 5.60 % 9.57 % 13.06 %

Mean conf. int. (TS) 5.08 % 5.77 % 7.00 % 8.46 % 9.84 %
Mean conf. int. (SS) 16.77 % 20.07 % 25.45 % 31.47 % 36.99 %

W. Ireland NBI −0.28 % −0.14 % 0.07 % 0.27 % 0.43 %
(Waves Hs) Max diff −0.91 % −1.14 % −1.48 % 2.06 % 2.51 %

Mean conf. int. (TS) 1.97 % 2.22 % 2.63 % 3.05 % 3.41 %
Mean conf. int. (SS) 7.73 % 9.01 % 10.95 % 12.91 % 14.54 %

Cape Horn NBI −1.07 % −1.13 % −1.17 % −1.18 % −1.18 %
(Waves Hs) Max diff −1.87 % −2.36 % −3.12 % −3.92 % −4.59 %

Mean conf. int. (TS) 1.74 % 2.03 % 2.52 % 3.07 % 3.57 %
Mean conf. int. (SS) 6.40 % 7.70 % 9.80 % 12.09 % 14.15 %

For the sake of completeness, we show here the results of a
comparison between the performances of TS and of a differ-
ent formulation of the EM methodology. In its formulation,
the parameters of the non-stationary GEV of the monthly
maxima are expressed as

µ(t)= β0+

Nµ∑
i=1

[
β2i−1 cos(iωt)+β2i−1 sin(iωt)

]
, (62)

σ(t)= α0+

Nσ∑
i=1

[
α2i−1 cos(iωt)+α2i−1 sin(iωt)

]
, (63)

ε(t)= γ0+

Nε∑
i=1

[
γ2i−1 cos(iωt)+ γ2i−1 sin(iωt)

]
, (64)

where β0, α0, and γ0 are the stationary components; βi , αi ,
and γi are the harmonics’ amplitudes; ω= 2π T −1 is the an-
gular frequency, with T corresponding to 1 year; Nµ, Nσ ,
and Nε are the number of harmonics; and t is expressed in
years. Therefore, the parameters βi , αi , and γi have been
optimized through a non-stationary MLE in order to fit the
monthly maxima of the non-stationary series. Different com-
binations of Nµ, Nψ , and Nε have been tested and the best
model was chosen as the one presenting the lowest value of
the Akaike criterion (Akaike, 1973) given by

AIC= 2k− 2log(L), (65)

where k is the number of degree of freedoms of the model
and L is the likelihood. In particular, the maximum value
tested for Nµ and Nψ is 3, while the maximum considered

value of Nε is 2. In general, this model can be extended to
incorporate long-term trends, but the two series examined in
this test display flat trends. Hence, Eqs. (62)–(64) are ade-
quate to model them.

In the comparison, the EM and the seasonal TS method-
ology (GEV only) were applied to the same series of signif-
icant wave heights relative to the WWIII_MED data set de-
scribed in Sect. 2.3. For the transformed-stationary approach,
a 10-year time window was used for the computation of the
long-term trend. The results of the two methodologies are
similar, with a roughly flat trend and strong seasonal pattern.
The comparison of the seasonal cycles estimated by the two
techniques is represented in Fig. 10 for the two series. Here,
the continuous red and green lines are the location and scale
parameters (µ and σ , respectively) as estimated by the TS ap-
proach. The dashed red and green lines are the location and
scale parameters estimated through the EM. The blue dots
represent the monthly maxima, while the color scale repre-
sents the time-varying probability density estimated by the
transformed-stationary methodology. Since for both of the
series the models selected based on the Akaike criterion have
a constant shape parameter ε, these are reported together with
those estimated by the TS methodology.

The GEV parameters estimated by the two approaches
are in good agreement. The small differences have relatively
small impact on the return levels as one can see in Fig. 11,
where the return levels estimated by the two methodologies
for the month of January are plotted. For both series, the re-
turn levels estimated by EM lie within the 95 % confidence
interval estimated by TS. Table 4 reports the values of nor-
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Figure 10. Seasonal cycle estimated by TS methodology and by the EM for the series of significant wave height of La Spezia and Ortona.
The red continuous (dashed) line represents the location parameter µ estimated by TS (EM). The green continuous (dashed) line represents
the sum between the location parameter µ and the shape parameter σ estimated by TS (EM). The dots represent the monthly maxima. The
shape parameters εTS and εEA estimated by the two methodologies have been also reported for the two series.

Figure 11. Return levels for La Spezia and Ortona for the month of January, estimated by the TS methodology (black continuous line) and
by the EM (black dashed line). The green area represents the 95 % confidence interval estimated by the TS approach.

malized bias (NBI) between the return levels estimated by
TS and EM, defined as in Eq. (61), and the mean 95 % con-
fidence interval amplitude expressed as a percentage of the
return level. In Table 4 the values of NBI are reported for the
four seasons for return periods of 5, 10, 30, 50, and 100 years,
for both La Spezia and Ortona. In the definition of seasons
that is used, winter starts on 1 December, spring on 1 March,
summer on 1 June, and autumn on 1 September. We did not
report return levels of periods greater than 100 years because
the extension of the data covers only 35 years, hence the
estimates for such periods are inaccurate for both method-
ologies. The average deviation between RLTS and RLcmp for
the considered time series is rather small and remains below
7 % for all seasons. The confidence intervals estimated for TS
are smaller than those estimated for EM, because the station-
ary MLE of TS has fewer degrees of freedom than the non-
stationary one of EM, and is therefore affected by smaller
uncertainty.

5 Discussion

Extreme value analysis is a subject of broad interest not only
for earth science but also for other disciplines such as econ-
omy and finance (e.g., Gençay and Selçuk, 2004; Russo et al.,
2015), sociology (e.g., Feuerverger and Hall, 1999), geology

(e.g., Caers et al., 1996), and biology (e.g., Williams, 1995),
among others. As a consequence, non-stationarity of signals
is a common problem (e.g., Gilleland and Ribatet, 2014). In
this respect, it is important to stress that the TS methodology
is general, and its applicability only requires the stationarity
of the transformed signal. Therefore, even if in this study the
technique was applied only to series related to earth science,
it can be employed in all disciplines dealing with extremes.

Given that the extreme value statistical model is an im-
portant component of applications such as those discussed
here (e.g., Coles, 2001; Hamdi et al., 2014), it is impor-
tant to stress that the theory was formulated in a way that is
not restricted to GEV and GPD, but can be extended to any
statistical model for extreme values. In particular, since the
GEV distribution is a generalization of the Gumbel, Frechet,
and Weibull statistics, TS can be reformulated separately for
these three distributions, as well as for the commonly used
r-largest approach statistics (e.g., Coles, 2001; Hamdi et al.,
2014). Finally, an extension of TS to statistical models not
based on the GEV theory (e.g., Boccotti, 2000; Goda, 1988)
may open the way to their non-stationary generalization and
could be an interesting direction for future research.

The transformation consists in simple, time-varying nor-
malization of the signal through the estimation of trend,
slowly varying standard deviation and seasonality, and al-
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Table 4. Normalized bias between the return levels estimated by the TS methodology and the EM methodology for the estimation of the
seasonal variations, and mean 95 % confidence interval amplitude expressed as percentage of the return level, for return periods of 5, 10, 30,
50, and 100 years, for the four seasons, for significant wave height in La Spezia and Ortona.

Return period 5 years 10 years 30 years 50 years 100 years

La Spezia NBI winter 1.19 % 1.51 % 1.95 % 2.14 % 2.39 %
(Waves Hs) NBI spring 0.59 % 0.55 % 0.59 % 0.64 % 0.71 %

NBI summer 4.75 % 5.28 % 5.99 % 6.27 % 6.62 %
NBI autumn −1.17 % −1.03 % −0.78 % −0.66 % −0.50 %

Mean conf. int. (TS) 2.68 % 3.05 % 3.63 % 3.90 % 4.25 %
Mean conf. int. (EM) 5.90 % 6.72 % 8.01 % 8.59 % 9.35 %

Ortona NBI winter 3.74 % 4.23 % 4.91 % 5.20 % 5.57 %
(Waves Hs) NBI spring 4.26 % 4.39 % 4.62 % 4.74 % 4.91 %

NBI summer −3.66 % −3.44 % −3.07 % −2.90 % −2.66 %
NBI autumn 1.41 % 1.45 % 1.59 % 1.68 % 1.81 %

Mean conf. int. (TS) 3.18 % 3.75 % 4.70 % 5.15 % 5.78 %
Mean conf. int. (EM) 5.21 % 5.92 % 7.10 % 7.67 % 8.45 %

lows different types of analysis. The first product of the
methodology is its capability to estimate the extreme values
of the signal. Next, the TS approach enables the analysis of
long-term variability. As an example, it was shown to be use-
ful in relating the long-term trend of the signal with the NAO
climatic index (see Sect. 3.3). Finding correlations of natural
parameters with climatic indices is a theme of common in-
terest in earth science, especially in view of climate change
(e.g., Barnard et al., 2015; Dodet et al., 2010; Plomaritis et
al., 2015). If a time series is correlated to a climatic index in
the long term, an advantage of the TS methodology is that it
can model extremes correlated to the index without consider-
ing it explicitly in the computation. Finally, the TS methodol-
ogy allows to describing the seasonal variability of extremes,
which is also critical for climate studies (e.g., Sartini et al.,
2015; Menendez et al., 2009; Méndez et al., 2006).

As shown in Sect. 4, the TS methodology has advantages
over SS (e.g., Vousdoukas et al., 2016a) and EM (e.g., Cheng
et al., 2014; Gilleland and Katz, 2016; Izaguirre et al., 2011;
Méndez et al., 2006; Menéndez et al., 2009; Mudersbach and
Jensen, 2010; Russo et al., 2014; Sartini et al., 2015), both
in terms of accuracy of the results and its conceptual and
implementation simplicity. In particular, in the comparison
with the SS methodology for long-term variability, the return
levels estimated by the two techniques are similar for return
periods for which the SS is accurate. The use of the whole
time horizon of the series represents a major advantage of
TS over SS because it allows more accurate estimations of
the return levels associated with long return periods. A con-
ceptual advantage of the TS methodology over EM is that it
decouples the detection of the non-stationary behavior of the
series from the fitting of the extreme value distribution. The
study of the time-varying statistical features of the series is
delegated to the transformation, and takes place before the
fitting of the extreme value distribution. This fact provides a

simple diagnostic tool to evaluate the validity of the model
applied to a particular series: the model is valid if the trans-
formed series is stationary. This is useful for validating the
output of the approach. Moreover, the decoupling simplifies
both the detection of non-stationary patterns and the fitting
of the extreme value distribution. In particular, the detection
of non-stationary patterns can be accomplished by means of
simple statistical techniques such as low-pass filters based
on the running mean and standard deviation, and the fitting
of the extreme value distribution can be obtained through
a stationary MLE with a small number of degrees of free-
dom that is easier to implement and control. Moreover, un-
like many implementations of EM (e.g., Cheng et al., 2014;
Gilleland and Katz, 2016; Izaguirre et al., 2011; Méndez et
al., 2006; Menéndez et al., 2009; Sartini et al., 2015; Serafin
and Ruggiero, 2014), the detection of non-stationary patterns
described in this paper does not require an input parametric
function M for the variability. This makes the TS method-
ology well suited for massive applications with the simulta-
neous evaluation of many time series, for which a common
definition of M would be difficult (e.g., Vousdoukas et al.,
2016a).

It is worth remarking that the EM implemented, for ex-
ample, using Eq. (62), is able to model a shape parameter
varying in time, unlike the TS using the transformation given
by Eq. (1). While in principle this is a weak point of the TS
methodology described here, assuming a constant shape pa-
rameter is a reasonable assumption for most cases, because in
general simple models should be preferred to complex ones
(e.g., Coles, 2001). In particular, using EM the Akaike cri-
terion (Akaike, 1973), that favors simple models with fewer
degrees of freedoms, often selects models with a fixed shape
parameter (e.g., Sartini et al., 2015; Menendez et al., 2009).
Moreover, the finding that a non-stationary GEV always cor-
responds to a transformation of the non-stationary time series
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into a stationary one, shown in Appendix A, suggests that a
generalization of the TS methodology is possible in order to
include models with time-varying shape parameters.

6 Conclusions

This paper describes the TS methodology for non-stationary
extreme value analysis. The main assumption underlying this
approach is that if a non-stationary time series can be trans-
formed into a stationary one to which the stationary EVA the-
ory can be applied, then the result can be back-transformed
into a non-stationary extreme value distribution through the
inverse transformation. The proposed methodology is gen-
eral and, even if in this study we applied it only to series
related to earth science, it can be employed in all disciplines
dealing with EVA. Moreover, though we discussed it only
for GEV and GPD, it can be extended to any other statistical
model for extremes.

As a transformation we proposed a simple time-varying
normalization of the signal estimated by means of a time-
varying mean and standard deviation. This simple transfor-
mation was also adapted to describe the seasonal variability
of the extremes. In addition, it was proven to provide a com-
prehensive model for non-stationary GEV and GPD distribu-
tions with a constant shape parameter, which means that it
can be applied to a wide range of non-stationary processes.
The formal duality between the TS and more established ap-
proaches has also been proven, suggesting that a complete
generalization of the TS approach would allow including
models with a time-varying shape parameter.

The methodology was tested on time series of differ-
ent variables, sizes, and statistical properties. An evalua-
tion of the statistical error associated with the transformation
showed that, for the examined series, this is negligible with
respect to the error associated with the stationary MLE (the
squared error is 2 orders of magnitude smaller) and to that
related to the estimation of the threshold for GPD.

The TS methodology was compared with a stationary EVA
applied on quasi-stationary slices of non-stationary series
(i.e., SS) for the estimation of the long-term variability of ex-
tremes, and with the EM to non-stationary EVA. The return
levels estimated by TS are shown to be comparable to those
obtained by these two methodologies. However, the TS ap-
proach has advantages over both SS and EM. With respect to
SS, the TS uses the whole time series for fitting the extreme
value distribution, guaranteeing a more accurate estimation
at larger return periods. With respect to EM, the TS decou-
ples the detection of the non-stationarity of the series from
the fit of the extreme value distribution, involving a simplifi-
cation of both steps of the analysis. In particular, the fit of the
distribution can be accomplished using a simple MLE with a
few degrees of freedom and is easy to implement and control.
The detection of non-stationarity can be performed by means
of easily implemented and fast low-pass filters, which do not
require as input any parametric function for the variability.
This makes the methodology well suited for massive appli-
cations where the simultaneous evaluation of several time se-
ries is required.

An implementation of the TS methodology has been de-
veloped in an open-source MATLAB toolbox (tsEva), which
is available at https://github.com/menta78/tsEva/.

7 Data availability

The source code used to implement the case studies
presented in this work is available at https://github.com/
menta78/tsEva/ (Mentaschi et al., 2016).
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Appendix A: Duality between the established method
and the TS methodology

Here, we show that if the extremes of a time series y(t) are
fitted by a non-stationary distribution GEVY (y, t) then there
is a family of transformations f (y, t) : y(t)→ x(t) such that
GEVY (y, t)=GEVX[f−1(x, t)], where GEVX(x) is a sta-
tionary GEV fitting the extremes of a supposed stationary
series x(t).

To prove this, we expand relationship GEVY (y,
t)=GEVX[f−1(x, t)], finding

{
1+ εx

[
f (y, t)−µx

σx

]}1/εx
=

{
1+ εy (t)

[
y−µy (t)

σy (t)

]}1/εy (t)
, (A1)

where [εy(t), σy(t), µy(t)] are the time-varying parameters
of GEVY (y, t) and [εx , σx , µx] are the constant parameters
of GEVX(x). Solving for f (y, t), we find

f (y, t)=
1
εx

{
σx

[
1+ εy(t)

(
y−µy t

σy(t)

)] εx
εy (t)

− σx + εxµx

}
. (A2)

Equation (A2) defines a family of functions because the val-
ues of the stationary GEV parameters [εx , σx , µx] can be as-
signed arbitrarily. Furthermore, if we chose εx 6= 0 then f (y,
t) is monotonic in y for every time t and can therefore be
inverted, while for εx = 0 a Gumbel-specialized formulation
can be derived from Eq. (A1).

In the particular case of εy = const.= εx function f (y, t)
reduces to

f (y, t)=
y−µy(t)+µx/σx · σy(t)

σy(t)/σx
, (A3)

which is equivalent to Eq. (1) provided that Ty =µy −µx/
σx · σy and Cy = σy/σx . Hence, we can say that Eq. (1) al-
lows a general TS formulation for models with a constant
shape parameter, because we can arbitrarily impose εx = εy
in Eq. (A2) if we assume a constant εy . This finding is
remarkable because it proves that any non-stationary GEV
model with constant εy can be connected to Eq. (1).

Equation (A2) alone is not enough to formulate a fully
generalized TS approach, because in Eq. (A2) the non-
stationary GEV parameters [εy(t), σy(t), µy(t)] are regarded
as known variables, which is an incorrect assumption in prac-
tical applications. But it is enough to say that any implemen-
tation of the non-stationary established method is equivalent
to a transformation into a supposed stationary series x(t).
Therefore, Eq. (A2) could be used as a diagnostic tool for im-
plementations of the established method: a condition for the
validity of the non-stationary model is that the transformed
x(t) series is stationary.
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