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Bootstrapped Newtonian gravity is a nonlinear version of Newton’s law which can be lifted to a fully ge-
ometric theory of gravity starting from a modified potential. Here, we study geodesics in the bootstrapped
Newtonian effective metric in vacuum and obtain bounds on a free parameter from Solar System data and S-
star orbits near our Galaxy center. These bounds make vacuum bootstrapped Newtonian gravity experimentally
indistinguishable from General Relativity.

I. INTRODUCTION

General Relativity is presently the most successful the-
ory for describing the gravitational interaction at the classical
level. Its own failure is marked by the prediction of the for-
mation of geodesic singularities whenever a trapped surface
arises from the gravitational collapse of a compact object.1

Such considerations open up the possibility that significant
departures from General Relativity might occur where our ex-
perimental data do not yet place strong enough constraints,
like for example in regions of strong gravity near a very mas-
sive source. However, Einstein’s field equations are not linear
and this makes it difficult to modify the laws of gravity in the
strong-field regime without affecting also the weak-field be-
havior, since these regimes are likely to be related nontrivially
in any nonlinear theories.

The bootstrapped Newtonian gravity [3, 4] is an attempt at
investigating these issues in a somewhat simplified context.
The approach, based on Deser’s conjecture [6], consists of re-
trieving the full Einstein’s theory including gravitational self-
coupling terms in the Fierz-Pauli action.2 These additional
terms must be consistent with diffeomorphism invariance, in
order to preserve the covariance of any (modified) metric the-
ory. We can obtain different modified gravitational theories
depending on the choice of boundary conditions in the recon-
struction procedure [8]. A key observation is that a practi-
cally effective dynamics can be derived only starting with a
“small” contribution of matter sources. For large astrophys-
ical sources, this implies that the matter source must also be
included in a nonperturbative way. In the present approach
this task is addressed starting from the Fierz-Pauli action cor-
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1 We also recall that pointlike sources are mathematically incompatible with

the Einstein field equations [2].
2 This idea is indeed older, see e.g. Ref. [7].

responding to the potential generated by an arbitrarly large
static source, and putting in extra terms representing gravita-
tional self-coupling. Furthermore, the coupling constants for
the additional terms are not fixed to their Einstein-Hilbert val-
ues in order to accommodate for diverse underlying dynamics.
This approach then results in a nonlinear equation including
pressure effects and the gravitational self-interaction terms to
next-to-leading order in the Newton constant, whose solution
is the gravitational potential operating on test particles at rest.
Such equation was useful to investigate compact objects [9–
11] and coherent quantum states [12, 13].3

The motion of (test) particles and photons in the surrond-
ings of a compact object represents the most immediate tool to
gather information on the gravitational potential in which they
revolve. In Ref. [16], a full (effective) metric tensor was ob-
tained from the bootstrapped Newtonian potential, which al-
lows one to study these trajectories in general, and to compare
them with results from General Relativity. The requirement
that the resulting theory of gravity is covariant is satisfied by
the use of an effective metric tensor, since the bootstrapped
Newtonian dynamics is implicitly assumed to be invariant af-
ter coordinate transformations. Nonetheless, the particular
metric found in Ref. [16] differs from the Schwarzschild ge-
ometry; hence, it is not a solution of the Einstein equations
in the vacuum. An effective fluid is therefore present, as was
already noted in the cosmological context [17].

The bootstrapped effective metric is given as a function of
parameterized post-Newtonian (PPN) parameters [5] in the
weak-field expansion. These parameters can be consistently
chosen so as to minimize deviations from the Schwarzschild
metric only up to a point. In fact, some of the PPN param-
eters are uniquely related, and at the PPN order determined
in Ref. [16], they can be expressed in terms of one free pa-
rameter. In this work, we report on a phenomenological in-
vestigation aiming at placing bounds on this remaining free

3 These quantum states show some of the properties [14] found in the cor-
puscular model of black holes [15]. However, we shall not discuss quantum
aspects in this work.
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parameter from the measured precessions in the Solar Sys-
tem [18, 19, 21]and from the study of S-star orbits around the
black hole in the center of the Galaxy [22–27].

The paper is organized as follows. In Sec. II, we briefly
review the equation for the bootstrapped Newtonian poten-
tial and its solution in the vacuum. We then just recall the
full effective metric reconstructed from this potential, which
is then used to analyze Solar System data and S-star motions
in Sec. III. We conclude with comments and an outlook in
Sec. IV.

II. BOOTSTRAPPED NEWTONIAN VACUUM

We shall only review briefly the derivation of the boot-
strapped Newtonian equation, since all the details can be
found in Refs. [3, 9, 11, 13]. We shall use units with the speed
of light c = 1 in this section. We start from the Lagrangian
for the Newtonian potential V = V (r) generated by a static
and spherically symmetric source of density ρ = ρ(r), to wit

LN[V ] = −4π

∫ ∞

0

r2 dr

[
(V ′)

2

8πGN
+ V ρ

]
. (II.1)

The corresponding Euler-Lagrange field equation is given by
Poisson’s

1

r2
d

dr

(
r2

dV

dr

)
= 4πGN ρ , (II.2)

where we recall that the radial coordinate r is the one obtained
from harmonic coordinates [5, 16]. We next couple V to a
gravitational current proportional to its own energy density,

JV ≃ 4
dUN

dV
= − [V ′(r)]

2

2πGN
, (II.3)

where V is the spatial volume and UN is the Newtonian po-
tential energy. We also add the “one loop term” Jρ ≃ −2V 2,
which couples to ρ, and the pressure term p [9]. The total
Lagrangian then reads

L[V ] =− 4π

∫ ∞

0

r2 dr

[
(V ′)

2

8πGN
(1− 4 qV V )

+ (ρ+ 3 qp p)V (1− 2 qρ V )] (II.4)

where the coupling constants qV , qp and qρ can be used to
track the effects of the different contributions. For instance,
the case qV = qp = qρ = 1 reproduces the Einstein-
Hilbert action at next-to-leading order in perturbations around
Minkowski [9, 11, 13]. Finally, the bootstrapped Newtonian
field equation reads

1

r2
d

dr

(
r2

dV

dr

)
= 4πGN

1− 4 qρ V

1− 4 qV V
(ρ+ 3 qp p)

+
2 qV (V ′)

2

1− 4 qV V
, (II.5)

which must be solved along with the conservation equation
p′ = −V ′ (ρ+ p).

VN

V2

V

2 4 6 8 10
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

r

V
(r
)

Figure 1: Bootstrapped Newtonian potential V in Eq. (II.7) com-
pared to its expansion V2 from Eq. (II.8) and to the Newtonian po-
tential VN (for q = 1).

A. Vacuum potential

In vacuum, we have ρ = p = 0, and Eq. (II.5) simplifies to

1

r2
d

dr

(
r2

dV

dr

)
=

2 q (V ′)
2

1− 4 q V
, (II.6)

where we renamed q ≡ qV for simplicity. The exact solution
was found in Ref. [3] and reads

V (r) =
1

4 q

[
1−

(
1 +

6 q GN M

r

)2/3
]
. (II.7)

The asymptotic expansion away from the source yields

V2 ≃ −GN M

r
+ q

G2
N M2

r2
− q2

8G3
N M3

3 r3
, (II.8)

so that the Newtonian behavior is always recovered (for q =
0) and the post-Newtonian terms are seen to depend on the
coupling q (see Fig. 1).

B. Vacuum effective metric

A complete spacetime metric was reconstructed from the
vacuum potential (II.7) in Ref. [16]. The procedure is rather
cumbersome, and we shall only recall here a few main steps
leading to the necessary expressions in the weak-field regime.
We explicitly show the speed of light c from here on. One
starts from the PPN form [5]
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ds2 ≃

[
1− α

2Rg

r̄
+ (β − αγ)

2R2
g

r̄2
+ (ζ − 1)

8R3
g

r̄3

]
c2dt2 +

[
1 + γ

2Rg

r̄
+ ξ

4R2
g

r̄2
+ σ

8R3
g

r̄3

]
dr̄2 + r̄2dΩ2 (II.9)

where Rg = GN M
c2 and r̄ is the areal radius, which differs

from the radial coordinate r in which the potential (II.7) is
expressed. The latter is obtained from harmonic coordinates
and the two radial coordinates are related by [16]

r ≃ r̄ + (1− 3 γ)
Rg

2
+

+(1− 3 γ + 2 γ2 − 2Ξ)
R2

g

r̄
, (II.10)

in which Ξ is a free parameter. Furthermore, we have

q = β +
γ − 1

2
. (II.11)

We can next set α = 1 by simply absorbing this coefficient
in the definition of the mass M [28], and β = γ = 1 in order
to satisfy the experimental constraints |γ − 1| ≃ |β − 1| ≪
1. From Eq. (II.11), this is tantamount to setting q = 1, as
expected. The higher order PPN parameters are then fully
determined by Ξ according to

ξ = 1 + Ξ (II.12)

ζ = 1− 5 + 6Ξ

12
=

13− 6 ξ

12
(II.13)

σ =
9 + 14Ξ

4
. (II.14)

As already noted in Ref. [16], the General Relativistic PPN
combination ξ = ζ = 1 cannot be obtained for any value of Ξ,
and the bootstrapped metric for which we have the minimum
deviation from the Schwarzschild form is thus given by

ds2 ≃ −

[
1− 2Rg

r
− (5 + 6Ξ)

2R3
g

3 c6 r3

]
c2 dt2

+

[
1 +

2Rg

r
+ (1 + Ξ)

4R2
g

r2

+(9 + 14Ξ)
2R3

g

r3

]
dr2 + r2 dΩ2 , (II.15)

in which we drop the bar from the areal coordinate for sim-
plicity from now on. We can see that there are contri-
butions in the metric coefficients which cannot be reduced
to the Schwarzschild expressions. This deviation from the
Schwarzschild solution is encoded by the free parameter Ξ,
whose value is a priori unknown and must be constrained by
observations. In particular, we will test these corrections by
analyzing the planets in the Solar System and S-stars motion
around Sgr A*. The geodesic equations

ẍµ + Γµ
αβ ẋ

α ẋβ = 0, (II.16)
where a dot indicates the derivative with respect to the proper
time, can be equivalently computed using the Euler-Lagrange
equations

d

ds

∂L
∂ẋµ

− ∂L
∂xµ

= 0 , (II.17)

with L = gαβ ẋ
α ẋβ = −1 for a massive object. From the

metric in Eq. (II.15), one then finds

r̈ =
Rg

{
4 (1 + Ξ)Rg r ṙ

2 +R2
g

[
3 (9 + 14Ξ) ṙ2 − c2 (5 + 6Ξ) ṫ2

]
+ r2

(
ṙ2 − c2 ṫ2

)}
+ r5 (θ̇2 + ϕ̇2 sin2 θ)

r
[
2 (9 + 14Ξ)R3

g + 4 (1 + Ξ)R2
g r + 2Rg r2 + r3

] (II.18)

θ̈ = ϕ̇2 sin θ cos θ − 2 ṙ θ̇

r
(II.19)

ϕ̈ = −2 ϕ̇

r
(ṙ + r θ̇ cot θ) (II.20)

ẗ =
6 ṙ ṫ

[
(5 + 6Ξ)R3

g +Rg r
2
]

2 (5 + 6Ξ)R3
g r + 6Rg r3 − 3 r4

. (II.21)

The third and fourth equations are the usual conservation
equations for the angular momentum and energy conjugated
to t, respectively. Spherical symmetry as usual implies that

the orbital motion occurs on a plane which we can arbitrarily
set at θ = 0 = θ̇.

The above parametric system of nonlinear differential equa-
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tions can be integrated numerically in order to study the orbits.

1. Precession

It is easy to express the perihelion precession in terms of
the PPN parameters [5]. At leading order, one has

∆ϕ(1) = 2π (2− β + 2 γ)
Rg

ℓ
, (II.22)

where ℓ = a (1−e2) is the semilatus rectum, a is the semima-
jor axis and e is the eccentricity. For β = γ = 1, Eq. (II.22)
reproduces the General Relativistic result

∆ϕ
(1)
S = 6π

Rg

ℓ
. (II.23)

The second order correction depends on ξ and ζ, and for β =
γ = 1, it reads [16]

∆ϕ(2) = π

[
(41 + 10ξ − 24 ζ) + (16 ξ − 13)

e2

2

]
R2

g

ℓ2

≃ π

[
(37 + 22Ξ) + (3 + 16Ξ)

e2

2

]
R2

g

ℓ2

≃ ∆ϕ
(2)
S + 2π

[
11 ξ − 7 + 4 (ξ − 1) e2

] R2
g

ℓ2
,

(II.24)

where the General Relativistic result ∆ϕ
(2)
S corresponds to

ξ = ζ = 1. From Eqs. (II.12) and (II.13), it follows that
we cannot have ξ = ζ = 1 for any value of Ξ, and a deviation
from General Relativity remains.

III. ASTRONOMICAL TESTS

In order to constrain the free parameter of the bootstrapped
Newtonian potential, Ξ, we confronted the theoretical results
exposed in Sec. II B with astronomical data.

To infer a range of validity for Ξ, we compared the analyt-
ical expression of the precession with the observed values of
the perihelion advance of Solar System’s planets (Sec. III A).

Then, we turned our attention to the Galactic Center, and
we studied the motion of S-stars orbiting around Sgr A*. To
constrain Ξ, we let it vary in a given range and fit the cor-
responding simulated orbits to astrometric observations. In
particular, we adopted a fully relativistic approach which con-
sists of integrating numerically Eqs. (II.18)-(II.21) in order to
get the mock orbits, instead of solving Newton’s law with the
standard potential replaced by the modified one.

A. Perihelion precession in the Solar System

In order to constrain Ξ we can start from the Solar System
planets whose orbital precession has been measured, namely
Mercury, Venus, Earth, Mars, Jupiter and Saturn [35]. The

confidence region for Ξ can be identified as the set of values
such that the precession

∆ϕ = ∆ϕ(1) +∆ϕ(2) (III.1)

is compatible with the observations. The planetary pa-
rameters4, the corresponding observed values of the pre-
cession [35] and the General Relativistic value obtained by
Eq. (II.23) are reported in Table I from first to seventh
columns. The allowed region of Ξ for each planet is de-
fined as the range of values compatible with data, having as
extremes the values of Ξ solving the equation

∆ϕ = ∆ϕobs . (III.2)

The inferred lower and upper limits on Ξ are reported in the
last column of Table I, and the included area is depicted in
Fig. 2 for each planet (gray shades). It is worth noticing the
discrepancy between the General Relativistic value (the red
line) and the observed precession (blue dashed lines) for Mars
and Jupiter; it could be attributed to the incomplete subtraction
of nonrelativistic effects from the observed value, complicated
by the presence of the asteroid belt between Mars and Jupiter,
and the presence of an anomalous residual precession [35, 36].

The tightest interval on the parameter Ξ is obtained with
Venus, for which it can vary between −1149.67 and 1167.47.
We can use the values defining such an interval to predict the
precession for Uranus, Neptune and Pluto, for which no ob-
servation is available. The results, summarized in Table II,
show that the bootstrapped theory predictions are in perfect
agreement with General Relativity.

Now it is useful to move to a different scale and analyze S2
(see Table III), the only one among the S-stars whose preces-
sion was observed [32]. We can next calculate the precession
for Mars, Jupiter, and S2 with the values of Ξ as obtained by
Mercury, Venus, Earth and Saturn to check agreement with
the corresponding Schwarzschild value and with the observa-
tions (Table IV). The results confirm the compatibility of our
predictions with General Relativity. The mean value of the
parameter Ξ such that

∆ϕ = ∆ϕS (III.3)

is given by

Ξ = −1.64236± 0.10305 . (III.4)

B. S-star dynamics

We can confirm the bounds on Ξ deduced from orbital pre-
cessions by comparing them with results deduced from the

4 The reported values are taken from NASA fact sheet at
https://nssdc.gsfc.nasa.gov/planetary/factsheet/.
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Planet a(106km) P (years) i(◦) e ∆ϕobs(
′′/cy) ∆ϕS(

′′/cy) [Ξmin; Ξmax]
Mercury 57.909 0.24 7.005 0.2056 43.1000± 0.5000 42.9822 [−89708.7; 144995]

Venus 108.209 0.61 3.395 0.0067 8.6247± 0.0005 8.6247 [−1149.67; 1167.47]
Earth 149.596 1.00 0.000 0.0167 3.8387± 0.0004 3.83881 [−3660.86; 2094.96]
Mars 227.923 1.88 1.851 0.0935 1.3565± 0.0004 1.35106 [155248.; 179879.]

Jupiter 778.570 11.86 1.305 0.0489 0.6000± 0.3000 0.0623142 [5.46709× 108; 1.92679× 109]
Saturn 1433.529 29.45 2.485 0.0565 0.0105± 0.0050 0.0136394 [−1.57315× 108; 3.59618× 107]

Table I: Values of semimajor axis (a), orbital period (P ), tilt angle (i), eccentricity (e), observed orbital precession (∆ϕobs), orbital precession
as predicted by General Relativity (∆ϕS) and constraints on Ξ for Solar System’s planets.
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Figure 2: Bootstrapped orbital precession as a function of the parameter Ξ. Black lines give the theoretical prediction from Eq. (III.1),
blue dashed lines represent the measurements adapted from Ref. [35] and red lines depict the General Relativistic values as in Eq. (II.23).
Confidence regions for Ξ are shaded in gray.

analysis of stellar orbits at the Galactic Center. This fur-
ther analysis consists in comparing simulated orbits in boot-
strapped Newtonian gravity, obtained by integrating numeri-

cally Eqs. (II.18)-(II.21), with observed orbits of three S-stars
constructed by astrometric observations (see Sec. III B 1). In
particular, we focused on stars S2, S38 and S55 for two
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Planet a(106km) P (years) i(◦) e ∆ϕS(
′′/cy) [∆ϕmin;∆ϕmax]

Uranus 2872.463 84.01 0.772 0.0457 0.00238404 [0.00238404; 0.00238405]
Neptune 4495.060 164.786 1.769 0.0113 0.000775374 [0.000775373; 0.000775375]

Pluto 5869.656 247.936 17.16 0.2444 0.000419669 [0.000419669; 0.00041967]

Table II: Orbital parameters from Nasa Fact Sheet, the General Relativistic prediction for the precession in the sixth column and the values
predicted by the bounds on the parameter Ξ of the bootstrapped theory deduced for Venus (see Table I).

Star a(AU) P (years) i(◦) e ∆ϕobs(
′′/orbit) ∆ϕS(

′′/orbit) [Ξmin; Ξmax]
S2 1031.32 16.0455 134.567 0.884649 730.382× (1.10± 0.19) 730.382 [−103.066; 326.398]

Table III: For the star S2, orbital parameters [32], observed orbital precession (∆ϕobs), orbital precession as predicted by General Relativity
(∆ϕS), and constraints on Ξ.

main reasons: among the brightest stars they are those with
the shortest period. These properties are desired because
highly bright stars are less prone to being confused with other
sources, and a short period allows us to observe a larger part
of the orbit in a given observation session. For simplicity, we
neglected perturbations from other members of the cluster and
any extended matter structures.

1. Astrometric data

Astrometric data are taken from Ref. [29] 5 and cover 25
years of observations performed in the near-infrared (NIR),
where the interstellar extinction amounts to about three mag-
nitudes. Different instruments have been used, which we
briefly describe below.

1. SHARP.- First high-resolution data of the Galactic Cen-
ter were obtained in 1992 with the SHARP camera
at the European Southern Observatory’s (ESO) 3.5m
New Technology Telescope (NTT) in Chile, operating
in Speckle mode with exposure times of 0.3 s, 0.5 s and
1.0 s. The data, described in detail in Ref. [30], led
to the detection of high proper motion near the central
massive object.

2. NACO.- The first Adaptive Optics (AO) imaging
data were produced by Naos-Conica (NACO) system,
mounted at the telescope Yepun (8.0m) of the VLT and
starting to operate in 2002. It followed a great improve-
ment due to larger telescope aperture, and the higher
Strehl ratio (about 40%).

3. GEMINI.- The dataset includes observations obtained
by the 8m telescope Gemini North in Mauna Kea,
Hawaii. These images, obtained using the AO system
in combination with the NIR camera Quirc, were pro-
cessed by the Gemini team.

5 Data are publicly available on the electronic version of Ref. [29] at the link
https://iopscience.iop.org/article/10.3847/1538-4357/aa5c41/meta.

The astrometric calibration of these data, treated in Ref. [31],
consists in the following steps: obtaining high-quality maps of
the S-stars, extracting pixel positions, and transforming them
to a common astrometric coordinate system. In particular,
the astrometric reference frame is implemented relating the
S-stars positions to a set of selected reference stars, which are
in turn related to a set of Silicon Monoxide (SiO) maser stars
whose positions relative to Sgr A* is known.

2. Fitting procedure

The first step of the fitting procedure is the numerical in-
tegration of the system of parametric nonlinear differential
equations (II.18)-(II.21) to produce stellar simulated orbits in
bootstrapped Newtonian gravity.

Preliminarily, we fix the Keplerian elements and the param-
eters of the central mass to the values reported in Tables V
and VI. In particular, for the study of S2, we used the values
obtained by the GRAVITY Collaboration [32], and for S38
and S55, we used those obtained in Ref. [29]. In order to
have a well-defined Cauchy problem, we must provide ini-
tial conditions for the four-dimensional coordinates and their
derivatives with respect to the proper time: {r(0), ṙ(0), θ(0),
θ̇(0), ϕ(0), ϕ̇(0), t(0), ṫ(0)}. We assume that the star initially
lies on the equatorial plane of the reference system, for which
θ(0) = π/2, and that its initial velocity is parallel to the equa-
torial plane, that is θ̇(0) = 0. It then follows that θ̈(0) = 0
identically. In particular, we set the initial conditions for r and
ϕ at the time of passage of the apocenter, when the Cartesian
coordinates of the star expressed in the orbital plane are given
by

(xorb, yorb) = (−a (1 + e), 0) (III.5)

and the Cartesian components of its velocity read

(vx,orb, vy,orb) =

(
0,

2π a2

T r

√
1− e2

)
. (III.6)

The initial condition for ṫ can be retrieved from the normaliza-
tion of four-velocities requiring that the geodesic is timelike.

Starting from the initial conditions of each star, we proceed
with an explicit Runge-Kutta numerical integration of the rel-
ativistic equations of motion. The results are the stars mock



7

Object ∆ϕS ∆ϕ(ΞMercury) ∆ϕ(ΞV enus) ∆ϕ(ΞEarth) ∆ϕ(ΞSaturn)
Mars 1.35106 [1.34814; 1.35577] [1.35102; 1.3511] [1.35094; 1.35113] [−3.75855; 2.5191]

Jupiter 0.0623142 [0.0622752; 0.0623773] [0.0623137; 0.0623147] [0.0623126; 0.0623151] [−0.00607962; 0.0779489]
S2 730.382 [−57243.9; 94435.7] [−11.7295; 1485.75] [−1634.61; 2085.15] [−1.01666 ∗ 108; 2.32414 ∗ 107]

Table IV: Precession for Mars, Jupiter, and S2 as predicted by confidence regions for Ξ inferred from Mercury, Venus, Earth and Saturn.

Parameter S2 S38 S55
a (mas) 125.058± 0.041 141.6± 0.2 107.8± 1.0
Ω (◦) 228.171± 0.031 101.06± 0.24 325.5± 4.0
e 0.884649± 0.000066 0.8201± 0.0007 0.7209± 0.0077

i (◦) 134.567± 0.033 171.1± 2.1 150.1± 2.2
ω (◦) 66.263± 0.031 17.99± 0.25 331.5± 3.9
tp (yr) 2018.37900± 0.00016 2003.19± 0.01 2009.34± 0.04
T (yr) 16.0455± 0.0013 19.2± 0.02 12.80± 0.11
mK 13.95 17. 17.5
Ref. [32] [29] [29]

Table V: Orbital parameters of S2, S38, and S55: semimajor axis a, eccentricity e, inclination i, angle of the line of node Ω, angle from
ascending node to pericenter ω, orbital period T , and the time of the pericenter passage tp.

orbit in the orbital plane, described by a four-dimensional ar-
ray {t(τ), r(τ), θ(τ), ϕ(τ)}. To compare the theoretical or-
bits with those observed from the Earth, we must project any
point (xorb, yorb) on the orbital plane into the point (x, y) on
the observer’s sky plane. Such a transformation is realized by
applying the Thiele-Innes formulas [33, 34]:

x = l1 xorb + l2 yorb (III.7)
y = m1 xorb +m2 yorb . (III.8)

The Thiele-Innes elements l1, l2, m1 and m2 depend on the
Keplerian elements by according to

l1 = cosΩ cosω − sinΩ sinω cos i (III.9)
l2 = − cosΩ sinω − sinΩ cosω cos i (III.10)

m1 = sinΩ cosω + cosΩ sinω cos i (III.11)
m2 = − sinΩ sinω + cosΩ cosω cos i. (III.12)

The second step consists in the fitting procedure itself, and
has the aim to constrain the parameter Ξ. Guided by the re-
sults obtained from the precession in Sec. II B 1, we let it vary
freely in an appropriate range including the value (III.4). For
each value of Ξ we repeated the aforementioned procedure to
get the true positions (xi, yi) and velocities (ẋi, ẏi) of the stars
at all the observed epochs. After transforming the true posi-
tions into the apparent positions (xth

i , ythi ), we computed the
reduced-χ2 distribution to quantify the discrepancy between
theory and observations as

χ2
red =

1

2N − 1

N∑
i

(xobs
i − xth

i

σxobs
i

)2

+

(
yobsi − ythi

σyobs
i

)2
 ,

(III.13)
where (xobs

i , yobsi ) and (xth
i , ythi ) are respectively the ob-

served and the predicted positions, N is the number of ob-
servations and (σxobs

i
, σyobs

i
) are the observative uncertainties.

Finally, we calculated the likelihood probability distribution,
2 logL = −χ2

red(Ξ). The best-fit value for Ξ was derived as
the point that maximizes the likelihood distribution.

3. Results

Our results are summarized in Table VII and represented in
Figs. 3, 4 and 5.

In Fig. 3 we show the comparison between best fit and ob-
served orbits of the selected stars: the top left panel, the top
right panel, and the bottom panel illustrate the results respec-
tively for S2, S55 and S38. Astrometric data are reported
with their own error bars to note the effectiveness of our fit-
ting procedure.

Figure 4 depicts the comparisons between the observed and
simulated coordinates with the corresponding residuals. The
left column contains the right ascension (RA), while the right
column reports the declination (Dec). It is worth noticing that
in all stars and for both coordinates, residuals are larger at
the beginning observing epochs, and decrease as astrometric
accuracy improves.

Finally, we show in Fig. 5 the orbits of the studied S-stars
corresponding to the best multistar fit for Ξ = 17400+30555.6

−32244.3

(last row of Table VII). As expected, the parameter Ξ is com-
patible with the the mean value (III.4) such that the boot-
strapped Newtonian precession recovers General Relativity.

IV. CONCLUSIONS

In this paper we tested astronomically the bootstrapped
Newtonian gravity. The starting point is the complete space-
time metric (II.15) derived in Ref. [16]. The leading order de-
viation from the Schwarzschild solution cannot be eliminated
and is encoded in the free parameter Ξ, which is not a priori
known and must be constrained by observations.

First, we show that bounds on Ξ can be deduced from
the comparison between the measurements of the orbital pre-
cession of Solar System bodies and the theoretical predic-
tions arising from bootstrapped Newtonian metric computed
in Ref. [16]. The inferred confidence region for Ξ for each
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Star M(M⊙) R(kpc) Ref.
S2 (4.261± 0.012)× 106 8.2467± 0.0093 GRAVITY Collaboration [32]
S38 (4.35± 0.13)× 106 8.33± 0.12 Gillessen et al. [29]
S55 (4.35± 0.13)× 106 8.33± 0.12 Gillessen et al. [29]

Table VI: Parameters of the central BH: the mass M and the distance R.
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Figure 3: Comparisons between the NTT/VLT astrometric observations with their errors (black circles) and the theoretical best-fit orbits using
parameters reported in the first three rows of Table VII. The results for S2, S55 and S38 are illustrated respectively in the top left, top right,
and bottom panels.

planet is reported in Table I and graphically depicted in Fig. 2.
Based on the tightest interval obtained with Venus, we found
that Ξ lies in the range [−1149.67 ; +1167.47]. With these

values of the parameter Ξ we predicted the orbital precession
for Uranus, Neptune and Pluto, and we found a theoretical
precession in great agreement with the General Relativistic
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Figure 4: Top panels show the comparison between the observed and fitted coordinates, and bottom panels show the corresponding (O-C)
residuals for S2, S38 and S55.

value. Such a compatibility was confirmed by turning our at- tention to the Galactic Center and repeating the same analy-
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Figure 5: Best relativistic multistar orbit fit of S2, S38 and S55.

Star Ξ

S2 −5900+39358.8
−44964.9

S38 25500+22607.1
−23312.88

S55 60400+81386
−87446.9

Multi-star 17400+30555.6
−32244.3

Table VII: Best-fit values for Ξ.

sis for the star S2 [32]. The mean value of the parameter Ξ
such that the bootstrapped Newtonian precession equals the
Schwarzschild value is

Ξ = −1.64236± 0.10305 . (IV.1)

We next focused on the Galactic Center scale to constrain
Ξ by investigating the orbital motion of S-stars. We used a
fully relativistic approach based on an agnostic method: for
each value of Ξ, we solved the geodesic equations numerically
starting from initial conditions at the apocenter. After apply-
ing the Thiele-Innes formulas to the mock positions, we were
able to compare the resulting solution with the observed stel-
lar orbits. Finally, we quantified the discrepancy between the
simulated and observed orbits performing a χ2-statistics. The
inferred confidence region for Ξ is compatible with the bounds
obtained by the precession analysis, and thus with General
Relativity. Indeed we found 17400+30555.6

−32244.3. Since S-stars are
at a distance of about r > 1000Rg from the source, strong-
field effects are not relevant, and such a result was expected.

The proposed approach is completely general and repre-
sents a useful tool in the classification of extended theories
of gravity. Moreover, this approach has already been used to
test a Yukawa-like gravitational potential by means of dynam-

ical tests at the Galactic Center [37–40], where no significant
deviations from General Relativity were found. Nevertheless,
the definitive confirmation/exclusion of a given extended the-
ory of gravity requires the improvement of the constraints on
its free parameters based on the observation of various strong-
field effects. This task can be accomplished taking advantage
of the increasing high accuracy observations of second gener-
ation instruments like GRAVITY [41].

In particular, we focus on finding stars with short semima-
jor axis and highly eccentric orbits within the pericenter of
S2. The existence of such a population of stars can be in-
ferred from the recent discovery of the sources S62, S4711
and S4714 [42, 43]. Observing stars at smaller radii is essen-
tial to detect strong-field effects, which become no longer neg-
ligible for distances of the pericenter r ≃ 10Rg , and therefore
any deviations from General Relativity to find out the under-
lying gravitational theory.

Acknowledgments

R.C. is partially supported by the INFN grant FLAG.
M.D.L. and A.D. acknowledges INFN Sez. di Napoli (In-
iziativa Specifica TEONGRAV). A.G. is supported by the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie Actions (grant
agreement No. 895648–CosmoDEC). The work of R.C. and
A.G has also been carried out in the framework of activities
of the National Group of Mathematical Physics (GNFM, IN-
dAM).



11

[1] S. W. Hawking and G. F. R. Ellis, “The Large Scale Structure of
Space-Time,” (Cambridge University Press, Cambridge, 1973)

[2] R. P. Geroch and J. H. Traschen, Phys. Rev. D 36 (1987) 1017
[Conf. Proc. C 861214 (1986) 138];

[3] R. Casadio, M. Lenzi and O. Micu, Phys. Rev. D 98 (2018)
104016 [arXiv:1806.07639 [gr-qc]].

[4] R. Casadio and I. Kuntz, Eur. Phys. J. C 80 (2020) 581
[arXiv:2003.03579 [gr-qc]].

[5] S. Weinberg, “Gravitation and Cosmology: Principles and Ap-
plications of the General Theory of Relativity,” (Wiley & Sons,
1972)

[6] S. Deser, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023]; Gen. Rel.
Grav. 42 (2010) 641 [arXiv:0910.2975 [gr-qc]].

[7] R. P. Feynman, F. B. Morinigo, W. G. Wagner and B. Hatfield,
“Feynman lectures on gravitation,” (Addison-Wesley Publish-
ing Company, Reading, 1995)

[8] R. M. Wald, Phys. Rev. D 33 (1986) 3613; K. Heiderich and
W. Unruh, Phys. Rev. D 38 (1988) 490; M. P. Hertzberg, JHEP
1709 (2017) 119 [arXiv:1702.07720 [hep-th]]; D. Bai and
Y. H. Xing, Nucl. Phys. B 932 (2018) 15 [arXiv:1610.00241
[hep-th]]; R. Carballo-Rubio, F. Di Filippo and N. Moyni-
han, JCAP 1910 (2019) 030 [arXiv:1811.08192 [hep-th]];
D. Hansen, J. Hartong and N. A. Obers, Phys. Rev. Lett. 122
(2019) 061106 [arXiv:1807.04765 [hep-th]].

[9] R. Casadio, M. Lenzi and O. Micu, Eur. Phys. J. C 79 (2019)
894 [arXiv:1904.06752 [gr-qc]].

[10] R. Casadio and O. Micu, Phys. Rev. D 102 (2020) 104058
[arXiv:2005.09378 [gr-qc]].

[11] R. Casadio, O. Micu and J. Mureika, Mod. Phys. Lett. A 35
(2020) 2050172 [arXiv:1910.03243 [gr-qc]].

[12] R. Casadio, A. Giugno and A. Giusti, Phys. Lett. B 763 (2016)
337 [arXiv:1606.04744 [gr-qc]]

[13] R. Casadio, A. Giugno, A. Giusti and M. Lenzi, Phys. Rev. D
96 044010 (2017) [arXiv:1702.05918 [gr-qc]].

[14] R. Casadio, M. Lenzi and A. Ciarfella, Phys. Rev. D 101 (2020)
124032 [arXiv:2002.00221 [gr-qc]].

[15] G. Dvali and C. Gomez, Fortsch. Phys. 61 (2013) 742
[arXiv:1112.3359 [hep-th]]; G. Dvali, C. Gomez and
S. Mukhanov, “Black Hole Masses are Quantized,”
arXiv:1106.5894 [hep-ph]. G. Dvali and C. Gomez, Phys.
Lett. B 719 (2013) 419 [arXiv:1203.6575 [hep-th]]; Phys. Lett.
B 716 (2012) 240 [arXiv:1203.3372 [hep-th]]; Eur. Phys. J. C
74 (2014) 2752 [arXiv:1207.4059 [hep-th]]; A. Giusti, Int. J.
Geom. Meth. Mod. Phys. 16 (2019) 1930001.

[16] R. Casadio, A. Giusti, I. Kuntz and G. Neri, Phys. Rev. D 103
(2021) 064001 [arXiv:2101.12471 [gr-qc]].

[17] M. Cadoni, R. Casadio, A. Giusti, W. Mück and M. Tuveri,
Phys. Lett. B 776 (2018) 242 [arXiv:1707.09945 [gr-qc]].

[18] I. De Martino, R. Lazkoz, M. De Laurentis Phys. Rev. D 97,
104067 (2018)

[19] C. Will, Phys. Rev. Lett. 6120, 191101 (2018).
[20] T. D. Moyer, Mathematical formulation of the Double-

Precision Orbit Determination Program (DPODP)., Technical
Report 32-1527 (NASA Jet Propulsion Laboratory, Pasadena,
1971).

[21] T. D. Moyer, Formulation for observed and computed values of

Deep Space Network data types for navigation, JPL Publication
00-7 (NASA Jet Propulsion Laboratory,Pasadena, 2000).

[22] A. Eckart and R. Genzel, Nature 383, 415 (1996).
[23] A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, T. Do, J. K.

Dunn, K. Matthews, M. R. Morris, S. Yelda, E. E. Becklin, T.
Kremenek, M. Milosavljevic, and J. Naiman, Astrophys. J. 689,
1044 (2008), arXiv:0808.2870.

[24] A. Eckart and R. Genzel, Mon. Not. R. Astron. Soc. 284, 576
(1997).

[25] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Gen-
zel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009),
arXiv:0810.4674.

[26] S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-
Eden, O. Pfuhl, T. Ott, and R. Genzel, Astrophys. J. Lett. 707,
L114 (2009), arXiv:0910.3069 [astro-ph.GA].

[27] A. M. Ghez, B. L. Klein, M. Morris, and E. E. Becklin, Astro-
phys. J. 509, 678 (1998), astro-ph/9807210.

[28] R.L. Arnowitt, S. Deser and C.W. Misner, Phys. Rev. 116
(1959) 1322.

[29] S. Gillessen, PM. Plewa, F. Eisenhauer, R. Sari, I. Waisberg,
M. Habibi, O. Pfuhl, E. George, J. Dexter, S. von Fellenberg,
et al. Astrophys. J. 837 (2017) 30 [arXiv:1611.09144 [astro-
ph.GA]].

[30] R. Schodel, T. Ott, R. Genzel, A. Eckart, N. Mouawad and
T. Alexander, Astrophys. J. 596 (2003) 1015 [arXiv:astro-
ph/0306214 [astro-ph]].

[31] S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-
Eden, O. Pfuhl, T. Ott and R. Genzel, Astrophys. J. Lett. 707
(2009), L114 [arXiv:0910.3069 [astro-ph.GA]].

[32] R. Abuter et al. [GRAVITY], Astron. Astrophys. 636 (2020) L5
[arXiv:2004.07187 [astro-ph.GA]].

[33] W.M. Smart Mon. Not. Roy. Astron. Soc. 90 (1930) 534.
[34] R.G. Aitken “The Binary Stars,” (1964)
[35] G.G. Nyambuya, Mon. Not. Roy. Astron. Soc. 451 (2015)

3034.
[36] E.V. Pitjeva, N.P. Pitjev Mon. Not. Roy. Astron. Soc. 432

(2013) 3431.
[37] I. de Martino, R. della Monica and M. de Laurentis, “f(R)-

gravity after the detection of the orbital precession of the
S2 star around the Galactic centre massive black hole,”
[arXiv:2106.06821 [gr-qc]].

[38] A. D’Addio Phys. Dark Univ. 33 (2021) 100871.
[39] M. De Laurentis, I. De Martino, R. Lazkoz, Phys. Rev. D 97,

104068 (2018).
[40] R. Della Monica, I. de Martino, M. De Laurentis,

arXiv:2105.12687 [gr-qc]
[41] S. Gillessen, F. Eisenhauer, G. Perrin, W. Brandner, C. Straub-

meier, K. Perraut, A. Amorim, M. Schöller, C. Araujo-Hauck
and H. Bartko, et al. Proc. SPIE Int. Soc. Opt. Eng. 7734 (2010)
77340Y [arXiv:1007.1612 [astro-ph.IM]].

[42] F. Peissker, A. Eckart and M. Parsa Astrophys. J. 889 (2020) 61
[arXiv:2002.02341[astro-ph.GA]].

[43] F. Peissker, A. Eckart, M. Zajacek, B. Ali and M. Parsa Astro-
phys. J. 899 (2020) 50.


	Introduction
	Bootstrapped Newtonian vacuum
	Vacuum potential
	Vacuum effective metric
	Precession


	Astronomical tests
	Perihelion precession in the Solar System
	S-star dynamics
	Astrometric data
	Fitting procedure
	Results


	Conclusions
	Acknowledgments
	References

