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Abstract

The specific concentrations of trimethoprim in non-target feed for food-producing animals below which
there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant
for human and animal health, as well as the specific antimicrobial concentrations in feed which have
an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with
EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are
presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial
Resistance Selection Concentration (FARSC) model developed specifically for the assessment was
applied. The FARSC for trimethoprim was estimated. Uncertainties and data gaps associated to the
levels reported were addressed. To address growth promotion, data from scientific publications
obtained from an extensive literature review were used. No suitable data for the assessment were
available. It was recommended to perform further studies to supply more diverse and complete data
related to the requirements for calculation of the FARSC for trimethoprim.
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1. Introduction

The European Commission requested the European Food Safety Authority (EFSA) to assess, in
collaboration with the European Medicines Agency (EMA), (i) the specific concentrations of
antimicrobials resulting from cross-contamination in non-target feed for food-producing animals, below
which there would not be an effect on the emergence of, and/or selection for, resistance in microbial
agents relevant for human and animal health (term of reference 1, ToR1), and (ii) the levels of the
antimicrobials which have a growth promotion/increase yield effect (ToR2). The assessment was
requested to be conducted for 24 antimicrobial active substances specified in the mandate.1

For the different substances (grouped by class if applicable)1, separate scientific opinions included
within the ‘Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target
feed’ series (Scientific Opinions Part 2 - Part 13, EFSA BIOHAZ Panel, 2021b–l – see also the Virtual
Issue; for practical reasons, they will be referred as ‘scientific opinion Part X’ throughout the current
document) were drafted. They present the results of the assessments performed to answer the
following questions: Assessment Question 1 (AQ1), which are the specific antimicrobial concentrations
in non-target feed below which there would not be emergence of, or selection for, resistance in the
large intestines/rumen, and AQ2: which are the specific antimicrobial concentrations in feed of food-
producing animals that have an effect in terms of growth promotion/increased yield. The assessments
were performed following the methodology described in Section 2 of the Scientific Opinion ‘Part 1:
Methodology, general data gaps and uncertainties’ (EFSA BIOHAZ Panel, 2021a, see also the Virtual
Issue). The present document reports the results of the assessment for trimethoprim.

1.1. Background and Terms of Reference as provided by the requestor

The background and ToRs provided by the European Commission for the present document are
reported in Section 1.1 of the Scientific Opinion “Part 1: Methodology, general data gaps and
uncertainties” (see also the Virtual Issue).

1.2. Interpretation of the Terms of Reference

The interpretation of the ToRs, to be followed for the assessment is in Section 1.2 of the Scientific
Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue).

1.3. Additional information

1.3.1. Short description of the class/substance

Trimethoprim is a folate pathway antagonist discovered in 1956 (Anderson et al., 2012). It is a
synthetic antimicrobial that can be produced through various routes (Anderson et al., 2012).
Trimethoprim enters bacterial cells by passive diffusion due to its sufficiently small size and lipophilic
properties. Once inside the bacterial cell, it inhibits dihydrofolate reductase (DHFR), which reduces
dihydrofolate to tetrahydrofolate (O’Grady, 1975). This blocks the synthesis of folate which is an
essential co-factor in the biosynthesis of thymidine and thus in DNA synthesis (Anderson et al., 2012).
As bacteria cannot take up folate from the environment, disruption of this metabolic pathway results in
inhibition of bacterial growth. Over the years, trimethoprim has been mainly administered in
combination with sulfamethoxazole and many other sulphonamides in veterinary medicine as the main
hypothesis was that sulphonamides potentiate the action of trimethoprim (Minato et al., 2018). More
recently, it has been determined that: (i) trimethoprim-sulfamethoxazole synergy is driven by mutual
potentiation of the action of each drug by the other (Minato et al., 2018) and (ii) although there are
several clinical indications supporting administration of trimethoprim alone, this practice is unusual in
veterinary medicine, especially for feed administration, and is nearly exclusively applied in human
medicine in selected geographical areas (Anderson et al., 2012; Gigu�ere et al., 2013).

1 Aminoglycosides: apramycin, paromomycin, neomycin, spectinomycin; Amprolium; Beta-lactams: amoxicillin, penicillin V;
Amphenicols: florfenicol, thiamphenicol; Lincosamides: lincomycin; Macrolides: tilmicosin, tylosin, tylvalosin; Pleuromutilins:
tiamulin, valnemulin; Sulfonamides; Polymyxins: colistin; Quinolones: flumequine, oxolinic acid; Tetracyclines: tetracycline,
chlortetracycline, oxytetracycline, doxycycline; Diaminopyrimidines: trimethoprim.
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1.3.2. Main use2

Trimethoprim belongs to the class of diaminopyrimidines and is commonly used in combination with
sulfonamides in veterinary medicine in Europe (EMEA/CVMP, 1997). The combinations trimethoprim-
sulfonamides are used in most animal species. The spectrum is broad, including Gram-negative and
Gram-positive bacteria (including Enterobacterales, Pasteurella spp., Staphylococcus spp.,
Streptococcus pneumoniae) and many protozoans (e.g. Histoplasma, Toxoplasma and coccidia) for
both constituents, so many bacterial respiratory infections, urinary tract and soft tissues infections and
protozoan intestinal infections can be treated by this antimicrobial. The main indications for
trimethoprim in combination with sulfonamides in food-producing animals are for the curative and
metaphylactic treatment of respiratory (e.g. Pasteurella multocida, Actinobacillus pleuropneumoniae,
Streptococcus spp. and Haemophilus parasuis) and gastrointestinal (e.g. Escherichia coli) infections in
cattle, swine and poultry. Other treated infections include atrophic rhinitis when associated with
Bordetella bronchiseptica, streptococcal meningitis caused by Streptococcus suis and coryza caused by
Avibacterium paragallinarum.

1.3.3. Main pharmacokinetic data

Trimethoprim, by the oral route, has a bioavailability of 67% in horses (Van Duijkeren et al., 1996)
higher than 90% in pigs (Nielsen and Gyrd-Hansen, 1994), 80% in broilers (Baert et al., 2003) and
100% in Atlantic salmon at 10°C (Horsberg et al., 1997). No value for the bioavailability of
trimethoprim by oral route is available for rabbits. In accordance with this high bioavailability in
monogastric species, a study of Peeters et al. (2016) showed that the administration of 2.5 mg of
trimethoprim per kg feed to pigs led to intestinal and faecal concentrations lower than the limit of
quantification (LOQ) of 0.016 mg/kg (Peeters et al., 2016). In another study from the same group, the
administration of a far higher dose of 2.5 mg/kg body weight (bw) to pigs (standard dose) by oral
route also led to concentrations of trimethoprim below the LOQ of 0.025 mg/kg in the rectum and
faeces. The trimethoprim concentrations decreased from proximal to distal intestines with the
maximum concentrations of around 1 mg/kg in the jejunum and concentrations between the LOQ and
0.5 mg/kg in ileum and caecum (De Smet et al., 2017). These data also suggested a low level of
secretion through the epithelium (De Smet et al., 2017).

In calves, the absorption of trimethoprim decreased with age. In an old study using drug
quantification by microbiological assay, trimethoprim was not detectable in serum (concentrations
lower than 0.1 lg/mL) after oral administration of a combination of trimethoprim and sulfadiazine to 6
or 12 week-old calves fed with grain-fibre-based feed (Shoaf et al., 1987). For ruminants, it was also
shown that trimethoprim is extensively degraded by ruminal microbiota (partly explaining the very low
bioavailability in these animals despite the high lipophilicity of the antimicrobial) (Nielsen and Dalgaard,
1978; Shoaf et al., 1987).

Hepatic metabolism appears to be the main elimination pathway in pigs (Friis et al., 1984; Nouws
et al., 1991; Gigu�ere et al., 2013) and cows (Gigu�ere et al., 2013).

Van Duijkeren et al. (1996) estimated that trimethoprim at concentrations lower than 10 lg/mL
was, in vitro, bound at 69–92% (mean: 83%) to hay and at 52–70% (mean: 65%) to pelleted feed for
horses. In caecal contents of horses, the trimethoprim was bound at 26–73% with a mean of 55%. No
data were found for other species.

1.3.4. Main resistance mechanisms

Resistance to trimethoprim in bacteria can be mediated by different mechanisms including alteration,
overproduction or replacement of the target and impaired cell permeability (Eliopoulos and Huovinen,
2001). Trimethoprim resistance is widespread in Gram-positive and Gram-negative bacteria.
Replacement of the target by acquisition of exogenous genes encoding trimethoprim-resistant DHFR is
the most common mechanism observed in Gram-negatives. More than 100 genes/gene variants have
been described to date, generally in associations with various transposons and plasmids. This resistance
mechanism also occurs in Gram-positive bacteria, but at a lower frequency compared to chromosomal
mutations leading to amino acid changes and thus alteration of DHFR (Anderson et al., 2012). Notably,

2 Antimicrobials are currently used in food-producing animal production for treatment, prevention and/or metaphylaxis of a large
number of infections, and also for growth promotion in non-EU countries. In the EU, in future, use of antimicrobials for
prophylaxis or for metaphylaxis is to be restricted as addressed by Regulation (EU) 2019/6 and use in medicated feed for
prophylaxis is to be prohibited under Regulation (EU) 2019/4.
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several anaerobic bacteria including species of the gut microbiome are intrinsically resistant to
trimethoprim, mainly due to insensitive or absent DHFR (Huovinen, 1987) and in Campylobacter jejuni
absence of folA, coding for dihydrofolate reductase, so they do not offer any target for the antifolate,
conferring intrinsic resistance to this antimicrobial (Myllykallio et al., 2003).

2. Data and methodologies

The data sources and methodology used for this opinion are described in a dedicated document,
the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual
Issue).

3. Assessment

3.1. Introduction

As indicated in the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’
(see also the Virtual Issue), exposure to low concentrations of antimicrobials (including sub-minimum
inhibitory concentrations, sub-MIC) may have different effects on bacterial antimicrobial resistance
evolution, properties of bacteria and in animal growth promotion. Some examples including emergence
of, and selection for, antimicrobial resistance, mutagenesis, virulence and/or horizontal gene transfer
(HGT), etc. for the antimicrobials under assessment are shown below.

3.1.1. Resistance development/spread due to sub-MIC concentrations of
trimethoprim: examples

Trimethoprim has been used as an antimicrobial in human and veterinary medicine since the late
1960s, with rapid and extensive spread of resistance genes and/or resistant bacteria from diverse
environments.

3.1.1.1. Effects of sub-MIC concentrations on selection for resistance and mutagenesis

• Several publications report a correlation between trimethoprim use and the emergence of
resistance in humans, with earlier studies after trimethoprim initial use demonstrating a clear
increase in trimethoprim-resistant E. coli and Shigella spp. (Huovinen et al., 1995). The
complexity of factors accounting for the success of an acquired antimicrobial resistance
complicates the current extraction of evidences for different bacterial groups.

• Minimal selective concentration (MSC) has been determined for trimethoprim in one study
using competitions between susceptible and trimethoprim resistant (due to the presence of a
dfr gene) (Gullberg et al., 2014). MSC was 0.002 mg/L and wild type had a MIC of
trimethoprim of 0.2 mg/L, showing that the MSC was 100-fold lower than the MIC.

• Sulfonamide + trimethoprim administration via liquid feeding pipelines for pigs selected for
sulfonamide + trimethoprim-resistant bacteria in the biofilm lining the pipelines. This may
cause contamination of liquid feed for extended periods and represent a source of resistance
genes for the gastrointestinal microbiota of the pigs (Heller et al., 2017).

• No statistically significant correlation between trimethoprim usage and resistance was reported
in a large European study involving multiple food animal species (Ceccarelli et al., 2020).

• Sub-inhibitory concentrations of trimethoprim increased mutation frequency in Streptococcus
pneumoniae (dinB-DNA polymerase IV gene- positive isolates only) (Henderson-Begg et al.,
2006).

3.1.1.2. Effects of sub-MIC concentrations on horizontal gene transfer and virulence

• Data on concentrations of trimethoprim having secondary effects on, e.g. HGT frequencies or
induction of virulence are very limited. One study (Jutkina et al., 2018) found that
trimethoprim had no effect on HGT rates at sub-MIC concentrations (up to 0.25 mg/L).
Another study found that trimethoprim at 20 mg/L increased the expression levels of genes
involved in the conjugative transfer of a trimethoprim, sulphonamide and tetracycline
resistance plasmid from Aeromonas hydrophila, which is expected to result in increased
conjugation frequency (Cantas et al., 2012).

AMR GP Feed Residues

www.efsa.europa.eu/efsajournal 6 EFSA Journal 2021;19(10):6865

https://doi.org/10.2903/j.efsa.2021.6852
https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.cross-contamination
https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.cross-contamination
https://doi.org/10.2903/j.efsa.2021.6852
https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.cross-contamination


3.2. ToR1. Estimation of the antimicrobial levels in non-target feed that
would not result in the selection of resistance: Feed Antimicrobial
Resistance Selection Concentration (FARSC)

As explained in the Methodology Section (2.2.1.3) of the Scientific Opinion ‘Part 1: Methodology,
general data gaps and uncertainties’ (see also the Virtual Issue), the estimation of this value for
trimethoprim for different animal species followed a two-step approach as described below.

The first step was the calculation of the predicted minimal selective concentration (PMSC) for
tetracycline as indicated in Table 1.

The minimal selective concentration (MSC) has been determined for trimethoprim in one study
(Gullberg et al., 2014) and was 0.002 mg/L (wild type MIC 0.2 mg/L). Accordingly, the ratio MICtest/
MSCtest was 100 (Table 1).

The PMSC for trimethoprim, calculated using the lowest MIC value available in the EUCASTMIC distribution
database (MIClowest) as described in Bengtsson-Palme and Larsson (2016), multiplied by the MICtest/MSCtest
factor (as described in Section 2.2.3.2 of the Scientific Opinion Part 1), was 0.00016 mg/L (Table 1).

From the PMSC for trimethoprim, the FARSC (FARSCintestine and FARSCrumen) corresponding to the
maximal concentrations in feed was calculated for each species from the equations below (for details,
see Section 2.2.1.3.2 of the Scientific Opinion Part 1; see also the Virtual Issue) by including specific
values for trimethoprim.

FARSCintestine ðmg=kg feedÞ ¼ PMSC� daily faeces
ð1� IÞ � ð1� F þ F � GEÞ � daily feed intake

FARSCrumen ðmg=kg feedÞ ¼ PMSC� volume of rumen
ð1� IÞ � daily feed intake

With daily faeces being the daily fresh faecal output in kg, I the inactive fraction, F the fraction
available, GE the fraction of the antimicrobial that is secreted back into the intestinal tract for
elimination, after initially being absorbed into the bloodstream, and daily feed intake being the daily
dry-matter feed intake expressed in kg.

From the study of Van Duijkeren et al. (1996) in horses, I was set to 0.45 for monogastric animals.
A worse scenario was also simulated with I equal to 0.3. For ruminants, due to extensive degradation
by ruminal microbiota (Nielsen and Dalgaard, 1978; Shoaf et al., 1987), I was set to 0.8. Due to the
lack of quantitative data, other simulations were performed with I equal to 0.45 and 0.9.

According to the literature, the bioavailability (F) of trimethoprim was set to 0.9 for pigs (Nielsen
and Gyrd-Hansen, 1994), 0.8 for broilers (Baert et al., 2003) and 0.7 for horses (Van Duijkeren et al.,
1996). From the low secretion through the epithelium demonstrated by De Smet et al. (2017), GE was
set to 0.1. Since no quantitative data were reported in the previous study, other simulations were
performed with GE equal to 0 and 0.2 for monogastric animals.

The bioavailability was described as very low for ruminants after weaning. The potential sources for this
low bioavailability such as the absence of absorption or extensive hepatic first-pass effect were not further
investigated, and no quantitative data are available. Thus, the bioavailability of trimethoprim was set to 0
for ruminants (sheep, goats and cattle). A slightly higher value of 0.1 was also used for the calculations.

The different values of the parameters used for the calculations are summarised in Table 2 and the
estimated FARSC values are reported in Table 3. There is no value for the bioavailability in veal calves

Table 1: Calculation of the trimethoprim predicted minimal selective concentration (PMSC)

All values in
mg/L

MICtest

values
MSCtest

values
MICtest/MSCtest

ratios
MIClowest

Predicted MSC (PMSC) for most
susceptible species

(MIClowest/MICtest/MSCtest)

Trimethoprim 0.2
(E. coli)

0.002
(E. coli)

100 0.016 0.00016

MIC: minimum inhibitory concentration. MSC: minimal selective concentration. MSCtest: MSC experimentally determined.
MIClowest: lowest MIC data for trimethoprim calculated based on data from the EUCAST database as described in Bengtsson-
Palme and Larsson (2016), see Methodology Section 2.2.1.3.1.1 in the Scientific Opinion Part 1 (EUCAST database (https://mic.
eucast.org/search/) last accessed 15 May 2021). NA: not available.
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and rabbits. The first set of values (scenario 1) corresponds to the average of published values while
scenario 2 corresponds to scenario that would lead to lower FARSC and scenario 3 to scenario that
would lead to higher FARSC. The lowest FARSC (scenario 2) were obtained from lowest published
values of I (lower inactivation of the drug resulting in higher activity on bacteria), lowest published
values of F (lower absorption resulting in more drug in the intestines) and highest values of GE (higher
elimination in intestines resulting in more drug in the intestines).

Table 2: Predicted minimal selective concentration (PMSC) and pharmacokinetic (PK) values used
for the calculation of Feed Antimicrobial Resistance Selection Concentration (FARSC) of
trimethoprim (TMP) for the different animal species

Trimethoprim data Scenario #1 Scenario #2 Scenario #3

PMSC (mg/L) 0.00016

Inactive fraction (I) 0.45 0.3 0.45
Inactive fraction (adult ruminant) 0.8 0.45 0.9

Bioavailability (F) (pig) 0.9 0.8 0.9
Bioavailability (F) (ruminants) 0 0 0.1

Bioavailability (F) (broiler) 0.8 0.7 0.8
Bioavailability (F) (horse) 0.7 0.5 0.8

Bioavailability (F) (salmon) 0.99 0.9 0.99

Gastrointestinal elimination (GE) (Pig/broiler/horse/salmon) 0.1 0.2 0

PMSC: Predicted minimal selective concentration (PMSC). Inactive fraction (I) is the fraction of antimicrobial that would not have
any activity on bacteria. Bioavailability (F) is the fraction of antimicrobial that is absorbed from the digestive tract to the blood.
Gastrointestinal elimination (GE) is the fraction of the antimicrobial that is secreted back into the intestinal tract for elimination,
after initially being absorbed into the bloodstream. The fraction remaining in the digestive tract and that could be available for
the bacteria is equal to (1 – F + F 9 GE), thus (1 – F) in Scenario 3.

Table 3: The Feed Antimicrobial Resistance Selection Concentration of trimethoprim corresponding
to the maximum concentration of trimethoprim residues in non-target feed that would not
develop resistance in the large intestine bacteria (FARSCintestine)

Animal
category(a)

Body
weight
(kg)(a)

Daily Feed
Intake (kg DM/

animal per
day)(a)

Daily output
of fresh faeces
(kg FM/animal

per day)(b)

FARSC
(3 10�3 mg
drug/kg
feed)

Scenario 1

FARSC
(3 10�3 mg
drug/kg
feed)

Scenario 2

FARSC
(3 10�3 mg

drug/kg feed)
Scenario 3

Sow lactating 175 5.28 7.7 2.23 0.93 4.24

Piglet 20 0.88 0.88 1.53 0.63 2.91
Pig for fattening 60 2.2 2.64 1.84 0.76 3.49

Dairy cows 650 20 55.71 11.73 2.25 44.57
Veal calf (milk
replacer)

100 1.89 2.36 – – –

Cattle for
fattening

400 8 18.89 9.94 1.91 37.78

Goat 60 1.2 1.73 6.07 1.16 23.07

Sheep 60 1.2 1.47 5.16 0.99 19.60
Chicken for
fattening

2 0.158 0.133 0.87 0.44 1.22

Laying hen 2 0.106 0.16 1.57 0.78 4.39
Turkey for
fattening

3 0.176 0.109 0.64 0.32 0.90

Horse 400 8 8.33 0.82 0.40 1.51
Rabbit 2 0.1 0.053 – – –

Salmon 0.12 0.0021 0.00238 3.02 0.93 32.97

DM: dry matter: FM: fresh matter; FARSC: Feed Antimicrobial Resistance Selection Concentration.
(a): EFSA FEEDAP Panel (2017), as indicated in Section 2.1.1.3 of the Scientific Opinion Part 1.
(b): Estimated data, obtained as indicated in Section 2.1.1.3.1 of the Scientific Opinion Part 1.
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The values of FARSCintestine, for the species with available data, ranged in the first scenario using
averaged published values from 0.64 9 10�3 mg/kg feed in turkeys for fattening to 11.73 9 10�3 mg/kg
feed in dairy cows. From other simulations (scenario 2 and scenario 3) made with a wider range of values
for the data used in the calculation, FARSCintestine would range from 0.32 to 0.90 9 10�3 mg/kg feed in
turkeys for fattening, from 0.93 to 32.97 9 10�3 mg/kg feed in salmon and from 2.25 to 44.57 9 10�3

mg/kg feed in dairy cows. In general, for the different species, the FARSCintestine for trimethoprim ranged
from 0.32 to 44.57 9 10�3 mg/kg feed.

For the estimation of Feed Antimicrobial Resistance Selection Concentration of trimethoprim in
rumen (FARSCrumen), I was also set to 0.8 due to extensive degradation by ruminal microbiota (Nielsen
and Dalgaard, 1978; Shoaf et al., 1987). However, due to the lack of quantitative data, other
simulations were performed with I equal to 0 and 0.9.

The different values of the parameters used for the calculations are summarised in Table 4 and the
estimated FARSCrumen values are reported in Table 5.

The values of FARSCrumen ranged from 3.6 to 12 9 10�3 mg/kg feed with the first scenario. By
considering that the trimethoprim is totally active in the rumen (I = 0), the values of FARSCrumen

ranged from 0.72 to 2.4 9 10�3 mg/kg feed whereas inactivation of 90% of the trimethoprim would
led to values of FARSCrumen from 7.2 to 24 9 10�3 mg/kg feed. In general, for the different species,
the FARSCrumen for trimethoprim ranged from 1.20 to 24.00 9 10�3 mg/kg feed.

3.2.1. Associated data gaps and uncertainties

With regard to the uncertainties and data gaps described in the Scientific Opinion Part 1
(Sections 3.1 and 3.3; see also the Virtual Issue) we identified the following for trimethoprim to
perform the assessment:

i) MSC data: MSC is available only for E. coli (Gullberg et al., 2014).
ii) Impact of complexity on determined MSC: only available in single species experiment

(Gullberg et al., 2014).
iii) Inactive fraction: for monogastric species, the data only come from one study conducted in

horses. For ruminants, the degradation was described as extensive. However, this
observation is only derived from two cows studied in 1978.

Table 4: Predicted minimal selective concentration (PMSC) and values for inactive fraction used for
the calculation of Feed antimicrobial resistance selection concentration in rumen
(FARSCrumen) of trimethoprim (TMP) for the different animal species

Trimethoprim Scenario #1 Scenario #2 Scenario #3

PMSC (mg/L) 0.00016

Inactive fraction (I) ruminant 0.8 0 0.9

PMSC: Predicted minimal selective concentration (PMSC). Inactive fraction (I) is the fraction of antimicrobial that would not have
any activity on bacteria.

Table 5: The Feed Antimicrobial Resistance Selection Concentration (FARSCrumen) of trimethoprim
(TMP) corresponding to the maximum concentration of TMP residues in non-target feed
that would not develop resistance in the rumen bacteria

Animal
category(a)

Body
weight
(kg)(a)

Daily Feed
Intake (kg DM/

animal per
day)(a)

Volume of
rumen
content
(L)(b)

FARSC
(3 10�3 mg

drug/kg feed)
Scenario 1

FARSC
(3 10�3 mg

drug/kg feed)
Scenario 2

FARSC
(3 10�3 mg

drug/kg feed)
Scenario 3

Dairy cows 650 20 90–180 3.60–7.20 0.72–1.44 7.20–14.40

Cattle for
fattening

400 8 60–120 6.00–12.00 1.20–2.40 12.00–24.00

Sheep/Goat 60 1.2 9–18 6.00–12.00 1.20–2.40 12.00–24.00

DM: dry matter; FARSC: Feed Antimicrobial Resistance Selection Concentration.
(a): EFSA FEEDAP Panel (2017), as indicated in Section 2.1.1.3 of the Scientific Opinion Part 1.
(b): Source of data indicated in Section 2.1.1.3 of the Scientific Opinion Part 1.
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iv) Bioavailability: very few publications per species were available. No values were available for
rabbits and for veal calves.

v) Intestinal secretion: the results of one study suggest that there is a low intestinal secretion
of trimethoprim, but no quantitative data are available for the value of GE.

A detailed analysis of the associated uncertainties for trimethoprim is included in Appendix A
(Table A.1) of the current, and the Section 3.3 of the Scientific Opinion Part 1.

3.2.2. Concluding remarks

The FARSC for trimethoprim (for large intestine and/or rumen in the case of adult ruminants after
weaning) ranges, for the different species, from 0.32 to 44.57 9 10�3 mg/kg feed. No FARSC was
determined for veal calves and rabbits.

–[0.93–4.24] 9 10�3 mg/kg feed for lactating sows
–[0.63–2.91] 9 10�3 mg/kg feed for piglets
–[0.76–3.49] 9 10�3 mg/kg feed for pigs for fattening
–[0.72–44.57] 9 10�3 mg/kg feed for dairy cows (FARSCintestine and FARSCrumen)
–[1.2–37.78] 9 10�3 mg/kg feed for cattle for fattening (FARSCintestine and FARSCrumen)
–[1.16–24.00] 9 10�3 mg/kg feed for adult goats (FARSCintestine and FARSCrumen)
–[0.99–24.00] 9 10�3 mg/kg feed for adult sheep (FARSCintestine and FARSCrumen)
–[0.44–1.22] 9 10�3 mg/kg feed for chicken for fattening
–[0.78–4.39] 9 10�3 mg/kg feed for laying hens
–[0.32–0.90] 9 10�3 mg/kg feed for turkeys for fattening
–[0.40–1.51] 9 10�3 mg/kg feed for horses
–[0.93–32.97] 9 10�3 mg/kg feed for salmon

The probability that trimethoprim concentrations below the lowest FARSC value for an animal
species will confer any enrichment of, and/or selection for, resistant bacteria in the intestine and/or
rumen is estimated to be 1–5% (extremely unlikely).

3.3. ToR2. Specific antimicrobials concentrations in feed which have an
effect in terms of growth promotion/increased yield

3.3.1. Trimethoprim

3.3.1.1. Literature search results

The literature search, conducted according to the methodology described in Section 2.2.2.1 of the
Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual
Issue), resulted in 1598 papers mentioning trimethoprim and any of the food-producing animal species
considered3 and any of the performance parameters identified as relevant for the assessment of the
possible growth-promoting effects of trimethoprim.4 After removing the reports not matching the
eligibility criteria, 39 publications were identified.

3.3.1.2. Evaluation of the studies

The 39 publications identified in the literature search were appraised for suitability for the
assessment of the effects of trimethoprim on growth or yield of food-producing animals; this appraisal
was performed by checking each study against a series of pre-defined exclusion criteria (see

3 Ruminants: growing and dairy (cattle, sheep, goats, buffaloes); pigs: weaned, growing and reproductive; equines; rabbits;
poultry: chickens and turkeys for fattening, laying hens, turkeys for breeding, minor avian species (ducks, guinea fowl, geese,
quails, pheasants, ostrich); fish: salmon, trout, other farmed fish (seabass, seabream, carp, other); crustaceans; other animal
species.

4 (i) Intake-related parameters: feed intake, feed/gain ratio, feed efficiency, feed intake/milk yield, feed intake/egg mass; (ii)
weight-related parameters: body weight, body weight gain; (iii) carcass-related parameters: carcass weight, carcass yield,
carcass chemical composition, relative weight of the (different sections of) intestine; (iv) milk or egg production/quality: milk
yield, fat/protein yield, egg production/laying rate, egg weight, egg mass; (v) digestibility/utilisation of nutrients: utilisation of
some nutrients (e.g. DM, Ca, P), digestibility; (vi) health-related parameters: reduction of morbidity and/or mortality; (vii) herd/
flock-related parameters; (viii) Other endpoints: e.g. intestinal morphological characteristics (villi height/width), changes in
microbiota.
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Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’;
see also the Virtual Issue).5 None of the publications was considered suitable for the assessment
because of several shortcomings identified in their designs or in the reporting of the results. The list of
excluded publications and their shortcomings are presented in Appendix A (Table A.1).

3.3.1.3. Concluding remarks

Owing to the lack of suitable data, levels of trimethoprim in feed which may have a growth
promotion/production yield effect in any food-producing animal species could not be identified.

4. Conclusions

ToR1: to assess the specific concentrations of antimicrobials resulting from cross-
contamination in non-target feed for food-producing animals, below which there would
not be an effect on the emergence of, and/or selection for, resistance in microbial agents
relevant for human and animal health.

AQ1. Which are the specific concentrations of trimethoprim in non-target feed below which there
would not be emergence of, and/or selection for, resistance in the large intestines/rumen?

• The Feed Antimicrobial Resistance Selection Concentration (FARSC, for large intestine and/or
rumen in the case of adult ruminants after weaning) corresponding to the concentrations of
trimethoprim in feed below which there would not be expected to be an effect on the
emergence of, and/or selection for, resistance in microbial agents relevant for human and
animal health ranges, for the different species, from 0.32 to 44.57 9 10�3 mg/kg feed. No
FARSC was determined for veal calves and rabbits.

• For each animal species, the FARSC obtained ranged:

o [0.93–4.24] 9 10�3 mg/kg feed for lactating sows
o [0.63-2.91] 9 10�3 mg/kg feed for piglets
o [0.76–3.49] 9 10�3 mg/kg feed for pigs for fattening
o [0.72–44.57] 9 10�3 mg/kg feed for dairy cows (FARSCintestine and FARSCrumen)
o [1.2–37.78] 9 10�3 mg/kg feed for cattle for fattening (FARSCintestine and FARSCrumen)
o [1.16–24.00] 9 10�3 mg/kg feed for adult goats (FARSCintestine and FARSCrumen)
o [0.99–24.00] 9 10�3 mg/kg feed for adult sheep (FARSCintestine and FARSCrumen)
o [0.44–1.22] 9 10�3 mg/kg feed for chicken for fattening
o [0.78–4.39] 9 10�3 mg/kg feed for laying hens
o [0.32–0.90] 9 10�3 mg/kg feed for turkeys for fattening
o [0.40–1.51] 9 10�3 mg/kg feed for horses
o [0.93–32.97] 9 10�3 mg/kg feed for salmon

• The probability that concentrations of trimethoprim below the lowest FARSC value for an
animal species will confer any enrichment of, and/or selection for resistant bacteria in the
intestine and/or rumen is estimated to be 1–5% (extremely unlikely).

ToR2: to assess which levels of the antimicrobials have a growth promotion/increase
yield effect.

AQ2. Which are the specific concentrations of trimethoprim in feed of food-producing animals that
have an effect in terms of growth promotion/increased yield?

• Owing to the lack of suitable data, levels of trimethoprim in feed which may have a growth
promotion/production yield effect in any food-producing animal species could not be identified.

The results from these assessments for the different animal species are summarised in Annex F
(Tables F.1 and F.2) of EFSA BIOHAZ Panel, 2021a - Scientific Opinion ‘Part 1: Methodology, general
data gaps and uncertainties’ (see also the Virtual Issue).

5 The following exclusion criteria were applied: ‘Combination of substances administered to the animals’, ‘Antimicrobial used
different from the one under assessment’, ‘Administration via route different from oral’, ‘Use of the antimicrobial with a
therapeutic scope’, ‘Animals subjected to challenges with pathogens’, ‘Animals in the study sick or not in good health,
Zootechnical parameters not reported’, ‘Insufficient reporting/statistics’, ‘Other (indicate)’.
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5. Recommendations

To perform further studies to supply more diverse and complete data to reduce uncertainties
around the calculation of the FARSC for trimethoprim.
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PK pharmacokinetic(s)
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Appendix A – Uncertainty analysis for trimethoprim

The uncertainty analysis specific for trimethoprim with regards to the FARSC calculation is presented below.

Table A.1: Potential sources of uncertainty identified in the estimation of the maximum concentrations of trimethoprim in feed that would not select for
antimicrobial resistance in the rumen or large intestines and assessment of the impact that these uncertainties could have on the conclusion

Source or location of the
uncertainty

Nature or cause of uncertainty as described by the experts
Impact of the uncertainty on the determination of the Feed
Antimicrobial Resistance Selective Concentration (FARSC)

Estimation of the maximum
concentrations of antimicrobials
in feed that would not select for
antimicrobial resistance in the
rumen and large intestines

Estimation of PMSC data Limited MSC data from competition experiments. MSC data is
available for E. coli only

This limitation was overcome by the PMSC approach. Nevertheless,
this could lead to an overestimation of FARSC if a bacterium with a
lower MIC is described.

Impact of bacterial community complexity on the MSCs values. It is
a reasonable assumption to consider that MSCs are similar if the
different antimicrobials within a class share an identical mechanism
of action and resistance. There is insufficient data to assess the
likely impact of complex bacterial communities on resistance
selection in a single targeted member of the community, or in any
other bacterium that may be present.

If this assumption is not correct, the PMSC, and accordingly the
FARSC, could either be over or underestimated, depending on the
specific species and the targeted community.

Antimicrobial pharmacokinetic
and degradation data

The percentage of active drug in large intestines was extracted from
horses data and applied to other monogastric species

The percentage of inactive drug can be higher or lower depending
on the digestive content leading to potential over or underestimation
of FARSC. So, other simulations were made with other values for
binding to determine the range of FARSC that could be obtained.

The average values for bioavailability were extracted from literature
for each species

The complete range of possible individual values for bioavailability
was not explored even if additional simulations were performed.
These values could be higher or lower and thus, the FARSC could be
over or underestimated.

For trimethoprim, the description of the extensive degradation for
ruminants is based on an observation in only two cows in a
publication from 1978. Simulations were performed considering
absence (0), I = 0.8 and I = 0.9.

The assumption used for inactivation determinations might lead to
underestimation or overestimation of FARSC if inactivation would
occur at different levels than the ones considered.

Trimethoprim is always combined with a sulfonamide for feed
administration to animals

A combination of antimicrobials may reduce selection for resistance.
The FARSC for trimethoprim could be over or underestimated.

FARSC: Feed Antimicrobial Resistance Selection Concentration; MSC: minimal selective concentration; I: fraction of the drug present in the digestive tracts that would be inactive on the microbiota.
MSC: minimal selective concentration; PMSC: predicted minimal selective concentration.
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Appendix B – List of excluded publications and their shortcomings

The publications excluded from the assessment of the effects of trimethoprim on growth promotion/increased yield following the criteria defined in
Section 2.2.2.2.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue) are summarised in
Table B.1.

Table B.1: Publications not relevant for the assessment of the effects of trimethoprim on growth promotion/increased yield according to the established
excluding criteria

Author, year SPECIES

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals
in the
study
sick or
not in
good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Abba et al. (2015) Ruminants X X X X(1)

Abraham et al.
(2017)

Fish X X

Adanir and Turutoglu,
2007)

Fish X X X X X X(2)

Agunos et al. (2017) Poultry X X X(3)

Andree et al. (2013) Fish X X X X X X(4)

Arnold et al. (2004) Pigs X X X(5)

Berge et al. (2009) Ruminants X X X

Chadfield and Hinton,
2003)

Poultry X X X

Chair et al. (1991) Fish X X

Craven, 1995) Poultry X X X
Duijkeren et al.
(1994)

Equines X X X X(6)

El-Abasy et al. (2016) Rabbits X X X X X(2)

Fu et al. (2016) Other X X X X

Goodnough and
Johnson, 1991)

Poultry X X X X X(2)

Goren et al. (1984) Poultry X X X X(7)
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Author, year SPECIES

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals
in the
study
sick or
not in
good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Grave et al. (1996) Fish X X X X(8)

Groothuis and Miert,
1987)

Ruminants X X X

Herdt et al. (1993) Poultry X X X
Kamini et al. (2016) Poultry X X

Kawano and
Hirazawa, 2012)

Fish X X X

Levesque et al.
(2017)

Pigs X X X X X(2)(9)

L€oscher et al. (1990) Poultry X X X
Lund�en and Bylund
(2000)

Fish X X X

Lund�en et al. (2002) Fish X X X
Mengelers et al.
(2000)

Pigs X X X X X(2)

Mosleh et al. (2016) Poultry X X X(2)

Neveling et al.
(2017)

Poultry X

Nordmo et al. (1998) Fish X X X X
Nordmo et al. (1994) Fish X X X X X(9)

Okerman et al.
(1990)

Rabbits X X X X X(2)

Riggs et al. (2003) Equines X X X X X(1)

Smith and Tucker
(1975)

Poultry X X X

Torkelson (2002) Equines X X X X X(1)
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Author, year SPECIES

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals
in the
study
sick or
not in
good
health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Veiga-G�omez et al.
(2019)

Ruminants X X(10)

Waaij et al. (1974) Other X X X X(11)

Williams (2005) Poultry X X X
Yildiz and Altunay
(2011)

Fish X X X

Yilmaz et al. (2018) Fish X X X X(9)

Zanchi et al. (2008) Pigs X X(9)

(1): The study describes a case report of one animal.
(2): Small number of animals per group.
(3): The article regards a surveillance of antibiotics use in Canada in 2013–2015.
(4): The study describes a case report from confiscated trafficked eels.
(5): The study analysed prescriptions in Switzerland to find out whether the ban of antimicrobial growth promotion had caused an increase in orally administered antibiotics in pigs.
(6): Review paper on trimethoprim/sulfonamide combinations in horses.
(7): No replicates.
(8): Review study on the use of antimicrobial drugs in Norway in 1980–1994.
(9): No untreated control group.
(10): The study described an investigation on uncontrolled intake of drugs.
(11): Not farm animals (Guinea pigs).
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