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Abstract
In this paper, a time-varying chattering-free disturbance observer-based position tracking control law of serial robotic manipu-
lators is presented to track a reference signal in a finite time. The key idea is to employ a positive-increasing function associated
with the control/observer objectives to improve the control performance. First, the model of an uncertain robotic manipulator is
presented as the case study of the proposed strategy. Then, the time-varying form of the robotic manipulator model is obtained to
provide finite-time boundedness using the first-order sliding mode method. Moreover, without any knowledge about the upper
bounds of the uncertainties, a reduced-order observer is presented to estimate the uncertainties in a finite time. Subsequently, a
disturbance observer-based finite-time position tracking control law is designed. The time-varying gains are provided to converge
the position tracking error to a neighborhood of zero in a finite time. Finally, comparative simulations are presented to show the
effectiveness of the proposed scheme compared to other existing strategies.

Keywords Finite-time tracking control . Nonlinear finite-time observer . Robotic manipulators . Stability analysis . Uncertain
time-varying system

1 Introduction

The problem of position tracking in uncertain robotic manip-
ulators is a well-known topic over the last years, especially in
the presence of external disturbances [1–7]. Many tracking
approaches provide asymptotic or exponential convergence

(convergence of tracking errors in an infinite time).
However, in many robotic's applications, high steady-state
precision and finite-time convergence are important due to
the precision and safety requirements of the application.
Besides, in the presence of unknown terms, finite-time track-
ing of reference signals precisely is somehow impossible, and
instead, the concept of boundedness should be considered [8].

Regarding finite-time boundedness, several strategies have
been presented by academic and industrial researchers [9].
However, one of the main drawbacks of these strategies is the
need for some information about unknown terms, which is not
feasible in many practical situations. In practice, an alternative
approach is to measure the outputs of the system and to design
an observation algorithm to construct a reliable estimation of the
unknown terms. In this regard, disturbance observer-based control
schemes have been proposed, inwhich to decrease the initial value
of the control input, the observer is combined with the state
feedback law. Some results related to this concept have
been presented in [10–14], where the sliding mode observ-
er (SMO)-based control is one of the main methods with
widespread applications. Despite the successful deploy-
ment of the SMO-based control method, its standard ver-
sion is affected by some restrictions, leading to the
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potentially destructive chattering phenomenon in their
convergence. Besides, an extended state observer (ESO)-
based super-twisting control method for robotic manipula-
tors with parameter uncertainties and external disturbances
has been presented in [10]. Since the sign function is used
in super-twisting control approaches, it can lead to the
chattering phenomenon. To mitigate this drawback, alter-
native approaches have been developed, such as the high--
order sliding mode observer (HSMO)-based control method
and the terminal slidingmode observer (TSMO)-based control
method to reduce the chattering with finite-time convergence
properties [5, 6, 11–14]. On the other hand, it is desirable to
have a fixed convergence time regardless of initial conditions.
Fixed-time approach using the concept of bi-limit homogene-
ity has been introduced in [15, 16], where is more powerful
than the finite-time approach. However, in addition to struc-
tural limitations, the gains are not easily computable.
Moreover, finding a proper Lyapunov function to prove sta-
bility is not straightforward for high-order systems.

Recently, time-varying observers have been well investigated
[17–23]. For instance, some time-varying observerswith exponen-
tial convergences have been presented in [17–21]. However, their
shortcomings are as follows: (1) The estimation errors have not
been considered in the control loop. Indeed, the estimation errors
should be considered as the uncertainties of the state variables in
the stability proof of the closed-loop system. (2) Required prior
knowledge about the uncertainties of the system. To overcome
these shortcomings, a novel time-varying technique has been pre-
sented [22, 23]. This technique estimates the full state of the sys-
tem in a finite time and stabilizes it with consideration of the
estimation errors. Compared with the existing strategies, its main
advantages are the straightforward design and robustness against
uncertainties. However, its limitation is the singularity problem
when the time tends to infinity. Moreover, it is only applicable
to single-input single-output (SISO) canonical systems.

Moreover, a high-performance approach in the field of finite-
time observer-based tracking control methods has been presented
in [24]. This reference has provided high tracking accuracy, fast
response time, low chattering phenomenon, and robustness
against uncertainties and external disturbances. Indeed, [24] has
presented a third-order sliding mode observer (TOSMO) and has
shown its advantages compared to a second-order sliding mode
observer (SOSMO). Then, a non-singular fast terminal sliding
mode control based on third-order sliding mode observer
(NFTSMC-TOSMO) has been presented in [24] and its superi-
ority over conventional non-singular fast terminal sliding mode
control (NFTSMC) and non-singular fast terminal sliding mode
control based on second-order sliding mode observer
(NFTSMC-SOSMO) has been illustrated.Despite several studies
and except for this leading strategy, the finite-time observer-
based tracking control subject still requires further improvement.

Motivated by the above considerations, this paper presents a
new method for finite-time tracking control of robotic

manipulators. The key idea is to employ a positive-increasing
function associated with the controller and observer objectives
to improve the control performance. In this regard, a robust time--
varying approach is presented to design a disturbance-observer
based finite-time tracking control (DO-FTTC) law, in a simple
and straightforward manner. In this paper, the state-space model
of the uncertain robotic manipulator system is transformed into a
time-varying form, and then, without any knowledge about the
upper bounds of the uncertainties, finite-time boundedness of the
system is assured using asymptotic stability methods. The time--
varying gains of the controller and observer are designed simply
to converge the tracking and observation errors to the neighbor-
hood of zero without any chattering and to remain uniformly
bounded in a finite time. Finally, to highlight the efficiency of
the proposed framework, several comparative simulations are
reported between the proposed DO-FTTC method and the supe-
rior approach NFTSMC-TOSMO of [24]. Compared with the
existing literature, the main contributions of this paper are as
follows: (1) Without any knowledge about the upper bound of
uncertainties, continuous and chattering-free observer and con-
troller are designed. (2) A time-varying conversion is introduced
such that the stabilization and estimation are guaranteed based on
finite-time boundedness using the asymptotic stability analyses.
(3) Time-varying gains are computed based on straightforward
algebraic equations.

The remainder of this paper is organized as follows. In
Section 2, a class of robotic manipulators with any number of
links is introduced. A state feedback control law is designed in
Section 3, to guarantee the position tracking in a finite time. In
Section 4, first without, neither any knowledge about the upper
bounds of the unknown terms nor its derivative, an observer is
designed to estimate the unknown variables in a finite time.
Subsequently, the DO-FTTC is designed to converge the tracking
errors to the neighborhood of zero without any chattering. In
Section 5, simulation results show the effectiveness of the de-
signedDO-FTTC. Finally, conclusions are presented in Section 6.

2 Preliminaries and Robot Model Description

Consider a class of serial p-link robotic manipulators as fol-
lows [8]:

M θð Þ ::
θ ¼ τ−τd−C θ; θ̇

� �
θ̇−F θ; θ̇

� �
−G θð Þ

þ Ρ t−t f
� �

f tð Þ ð1Þ

where p > 0 is the number of links, θ ∈ Rp, θ̇∈Rp, and
::
θ∈Rp

denote the position, velocity, and acceleration of robot joints,

respectively. Moreover, M(θ) ∈ Rp × p, C θ; θ̇
� �

∈Rp,

F θ; θ̇
� �

∈Rp, and G(θ) ∈ Rp represent the symmetric and

positive definite inertia matrix, the Coriolis and centripetal
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forces, the friction, and the gravitational force, respectively.
Besides, τ, τd ∈ Rp represent the control input torque and the
unknown bounded external disturbance, respectively. In addi-
tion, f(t) ∈ Rp denotes an unknown fault which is assumed as a
special case of the disturbance term τd. In this regard, P(t − tf)
is used in the simulations as the time profile of f(t) where tf is
the time of occurrence of the fault. For simplicity,

M θð Þ;C θ; θ̇
� �

; F θ; θ̇
� �

;G θð Þ, and f(t) hereafter are shown

as M, C, F, G, and f, respectively.

Assumption 1 In this paper, model uncertainties ΔM and ΔG are
considered in the matrices of the system (1) as M = M0 + ΔM
and G = G0 + ΔG where the non-singular matrix M0 and the
vector G0 represent the nominal parts ofM and G, respectively.

In this paper, x ¼ θ; θ̇
h iT

is defined as the state vector and

the state-space form of the dynamical system (1) is given as:

ẋ1 ¼ x2

ẋ2 ¼ −M−1 Cx2 þ F þ G−τ þ τd þ P t−t f
� �

f
� � ð2Þ

where x1 = θ and x2 ¼ θ̇. Based on Assumption 1 and the
matrix inversion lemma [25], one has

ẋ2 ¼ −M−1
0 G0−τð Þ þ Σeq ð3Þ

where the uncertainties, disturbances, and the unknown fault has
been summarized as the following generalized disturbance Σeq:

Σeq ¼ − M−1
0 ΔMM−1

0 I þ ΔMM−1
0

� �−1� �
Cx2 þ F þ G0 þ ΔG−τ þ τd þ P t−t f

� �
f

� �
þM−1

0 Cx2 þ F þ ΔGþ τd þ P t−t f
� �

f
� �

ð4Þ

The following Definitions and Remark will be used
throughout the paper:

Definition 1 [8]: The time-varying system ż ¼ χ t; z; δð Þ
is said to be finite-time ultimate bonded (FTUB) in a
finite time T with respect to δ where δTδ ≤ σ, if for some
positive-definite matrix R and any positive constants a, b,
and σ, where 0 ≤ a ≤ b, the condition zTRz < b is
satisfied for t ∈ [0, T] whenever z0

TRz0 ≤ a .

Definition 2 [8]: The system ż ¼ χ t; z; δð Þ is said to be
finite-time input-to-state stable (FT-ISS) in a finite time T
with respect to δ where ‖δ‖ ≤ σ, if the inequality (5) is
guaranteed for a class KL function α, a class K function β
and for any t ≥ t0 + T:

zk k≤α z0k k;ϑ
� �

þ β δk kð Þ ð5Þ

Also, ϑ is a time-varying function tending to infinity as t
→ t0 + T. It is worth noting that, in the absence of the
disturbance δ, an FT-ISS system will be finite-time stable.

Remark 1 Consider the change of coordinates Σ1 → Σ2 in
form ofΣ2 = CΣ1, whereC is defined as a positive increasing
function diverging to infinity when t → t0 + T. Then, if the
variable Σ2 remains stable (does not tend to infinity), the
boundedness of the first coordinate Σ1 as t → t0 + T is
guaranteed [22].

3 Finite-Time Tracking Control Law Design

The main contribution of this paper is to introduce a novel
design algorithm so that the output y track the time-varying
reference signal yr, where yr and its derivatives are known and
bounded for all times. First, let us define the tracking error
variables ei as follow:

e1 ¼ y−yr ¼ x1−yr
e2 ¼ x2−ẏr

ð6Þ

where ẏr presents the first derivative of the reference
signal yr. Consequently, the tracking error dynamics are
obtained as follow,

ė1 ¼ e2

ė2 ¼ −M−1
0 G0−τð Þ þ Σeq−ẏr

ð7Þ

In this paper, the design process is explained in two main
steps. First, by defining a conversion, the tracking error dy-
namics (7) is transformed into a new time-varying form to
provide finite-time boundedness of tracking using the first-
order sliding mode method. Then, the robust finite-time track-
ing control law is designed. Subsequently, to achieve the main
goal of the paper, first without any knowledge about the upper
bounds of the uncertainties, a reduced-order observer is pre-
sented, and then the DO-FTTC law is designed.

Step 1. Transform into a new coordination

The procedure begins with the following transformation
ei→ei.

ei ¼ μcei ð8Þ

where i = 1 and 2, also μc t; Tcð Þ ¼ 1þe
−t
Tc

2e
−t
Tc

is defined as a time--

varying function (for simplicity shown as μc). Tc is a positive
design parameter and is selected later for finite-time convergence.
Let us calculate the derivative of ei along with (7) as

ėi ¼ μcėi þ μ̇cei ð9Þ
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where μ̇c ¼ 1−μ−1
c

2Tc
. After lengthy, but straightforward calcula-

tions, the following results are obtained,

ė1 ¼ μ̇c

μc
e1 þ e2 ð10Þ

and

ė2 ¼ μ̇c

μc
e2 þ μc −M−1

0 G0−τð Þ þ Σeq−ẏr
� �

ð11Þ

Based on Remark 1, if the stability of ei is achieved, the
finite-time stability of ei dynamics will be guaranteed. In fact,
the condition that the closed-loop system (10), (11) does not
have unstable behavior is sufficient to conclude that the dy-
namic system (7) is finite-time ultimate bounded.

Step 2. Designing the control law τ

In this section, the aim is to design a control law to stabilize
the transformed error dynamics (10), (11). First, it is assumed
that Σeq = 0, and the finite-time tracking control (FTTC) law
for the nominal robot system is designed.

Now, based on the sliding mode control (SMC) method, the
asymptotic stability of the system (10), (11) is investigated.
Generally, there are two phases to design an SMC law (reaching
and sliding phases) [2]. The first phase is to design a proper
switching surface function s to drive the resulting sliding motion
to the origin. The second phase is to design an appropriate SMC
law to converge the state trajectories of the system onto the
predefined sliding surface and maintain them there for all subse-
quent time [2]. In this regard, based on ei ’s dynamics, consider
the sliding surface candidate (12):

s ¼ e2 þ ae1 ð12Þ

With the following FTTC law:

τ ¼ G0−μc
−1M 0

μ̇c

μc
þ λ1

 !
sþ ae2−μcẏr

 !
ð13Þ

where a and λ1 are positive constants and will be designed
later, the closed-loop nominal form of (10), (11) is written as

ė1 ¼ μ̇c

μc
e1 þ e2

ė2 ¼ −
μ̇c

μc
þ λ1

 !
ae1− λ1 þ að Þe2

ð14Þ

Now, the main result of this section is given as the follow-
ing Theorem:

Theorem 1 Consider the nominal form of the robotic manip-
ulators (2). If τ is designed as the FTTC law (13), there exist

suitable parameters a > μ̇c μc and λ1 such that the variable y

and ẏ will track the time-varying reference signals yr and ẏr,
respectively, in a finite time.

Proof. Consider the candidate Lyapunov function as
V ¼ 1

2 s
2. Then, the time derivative of this Lyapunov function

along the closed-loop system (14) is

V̇ ¼ sṡ ¼ −λ1s2 ð15Þ

According to the definition of Lyapunov function V, (15)
can be rewritten as

V̇ ¼ −2λ1V ð16Þ
where the trajectory of the closed-loop system (14) reaches the
sliding surface s = 0, and once on the surface s, it can not
leave it. Therefore, the reaching phase is completed.

Then, using (12) and (14), the motion on the surface s, is
governed by the following reduced-order model:

ė1 ¼ μ̇c

μc
−a

 !
e1 ð17Þ

where choosing the positive constant a as a > μ̇c μc, leads to the
stability of the reduced-order model (17), such that the state
variable e1 and subsequently e2 tends to zero as t tends to infinity
along s = 0. Subsequently, the sliding phase motion is ensured
and the stability of the sliding surface s is guaranteed [2].
Therefore, based on the stability of the reduced-order model
(17) and the structure of s, it can be concluded that ei ’s remain
uniformly bounded. Since the error ei converges into a small
neighborhood around zero and according to the transformation
(8), the error ei converges into a small neighborhood around zero
in a finite time. To complete the proof, now consider the follow-
ing compact form of the closed-loop system (14),

ė ¼ Λce ð18Þ

where Λc is defined as

Λc ¼ μ̇c

μc

1−
μ̇c

μc
þ λ1

 !
a− λ1 þ að Þ

" #
ð19Þ

the constants a > μ̇c
μc

and λ1 are chosen to make the matrix Λc

Hurwitz for all times. Thus, there exists a positive constant
ε1 > 1, such that

e
��� ���≤ε1 eΛct

�� �� e 0ð Þ
��� ��� ð20Þ

Therefore, the mentioned sufficient condition is achieved
and based on Remark 1, since the stability of ei has been
achieved, the finite-time stability of ei dynamics is guaranteed.
Now, based on the transformations (8) one has
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ek k≤vc e
��� ��� ð21Þ

where vc ¼ μ−1
c . Moreover, based on the transformations (8)

since

e 0ð Þ
��� ���≤ e 0ð Þk k ð22Þ

by straightforward calculations, the following zone-convergence
will be achieved.

ek k≤vcε1eΛct e 0ð Þk k ð23Þ
where vcwas already defined as a positive un-incremental function
converging to an arbitrarily small zone around zero as t → t0 + T.
Therefore, the FTUB stability of tracking errors e in (7) within a
bounded time interval is guaranteed.

Since μc and consequently μ̇c
μc

are time-varying, satisfying

the conditions on a and λ1 may be difficult. In this regard,
Corollary 1 is proposed to derive a sufficient condition to
guarantee the conditions.

Corollary 1 Based on μc and its time derivative, one has
μ̇c
μc
¼ 1

2Tc
1−μ−1

c

� �
. Since 1 ≤ μc < ∞, 0 < μ̇c

μc
≤ 1

2Tc
. Now, the

following results are given:

(1) The condition a > μ̇c
μc

in the stability of the sliding sur-
face s can be replaced with a > 1

2Tc
.

(2) Since the time-varying matrix Λc in (19) is continuous

and bounded as limt→∞ Λc ¼ Λc, the stability of the
closed-loop system (14) will be guaranteed if all the

Eigenvalues of Λc are located on the open left-hand half

of the complex plane [22], where Λc is calculated as:

Λc ¼
1

2Tc
1

−
1

2Tc
þ λ1

	 

a − λ1 þ að Þ

2664
3775 ð24Þ

Now, the FTTC law (13) has been designed for the nominal
form of the robotic manipulator (2). The next task is to design
a robust control law for the uncertain robotic manipulator such

that the variable y and ẏ track the time-varying reference sig-

nals yr and ẏr, respectively, in the presence of uncertainties.

4 Disturbance Observer-Based Finite-Time
Tracking Control Design

In this Section, a robust continuous and chattering-free control
law is designed to guarantee the FTUB of the tracking error
dynamics (7). First, based on [2] assume that τ = τnominal +

τRobust. On the other hand, the generalized disturbance Σeq in
(4) is a time-varying function of the state variables and the
input vector satisfying the inequality ‖ Σeq‖ ≤ ρ(t, x) +
k τRobust [2]. In this regard, τnominal is the nominal control
law to guarantee finite-time stability in the absence of un-
known terms. The function ρ(t, x) and the parameter k ∈ [0,
1) are the only information we need to know about Σeq (this
limitation will be relaxed later). The nonnegative continuous
function ρ(t, x) is not required to be small, but it should be just
known. Subsequently, based on the Lyapunov redesign tech-
nique [2], the FTTC law (13) can be updated as the following
robust FTTC law:

τ ¼ G0−μ−1
c M 0

μ̇c

μc
þ λ1

 !
sþ ae2−μcẏr

 !
þ τ ˇ ð25Þ

where τ ˇ is added to cancel out the destabilizing effect of the
generalized disturbance Σeq [2, 3]. Although using the robust
FTTC law (25), the tracking errors converge to an arbitrarily
small zone around zero in a finite time, the information on the
unknown terms is assumed to be unknown and not available
online. This limitation will be relaxed in this section. In this

regard, the Lipschitz continuous condition Σ̇eq≤σ with a
known Lipschitz constant σ is considered [4, 8]. This condi-
tion may often exist in many real-life systems [2]. To design a
disturbance observer-based control law, first, the following
observer, which is a direct consequence of Theorem 2 of [8],
is presented where the convergence of the estimated general-
ized disturbance Σeq to the actual value is guaranteed in a
finite time [8].

ḃx1 ¼ bx2 þ k1 tð Þ x1−bx1h i
ḃx2 ¼ bx3−M−1

0 G0−τð Þ þ k2 tð Þ x1−bx1h iḃx3
¼ k3 tð Þ x1−bx1h i

ð26Þ

where bxi∈Rp (for i = 1, 2, and 3) are estimations of the state

variables, and the time-varying scalar gains ki tð Þf g3i¼1 are
functions of the real-time t, shown as ki hereafter for simplic-
ity. The gains of the time-varying observer are calculated as
follows to achieve convergence in a finite time [8]:

ki ¼ Li þ ki;1
2þ i
2To

μi−1
o 1−μ−1

o

� �
−kiþ1;1μ

i
o− ∑

i−1

j¼1
ki; jμi− j

o k j ð27Þ

where i = 1 and 2 also,

k3 ¼ L3 þ k3;1
5

2To
μ2
o 1−μ−1

o

� �
− ∑

2

j¼1
k3; jμ3− j

o k j ð28Þ

also ki; j
� �

are given as follows:
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ki; j−1 ¼ ki; j
3

2To
μ−1
o 1þ μ−1

o

� �
−ki; j

i− j
2To

μ−1
o 1−μ−1

o

� �
þ kiþ1; j ð29Þ

and

k3; j−1 ¼ k3; j
μ−1
o

2To
6μ−1

o þ j 1−μ−1
o

� �� � ð30Þ

where ki;i
� � ¼ 1 and for i < j one has ki; j

� � ¼ 0. Also, the
scalar coefficients {Li} (for i = 1, 2, and 3) are selected to

make the matrixΛo ¼
−L1 I2
−L2
−L3 0

24 35Hurwitz where I2 is the 2

× 2 identity matrix [8]. Also, are time-varying functions
μo t; Toð Þ, μ t; Toð Þ, and vo t; Toð Þ (for simplicity shown as

μo, μ and vo, respectively) are defined as μo ¼ 1þe
−t
To

e
−t
To

, μ =

μo
3, and vo ¼ μ−1

o . Also To is a positive integer, and should
be selected to improve the convergence rate. As a sufficient
condition, if the design process is done in a way that the
eigenvalues of Λo will be placed on the left side of −3

To
, the

estimation condition is guaranteed [8]. The proof is a direct
consequence of Theorem 2 in [8], hence, it is omitted.

4.1 Disturbance Observer-Based Finite-Time Tracking
Control Design

In this Section, the continuous and chattering-free FTTC law
(13) is updated as follows via the disturbance observer-based
control approach:

τ ¼ G0−μ−1
c M 0

μ̇c

μc
þ λ1

 !
sþ ae2−μcẏr þ μc

bΣeq

 !
ð31Þ

where bΣeq ¼ bx3 is generated by the observer (26). After
substituting the DO-FTTC law (31), the closed-loop form of
(10), (11) is written as,

ė1 ¼ μ̇c

μc
e1 þ e2

ė2 ¼ −
μ̇c

μc
þ λ1

 !
ae1− λ1 þ að Þe2 þ μce

0
3

ð32Þ

where e
0
3 ¼ x3−bx3. The main result of this section is given in

the following Theorem:

Theorem 2 Consider the robotic manipulator (2). If τ is de-

signed as the DO-FTTC law (31), where bΣeq is generated by

the observer (26), then the variable y and ẏ track the time-

varying reference signals yr and ẏr, respectively, in a finite
time.

Proof. According to the designed observer (26), there ex-
ists a finite time (for instance To), such that the estimation error
variables approach a bound around the origin and eventually
converge to zero, such that bxi ¼ xi for t ≫ To [9]. As a result,
the closed-loop system (32) coincides with (14) for all t ≫ To.
Besides, according to [22], if the system’s states under the
proposed DO-FTTC (31) does not escape during t ≫ To, based
on Theorem 1 there exists a finite time (for instance Tc) that
the robust FTUB stability of tracking errors e in (7) will be
guaranteed. Therefore, it is sufficient to show that the closed--
loop system (32) under DO-FTTC (31) does not escape in a
finite time. In the following, consider the derivative of the
time-varying sliding surface (12) along with the trajectory of
the closed-loop system (32) so that after straightforward cal-
culations, it can be shown,

ṡ ¼ −λ1sþ μce
0
3 ð33Þ

Since the variable μc is a positive function, (33) has a
bounded limit. For the convenience of the proof, depending
on the variable s two different cases may occur:

Case 1 (s ≥ 0): In this case, since λ1 and s are positive, ṡ
in (33) satisfies the following inequality:

ṡ≤μce
0
3 ð34Þ

Case 2 (s < 0): In this case, since λ1 is positive and s is

negative, thus,−λ1s > 0, and ṡ in (33) satisfies the fol-
lowing inequality:

ṡ > μce
0
3 ð35Þ

On the other hand, since the FTUB of whole estimation
error variables was guaranteed in [8], there exists an upper

bound of e
0
3 in (34) and (35) (namely Π ¼ sup e

0
3

� �
). It is

not required that this upper bound be small but only to be
known and it can be calculated using the known Lipschitz

constant σ. Therefore, for s ≥ 0 and s < 0, ṡ is bounded as

ṡ≤μcΠ and ṡ > μcΠ, respectively. Therefore, the system
state variables as well as s, cannot escape in any finite time
interval. Finally, since the system’s states under the proposed
DO-FTTC (31) does not escape during t ≫ To, the robust
FTUB of the corresponding tracking error system (7) is
guaranteed.

Remark 2 Although based on the structure of vo ¼ μ−1
o , the

asymptotical stability of the estimation error variables is guar-
anteed, according to the analysis of the designed observer (26)
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in [8], it was only evident that the estimation errors tend to an
arbitrarily small zone around zero. Thus, this ultimate bound-
edness effect in the estimation error should be explicitly con-
sidered in the proof of Theorem 2; where it may act as a small
uncertainty in the values of the state variables. In this regard,
the continuous and chattering-free DO-FTTC law (31) is up-
dated as,

τ ¼ G0−μ−1
c M0

μ̇c

μc
þ λ1

 !
sþ ae2−μcẏr þ μc

bΣeq þ μcΘ

 !
ð36Þ

where the auxiliary term Θ should be designed to suppress
the effect of the estimation error so that the closed-loop
system remains ultimately bounded as well. After
substituting the modified DO-FTTC law (36) into

ṡ ¼ ė2 þ aė1, it is obtained as

ṡ ¼ μ̇c

μc
e2

þμc −M−1
0 μ−1

c M0
μ̇c

μc
þ λ1

 !
sþ ae2−μcẏr þ μc

bΣeq þ μcΘ

 ! !
þ Σeq−ẏr

 !

þa
μ̇c

μc
e1 þ e2

 !

ð37Þ

with straightforward calculations,

ṡ ¼ −λ1sþ μce
0
3−μcΘ ð38Þ

Since there has existed a known upper boundΠ, under the

condition Θ≥sup e
0
3

� �
, (38) is simplified as ṡ≤−λ1s where

based on the Lyapunov function V, it can be rewritten as

V̇ ≤−2λ1V2. Therefore, the FTUB stability of tracking errors
(7) under the modified DO-FTTC law (36) is guaranteed.

4.2 Implementation Issues

One concern of the presented scheme is the definition of the
time-varying transformations μc and μo, in which their values
can tend to infinity when t → ∞. To overcome this concern,
their definition can be modified as,

μc ¼
1þ e

−t
T c

2e
−t
T c

t≤δCt

μC−Max t > δCt

8><>:
μo ¼

1þ e
−t
T o

e
−t
T o

t≤δOt

μO−Max t > δOt

8><>:
ð39Þ

where for positive real constants δCt and δOt, the constants

μC − Max and μO − Max are nominated as 1þ e
−δCt
Tc =2e

−δCt
Tc and

1þ e
−δOt
Tc =2e

−δOt
Tc , respectively. The constants δCt and δOt,

should be designed based on trade-offs between the track-
ing errors, observation errors, and the convergence time. To
adapt the stability proofs to these new definitions, we con-
sider two intervals t ≤ max {δCt, δOt} and t > min {δCt,
δOt}. For the former, the previous proofs are valid. Also,
since we have already proved that the observed states re-
main within the ball in a finite time, and remain bounded at
all times, this statement will remain valid for the second
time interval.

In terms of potential challenges about the implementation
of the proposed scheme on hardware the following remark is
presented:

Remark 3 In terms of implementation, the proposed scheme
is straightforward to design and realize. Its construction
relies only on choosing the constants L1, L2, and L3 to make
the matrix Λo Hurwitz, and then choosing the constants Tc

and To, independently. On the other hand, the time-varying
observer (26), its gains, and the DO-FTTC law (36) have
been computed based on some ordinary algebraic equa-
tions, which can be implemented on usual hardwares and
it will not need powerful processors. Moreover, the pro-

posed DO-FTTC law (36) is designed using only θ and θ̇,
where θ have often been measured online in robotic manip-
ulators. However, in terms of the sensor issues, measuring
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or computing the time derivative of θ (i.e. θ̇ ) appear as a
potential challenge of the proposed scheme. To mitigate
these challenges and to reduce the number of sensors, an
alternative approach is measuring the output θ with usual
sensors and using the observer (26) to construct a reliable

estimation of θ̇.

5 Simulation Results

In this Section, numerical simulations are presented to clarify
the effectiveness of the proposed scheme. First, comparative
simulations are reported between the proposed observer
and the TOSMO in [24], which has had superior perfor-
mance to estimate the uncertainties for robotic manipula-
tors. Then, to highlight the efficiency of the proposed
scheme to track reference signals in a finite time, compar-
ative simulations are presented between the proposed
DO-FTTC and the privileged approach NFTSMC-
TOSMO. The parameters for the observer are the same as
the 2-link robotic manipulator parameters, which the ex-
plicit values were provided as follows [8, 9]:

M ¼ 32� ε cos θ2ð Þ 0
0 13:2� ε

 �
; F ¼ 0:8 θ̇1 þ 1:2cos 3 θ1ð Þ

1:3 θ̇2 þ 0:5sin 5 θ2ð Þ
 �

G ¼ g
�ε

13:2 θ2 � ε

 �
; τd ¼

1:2sin 0:95θ̇1
� �

0:9cos 1:7θ̇2
� �24 35; f ¼ 2cos 0:8tð Þ

3sin tð Þ
 �

P t−3ð Þ ¼ 0 t≤3
1−e− t−3ð Þ t≥3

�
ð40Þ

where g = 9.806 m/s2 is the acceleration of gravity. Also,

based on Assumption 1, M0 ¼ 32 0
0 13:2

 �
and G0 ¼ g

0
13:2 θ2

 �
are the nominal parts of matr ix M and

vector G, respectively. Besides, ΔM ¼ �ε cos θ2ð Þ½ 001�
and ΔG ¼ �εg

1
1

 �
are the model uncertainties where ε

∈ [0, 1] is a random variable [9]. The independence prop-
erty of the proposed method from the upper bounds of the
uncertainties has been theoretically presented in sections 3
and 4, where the compensator term Θ is designed to sup-

press the effect of the estimation error, where Θ≥sup e
0
3

� �
.

In this regard, Based on the Lipschitz continuous condition

Σ̇eq≤σ, σ is the only information we need to know
about Σeq, where this is a nonnegative Lipschitz constant,
and it is not required to be small bounded, but should be just
known. The simulations are divided into two parts and all
simulation results are obtained with To ¼ Tc ¼ 10.

Regardless of the variable To, increasing the value of Tc

reduces the control effort considerably, however, it in-
creases the convergence time significantly and vice versa.
The first part (Figs. 1 and 2) shows the efficiency of the
proposed observer (26) compared to the TOSMO approach
in [24]. The second part (Figs. 3, 4 and 5) shows the closed-
loop efficiency of the proposed DO-FTTC law (36) com-
pared to the NFTSMC-TOSMO approach. In this regard,
the performance analysis of the proposed observer (26) is
first shown in Figs. 1 and 2 for the open-loop system (τ =
0). The following two considerations can be drawn: (1)
Finite-time convergence is achieved. Figure 1 shows the
time evolutions of state variables and their estimations, in
which the proposed scheme has obtained an acceptable
convergence time compared to TOSMO. (2) The proposed
observer results in the proper estimation of the state vari-
ables, as well as the uncertainties, whose observation errors
converge to a small neighborhood of zero. Figure 2 shows
that the proposed scheme achieves comparable estimation
performance with respect to TOSMO, even in the presence
of unknown terms. The performance of the studied ap-
proaches is summarized in Table 1. Performance index
J e0 is defined based on the RMS of the observation error

m a t r i x e
0 ¼ e

0
1 e

0
2

� � ¼ e
0
11

�� ��h
e
0
12

�� �� e
0
21

�� �� e
0
22

�� �� e
0
31

�� ��
e
0
32

�� ���, as J e0 ¼ ∫0
ts

e
0
1
T
e
0
1 dt

���� ����
; ∫0

ts

e
0
2
T
e
0
2 dt

���� �����T , where ts =

20 sec is the simulation time. It is worth noting that, to
produce a fair analysis, TOSMO’s parameters have been
taken directly from [24] with its highest efficiency.

Table 1 confirms that the proposed scheme can com-
pete with the TOSMO approach as a leading strategy,
where the proposed observer results in the appropriate
est imation of the state variables as well as the
uncertainties.

Now the performance of the proposed DO-FTTC law (36)
to finite-time tracking of the reference signals y11r = cos(t)
and y12r = − cos(t), by position variables y = x11 and y = x12
is evaluated. Figures 3 and 4 show that the proposed DO-
FTTC law (36) ensures a better tracking performance com-
pared with the NFTSMC-TOSMO in [24], which its high
tracking precision had been analyzed in [24] compared with
conventional NFTSMC and NFTSMC-SOSMO methods.

By defining performance indexes J e ¼ ∫0
ts

eT e dt

���� ���� and

J τ ¼ ∫0
ts

τTτ dt

���� ���� based on the infinity norm of the input and

tracking error vectors τ ¼ τ1k k½ τ2k k� and e ¼ e11k k½
e12k k� respectively, the performance of studied approaches

is evaluated in Table 2.
According to Table 2 and Figs. 3, 4 and 5, the superior

performance of the proposed scheme is verified in terms of
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convergence time, destructive chattering phenomenon, and
control efforts. The finite-time performances have been guar-
anteed without any singularity problem and it has a smaller
convergence time to estimate the uncertainties (less than 1 sec)
and to track the reference signals (less than 2 sec) compared to
leading approaches [24]. Besides, the DO-FTTC law (36) was
designed as a continuous (chattering-free) state feedback

control law that without any knowledge about the upper

bounds of the uncertainties, the variable y and ẏ track the

time-varying reference signals yr and ẏr, respectively, in a
finite time. Finally, the DO-FTTC law (36) has good tracking
performance as a finite-time observer-based control approach;
where without any knowledge about the upper bounds of the
uncertainties, it has almost 30% less control effort. Therefore,

Fig. 1 Real states and estimation results of the open-loop system

Fig. 2 State estimation errors of the open-loop system
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according to the following remark, the proposed scheme can
compete with the leading strategy NFTSMC-TOSM, which
makes it a qualified alternative approach in the observer and
controller design.

Remark 4 One of the main drawbacks of the previous distur-
bance observers is that the upper bound of the unknown terms

is often assumed to be known, which is not feasible in practi-
cal situations. On the other hand, the sliding mode-based ap-
proaches are frequently affected by the chattering phenome-
non. To overcome this problem, a time-varying approach has
been presented. Also, based on the introduced time-varying
conversion, the stabilization and estimation with finite-time
boundedness are guaranteed using the asymptotic stability

Fig. 3 Reference signals and position tracking results of the closed-loop system

Fig. 4 Tracking error results of the closed-loop system
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analyses in a straightforward manner. Finally, the time--
varying gains have been computed based on straightforward
algebraic equations.

6 Conclusion

In this paper, a time-varying chattering-free disturbance
observer-based position tracking control law of serial robotic

manipulators was presented to track reference signals in a
finite time. As the main innovation of this paper, the robotic
manipulator’s model was transformed into a new time-varying
form to guarantee the finite-time boundedness using the first-
order sliding mode method. Then, without any knowledge
about the upper bounds of the uncertainties, a reduced-order
observer was presented to estimate the uncertainties in a finite
time. In this regard, time-varying gains of the observer were
designed in a straightforward manner. Subsequently, a time--
varying chattering-free disturbance observer-based position
tracking control law was designed. The time-varying gains
were provided to ensure that without any knowledge about
the upper bounds of the uncertainties, the position tracking
errors converge to a neighborhood of zero in a finite time
and without any chattering. Finally, comparative simulations
were presented to analyze the effectiveness of the proposed
scheme. For future works, further development of the pro-
posed finite-time scheme will be carried out to update the
time-varying observer and controller gains based on the ob-
servation and tracking errors, respectively. In terms of more
interesting topics, an optimal algorithm is suggested to be
designed for choosing all the observer parameters.

Fig. 5 Tracking control inputs

Table 2 Observer-based controllers comparative results

Methods The tracking error vector e Performance index Je Performance index Jτ

Proposed DO-FTTC
e ¼

31:7015

27:7695

" #T Je=1.7761E+3 Jτ=1.4545E+10

NFTSMC-TOSM [24]
e ¼

78:4130

61:1329

" #T Je=9.8858E+3
Jτ=2.0465E+10

Table 1 Observers comparative results

Methods The estimation error vector e′ Performance index J e0

Proposed
scheme

e
0 ¼ 1:0E þ 3ð Þ �

0:0000 0:0000
0:0146 0:0211
0:4174 2:0419

24 35
J e0 ¼

1:7442E þ 5
4:1700E þ 6

 �

TOSMO
[24]

e
0 ¼ 1:0E þ 3ð Þ �

0:0071 0:0071
0:3188 0:8323
2:4466 6:5752

24 35
J e0 ¼

6:0878E þ 6
4:3926E þ 7

 �
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Moreover, output feedback control can be considered to in-
vestigate the possibility of decreasing the number of physical
sensors to control the robotic manipulators.
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