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Background: In radiation oncology, automation of treatment planning has reported the
potential to improve plan quality and increase planning efficiency. We performed a
comprehensive dosimetric evaluation of the new Personalized algorithm implemented in
Pinnacle3 for full planning automation of VMAT prostate cancer treatments.

Material and Methods: Thirteen low-risk prostate (without lymph-nodes irradiation) and
13 high-risk prostate (with lymph-nodes irradiation) treatments were retrospectively taken
from our clinical database and re-optimized using two different automated engines
implemented in the Pinnacle treatment system. These two automated engines, the
currently used Autoplanning and the new Personalized are both template-based
algorithms that use a wish-list to formulate the planning goals and an iterative approach
able to mimic the planning procedure usually adopted by experienced planners. In
addition, the new Personalized module integrates a new engine, the Feasibility module,
able to generate an “a priori” DVH prediction of the achievability of planning goals.
Comparison between clinically accepted manually generated (MP) and automated plans
generated with both Autoplanning (AP) and Personalized engines (Pers) were performed
using dose-volume histogram metrics and conformity indexes. Three different normal
tissue complication probabilities (NTCPs) models were used for rectal toxicity evaluation.
The planning efficiency and the accuracy of dose delivery were assessed for all plans.

Results: For similar targets coverage, Pers plans reported a significant increase of dose
conformity and less irradiation of healthy tissue, with significant dose reduction for rectum,
bladder, and femurs. On average, Pers plans decreased rectal mean dose by 11.3 and
8.3 Gy for low-risk and high-risk cohorts, respectively. Similarly, the Pers plans decreased
the bladder mean doses by 7.3 and 7.6 Gy for low-risk and high-risk cohorts, respectively.
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The integral dose was reduced by 11–16% with respect to MP plans. Overall planning
times were dramatically reduced to about 7 and 15 min for Pers plans. Despite the
increased complexity, all plans passed the 3%/2 mm g-analysis for dose verification.

Conclusions: The Personalized engine provided an overall increase of plan quality, in
terms of dose conformity and sparing of normal tissues for prostate cancer patients. The
Feasibility “a priori” DVH prediction module provided OARs dose sparing well beyond the
clinical objectives. The new Pinnacle Personalized algorithms outperformed the currently
used Autoplanning ones as solution for treatment planning automation.
Keywords: automated planning, personalized, prostate cancer, VMAT (volumetric modulated arc therapy), pinnacle,
dosimetric analysis
INTRODUCTION

In radiation oncology, the quality of treatment planning has a
major impact on clinical outcomes as well demonstrated in
several clinical trials (1, 2). Despite the worldwide
implementation of the ICRU83 guidelines (3), local treatment
planning protocols still have a major impact on plan quality. A
recent multicentric study (4) reported that the adherence to
ICRU83 recommendations for dose prescription were relatively
poor, with statistically significant variability in target dose
coverage and dose homogeneity among institutions. The
relationship between the plan quality and the clinical outcomes
has been recently reported, proving that failures to adhere to
protocol guidelines are associated with reduced local control and
survival and potentially increased toxicity (5). In particular, in
prostate radiotherapy, the cost was found particularly high. An
analysis of frequency and clinical severity of quality deficiencies
in planning on the RTOG126 protocol demonstrated the critical
impact of suboptimal plans on rectal complications (6). Of the
219 enrolled patients, 42.9 and 9.1% had a ≥5% a ≥10% excess
risk rectal complications, and re-planning reported significant
NTCP reductions while maintaining optimal target coverage.
The observed toxicities were consistent with the current
radiobiological modeling.

With the advent of intensity-modulated techniques (IMRT),
also in the form of rotational volumetric modulated arc therapy
(VMAT), radiation treatment plans have become increasingly
complex. The conventional treatment planning for these
techniques requires many manual processes . Many
compromises must be uniquely negotiated for each patient
because the optimal dose distribution maximizing the
therapeutic ratio for a given patient is never known a priori
and the only chance to planners is to manage many competing
parameters in a trial-and-error process. The clinical and
dosimetric objective are then iteratively adjusted during several
optimization processes in order to generate clinically acceptable
treatment plans. This procedure is not only time-consuming but
could also influence the consistency and plan quality, inherently
dependent on the individual skill of the planner (7, 8).

In the last years, the applications of artificial intelligence in
radiation oncology translated in many technological
advancements, including patient outcomes modeling, organs
2

auto-segmentation, dose prediction, and treatment plan
automation (9). Different approaches have been proposed so
far for the automation of treatment planning including
knowledge-based optimization, multi-criteria optimization, and
template-based strategies. Knowledge-based (10, 11) concepts
rely on predictive models built on statistical analysis of a large
number of previous plans, providing an estimate of the dose
distribution and dose-volume histograms (DVH) for any new
patient. This approach has been implemented in the RapidPlan
engine, commercially implemented in the Varian Eclipse
treatment planning system (TPS) (Varian Medical Systems,
Palo Alto, USA), reporting a general improvement in the inter-
consistency of treatment plans (12–15). The multi-criteria
optimization approach (16) is based on the generation of the
so-called “Pareto-optimal” treatment plans (i.e. plans for which
improving one criterion value is not possible unless some other
criterion value deteriorates), allowing the user to navigate
interactively through these solutions in order to obtain one
that yields the desired trade-off between different criteria. This
strategy has been implemented in the RayStation TPS
(Raysearch, Stockholm, Sweden) (17) and in the Erasmus-
Icycle algorithm developed at Erasmus MC-Cancer Institute in
Rotterdam (18–20). In particular, the Raystation TPS provides a
pool of output plans on the Pareto-optimal surface, leaving the
user to define the best final plan, while the Erasmus-iCycle
engine supplies the most Pareto-optimal plan according to a
clinical wish-list of dosimetric objectives. The template-based
approach has been implemented in the Pinnacle TPS (Philips
Medical Systems, Fitchburg, WI, USA) in the so-called
Autoplanning engine (21). In this strategy, the planning
optimization process uses a template to formulate all the
planning goals and an iterative approach able to mimic the
planning procedure usually adopted by experienced planners to
generated high-quality plans. This approach has been
investigated in several publications for prostate (21–23), head-
neck (24), and for extracranial stereotactic treatments (25, 26)
reporting an overall increase of plan quality together with a
substant ia l reduct ion of planning t ime and inter-
planner variations.

A new generation of advanced optimization algorithms for
inverse planning, called Personalized planning, is under current
investigation in the new Pinnacle Evolution TPS. Pinnacle
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Personalized is an advanced replacement of the optimizer used in
Autoplanning, aiming to further improve the overall plan quality
and the speed of IMRT and VMAT automated optimization. In
particular, this new engine presents an advanced technology
called Feasibility which allows an estimation of the best possible
sparing of the OARs in order to inform the planner “a priori”
about the achievability of treatment planning goals (27).
Assuming a complete target dose coverage and an ideal fall-off
from the prescription doses at the targets boundary, a feasibility
dose-volume histogram (fDVH) can be calculated in less than
1 min before the start of optimization process. This fDVH
divides the dose space into regions that are impossible,
difficult, challenging, or probable for each OAR. This a-priori
knowledge allows the planner to personalize the planning goals
for all OARs according to each patient geometry, in addition to
the initial objectives defined in the treatment template.

To the best of our knowledge, no previous studies have
investigated the potential of Pinnacle Personalized for
automation of planning process in prostate cases.

This study aimed to provide a comprehensive dosimetric
evaluation of Pinnacle Personalized potential for the
radiotherapy of prostate cancer in the two scenarios of low-risk
and high-risk prostate cancer. In the last case, the large irregular-
shaped targets volumes, the simultaneous multiple dose
prescriptions, and the several organs-at-risk (OARs) adjacent
to the targets represent a major challenge for the generation of
high-quality plans. In this paper, we then hypothesized the
potential of these new automated planning algorithms to
improve consistency and plan quality and we discussed how
the introduction of treatment planning automation affected the
workflow in the clinical practice.
MATERIAL AND METHODS

Patient Selection, Simulation, Volume
Definition, and Dose Prescriptions
This retrospective planning study included patients previously
treated at our institution for prostate cancer with VMAT
technique. Twenty-six patients were included, 13 consecutive
patients in each of the following two categories: a) low-risk
prostate and b) high-risk prostate.

All patients underwent a CT-simulation (3 mm slice
thickness) in a vacuum-lock device in a supine position, with
specific instructions to empty the bladder and rectum before the
simulation and each treatment fraction. The following structures
were contoured: prostate, regional lymph-nodes, the entire
bladder, the rectum (from ischium to sigmoid flexure), the
small bowel, and the femoral heads. All targets and normal
tissues were segmented and delineated by a radiation oncologist
and then reviewed by a senior radiation oncologist with more
than 10 years experience (FD).

Group (a): Low-risk prostate cases. The clinical target volume
(CTV65) included the entire prostate and the caudal 2 cm of the
seminal vesicles. The planning target volume (PTV65) was
defined by adding a margin of 6 mm in the posterior direction
Frontiers in Oncology | www.frontiersin.org 3
and 8 mm in all other directions. Dose prescription for PTV65
was 65 Gy in 25 fractions.

Group (b): High-risk prostate cases. The clinical target
volume 1 (CTV65) was defined as the prostate plus the
seminal vesicles. The CTV45 included the obturator, internal
and external iliac, and presacral lymph nodes. The two planning
target volumes, PTV65 and the PTV45, were defined by adding
8-mm margins (6 mm posteriorly) to the CTV65 and 8-mm
margins to the CTV45, respectively. High-risk prostate cases
were planned using a simultaneous integrated boost (SIB)
scheme derived from the literature, calculated based on the
biologically equivalent dose (BED) for acute toxicity and tumor
response. The regimen consisted of 65 and 45 Gy simultaneously
delivered to the prostate and to the lymph-nodal volumes in
25 fractions.

In both scenarios, this fractionation translates to the
equivalent delivery of 76.1 Gy in a standard 2 Gy/fraction
(EQD2) (using ab = 1.5) to the prostate. For the OARs, this
scheme produced an EQD2 dose of 72.8 Gy (using ab = 3). The
fractionation scheme was designed to obtain a high biochemical
control while maintaining a low OAR toxicity profile.

Planning objectives for the targets and organs-at-risk are
reported in Table 1. The treatment goal was to deliver more
than 95% of the prescribed dose to more than 98% of each PTV
(D98% ≥ 95%) and less than 105% of prescribed doses to 2% of
PTVs (D2% ≤ 105%). D98% and D2% represent the doses to 2
and 98% of the PTVs and are defined as metrics for near-
minimum and near-maximum doses, respectively. Tolerance
doses to the rectum, bladder, femurs, and small bowel were
obtained from the Quantec guidelines (28). The Quantec doses
were converted to their radiobiological equivalents (using BED
and ab = 3 Gy) to determine the tolerances listed in Table 1.
TABLE 1 | Clinical objectives for treatment planning. For the OARs, the Quantec
doses were converted to their radiobiological equivalents (using BED and ab = 3
Gy) to determine the corresponding dose-volume objectives in the present
hypofractionated regimen.

Dose (cGy) Volume

Low-risk prostate cases
PTV6500 6,175 ≥98%

6,370 ≥95%
6,825 <2%

High-risk prostate cases
PTV6500 6,175 ≥98%

6,370 ≥95%
6,825 <2%

PTV4500 4,275 ≥98%
4,410 ≥95%
4,725 <2%

Dose (Quantec cGy) Dose (Eq cGy) Volume
Organs-at-risk
Rectum 5,000 5,000 <50%

6,000 5,690 <35%
6,500 6,010 <25%
7,000 6,330 <20%

Bladder 6,500 6,010 <50%
7,000 6,330 <35%

Small bowel 1,500 1,500 <120 cc
Femoral heads 4,500 4,500 <2%
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Treatment Planning
For each patient, the clinically manual VMAT plan, generated by
an experienced medical physicist according to local written
protocols, was used as the reference plan. Automated VMAT
plans were generated with both Pinnacle Autoplanning and
Pinnacle Personalized modules, and compared with the
clinically accepted ones. More details will be provided in the
next paragraph. All plans were generated for an Elekta VersaHD
linac (Elekta Ltd., Crawley, UK). Dose calculations were
performed using the collapsed cone convolution dose
calculation algorithm with a 2-mm grid resolution.

Manual VMAT Planning
Clinical manual VMAT plans (MP) were generated with one arc
for low-risk prostate cases and with the “dual-arc” feature for the
high-risk cases, using the inverse optimization process previously
described in more details (29) for coplanar 6 MV photon beams.
A full gantry rotation was described by a sequence of 90 control
points, i.e. one every 4°. Collimator was set at 10° to minimize the
tongue-and-groove cumulative effect. All plans were optimized
by a medical physicist with 10 years’ experience in VMAT
planning, with the aim to obtain the highest quality plans and
a reduction of inter-planner variability. MP plans were those
clinically used for patient treatment; no manual plan was
regenerated. All manual plans were optimized without time
pressure and limitations. In addition, MP plans underwent a
clinical judgment before their acceptability for delivery by two
radiation oncologists and a medical physicist, following strict in-
house implemented quality assurance procedures (30).

Automated VMAT Planning With Pinnacle
Autoplanning
AP plans were created using the Autoplanning module
implemented in the Pinnacle3 Version 16.0 (Philips Medical
Systems, Fitchburg, WI, USA), designed to automate the inverse
planning optimization process by utilizing a so-called
“Technique”, i.e. a template of parameters that can be
customized for each treatment protocol and tumor site. The
Autoplanning engine has been extensively described in a
previous study (21). Briefly, the Technique includes the
definition of all beam parameters, dose prescriptions, and
planning objectives for PTVs and OARs and was defined on
the same beam parameters, dose prescription, and clinical
objectives adopted for the MP plans. The objectives for the two
PTVs were only defined by numbers close to prescription doses
(in our experience we chose as target goals the prescription doses
plus 1 Gy, so as to avoid possible under dosage in PTVs
boundary). The OARs objectives included maximum dose,
mean dose, and dose-volume histogram points; they can have
three different priority levels (high, medium, and low) and can be
set compromised or uncompromised. Three parameters must be
set: (a) the tuning balance (i.e. the balance between target dose
conformity and OARs sparing), (b) the dose fall-off margin (i.e.
the distance across which the dose should decrease from 80 to
20% in an automatically generated tuning ring structure around
the PTVs), and (c) the Cold-Spot ROI (i.e. the identification of
Frontiers in Oncology | www.frontiersin.org 4
cold regions inside the PTVs and the automatic creation of new
tuning volumes and relative dose objectives to increase dose in
the last optimization loops).

At the start of the optimization, the Autoplanning module
iteratively performs several optimization cycles in order to
achieve the dosimetric objectives defined in the Technique.
Specifically, the optimizer automatically generates various
support structures in order to increase the dose conformity
and to drive the OARs sparing as much as possible. These
structures include (a) rings around the PTVs to control the
dose fall-off, (b) residual target structures where overlaps
between non-compromised OARs are removed, (c) residual
OAR structures where overlaps between target are removed,
(d) body structure used to control the dose spillage, and (e)
internal target structures to control target dose homogeneity.
During the optimization loops, extra objectives are automatically
created for these new structures with the aim to continually spare
the OARs at constant target dose coverage. All objective dose and
weight parameters are tuned using proprietary algorithms.

Automated VMAT Planning With Pinnacle
Personalized
Pers plans (Pers) were optimized with the Personalized module
implemented in the version 16.4.1 of Pinnacle3 Evolution TPS
(Philips Medical Systems, Fitchburg, WI, USA). This module is
an evolution of the currently used “Autoplanning” module. It
combines new advanced Philips-proprietary optimization
algorithms with the Feasibility engine, a new algorithm able to
create personalized objectives for the OARs based on actual
patient anatomy (31). In particular, the Personalized module
features two powerful robust algorithms, the Limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) for fluence map
optimization and the Layered Graph for aperture size and shape
optimization. The L-BFGS algorithm is used to reduce the dose
grid matrix—which contains over a million discrete voxels and
100,000 different parameters—to a more workable size. From a
matrix that contains ≥100 billion entries used to shape the dose
distribution, L-BFGS creates considerably smaller matrices that
yield roughly equivalent results as the larger matrix. This reduces
the time needed for optimization by reducing the memory needs
for computation and storage of entries. Then the Layered Graph
algorithm is used to generate a finite number of MLC shapes in
order to adhere to linac machine constraints for deliverability. As
for the Autoplanning engine, a Technique was defined using the
same beam parameters, dose prescription, and clinical objectives
adopted for MP and AP plans.

Before the start of optimization process, planners can also
create personalized objectives for the OARs based on actual
patient anatomy. This task is performed by the Feasibility
module, originally developed in the PlanIQ software (Sun
Nuclear Corporation, Melbourne, FL, USA) and now
integrated into the Pinnacle Personalized planning workflow.
This module is a model-based calculation engine that uses the
patient’s CT images, the prescription doses and the geometric
relationship between the target volumes and OAR to create the
so-called feasibility-DVH (fDVH) for each OAR. The
June 2021 | Volume 11 | Article 636529
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mathematical description of the Feasibility calculation module
has been thoroughly described by Ahmed et al. (27). Briefly,
based on the calculation on a benchmark grid dose using energy-
specific low-dose and high-dose kernels, the Feasibility module is
able to generate the DVH “space” for a given OAR by computing
a feasibility level (f) ranging between 0 (unachievable level) and 1
(easily achievable level). An iso-feasibility curve is then created
by joining the points in the DVH with the same value of f. The
DVH corresponding to f = 0 value is obtained assigning the full
coverage to the target volumes and the minimum dose that any
voxel outside targets could receive. This situation represents the
“ideal” dose distribution and the relative DVH the best possible
sparing curve (unachievable by design). Then, a feasibility level is
calculated for every point above the f = 0 curve, considering the
normalized distance of this point to the f = 0 curve; a closeness-
to-feasibility function is used to convert this distance to a
feasibility level (27). At the end of the calculation phase, a
fDVH “space” for each OAR is generated and presented to the
planner as a qualitatively picture divided in four main areas: a)
an “unachievable” region (presented in red color) if full targets
coverage is preserved, having the f = 0 curve as upper boundary,
b) a “difficult” to achieve region (presented in orange color),
which includes all DVH curves with f values ranging between 0
and 0.1, c) a “challenging” to achieve region (presented in yellow
color) with curves ranging between f = 0.1 and f = 0.5, and d) the
“easy” to achieve region from with curves ranging between f = 0.5
and f = 1.

An example of the Feasibility output window for a rectum
volume is shown in Figure 1. The planner may then set new
objectives for this OAR in terms of mean dose (the small circle)
and/or dose-volume objectives (the arrows) before starting the
optimization process.
Frontiers in Oncology | www.frontiersin.org 5
In this study, the Pers plans were optimized using the a-priori
fDVH knowledge for the main OARs supplied by the Feasibility
module. In particular, the requested objectives for dose sparing
were set on the f = 0.1 curve of the DVH (or mean dose panel) for
each OAR (i.e. on the interface between the “challenging to
achieve” and the “difficult to achieve” regions). In our experience,
this choice provides provided the “optimal push” to the OAR
goals without compromising target coverage.

As example, the Technique adopted for the high-risk prostate
cancer patients was reported in Figure 2, showing (a) the
template for advanced options and (b) the dose objective
values used for optimization following the suggestions of the
Feasibility module.

In this study, all automated AP and Pers plans were obtained
in a single automated optimization round and had no manual
intervention after the optimization process.

At the beginning of the implementation of our automated
planning strategy, five patients for each anatomical site, not
included in the present series, were used to create and tweak the
initial Techniques in order to generate plans fulfilling the
clinical objectives.

Plan Evaluation
DVH analysis was used for plan comparison. The target volumes
coverage were compared in terms of mean doses, D98%, D95%,
and D2% (the doses to 98, 95, and 2% of target volumes). OARs
dose sparing was evaluated following the metrics reported in
Table 1.

For each PTV, a homogeneity index (HI) was calculated as:

HI =
(D2%−D98% )

Dp
FIGURE 1 | Feasibility dose-volume histogram for rectum in Personalized template for a representative patient. The green, yellow, orange, and red regions in FDVH
indicate that the goals are “achievable”, “challenging”, “difficult”, and “not achievable”, respectively. In this example, three dose-volume objectives were defined on
the f = 0.1 curve (the black arrows) and one objective was set for the mean dose (the white circle).
June 2021 | Volume 11 | Article 636529
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where Dp is the prescription dose. Closer the HI is to 0, better
is the dose homogeneity.

The dose conformity (CN) was calculated for each target
volume as suggested by the Van’t Riet et al. (32).

CN =
TVRI

TV
·
TVRI

VRI

where TVRI was the target volume covered by the reference
isodose, TV was the target volume, and VRI was the volume of the
reference isodose. The first part of this equation defines the quality
of target coverage and the second part defines the volume of healthy
tissues receiving a dose greater than or equal to the prescribed dose.
Frontiers in Oncology | www.frontiersin.org 6
CN ranges from 0 (complete PTV geographic miss) to the ideal
value 1 (perfect conformity of the reference isodose to the PTV).
Reference isodose was selected as 95% of the prescribed dose.

Last, the integral dose (ID) received by non-tumor tissues was
calculated as the product between mean dose and non-tumor
tissue volume (Gy ∙ cc).

Rectal NTCP Evaluation
The rectal normal tissue complication probabilities (NTCPs)
were calculated for all patients using the Lyman-Kutcher-
Burman (LKB) model (32). This model is based on a probit
function:
FIGURE 2 | (A) Advanced settings template and (B) dose objectives for PTVs and OARs for a high-risk case.
June 2021 | Volume 11 | Article 636529
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NTCP =
1ffiffiffiffiffiffi
2p

p
Z t(D,V)

−∞
exp

−u2

2

� �
du

where

t =
D − TD50(V)
m · TD50(V)

TD50(V) =
TD50(1)

Vn

where the parameters D, n, m, and TD50(1) determine the
EUD delivered to the OAR of interest, the volume dependence of
NTCP, the slope of NTCP vs. dose curve, and the tolerance dose
to the whole organ leading to a 50% complication
probability, respectively.

Specific complication endpoints for the rectum were selected
as rectal bleeding of grade 1, 2, and ≥2. The corresponding set of
parameters for TD50, n, and m are taken from literature (33–35)
and reported in Table 2.

Planning Efficiency
For each patient, the total number of monitor units (MUs), the
treatment delivery time, and the total planning time (human
inputs, optimization loops, and dose calculation times) were
analyzed in order to evaluate the cost effectiveness of the
automation procedure. All optimization processes were
performed on a centralized server architecture (Oracle
Pinnacle Professional X6-2, 22-core 2.20 GHz processor).

Dose Delivery Verification
All plans underwent a detailed dosimetric verification in order to
assess their deliverability accuracy. Delivered dose distributions
were measured using a 2D ion-chamber array, the PTW 1500
Octavius detector, together with the Octavius-4D phantom both
developed by PTW (PTW, Freiburg, Germany). This array
consists of a matrix of 1,405 vented plane-parallel ion
chambers of 4.4 mm × 4.4 mm × 3.0 mm in size, providing a
maximum field size of 27 cm × 27 cm. This array is then
inserted into the Octavius-4D motorized cylindrical
polystyrene phantom. This phantom is capable to rotate
synchronously with the gantry, in terms of angle and rotation
speed, so that the detector array is always perpendicular to the
beam then allowing the possibility of three-dimensional dose
reconstruction. The measured dose distributions were then
compared with the calculated ones using the gamma function
concept. Following the suggestions of the AAPM report No. 218
(36), we considered the dose verification as optimal if the gamma
index criteria exceeded 95% with 3%-2mm criteria for dose and
distance-to-agreement.
Frontiers in Oncology | www.frontiersin.org 7
Statistical Analysis
A Kruskal-Wallis analysis of variance (ANOVA) was performed
for statistical comparisons of data. The Bonferroni-Dunn post-hoc
non-parametric test was run to correct for multiple comparisons,
with p-values at 0.05 indicating statistical significance.
RESULTS

All manual and automated generated plans fulfilled the criteria
for clinical acceptability in terms of OAR sparing and
target coverage.

Target Coverage
Table 3 reports the dosimetric data for the PTVs. The PTVs
coverage for MP, AP, and Pers plans is approximately equal for
all parameters with no significant statistical differences. In
particular, all plans in both risk groups achieved D95% ≥ 98%
and D98% ≥ 95% for both PTVs. Automated AP and Pers plans
resulted in a statistically significantly reduction of high-doses
(D2%) in both cohorts, although the difference is small in
absolute terms. The dose conformity was significantly better
with AP and Pers plans than with MP plans in both scenarios,
with Pers plans outperforming the AP plans and demonstrating a
higher capability to better conform the doses to target volumes,
especially to the complex concave lymph-nodal volumes. This
was evident in the significant increased value of CN indexes.

Figure 3 shows the isodose distributions for MP, AP, and Pers
plans for two representative patients with low-risk and high-risk
prostate cancer in axial, sagittal, and coronal planes.

OARs Sparing
Table 4 reports the dosimetric data for the OARs sparing.
Significantly lower rectal and bladder doses were observed in
automated AP and Pers plans with respect to MP plans, with Pers
plans reporting the lower values. For rectum, Pers plans yielded
an average mean dose lower by 32% (11.3 Gy) and 21% (8.3 Gy)
with respect to MP plans for low-risk and high-risk cohorts,
respectively. With respect to AP plans, Pers plans decreased the
rectal mean dose by 8% (2.0 Gy) and 9% (3.1 Gy) for low-risk
and high-risk cohorts, respectively. Similarly, the Pers plans
decreased the bladder mean doses by 24% (7.3 Gy) and 17%
(7.6 Gy) with respect to MP plans for low-risk and high-risk
cohorts, respectively. Although no statistical significance, Pers
plans reported also a decrease of 10% (4.1 Gy) with respect to AP
plans in the high-risk cohort. For both rectum and bladder, no
statistical differences were found in the dose range ≥60.1 Gy
(i.e. ≥65Gy, EQD2) with respect to MP plans.
TABLE 2 | Parameters used in calculation of normal tissue complication probability (NTCP) for rectal toxicity.

n m TD50 Endpoint Reference

NTCP1 0.14 0.26 59.2 Grade 1 rectal bleeding Gulliford (34)
NTCP2 0.12 0.14 68.2 Grade 2 rectal bleeding Gulliford (34)
NTCP3 1.00 0.16 55.9 ≥ Grade 2 rectal bleeding Tucker (35)
June 2021 | Volume 11 | A
rticle 636529

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cilla et al. Automated Planning for Prostate Cancer
Doses to the femoral heads were significantly lower in Pers
plans, with mean dose reductions of about 5 and 3 Gy with
respect to MP plans and 2 and 1 Gy with respect to AP plans for
low-risk and high-risk patients, respectively. In the high-risk
cohort, no significant dose differences were found for the small
bowel irradiation among the three planning techniques.

The integral dose was found significantly lower with the
automated plans, with a reduction of ID of about 11–16% for
the Pers plans and 7–15% for the AP plans, with respect to MP
plans. In general, larger volumes of normal tissues were exposed
to low doses in AP plans, particularly at doses ≤30 Gy, as
reported in Table 4. For example, the volume of the 30 Gy
isodose was decreased on average by 48 and 758 ml in the two
patient cohorts with Pers plans compared to MP plans, and by 20
and 257 ml compared to AP plans. This feature can also be seen
in the dose distributions shown in Figures 2A, B for two
representative patients of the two cohorts.

Figure 4 shows the box-plots of relative percentage
differences in dosimetric parameters for the main OARs of AP
(black) and Pers (red) plans with respect to MP plans for
all patients.

Figure 5 shows the average DVH curves of the plans for (a)
low-risk and (b) high-risk cancer cases.
Frontiers in Oncology | www.frontiersin.org 8
Rectal NTCP Evaluation
The calculated rectal NTCPs for all patients are reported in Table
4. With respect to grade ≥2 rectal bleeding toxicity (NTCP3), AP
and Pers plans resulted in a significantly lower NTCP with
respect to MP plans. In this case, the n value corresponds to a
parallel tissue architecture, therefore the gains in rectal DVH
with automated plans are expected to be due to the major
decrease of the rectal mean dose. Interestingly, since the
parameter set NTCP1 and NTCP2 have an n value
corresponding to more serial tissue architecture, the decrease
of NTCP observed with automated plans corresponds to a dose
decrease in the high-dose region, although of lesser amount.

Planning Efficiency and Dose Verification
The average MU number, the total planning time, the delivery
time, and the results for dose delivery verification are given in
Table 5. Averaged over all patients, Pers plans required about 14
and 76% more MUs than AP and MP plans for low-risk prostate
and about 20 and 39% more MUs than AP and MP plans for
high-risk prostate cancer patients, respectively. Despite the large
differences in MUs, the total “beam-on” times for Pers plans were
only about 1 min longer than MP plans and similar to those of
AP plans.
TABLE 3 | Comparison of dosimetric metrics between manual and automated plans for target volumes.

Low-risk prostate High-risk prostate

MP AP Pers p p MP AP Pers p p

Kruskal-
Wallis

MP vs
AP

MP vs
Pers

AP vs
Pers

Kruskal-
Wallis

MP vs
AP

MP vs
Pers

AP vs
Pers

PTV65
D98% (Gy) 62.4 ±

0.8
62.9 ±
0.9

62.7 ±
0.8

0.144 0.058 0.158 0.631 63.0 ±
0.6

63.2 ±
0.4

63.2 ±
0.3

0.212 0.112 0.146 0.895

D95% (Gy) 63.0 ±
0.8

63.7 ±
0.9

63.7 ±
0.8

0.616 0.394 0.394 0.986 63.4 ±
0.7

63.6 ±
0.4

63.7 ±
0.2

0.127 0.094 0.067 0.877

D2% (Gy) 68.1 ±
1.1

67.0 ±
1.0

67.5 ±
0.9

0.029 0.017 0.026 0.877 68.3 ±
0.8

67.4 ±
0.3

67.3 ±
0.7

0.005 0.011 0.002 0.612

Dmean (Gy) 65.6 ±
0.7

65.4 ±
0.9

65.8 ±
0.8

0.282 0.419 0.434 0.111 66.2 ±
0.7

66.3 ±
0.3

66.0 ±
0.4

0.310 0.310 0.628 0.134

H I 8.7 ±
2.0

6.3 ±
1.2

6.8. ±
1.5

0.008 0.004 0.013 0.692 8.2 ±
0.6

6.4 ±
0.9

6.2 ±
1.1

<0.001 <0.001 <0.001 0.986

PTV45
D98% (Gy) – – – – – – – 42.6 ±

0.3
43.1 ±
0.4

43.4 ±
0.4

0.001 0.021 <0.001 0.112

D95% (Gy) – – – – – – – 43.5±
0.2

44.1 ±
0.4

44.3 ±
0.3

0.001 0.002 <0.001 0.300

D2% (Gy) – – – – – – – 61.1 ±
2.5

58.8 ±
2.4

56.0 ±
2.7

0.001 0.096 <0.001 0.054

Dmean (Gy) – – – – – – – 47.6 ±
1.6

45.9 ±
0.2

46.2 ±
0.4

0.001 <0.001 0.001 0.494

H I – – – – – – – 41.0 ±
5.9

34.9 ±
5.6

28.0 ±
5.5

0.001 0.094 0.001 0.027

Dose
conformity
CN1 0.81 ±

0.05
0.86 ±
0.05

0.87 ±
0.05

0.046 0.039 0.026 0.877 0.80 ±
0.03

0.82 ±
0.03

0.83 ±
0.03

0.061 0.105 0.021 0.491

CN2 – – – – – – – 0.60 ±
0.04

0.67 ±
0.04

0.69 ±
0.02

0.001 0.003 <0.001 0.117
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The average treatment planning time was found to decrease
dramatically in the transition from manual to automated
planning. Using a centralized server architecture, Pers plans
were generated with average times of about 7 and 15 min for
low-risk and high-risk patient cohorts, respectively. These
planning times were significantly lower also compared with AP
planning times, with an average decrease of about 9 and 45 min
for the low-risk and high-risk cohorts, respectively.

Pre-treatment verification was performed for all plans. With
criteria equal to 3% (global) −2 mm for g-index, the average pass-
rate was greater than 95% for all plans and all techniques.
DISCUSSION

The advancement in artificial intelligence is reshaping the field of
radiation oncology in all aspects. In particular, the continued
evolution of computerized solution for automated treatment
planning are advancing physicists’ ability to generate high-
quality treatment plans. With regard to low-risk prostate cases,
Heijmen et al. (36) presented a summary of previously published
studies between automated and manual generated plans. Most of
Frontiers in Oncology | www.frontiersin.org 9
these studies were focused on the knowledge-based strategy (12–
15) reporting only small differences in dosimetric endpoints. On
the contrary, in their multi-center study (37), the Erasmus-
ICycle engine was used for MCO-based automation of prostate
cancer planning in four Centers, reporting an overall dosimetric
superiority of automated plans in terms of rectal dose reduction.
The same research group used the ICycle engine to explore the
patient-specific trade-offs between planning aims in prostate
cancer (38). The authors reported significant NTCP reductions
for rectal toxicity and underlined the role of automated approach
for personalization of patient care. Studies for high-risk prostate
cancer or for complex pelvis treatment are much rarer. In a
recent review focused on automated planning, Hussein et al. (39)
identified only one out of the 81 studies on whole pelvic prostate
radiotherapy. This study, performed by Buschmann et al. (19),
evaluated the Erasmus-ICycle planning automation solution as a
pre-optimizer for automated VMAT planning. Automated
VMAT plans exhibited strongly improved organ sparing and
higher conformity compared to manual plans, with mean doses
of bladder and rectum reduced by 10.7 and 4.5 Gy, respectively.
Recently, we evaluated the potential of Pinnacle Autoplanning
for head-neck, endometrial, and high-risk prostate cases,
FIGURE 3 | Representative dose distributions for manual plans (MP), Autoplanning (AP), and Personalized plans (Pers) for (upper) low-risk and (lower) a high-risk
prostate cancer patients.
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reporting a significant increase of dose conformity and a
reduction of plans variability and planning times (21). To the
authors’ knowledge only another study has been published in
this clinical setting. Wheeler et al. (40) evaluated a novel
automated planning solution whose Pareto navigation-based
methodology enabled clinical decision-making on trade-off
balancing to be incorporated within automated protocols. The
authors successfully applied their engine to prostate cancer
patients with and without elective nodal irradiation and
robustly generated high quality plans in an efficient manner.
Frontiers in Oncology | www.frontiersin.org 10
Starting from this limited evidence base, our study provided
further data in support of automation for two prostate treatment
scenarios of different complexity. In particular, we evaluated for
the first time the potential of a new fully automated template-
based VMAT planning engine, called Pinnacle Personalized, in
low-risk and high-risk prostate cancer patients. In the last
scenario, treatment involves large concave-shaped targets and
multiple dose prescriptions, and therefore presents a major
challenge for the automated engines algorithms. In the present
study, no differences were observed for target coverage, but AP
TABLE 4 | Comparison of dosimetric metrics between manual and automated plans for OARs.

Low-risk prostate High-risk prostate

MP AP Pers p p MP AP Pers p p

Kruskal-
Wallis

MP vs
AP

MP vs
Pers

AP vs
Pers

Kruskal-
Wallis

MP vs
AP

MP vs
Pers

AP vs
Pers

Rectum
Dmean
(Gy)

35.1 ±
5.8

25.8 ±
5.5

23.8 ±
5.6

<0.001 0.002 <0.001 0.429 40.0 ±
2.4

34.8 ±
2.1

31.7 ±
2.5

<0.001 0.001 <0.001 0.032

V50 (%) 26.9 ±
9.6

18.6 ±
8.6

17.9 ±
8.5

0.026 0.030 0.014 0.770 30.9 ±
6.5

26.3 ±
6.5

23.7 ±
6.4

0.009 0.046 0.002 0.298

V60 (%) 17.8 ±
6.8

14.2 ±
6.7

13.4 ±
6.4

0.080 0.079 0.037 0.737 22.8 ±
5.5

19.4 ±
5.1

17.7 ±
5.5

0.010 0.048 0.003 0.318

V65 (%) 13.3 ±
6.2

11.8 ±
6.2

10.9 ±
5.6

0.484 0.439 0.235 0.681 17.0 ±
4.9

14.9 ±
4.1

14.4 ±
4.1

0.268 0.197 0.134 0.836

V70 (%) 6.8 ± 2.8 6.6 ± 3.0 6.7 ± 3.0 0.971 0.857 0.959 0.816 10.4 ±
3.3

9.9 ± 3.1 9.9 ± 3.2 0.837 0.594 0.618 0.973

NTCP1 (%) 31.5 ±
3.4

25.1 ±
6.4

24.7 ±
7.1

0.010 0.009 0.008 0.945 33.3 ±
4.2

31.2 ±
4.9

29.8 ±
5.2

0.018 0.078 0.005 0.286

NTCP2 (%) 6.0 ± 1.7 3.8 ± 2.3 3.7 ± 2.4 0.016 0.018 0.010 0.823 7.3 ± 1.7 6.3 ± 1.6 5.8 ± 1.5 0.011 0.043 0.003 0.362
NTCP3 (%) 1.9 ± 1.4 0.5 ± 1.4 0.2 ± 0.6 <0.001 <0.001 <0.001 0.925 3.3 ± 1.3 1.2 ± 0.5 0.5 ± 0.4 <0.001 0.001 <0.001 0.029
Bladder
Dmean
(Gy)

30.9 ±
9.9

23.7 ±
8.7

23.6 ±
8.7

0.054 0.042 0.032 0.904 44.2 ±
5.9

40.7 ±
6.4

36.6 ±
6.8

0.014 0.146 0.004 0.146

V65 (%) 16.7 ±
8.2

14.8 ±
8.2

15.9 ±
8.1

0.632 0.348 0.763 0.524 20.3 ±
12.6

19.7 ±
11.6

18.8 ±
12.3

0.798 0.817 0.508 0.667

V70 (%) 12.6 ±
5.5

12.0 ±
7.5

12.1 ±
7.0

0.616 0.380 0.409 0.959 16.0 ±
10.7

15.9 ±
9.9

15.9 ±
10.9

0.946 0.938 0.808 0.749

Femoral
head R
Dmean
(Gy)

14.5 ±
3.7

12.3 ±
4.5

9.3 ± 2.5 0.001 0.089 0.001 0.056 22.8 ±
4.5

20.9 ±
2.1

19.7 ±
2.4

0.041 0.204 0.011 0.204

V45 (%) 3.1 ± 5.3 0 ± 0.0 0 ± 0.0 <0.001 <0.001 <0.001 1.000 0.3 ± 0.4 0 ± 0.0 0 ± 0.0 <0.001 <0.001 <0.001 1.000
Femoral
head L
Dmean
(Gy)

14.2± 3.4 11.7± 4.4 9.5± 2.8 0.012 0.130 0.003 0.144 22.3 ±
2.4

20.6 ±
2.9

19.9 ±
2.2

0.049 0.148 0.015 0.322

V45 (%) 1.9 ± 3.2 0 ± 0.0 0 ± 0.0 <0.001 <0.001 <0.001 1.000 0.5 ± 0.8 0 ± 0.0 0 ± 0.0 <0.001 <0.001 <0.001 1.000
Small
Bowel
Dmean
(Gy)

– – – 12.9 ±
4.9

12.3± 4.3 11.9 ±
4.4

0.859 0.895 0.597 0.691

V15 (cc) – – – 115.1 ±
44.5

115.4 ±
47.8

113.1 ±
45.8

0.953 0.774 0.808 0.965

Healthy
tissues
ID
(Gy*cc*105)

1.38 ±
0.31

1.17 ±
0.29

1.16 ±
0.28

0.135 0.095 0.074 0.904 2.63 ±
0.36

2.44 ±
0.35

2.34 ±
0.33

0.139 0.291 0.057 0.354

V30 (cc) 707 ±
204

679 ±
232

659 ±
231

0.775 0.712 0.475 0.731 2,600 ±
282

2,099 ±
306

1,842 ±
272

<0.001 0.008 <0.001 0.107

V10 (cc) 4,363 ±
1,042

4,293 ±
1,032

4,140 ±
1,026

0.799 0.891 0.525 0.618 9,318 ±
1,379

9,232 ±
1,488

8,974 ±
1,386

0.759 0.877 0.481 0.581
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and Pers automated plans reported an overall improvement of
plan quality in terms of dose conformity and sparing of critical
structures, with Pers plans outperforming also the AP plans. In
addition to the availment of the templates that is common with
the Autoplanning optimization procedure, the driving force of
the new Personalized automated planning engine was found in
its integration with the Feasibility module. The use of the
Feasibility engine translated in a significant reduction of rectal
dose not only compared to manually generated plans but also
with respect to AP plans. The average mean dose to rectum was
Frontiers in Oncology | www.frontiersin.org 11
decreased by 32.2 and 7.8% in the low-risk scenario and by 20.8
and 8.9% for the high-risk cases with respect to MP and AP
plans, respectively. Most of these dose reductions are in the low
and middle dose range. In other words, we reported that an “a
priori” knowledge of the theoretical dose-volume space available
for each OAR had a substantial impact on plan quality, able to
identify for each patient dosimetric outliers and planning cut-off
criteria. This feature is a major step forward not only with respect
to conventional manual planning but also with respect to
Autoplanning strategy. In conventional manual planning, due
A

B

FIGURE 5 | Population mean DVHs for PTV65, PTV45, rectum, and bladder for (A) low-risk and (B) high-risk prostate cancer patients (MP plans: black-solid line,
AP plans: red solid-line, and Pers plans: green solid-line).
FIGURE 4 | Boxplots of differences of the main dosimetric metrics of AP plans (red) and Pers plans (black) compared to MP plans for rectum, bladder, femurs, and
small bowel irradiation. PTVs. The central line marks the median, the edges of the box are the 25th and 75th percentiles, black circles represent the extreme values.
The crosses represent the mean values.
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to lack of knowledge of achievable dose sparing for a particular
anatomy, the planner does not exactly know when to adjust,
where to adjust, and even when to stop optimization. This means
that even an experienced planner does not know whether an
optimal plan has been achieved without clear knowledge on the
correlation between anatomy features and achievable DVH.
Then, based on its own experience and skills, a planner has to
rely on the additional adjustments till no further improvement
can be achieved. For example, in the present study, the evaluation
of manual generated plans showed that the doses to normal
structures were far below the institutional objective constraints,
then all MP plans were considered optimally generated and
cl inical ly acceptable and no further optimizations
were performed.

The price to pay for this quality improvement was an increase
in the plan complexity. Automated AP and Pers plans were
found associated with a large number of monitor units and small
and complex control points. The increase of MUs number may
lead to more head scatter and higher peripheral doses, potentially
contributing to an increase of total body radiation dose.
However, unlike expected, the increase of MUs number did
not increase the integral dose to the patients; mean ID was found
lower by 16 and 11% for the Pers plans with respect to MP plans,
theoretically reducing the risk of secondary malignancies (41). In
addition, this increased plan complexity might also lead to
challenges in radiation delivery, since higher plan complexity
has been associated to inaccurate dose delivery and worse quality
assurance outcomes (42). In order to better understand the
trade-off between plan complexity and the dosimetric accuracy
of the treatment delivery, we performed a “pre-treatment” dose
verification of all plans. Despite the higher complexity of
automated plans, the results of dosimetric verification
confirmed the deliverability of the AP and Pers plans and their
reliability for clinical applications. Another shortcoming of the
MUs increase is the prolongation of about 1 min of the beam-on
time for automated plans. If this extra-time may theoretically
have an impact on intra-fraction prostate motion, it has been
recently reported (43) that applied target margins as those used
in this study are adequate to mitigate intra-fraction motion of the
prostate for total treatment durations up to 8 min.
Frontiers in Oncology | www.frontiersin.org 12
A major finding supplied by the new Personalized engine is
the impressive reduction of planning time. The mean overall
time, including human inputs, optimization loop processes, and
calculation times, was less than 7 min for low-risk prostate and
15 min for high-risk prostate cases, respectively. The dramatic
reduction of planning times can open up new possibilities for a
real-time adaptive radiotherapy. The precise targeting of the
prostate and the pelvic lymph nodes is challenging because both
targets move independently, with shift up to 15 mm day to day
(44). Then the intra- and inter-fraction motion of the prostate
may negate the advantages of highly conformal dose
distributions obtained by VMAT. In particular, since the
prostate is highly mobile (due to differences in bladder and
rectum filling) while the pelvic lymph nodes are less mobile (due
to their close proximity to vascular structures) a simple
correction of the isocenter position to compensate for prostate
motion may reduce the pelvic lymph nodes dose coverage,
particularly in highly modulated treatments. Therefore, daily
inter- and intra-fraction anatomical changes need to be
accounted for both targets at the same time. Adaptive
radiotherapy (ART) has been proposed to either reduce or
compensate for the effect of patient-specific treatment variation
measured during the course of radiotherapy using offline
adaptive re-planning (45) of pre-planned libraries (46).
Recently, the introduction of MR linacs offers new possibilities
for daily adaptive re-planning in prostate cancer, thanks to high
soft tissue contrast imaging (47). However, all these approaches
are hampered by the time-consuming re-planning process,
representing nowadays the major obstacle for large scale
implementation of ART strategy. The major improvement of
planning efficiency supplied by the Personalized engine has the
potential to make routine online adaptive radiotherapy a
possibility, allowing prostate cancer patients to be treated with
a plan adapted according to actual anatomy in a few minutes
after imaging. These new opportunities are in some way a
response to the alarms raised about the impact that AI may
have on the current organization of medical physics and
dosimetry departments; in particular, the question if AI
technology will marginalize medical physicists in the near
future has been recently debated (48). As fairly expressed by
TABLE 5 | Overview of planning efficiency and treatment delivery metrics.

Low-risk prostate High-risk prostate

MP AP Pers p p MP AP Pers p p

Kruskal-
Wallis

MP vs
AP

MP vs
Pers

AP vs
Pers

Kruskal-
Wallis

MP vs
AP

MP vs
Pers

AP vs
Pers

MUs 374 ±
51

578 ±
79

657 ±
81

<0.001 <0.001 <0.001 0.113 528 ± 58 613 ±
53

736 ±
63

<0.001 0.029 <0.001 0.014

Planning time
(min)

63.0 ±
15.5

15.8 ±
0.9

6.7 ±
0.2

<0.001 <0.001 <0.001 <0.001 138.5 ±
48.1

60.6 ±
4.1

15.0 ±
0.6

<0.001 <0.001 <0.001 <0.001

Beam-on time
(min)

1.2 ±
0.2

1.9 ±
0.3

2.1 ±
0.3

<0.001 <0.001 <0.001 0.185 2.0 ± 0.2 2.4 ±
0.2

2.7 ±
0.3

<0.001 0.009 <0.001 0.024

g pass-rate
(%)

98.7 ±
1.2

98.1 ±
1.4

98.0 ±
1.4

0.368 0.281 0.184 0.802 97.7 ±
1.2

97.2 ±
1.6

96.6 ±
1.7

0.238 0.403 0.147 0.252
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Moore et al. (49), if this new technology is able to increase our
ability to plan faster and more frequently as promised by the
adaptive radiotherapy concept, then the positions of dosimetrists
and medical physicists “may be used for dose aggregation,
analysis, individualized care, and many other activities which
were not possible with conventional clinical practices.” In other
words, in our opinion, the demand for clinical medical physicists
can only increase as technologies such as AI are becoming more
complex in healthcare. A current research is ongoing in our
Center to expand the Personalized engine planning in an
integrated workflow with online adaptation to be able to
generate new plans on demand.

A direct comparison between knowledge-based and template-
based algorithms was performed for head-neck tumors in order
to assess the strengths and/or weaknesses of the two automation
strategies, reporting comparable results (50). However,
compared to these alternative methods for automation of
treatment planning, the Autoplanning and Personalized
engines present a clear alternative. For knowledge-based
systems, a library of prior patients is required to build up the
corresponding mathematical model. This library must be filled
with a large number of high-quality plans for each protocol and
disease site, whose clinical implementation translated in a labor-
intensive process. Any changes in contouring protocol or dose
prescription or planning techniques could require the generation
of a new database. Moreover, the newly generated plan quality
inevitably depends on the quality of the plans building the
database, so that non-optimal plans entered in the database
may degrade results. On contrary, the Personalized (and
Autoplanning) plan solutions are therefore not influenced by
the quality or quantity of historical plans and new techniques can
be easily developed without time consuming. In our experience
only a small set of training patients for each anatomical site (five
patients) was necessary as starting point for the implementation
of the Techniques in both Autoplanning and Personalized
engines by an expert team of medical physicists and radiation
oncologists. Moreover, also the Feasibility module does not
require a database of prior plans but rather derives the lower
achievable boundary of the dose volume histograms for the
OARs from nearly first principles, only assuming that the
targets are uniformly covered with the prescription doses.
The Feasibility solutions should then be Pareto optimal, i.e.
one or more objectives (as OARs sparing) cannot be improved
without worsening at least one other (as target coverage).
However, this demonstration is a challenging mathematical
task and is beyond the scope of the present paper.

Furthermore, AP algorithms may provide easier access to
complex and high-quality radiotherapy treatments, improving
the consistency between treatments carried out in different
institutions. In fact, for each anatomical site, it is possible to
define a standardized model which can then be shared and
adapted to the local practice of many different centers.
Therefore the diffusion of AP model configurations represents
a solid strategy for the dissemination of optimized plans (22).

Lastly, some limits need to be recognized. First, the validation
of a model for clinical use requires important skills and huge
Frontiers in Oncology | www.frontiersin.org 13
background knowledge of the medical physicists that has to
wisely balance the trade-offs between the sparing of OARs and
targets coverage. If the model would result in suboptimal
implementation this would bias all treatments for that
anatomic site. Secondly, the impact of quality of manually
generated plans has to be recognized, since the poorer the
manual plan, the better the AP plans. For this reason all
manual plans were optimized by a senior medical physicist
with long-lasting VMAT planning experience whose endpoint
was to achieve high-quality manual plans avoiding inter-planner
variability. Last, this is a single institution study, therefore
findings could be biased by local planning procedures and may
not automatically translate in other centers with different
equipment, procedures, protocols, and planning experience.
The present study highlighted the potential of Pinnacle
Personalized engine for prostate cancer treatments; currently,
we are planning a multi-center study aimed to validate this new
algorithm in other anatomical districts.

CONCLUSION

Automation in treatment planning is a rapidly developing field
and the new algorithms for plan optimization demonstrated the
potential to increase the plans overall quality. We evaluated the
Pinnacle Personalized engine to be a robust clinical tool,
reporting significant increase of dose conformity with respect
to manual planning and Autoplanning solutions in two
different prostate treatment scenarios. The use of Feasibility
module allows to push the limits of OAR sparing while
maintaining routine clinical target coverage goals. Moreover,
Personalized offers a dramatic reduction in planning times with
the potential to make routine online adaptive radiotherapy a
real possibility.
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