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Abstract

Space, time and the social realm are intrinsically linked. While an array of studies have tried to

untangle these factors and their influence on human behaviour, hardly any have taken their effects

into account at the same time. To disentangle these factors, we try to predict future encounters

between students and assess how important social, spatial and temporal features are for

prediction. We phrase our problem of predicting future encounters as a link-prediction problem

and utilise set of Random Forest predictors for the prediction task. We use data collected by the

Copenhagen network study; a study unique in scope and scale and tracks 847 students via mobile

phones over the course of a whole academic year. We find that network and social features hold

the highest discriminatory power for predicting future encounters.
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Introduction

Few would doubt that space, time and the social realm are intrinsically linked. Geography

has always been interested in the role spatial, temporal and social factors play in shaping

human behaviour. However, it can be rather difficult to separate the effect an individual

factor has on human behaviour from other dynamics. After all, human behaviour is inher-

ently interwoven with space and time. As H€agerstrand (1970: 10) emblematically stated

‘“somewhere” is always critically tied to the “somewhere” of a moment earlier’. In fact,

social networks and travel patterns of individuals seem to co-evolve over time

(Alessandretti, 2018; Arentze and Timmermans, 2008).
Several studies tried to disentangle space, time and social factors in recent years.

Backstrom et al. (2010) showed that the probability of friendship between people decreases

with distance. Scellato et al. (2011a) studied the properties of location-based social networks

and found that about 40% of all links in location-based social networks were shorter than

100 km. Lambiotte et al. (2008) concluded that the likelihood of a tie in a mobile commu-

nications network followed a gravity model (i.e. the likelihood of a tie between two users

decreased exponentially with distance). Toole et al. (2015) employed the coupling of social

ties and mobility behaviour to build a mobility model that included choices based on social

contacts. They showed that the ratio of acquaintances, co-workers and friends/family in a

person’s ego network shaped their mobility behaviour. Studying the mobility patterns and

virtual interactions of people, Larsen et al. (2006) argued that nearby strong ties were crucial

for an individual’s network as they found that phone calls, texting and face-to-face meetings

became less regular with distance. The characteristics of one’s social networks such as also

systematically shaped travel behaviour (Carrasco et al., 2008; Kowald et al., 2013).
Recently researchers also called attention to how space itself could influence personal

relationships (Adams et al., 2012). Boessen et al. (2017) discovered that the built environ-

ment had a significant effect on how people socialised. They highlighted the potential role

the built environment could have for fostering the formation of social ties. Both Butts et al.

(2012) and Doreian and Conti (2012) showed that the structure of social networks could be

partly explained by spatial factors.
Noulas et al. (2015) and Scellato et al. (2011b) both utilised the social and spatial prop-

erties of location-based social networks to propose a link-prediction model. Brown et al.

(2013) developed a model for the evolution of city-wide location-based social networks,

which demonstrated that friends tended to meet at specific – more ‘social’ – places.

De Domenico et al. (2013) used the mobility data of friends to improve user movement

prediction. Last, Cho et al. (2011) built a mobility model incorporating both periodic move-

ment of individuals as well as corporeal travel induced by social ties.
An extensive amount of research has already been conducted on the interplay between

the social realm, place and time. However, studies so far were either limited to a very specific

type of network or did not jointly deal with all three factors. On the one hand, several

studies that accounted for spatial and temporal features focused on a narrow set of social

interactions such as online social networks or encounters in face-to-face networks. One

group of research projects studied very topical online social networks such as the

Foursquare network (Scellato et al., 2011b) or the Flickr network (Crandall et al., 2010),

while another group focused on studies of face-to-face encounters solely in highly structured

and defined settings such as a museum, a conference, or a primary school (Isella et al., 2011;

Stehle et al., 2011; Zhao et al., 2011). Whereas Noulas et al. (2015) analysed spatial, tem-

poral and social features but focused on networks of places instead of individuals.
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On the other hand, studies that analysed more broadly defined social networks did not

assess spatial and temporal features at the same time. Although Yang et al. (2013) used

information about when and in which network configuration people have met as features

for their link-prediction algorithm, they did not incorporate spatial features. Sekara et al.

(2016) utilised the regularity of social group structures to predict missing members of the

group. However, place did not play a role in their subsequent prediction task. While Wang

et al. (2011) successfully employed the similarity of trajectories of users for predicting phone

calls between users, they did not take any other temporal or spatial features into account.
In short, we believed that a joint assessment of spatial, temporal and social features is

crucial for understanding the true dynamics behind social encounters as human interactions

might be spatially, temporally and/or socially confounded with each other.
Consequently, our contribution consisted of three parts:

1. ascertaining whether geographic places themselves hold discriminatory power,
2. assessing the ‘simultaneous’ predictive information of geographic, temporal and social

features for a changing network of encounters and
3. understanding if different types of social encounters networks influence the overall

predictability.

Overall, we tried to better understand what factors drive the evolution of a human social

encounter network, and how we could use salient features for predicting future encounters.

Data

The data we used for this article consisted of the dataset collected by the Copenhagen

Network Study (Stopczynski et al., 2014). The dataset tracked 847 students at the

Danmarks Tekniske Universitet (Technical University of Denmark, hereafter DTU) for a

couple of years using smartphones provided by the researchers. Around 22% of the students

in the study were female and around 78% male. The research subjects were typically

between 19 and 21 years old.
The dataset contained call and text logs, GPS traces, scans of WiFi access points, as well

as scans of nearby Bluetooth devices of the students. The scale of the dataset provided an

unprecedented level of detail and at the same time breath of the daily life of a cohort of

students. For the first time a significant portion of participants’ ‘everyday’ peers was cov-

ered by a study.
While data were collected for 24months from September 2013 to September 2015, the

study was initially designed to only collect data for one year. Consequently the first aca-

demic year provided the highest sample rate of behaviour and we focused our analysis on

the first academic year.

Problem definition

A common way of dealing with social relations within populations is to view social ties – in

our case social encounters – as edges (hereafter also links and ties) in a graph.

Conceptualising social relations as edges in a graph had the advantage that analysing

social relations as graphs was fairly well studied problem and allowed me to rely on

state-of-the-art methods for predicting future encounters (Peng et al., 2015). Furthermore,

viewing the problem as a time-varying graph enabled us to account for social network
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dynamics. In particular, we phrased the problem of predicting an encounter as a link-

prediction problem in a time-varying graph Gt that represents encounters.

Encounter

For our study we defined an encounter as physical proximity as measured by a smartphone

via a Bluetooth measurement. We used a Bluetooth signal of �80 dBm or stronger to indi-

cate encounters as Sekara and Lehmann (2014) showed this to be a reliable cut-off value for

close and unobstructed physical proximity for this dataset. Given that we were only inter-

ested in time spent at stop locations, this meant an encounter in our study represented either

the physical co-location of two students in the same room or in close proximity outdoors.

Sekara et al. (2016) used this definition of face-to-face encounter to study the evolution and

structure of dynamic social networks.
However, we were not interested in predicting short encounters that are only due to

chance but rather in more meaningful, longer encounters. Thus, we adopted the convention

of the Rochester Interaction Record for meaningful encounters, where they were defined to

last at least 10 minutes (Reis and Wheeler, 1991).

Social encounter graph

To construct the time-varying, undirected social encounter graph Gt ¼ ðVt; EtÞ, where V t

are the set of students at t and Et the set of all meaningful encounters between them, we first

discretised our data into intervals of 30minutes. We chose an interval of 30minutes to be

able to account for the irregularity of the Bluetooth measurements and still be able to find

meaningful encounters between students. In case, a meaningful encounter of at least 10

minutes was not represented in the resulting graph due how we discretised the time steps,

we assigned it to the period t with which it had the biggest overlap; we broke ties between

intervals randomly. As the majority of interactions in the dataset were either shorter than 10

minutes or significantly longer than 10 minutes, this did not significantly alter the resulting

graph. To summarise, any edge e 2 Gt represents a meaningful encounter between students

that was at least 10 minutes long as observed by at least one student.

Link prediction

As we conceptualised social encounters as edges in a graph, the problem of predicting future

encounters between any two students became equivalent to predicting whether an edge

between nodes in the graph existed. More formally, in a human encounter network Gt,

the link-prediction task is to predict whether e at time tþ n exists for the vertices

u; v 2 Vt. In particular, we were trying to predict who will meet whom for 10 minutes or

more during period tþ 1. This is equivalent to predicting all the new ties that form, the ties

that do not change and all the ties that will dissolve from time period to the next, or in other

words predicting the network structure of Gtþ1. Formulating the problem this way had the

advantage of including link dissolution – a not well studied problem in link prediction (Peng

et al., 2015) – quite naturally in the problem definition.

Predicting future encounters

After defining our problem in the previous section, we specify how we implement our

approach for predicting links between nodes. In particular, we describe which algorithm
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we used for prediction, which features we used for predicting future encounters and how we

built our models.

Random forests

Random forests consistently performed well in link-prediction tasks (Peng et al., 2015). We

thus opted to use them for our prediction task (Pedregosa and Varoquaux, 2011). At its

core, random forests are an ensemble learning algorithm for classification built upon deci-

sion trees. However, decision trees are sensitive to initial conditions (Altmann et al., 2010)

and can easily over-fit the data (Ho, 2002). To deal with these problems Breiman (2001)

proposed to use a set of decision trees. He defined a random forest as a classifier that

consists of a collection of tree-structured classifiers fhðx;HkÞ; k ¼ 1; . . .g, where fHkg are

independent identically distributed random vectors and each tree casts a vote for the most

popular class at input x. To protect against over fitting each split of a decision tree only

considers a random subset of all features.
Recall that we were trying to predict future social encounters between u; v 2 Vt. Thus, for

each individual u, we trained a separate random forest classifier R. R can be understood to

be a mapping from our input space (the features we used for prediction) to the output space

(encounters of students at Gtþn). Thus, each R tried to learn for each user u their individual

function of whether u and v would encounter each other in the next time period. Conditional

probabilities can be estimated by simply counting the fraction of trees in the forest that vote

for a certain class, which usually delivers good probability estimates (Dankowski and

Ziegler, 2016). The probability of an edge e between u and v could then be seen as

the average fraction of trees that voted for e between u and v. Note as each user u had its

own R the estimated probability of the edge e from u to v, might be different from the edge e

from v to u.

Features

We generally used features that had been used in the literature for our link-prediction task.

All our features accounted for the general likelihood of an encounter occurring, for the

various contexts an encounter could take place in, or were derived from the encounter graph

of the students.
The three contexts we were particularly interested in understanding their role for encoun-

ters were time, space and social factors and thus most of our features were related to them.

In order to assess the predictive information of each of those contexts, we created the

following five sets of features:

Baseline features. Baseline features accounted for the idea that two students that met each

other often and frequently were more likely to meet each other in the future than two

students who hardly ever met. We constructed as baseline features for all our models wheth-

er the two nodes met in the previous time period or in other words whether we could observe

a tie between them (edge), the amount of elapsed time since the last meeting (recency) and

the total amount of time we observed two nodes together (time spent together) as described

in Yang et al. (2013).

Temporal features. The time related features captured variations in temporal behavioural

patterns as when two students met could in itself be an important clue for the type of

relationship between two students. For example, if two students only ever meet during
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normal working hours then they are most likely just colleagues at university, but if they also
meet after work or on the weekend then their relationship should be qualitatively different.
Let M now be the set of all meetings between two nodes u, v in the training period. We built
a feature vector (hour-of-day(M)) of length 24, that counted the total amount of the
encounters between u and v at every hour of the day as well as feature vector (day-of-the-
week(M)) of length 7, that counted the total amount of encounters between students at
every day of the week. If an encounter occurred in more than one bucket, we distributed it
proportionally for both hour-of-the-day as well as day-of-the-week. We also included the
current hour of the day as well as the current day of the week as a feature, so that each R
could keep track of when and where the current encounter occurred.

Spatial features. We observed that there was a difference in whether two people meet at a
place a lot of people visit and thus with high place entropy or at ‘quieter’ place with low
place entropy. Or in other words, if two students met at the university, a very popular place
for students, the information content of that meeting was relatively low, but if two people
met at their respective homes then this was a much more unlikely and more noteworthy
event. We thus derived the minimum place entropy of the set of all observed locations of
meetings between any u, as feature as well (Scellato et al., 2011b).

We also inferred the relative importance of each venue for each user u by measuring the
amount of time a user spent there. We then ranked the venues by the relative importance for
each user. Arguably the more time a student spent at a location the more important that
location was for that student; encounters at more important locations as measured by the
time students spent there could thus signify a more important social relationship as well. We
thus also included the maxRank(relativeImportance(u, v)) of any meeting between u, v.

Based on Oldenburg’s seminal paper (Oldenburg and Brissett, 1982), we derived geo-
graphic contexts in which encounters occurred as features as well. Oldenburg argued that in
order for communities to thrive they needed places away from the home (‘first place’) and
the workplace (‘second place’); hence they needed ‘third places’. Examples of third places
were cafes, clubs and parks. Several studies used Oldenburg’s concept of ‘third places’ to
highlight the importance they played for social encounters (e.g. see among others Glover
and Parry (2009); Mair (2009) and Rosenbaum et al. (2007)). Others used a classification
similar to Oldenburg’s to understand and predict human mobility on a larger scale (Cho et
al., 2011; Eagle and Pentland, 2009).

Analogous to Oldenburg we distinguished between several different geographic settings a
student could be in: the home, the university, a third place and other. We inferred the
locations as follows:

First, we found the home location for each student by clustering all his or her location
measurements between 11 p.m. and 4 a.m. using DBSCAN (Ester et al., 1996)1 into the set
of spatial clusters C. We used DBSCAN as we did not have to specify the amount of clusters
beforehand as we do not know how many clusters each individual might have. Each cluster
c 2 C then represented an area where a lot of locational measurements were taken for that
user. We then selected maxðjcjÞ as a student’s home location.

Second, for assigning students to the university context we mapped the campus of their
university and checked whether students were within 50 metres of the campus. As some
students lived in dormitories on campus we gave precedence to the home location when
assigning location measurements to their respective contexts.

Third, to infer third places we adopted the approach of Sekara et al. (2016) for inferring
significantly more important contexts given a distribution of observed times in a given
context. For each student, we constructed the set of all the stop locations S a student
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every day of the week. If an encounter occurred in more than one bucket, we distributed it
proportionally for both hour-of-the-day as well as day-of-the-week. We also included the
current hour of the day as well as the current day of the week as a feature, so that each R
could keep track of when and where the current encounter occurred.

Spatial features. We observed that there was a difference in whether two people meet at a
place a lot of people visit and thus with high place entropy or at ‘quieter’ place with low
place entropy. Or in other words, if two students met at the university, a very popular place
for students, the information content of that meeting was relatively low, but if two people
met at their respective homes then this was a much more unlikely and more noteworthy
event. We thus derived the minimum place entropy of the set of all observed locations of
meetings between any u, as feature as well (Scellato et al., 2011b).

We also inferred the relative importance of each venue for each user u by measuring the
amount of time a user spent there. We then ranked the venues by the relative importance for
each user. Arguably the more time a student spent at a location the more important that
location was for that student; encounters at more important locations as measured by the
time students spent there could thus signify a more important social relationship as well. We
thus also included the maxRank(relativeImportance(u, v)) of any meeting between u, v.

Based on Oldenburg’s seminal paper (Oldenburg and Brissett, 1982), we derived geo-
graphic contexts in which encounters occurred as features as well. Oldenburg argued that in
order for communities to thrive they needed places away from the home (‘first place’) and
the workplace (‘second place’); hence they needed ‘third places’. Examples of third places
were cafes, clubs and parks. Several studies used Oldenburg’s concept of ‘third places’ to
highlight the importance they played for social encounters (e.g. see among others Glover
and Parry (2009); Mair (2009) and Rosenbaum et al. (2007)). Others used a classification
similar to Oldenburg’s to understand and predict human mobility on a larger scale (Cho et
al., 2011; Eagle and Pentland, 2009).

Analogous to Oldenburg we distinguished between several different geographic settings a
student could be in: the home, the university, a third place and other. We inferred the
locations as follows:

First, we found the home location for each student by clustering all his or her location
measurements between 11 p.m. and 4 a.m. using DBSCAN (Ester et al., 1996)1 into the set
of spatial clusters C. We used DBSCAN as we did not have to specify the amount of clusters
beforehand as we do not know how many clusters each individual might have. Each cluster
c 2 C then represented an area where a lot of locational measurements were taken for that
user. We then selected maxðjcjÞ as a student’s home location.

Second, for assigning students to the university context we mapped the campus of their
university and checked whether students were within 50 metres of the campus. As some
students lived in dormitories on campus we gave precedence to the home location when
assigning location measurements to their respective contexts.

Third, to infer third places we adopted the approach of Sekara et al. (2016) for inferring
significantly more important contexts given a distribution of observed times in a given
context. For each student, we constructed the set of all the stop locations S a student
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visits. For each s 2 S, we could also observe the amount of time t(s) a student spent there
and rank the resulting distribution of stop times in descending order, giving one T(s). We
observed that for most students there was a clear gap in T(s); this implied that students
visited some locations very often and some locations very rarely. We defined as third place
any location s that appeared before the biggest gap in T(s), where the biggest gap in T(s) was
significantly larger than we would expect by random sampling of stop times from a uniform
distribution that was neither home nor university. This way, we could ensure that third places
were only places where students spent significantly more time than at all other locations they
visit. Fourth, any other s 2 S was classified as other.

Let context(u, v) now be the function that counts the amount of time two nodes u; v 2 G
have spent together at the different geographic contexts: Home, work/university, third place
and other. We included the amount of time spent at each spatial context as a feature. The
reasoning was that the amount of time two nodes spent together in different geographic
settings should contain information about the type of their relationship. We used the current
spatial context – home, university, third place, or other – of the encounter as a feature as
well. It seemed reasonable to expect that two students, who met regularly in a certain setting
were more likely to meet should one of them currently be in that setting.

Last, we included the Jaccard similarity, JðA;BÞ ¼ jA\Bj
jA[Bj, where A and B are the set of

visited locations (Ranjan et al., 2012). There is evidence that the more similar two individ-
uals were with respect to their mobility the more likely they were to be friends as well
(Bapierre et al., 2015; Toole et al., 2015) and thus might be indicative of future encounters.

Social features. We also accounted for the social setting an encounter occurs in. While it
would have been preferable to be able to account for all currently present people, our
dataset only allows us to count other students currently present. If two students met at
the university during a course this was nothing extraordinary in our dataset, but if two
students met alone on the campus there was a higher likelihood that they were socialising.
Let now Pu;v be the distribution of the number of other people from the study that are
present when two nodes u; v 2 G meet. We then used avgðPu;vÞ as a feature.

What is more, the social configuration two students met in could also play an important
role for predicting future encounters. Building upon the concept of triadic-closure, that is the
phenomenon in social network that friends of friends are likely to become friends themselves,
Yang et al. (2013) proposed to use triadic periods as a feature for predicting encounters. The
main idea was to count the different possible arrangements of triads in the encounter graph, or
in other words the different possible configurations of co-locations at a particular location.
This is equivalent to accounting for the immediate neighbourhood of every u in Gt.

Interestingly Bianconi et al. (2014) showed that triadic closure was a leading driver in
how social networks evolve. And triadic periods likely accounted for the dynamic of triadic
closure in the encounter graph as well.

Network topology features. In previous studies on link-prediction features derived from the
wider network topology of the social graphs were used extensively. The core idea of all
network metrics is that friends of friends are likely to become friends themselves. However,
they differ in how they formulate this idea mathematically. In particular, we included pref-
erential attachment (PA), weighted prop flow (weighted PF) and Adamic-Adar (AA) (Peng
et al., 2015) after seeing favourable performance for those three metrics when designing our
experiments. The PA metric indicates that new nodes will more likely attach to nodes that
already have a high degree. It is defined as PAðu; vÞ ¼ jCðuÞj � jCðvÞj, where CðvÞ is the set of
neighbours of node v and jCðvÞj be the number of neighbours of node v. PF is the probability
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Table 1. Descriptive statistics of the features.

Feature Min Q1 Q2 Q3 Max Mean SD

Edge 0.00 0.00 0.00 0.00 1.00 0.00 0.02

Recency 0.00 0.00 0.00 317,291.0 8,153,620.00 546,661.99 1,239,476.43

Time spent together 0.00 0.00 0.00 0.00 454,905.00 178.15 2780.26

Met at hour of the day 0 0.00 0.00 0.00 0.00 141.00 0.02 0.74

Met at hour of the day 1 0.00 0.00 0.00 0.00 143.00 0.02 0.78

Met at hour of the day 2 0.00 0.00 0.00 0.00 139.00 0.02 0.79

Met at hour of the day 3 0.00 0.00 0.00 0.00 141.00 0.02 0.82

Met at hour of the day 4 0.00 0.00 0.00 0.00 141.00 0.02 0.84

Met at hour of the day 5 0.00 0.00 0.00 0.00 143.00 0.02 0.87

Met at hour of the day 6 0.00 0.00 0.00 0.00 141.00 0.02 0.87

Met at hour of the day 7 0.00 0.00 0.00 0.00 141.00 0.02 0.87

Met at hour of the day 8 0.00 0.00 0.00 0.00 137.00 0.02 0.78

Met at hour of the day 9 0.00 0.00 0.00 0.00 136.00 0.05 0.92

Met at hour of the day 10 0.00 0.00 0.00 0.00 114.00 0.07 1.03

Met at hour of the day 11 0.00 0.00 0.00 0.00 111.00 0.09 1.15

Met at hour of the day 12 0.00 0.00 0.00 0.00 111.00 0.09 1.13

Met at hour of the day 13 0.00 0.00 0.00 0.00 105.00 0.07 0.97

Met at hour of the day 14 0.00 0.00 0.00 0.00 102.00 0.08 1.08

Met at hour of the day 15 0.00 0.00 0.00 0.00 100.00 0.09 1.11

Met at hour of the day 16 0.00 0.00 0.00 0.00 99.00 0.07 1.04

Met at hour of the day 17 0.00 0.00 0.00 0.00 96.00 0.06 0.92

Met at hour of the day 18 0.00 0.00 0.00 0.00 113.00 0.03 0.72

Met at hour of the day 19 0.00 0.00 0.00 0.00 107.00 0.02 0.64

Met at hour of the day 20 0.00 0.00 0.00 0.00 107.00 0.02 0.64

Met at hour of the day 21 0.00 0.00 0.00 0.00 132.00 0.02 0.67

Met at hour of the day 22 0.00 0.00 0.00 0.00 137.00 0.02 0.67

Met at hour of the day 23 0.00 0.00 0.00 0.00 138.00 0.02 0.70

Place entropy 0.00 0.00 0.14 3.39 9.05 2.10 3.03

Min (place entropy) 0.00 0.00 0.00 0.00 9.05 0.38 1.68

Rel. importance 0.00 0.00 0.47 0.76 1.00 0.40 0.36

Max (rel. importance) 0.00 0.00 0.00 0.00 1.00 0.01 0.05

Home 0.00 0.00 1.00 1.00 1.00 0.55 0.50

University 0.00 0.00 0.00 0.00 1.00 0.09 0.29

Third place 0.00 0.00 0.00 0.00 1.00 0.02 0.15

Other place 0.00 0.00 0.00 1.00 1.00 0.34 0.47

Time at home tog. 0.00 0.00 0.00 0.00 377,708.00 52.95 2137.18

Time at university tog. 0.00 0.00 0.00 0.00 283,323.00 101.12 1291.56

Time at third places tog. 0.00 0.00 0.00 0.00 248,728.00 0.17 121.96

Time at other places tog. 0.00 0.00 0.00 0.00 345,246.00 6.27 591.79

Jaccard similarity 0.00 0.00 0.07 0.14 1.00 0.08 0.09

Avg. amount of people 0.00 0.00 0.00 0.00 22.00 0.00 0.14

Triadic period 0 0.00 6.00 6.00 6.00 6.00 5.17 1.86

Triadic period 1 0.00 0.00 0.00 0.00 5.00 0.00 0.02

Triadic period 2 0.00 0.00 0.00 0.00 6.00 0.00 0.06

Triadic period 3 0.00 0.00 0.00 0.00 6.00 0.00 0.08

Triadic period 4 0.00 0.00 0.00 0.00 119.00 0.01 0.25

Triadic period 5 0.00 0.00 0.00 0.00 89.00 0.00 0.20

Preferential attachment 0.00 0.00 0.00 0.00 396.00 0.32 3.00

Weighted prop flow 0.00 0.00 0.00 0.00 0.38 0.00 0.01

Adamic-Adar 0.00 0.00 0.00 0.00 10.10 0.00 0.03

The table shows the descriptive statistics of the constructed features. It is noteworthy that most features are heavily

skewed as most students on average do not meet each other and the resulting graph is very sparse.
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that a restricted random walk starts at node u and ends at node v with no more than s
steps. Weighted PF uses the weights of links (in our case how much time two students
spent together in the previous time period) as transition probabilities. AA is defined as
the inverted sum of the logarithmic degrees of neighbours shared by the two nodes

Aðu; vÞ ¼
X 1

logjNðuÞj, where N(u) is the set of nodes adjacent to u.

Evaluating temporal prediction models

We used the first academic term for building and validating our model, whereas we tested
our hypotheses on the second academic term of the dataset, where each term consisted of
13weeks. As we were dealing with time series data, we used one-step forecasts with re-
estimation as described in Hyndman and Athanasopoulos (2013) to make sure our models
did not have access to training data from the future, where a step was 12.5% of the data and
we used at least 50% of the available data to train each model. In other words, we evaluated
our model at four different time points for the second half of the available data, where we
retrained our model for each time point with all available data at that time point.

Search space

Every u 2 Gt has N potential candidates for encounters at Gtþn as every node can meet every
other node. Thus, the unrestricted search space is N � ðN� 1Þ. This was impractically large
as in our data we would need to predict more than 12 billion potential edges for each term.
A common strategy to deal with the huge search space is to only consider as potential
candidates for a new tie nodes that are thought of to be more likely to become connected
in the first place. It is known that in social networks friends of friends are more likely to
become friends than by chance alone and this property could be exploited for a prediction
task (Scellato et al., 2011a). To limit the computational complexity, we adopted the con-
vention of Scellato et al. (2011a) for our work, where we restricted the prediction space to
alters that a student had either encountered before or whom a student’s alters had them-
selves encountered before (i.e. friends of friends).

Feature preparation interval

We had to decide on how many temporal slices of Gt we used to construct our features.
However, several of the features we were interested in representing longer term dynamics
between students such as the places they usually met and how similar their trajectories were,
whereas several other features such as the other people present at a current meeting repre-
sented shorter term dynamics. We thus opted to introduce a longer term feature preparation
interval �s and a shorter feature preparation interval �T that we used to generate the
appropriate features.

Yang et al. (2013) showed that the length of the feature preparation interval has an
impact on the performance of the resulting link prediction. To determine the most appro-
priate hyper-parameters for our model, we tested the performance of our model with various
values of �T and �s for the first academic term (Table 2). In particular, we were interested
if values of �s that corresponded to longer periodicities such as two and four weeks and
longer intervals for �T might improve the performance of our models. We found that a �T
interval of 30minutes and a �s interval of one week respectively had the best performance
and we used those values for training and evaluating the remaining models for the second
academic term.
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Model construction

In order to test the importance of each domain for predicting future encounters, we con-
structed several different models. Each of the models we built has access to a different set of
features. Should the context of an encounter have played a role than our contextual features
should have also been relevant for predicting future encounters. Table 3 lists each model and
its corresponding features and also indicates, if the feature was derived using �T or �s as a
feature preparation interval.

As a benchmark to test our predictions against we first developed a null model for a time-
evolving weighted encounter graph with dissolving ties. Our null model was adapted from
Newman and Girvan (2004), where the edges of the graph were randomly rewired under the
constraint that the expected degree matches the original degree distribution. In our case, this
meant that the expected amount of encounter of each node u 2 Gt followed the original
distribution of meetings, but the encounters between any two nodes u; v 2 Gt were chosen at
random.

Besides the null model, we constructed a base model that only contained the baseline
features. We further built a temporal model, a social model, a spatial model and a network
topology model by adding to the base models the feature set that pertains to that domain.
The context model consisted of the baseline features as well as the temporal, spatial and
social features. The full model consisted of all features. We also, after our experiments,
constructed a refactored model based on top five features of the full model.

Sometimes one however might not have access to the whole network and might only be in
possession of node level data. Hence, one is unable to calculate or reliably estimate the
features that utilise the wider network topology we described above. We simulated such a
scenario by building nodemodel that only incorporated features that could be obtained from
the ego-network of a node. In particular, the features for the node model were: The baseline
features, and all the spatial, temporal and social features with the limitation that ‘triad 4’
could not be distinguished from ‘triad 1’ and ‘triad 5’ not from ‘triad 3’.

Findings

To compare the performance of our different models we chose to report the precision, the
recall, the precision–recall curve and the area under the precision–recall curve (PR AUC),

Table 2. Cross-validation precision-recall AUC scores.

Mean CI 95%

DT 30min Ds 1week 0.42 (0.40,0.42)

DT 30min Ds 2weeks 0.40 (0.39,0.41)

DT 30min. DT 3weeks 0.39 (0.38,0.40)

DT 30min. DT 4weeks 0.39 (0.38,0.40)

DT 40min. Ds 1week 0.37 (0.36,0.38)

DT 50min. Ds 1week 0.36 (0.36,0.37)

DT 60min. Ds 1week 0.36 (0.35,0.37)

The table lists the effect of various values of �s and �T had on the performance of

our link-prediction task, where the 95% confidence intervals are reported in the

column to the right of the scores. While the overall differences between the models

were relatively small, the model with �s of 30minutes and �T of one week clearly

performed best. Thus, we have used those values for building and evaluating our

models for the second term.
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where precision is plotted on the y-axis and recall on the x-axis (Davis and Goadrich, 2006).

Precision and recall are defined as follows (Davis and Goadrich, 2006): In a binary classi-

fication task, true positives (TP) are instances correctly labelled as positives, whereas false

positives (FP) are incorrectly labelled as positives. Conversely, true negatives (TN) are

examples correctly labelled as negatives and false negatives (FN) refer to positive examples

erroneously labelled as negatives. Recall is then TP
TPþFN and precision TP

TPþFP.
The area under the PR curve can then be directly used to compare the performance of

different models (i.e. the bigger the area the better the model) and is suited to evaluate the

performance of an algorithm if there is a large class imbalance as in our data (Davis and

Goadrich, 2006).

Performance of the link-prediction algorithm

First, all models performed significantly better than the null model; however, only the net-

work model had a higher PR AUC score than the base model (Figure 1 as well as Table 4).

Unsurprisingly, nodes are not randomly interacting with other nodes but exhibit learnable

patterns (at least to a certain degree).
Second, the models that had the highest PR AUC score were the network and the

base model, even though they have access to a lot fewer features than other models.

Thus, initially it looked like only a subset of features seemed to be important for the pre-

diction task and some features appeared to even be detrimental for predicting future

Table 3. Model features.

Feature Base Node Soc. Spat. Temp. Con. Net. Full Ref. �s �T

Edge x x x x x x x x x

Recency x x x x x x x x x

Time spent together. x x x x x x x x x

Current hour x x x x x

Hour-of-the-day vector x x x x x

Current weekday x x x x x

Day-of-week vector x x x x x

Place entropy x x x x x

Min (place entropy) x x x x x

Relative importance x x x x x

MaxRank (relative importance) x x x x x x

Current spatial context x x x x x

Time at home tog. x x x x x

Time at university tog. x x x x x

Time at third places tog. x x x x x

Time at other places tog. x x x x x

Jaccard similarity x x x x x

Avg. amount of people x x x x x x

Triadic periods 0,1,2,3 x x x 0,3 x

Preferential attachment x x x

Weighted prop flow x x x x

Adamic-Adar x x x

The table depicts the various models and the set of features that was used for training, where the rows represent the

features and the columns the models as described in Social features section.

Numbers for triadic periods indicate that we have only used that particular triadic period as a feature.
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Figure 1. Precision recall curves. The figure depicts the precision-recall curves of the different models. As
we fitted a separate tree R for each student, these curves were built by averaging the individual PR curves of
each R. The network model performed best, while the base model was only slightly worse overall; in par-
ticular those two models managed to keep a relatively high precision score for higher recall values. The social
and full model had relatively high precision scores as well.

Table 4. Model scores.

�xPrecision CI 95% �xRecall CI 95% �xPR CI 95%

Null 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00)

Base 0.13 (0.12,0.13) 0.69 (0.68,0.70) 0.41 (0.40,0.42)

Network 0.20 (0.20,0.21) 0.71 (0.70,0.72) 0.38 (0.37,0.39)

Time 0.08 (0.08,0.08) 0.74 (0.73,0.74) 0.42 (0.42,0.43)

Node 0.14 (0.14,0.15) 0.71 (0.70,0.72) 0.36 (0.34,0.36)

Place 0.07 (0.07,0.08) 0.65 (0.64,0.66) 0.30 (0.28,0.30)

Social 0.03 (0.04,0.04) 0.77 (0.76,0.77) 0.32 (0.32,0.34)

Context 0.20 (0.20,0.21) 0.71 (0.70,0.72) 0.38 (0.37,0.39)

Full 0.13 (0.12,0.14) 0.60 (0.58,0.60) 0.27 (0.27,0.29)

Refactored 0.13 (0.17,0.19) 0.69 (0.68,0.70) 0.34 (0.33,0.35)

The table lists the precision, the recall and the area-under-the-curve scores for the precision-recall curves of the different

models with the 95% confidence interval always in the column to the right of reported scores. While the base and network

model had the highest PR AUC score, both the social and full model had the highest precision. The recall scores were

relatively high in comparison to the precision score for all models.
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encounters. The network topology of the social encounter graph G appeared to be very

discriminative on its own.
Third, the social and full model had a significantly higher PR AUC score than all models

except the base and network model. In particular, with respect to precision both the social

and the full model performed much better than any other model, which became apparent

not only in the model scores (Table 4) but also in the PRC curves (Figure 1). This indicated

that while social features might not have been overall as important as the network topo-

logical features, they were still relatively important for correctly predicting whether an

encounter occurred.
However, all models had a low precision score compared to the recall scores. This indi-

cated that all models suffered from a relatively large amount of false positives. Given the

relatively sparse nature of the social encounter graph G, this finding was not unexpected as

there were many more opportunities for false positives than for false positives.

Feature importance. We also investigated the relative importance of the features for predicting

future encounters for the full model. Interestingly the top five features – average amount of

people, weighted prop flow, triadic closure 0, triadic closure 3 and max(relative importance)

accounted for roughly 50% of the expected contribution to the final prediction.
The relative importance of the features was consistent with the low scores for the models

that did not include network topological features. Interestingly the social features triadic

closure 0 and triadic closure 3 were also important highlighting the process of triadic closure

in our dataset and partly explained the comparatively good performance of the social and

full model. Triadic closure was consistently shown to be a driving feature of tie formation in

networks (Bianconi et al., 2014). This makes sense as when triadic closure occurred, students

were already spatially close to each other and thus more likely to encounter each other.

Predicting different types of links

We were also interested in whether the type of relationship (i.e. whether the students were

just colleagues, or also socialised outside of university) between nodes affected the predict-

ability of encounters. In order to explore this question, we constructed two new encounter

graphs. Recall that Gt was based on all spatial encounters between students regardless of

where and when these encounters took place (hereafter Gall
t ). We constructed Gsocial

t based on

all the encounters that took place between nodes u; v 2 Gsocial
t before 9 a.m. or after 6 p.m.

local time on weekdays, on the weekend, or in a spatial context other than university. In

other words, we were trying to capture the non-university/work related encounters only that

happened either after the normal ‘working’ hours, or in a different place than the university.

I, furthermore, constructed Guni
t that was derived only from encounters between nodes u; v 2

Guni
t that happened between 9 a.m. and 6 p.m. on weekdays and whose spatial context was

university.
Our experiment showed that our model had the highest PC AUC score of 0.49 (0.48–0.49

95% CI) for Guni
t followed by a score of 0.38 (0.37–0.39 95% CI) for Gall

t and a score of 0.34

(0.33–0.35 95% CI) for Guni
t . An explanation for the low performance of the model based on

Gsocial
t could be that ‘social’ encounters are less regular than other encounters; meetings

between friends are usually varied in time and place. The performance of the model

based on Guni
t was significantly better than for any other model. Unsurprisingly students

were interacting and meeting regularly; quite likely at the university itself as students from

the same year had a similar schedule for lectures.
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Discussion

The main finding of our research was that features about whom one meets and the
wider network topology of the social encounters significantly improved our predictions,
while information about when and where one meets did not seem to play an as
important role for our prediction task. Furthermore, and in contrast to previous research
that information about where individuals meet did not seem to play a pronounced role for
predicting future encounters between individuals in our dataset of students (Scellato et al.,
2011b; Yang et al., 2013). It appeared that almost all information was already contained in
the network topology of G and the social context rather than in the spatial and temporal
setting.

One possible explanation for the relatively low importance of spatial and temporal fea-
tures could be that as students move through their daily lives, the information of where they
are is already embedded in who else is physically close. For example, one is with their
partner there is a high chance that one is either at home or at the partner’s home; if one

Table 5. The importance of the different features for the full model.

Mean CI 95%

Preferential attachment 0.01 (0.01,0.01)

Day of the week 0.01 (0.01,0.01)

Edge 0.04 (0.04,0.04)

Home 0.02 (0.01,0.02)

Current hour 0.02 (0.02,0.02)

Jaccard similarity 0.01 (0.01,0.01)

Max (rel. importance) 0.05 (0.05,0.05)

Met at hour of the day 10 0.01 (0.01,0.01)

Met at hour of the day 14 0.01 (0.01,0.01)

Recency 0.03 (0.03,0.03)

Min (place entropy) 0.04 (0.04,0.04)

Avg. amount of people 0.11 (0.11,0.12)

Place entropy 0.03 (0.03,0.03)

Weighted prop flow 0.11 (0.11,0.11)

Rel. importance 0.04 (0.04,0.04)

Time spent together 0.05 (0.05,0.05)

Time(university) 0.02 (0.02,0.02)

Triadic closure 0 0.10 (0.10,0.10)

Triadic closure 2 0.02 (0.02,0.02)

Triadic closure 3 0.05 (0.05,0.05)

Triadic closure 4 0.02 (0.02,0.02)

Triadic closure 5 0.03 (0.03,0.03)

University 0.02 (0.02,0.02)

The table shows how important each feature of the full model was for predicting e at time tþ n. It

only depicts features whose importance was bigger than 0.01. Both triadic closure 0 and number of

people were among the most important features indicating the importance of knowing the social

context of where encounters took place. Furthermore, weighted prop flow was important as well,

highlighting the role the wider social encounter graph played for predicting encounters. In total the

top five features accounted for about 50% of the expected contribution to the final prediction.
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is with their friends from university then there is a high chance that one is meeting them at

university. In a sense the social contexts individuals (Sekara et al., 2016) inhabit might

intrinsically be linked to spatial places. A competing interpretation for our findings could

be that as students are already sharing a lot of places, lectures at the university, for this

particular demographic additional opportunity to interact might be less relevant.
Our findings highlight the importance to account for the social embedding of ties for

studying mobility behaviour. Specifically, our result indicate the importance of jointly

assessing spatial, temporal and social features in order to understand the dynamics of

social encounters because human interactions can be spatially, temporally and socially con-

founded with each other. Such a perspective is usually ignored by mobility studies.

Applications that might be informed by our findings range from modelling travel behaviour

over understanding the spread of communicable diseases to spatial planning. In essence,

applications wherein an understanding of both social as well as mobility behaviour is

required for accurately modelling human behaviour can benefit from jointly considering

spatial, temporal and social features.
Carrasco et al. (2008) argued that it is important for understanding travel behaviour to

study ‘the composition and structure of the personal networks in which these ties are

embedded’. Building upon that notion, and while out of scope for this work, one interesting

route to explore would thus be to not only map but also conceptualise human behaviour not

in the traditional dimensions of time and space as in time-geography (H€agerstrand, 1970)
but in a reference frame of time, social and spatial dimensions.

The performance of our link-prediction algorithm was significantly better when consid-

ering all ties rather than just social ties but worse than when considering just university ties.

We believe that a better understanding the role different types of relationships play for

encounters could be a fruitful avenue for future research.
Last, addressing potential other factors such as the weather, the wider social context an

interaction takes place in, and might shed light on dynamics that we could not account for in

our study. Thus, studying those factors and their relationship with predicting future encoun-

ters would also be an interesting topic for future research.It is an open question whether

potential other factors such as the weather or can help improve the prediction of social ties.
However, one has to be careful when generalising from our sample of students to the

whole population. While we were not aware of any reason our findings should not also hold

for broader population groups, the dataset in our study represented after all just one

sample of a network. Furthermore, our classification of geographic places was rather

broad and did not allow for a detailed analysis of those factors. We believe that a more

fine-grained analysis of the role of geographic place is an interesting prospect for

future research, especially in conjunction with an expanded analysis of the predictability

of different types of ties.
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Note

1. We used the implementation of DBSCAN from Pedregosa and Varoquaux (2011).
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