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Abstract

Food is a complex matter, literally. From production to functionalization, from

nutritional quality engineering to predicting effects on health, the interest in

finding an efficient physicochemical characterization of food has boomed in

recent years. The sheer complexity of characterizing food and its interaction

with the human organism has however made the use of data driven

approaches in modeling a necessity. High-throughput techniques, such as

nuclear magnetic resonance (NMR) spectroscopy, are well suited for omics

data production and, coupled with machine learning, are paving a promising

way of modeling food–human interaction. The foodomics approach sets the

framework for omic data integration in food studies, in which NMR experi-

ments play a key role. NMR data can be used to assess nutritional qualities of

food, helping the design of functional and sustainable sources of nutrients;

detect biomarkers of intake and study how they impact the metabolism of dif-

ferent individuals; study the kinetics of compounds in foods or their by-

products to detect pathological conditions; and improve the efficiency of in sil-

ico models of the metabolic network.
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1 | INTRODUCTION

The 21st century has imposed a decisive acceleration on
the shift from mass production to the improvement of
the nutritional quality of the food available to the entire
world population. Nevertheless, a healthy-eating renais-
sance is complicated by the three most great phenomena
of these last years, which are market globalization,
climate changes, and the most recent SARS-CoV-2 or
COVID-19 pandemic.[1] The latter raised the attention of

consumers towards functional foods (FFs), enriched by
bioactive compounds with immune-boosting and
functional properties.[2] From this point of view, food is
considered an affordable way to prevent a broad range of
diseases.[3] However, the consumption of such FFs
enriched with bio-active compounds implies the inges-
tion and the consequent digestion and breakdown of
complex matrices where bioactive molecules are found
together with other molecules that can act synergistically
or antagonistically.[4]
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The ability to design new foods aimed at improving
health must consider the availability of raw materials at
affordable and sustainable costs, an aspect threatened by
climate change that is increasingly critical today. For this
reason, alternative sources of proteins, and other impor-
tant nutrients, are designed to reduce the impact of the
exploitation of the planet's resources in a perspective that
is ever closer to the circular economy, converting waste
products into second-life products,[5] creating a so-called
“green food”. Again, the choice must consider the nutri-
tional quality of the selected ingredients once they are
used to prepare new and more sustainable products. The
impact on human health of these choices must consider
the fate of nutrients once consumed in a meal, according
to dietary habits that are also changing due to the fusion
of cultures consequent to globalization.

This new way of conceiving foods forces scientists to
demonstrate the healthiness of food by revealing the
mechanisms underlying its effects on the human
metabolome, looking at the problem with a different
approach, defined as the “foodomics approach”.[6] A first
definition of the term foodomics appears in 2009,[7]

underlining its holistic approach on the investigation of
all the possible connections among food (including com-
position, quality, and safety), diet, and the individual,
including food impact on health/illness. In 2013, a new
definition of foodomics was written, considering food as a
highly complex mixture that affects the whole human
organism.[6] According to the new definition, foodomics
is the comprehensive, high-throughput approach for the
exploitation of food science in the light of an improve-
ment of human nutrition.[6] Recently, foodomics showed
the potential not only of foods but also of their related
by-products, as sources of compounds with human health
benefits.[8] For example, the anti-inflammatory potential
of the aqueous extract of olive pomace (which is one of
the main by-products of olive oil production) was evalu-
ated by supplementing Caco-2 human intestinal cells in
culture.[9,10] This aspect is important also in the light of
the “green” perspective known as the circular economy,
included in “The 2030 Agenda for Sustainable Develop-
ment adopted by all United Nations Member States in
2015”. If from one side foods are becoming greener and
greener, also analytical methods are assuming this color;
green chemistry and green analytical chemistry princi-
ples have been promoting the development of environ-
mentally friendly processes to achieve a more sustainable
society.[11,12] In parallel, the 2030 Agenda is also promot-
ing dietary patterns, like the Mediterranean diet, with
low environmental impact, and at the same time,
healthy, accessible, affordable, safe, and fair.[13] This is
the reason why foodomics nowadays is shifting toward a
greener foodomics.

2 | NUCLEAR MAGNETIC
RESONANCE (NMR) AND GREEN
FOODOMICS

Considering the background described previously, the
development of sustainable analytical methodology is
challenging for the green foodomics, which has to inte-
grate the green analytical chemistry principles, in each of
the omics platforms, to determine food constituents and
nutrients at the molecular level.[11] Among all the omics
platforms, NMR spectroscopy can be defined as a “green
analytical method” in foodomics studies.[14] Differently
from other techniques, NMR spectroscopy makes possi-
ble the substitution of organic solvents, for the extraction
and separation of different classes of molecular species
from foods and ingredients, by only aqueous solutions or
minimal amounts of alcohols. Thus, NMR spectroscopy
contributes to the chemical “green” transition, especially
when methods based on aromatic compounds are
avoided.[14,15] Of course, the lower environmental impact
is not the only advantage linked to such a methodology.
Other peculiar characteristics make NMR spectroscopic
methods very attractive for the analysis of metabolites in
complex biological samples: (i) It is a high-reproducibility
technique, (ii) its coupling with separation techniques is
less necessary than in mass spectrometry (MS), and
(iii) there is simplicity in the preparation of samples from
biological materials.[16,17] Despite many advantages,
NMR also has weaknesses, such as limited sensitivity and
resolution of the spectra. Although low sensitivity is the
main limitation of NMR spectroscopy, significant devel-
opments have been made to enhance the sensitivity,
including microprobes, cryogenically cooled probes, and
the dynamic nuclear polarization (DNP) approach.[1]

The capability of NMR in foodomics has been largely
documented in several research papers and reviews,
above all in what concerns quality, traceability, and food
safety.[18–20] NMR spectroscopy is particularly suitable for
the investigation of extra virgin olive oil (EVOO), as it
allows the characterization and quantification of minor
components, like phenolic bioactive compounds, and the
preparation of the sample consists in just adding a few
hundred microliters of deuterated chloroform directly to
the oil.[21–23] NMR-based foodomics has been also adopted
for the definition of the molecular fingerprint of Pachino
cherry tomato, which is an important Italian Protected
Geographical Indication (PGI), deserving robust traceability
methods, such as those based on NMR spectroscopy.[24,25]

Another perspective from which foods must be evalu-
ated for being defined as “green” is the cost/benefit ratio
of their production. The environmental impact caused by
the unsustainable exploitation of natural resources and
the waste of products caused by poor management of the
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supply chain are part of the costs that must be reduced.
On the other hand, there is a growing interest in maxi-
mizing the benefit of consuming foods enriched with
important nutrients and bioactive compounds, derived
from the refining of by-products that otherwise would
become waste impacting on the planet's resources. In this
case, since new ingredients and foods are designed, it is
necessary to ensure that the nutritional quality of these
fortified foods is guaranteed by the effective bioavailabil-
ity of the healthy molecules. Indeed, constituents of the
food matrix could aid or hinder the bio-accessibility and
bioavailability of the relevant molecules.[26] An
NMR-based foodomics approach, analyzing human serum
samples, has been applied to evaluate the metabolomics
effects of docosahexaenoic acid (DHA) supplementation,
alone or in combination with oat beta-glucan (from
bran), and anthocyanins (from grape skin), as ingredients
of different fortified foods. Using this approach, it has
been demonstrated that DHA induces positive perturba-
tions in the lipoprotein profile of consumers that are
modulated by the food matrix.[27] It is worth noting here
that for assessing the actual concentration of nutrients,
or other healthy food molecules, in blood and urine,
those methods based on target analysis are not suitable.
In fact, the intrinsic metabolome of food is different from
what is detected after digestion and metabolization by
the gut microbiota.[28,29] For this reason, in the last decade,
NMR together with advanced chemometric tools has been
employed for identifying urinary and blood metabolite pro-
files able to discriminate among food intake associated to
specific dietary intervention.[30–37] From this point of view,
NMR-based foodomics has been also suggested as one of
the methods for gathering scientific evidence from clinical
trials in dietary intervention studies, by discovering dietary
biomarkers.[38] In vivo intervention studies are extremely
expensive, and protocols based solely on this approach, for
any newly developed fortified food, would be unaffordable
to food companies. For this reason, in vitro digestion
systems have been developed and validated by the
international INFOGEST consortium.[39] So far, several
studies have been published, concerning the release of
nutrients and bioactive molecules during in vitro digestion
experiments, both on single food products and on their
combinations as in a meal.[40–42] They include cheese,
processed meat, fish, vegetables, olive oil, vinegar, and eggs,
as a few examples of applications of the NMR spectroscopy
in this field.[43–51]

3 | THE FOOD BIOMARKER
ALLIANCE (FOODBALL)

The availability of accurate information on the fate of the
nutrients embedded in different food matrices, when they

are subjected to digestion, is not sufficient to create links
with the health effects resulting from the ingestion of
even well-characterized foods. The link between nutri-
tion and health must be based on correlations between
nutrients or bioactive molecules, made bio-accessible and
bio-available by digestive processes, and the human
metabolome. For this reason, the search for biomarkers
of food consumption as well as of the individual health
status is of fundamental importance, and NMR spectros-
copy plays a decisive role. Based on their intended use,
six subclasses for biomarker classification are suggested:
food compound intake biomarkers, food or food compo-
nent intake biomarkers, dietary pattern biomarkers, food
compound status biomarkers, effect biomarkers, physio-
logical, or health state biomarkers.[52] The ultimate goal
of modern nutritionists is to rely on mathematical models
capable of predicting the impact of those biomarkers
describing the molecular composition of food and diet on
the last two subclasses of health effect biomarkers.
Currently, a great effort is being made to acquire as many
biomarkers as possible with respect to food intake.[53]

NMR spectroscopy has been exploited to discover or vali-
date food intake biomarkers through human acute inter-
vention studies specifically designed to avoid unwanted
sources of variance, like those occurring in observational
studies at population levels. Interestingly, none of the
urinary biomarkers for milk and cheese intake previously
reported in the literature have been confirmed by such
an intervention study, but more robust new ones were
proposed, although limited to the consumption of the
studied foods.[32] The concentration of most metabolites
in urine, generated by food intake, varies by up to 350%,
mainly due to interindividual variability and analytical
variability.[54] Intersubject variability may be due to
differences in genetics, lifestyle including dietary habits,
and gut microbiota composition. NMR-based met-
abolomics is the approach of choice for minimizing the
analytical source of variance, provided that a standard
protocol is adopted by the whole scientific community,
aiming at discovering robust biomarkers. Recently, a
collection of detailed instructions for the whole pipeline,
from sample collection to data analysis, has been also
made available to the metabolomics community, also for
the NMR-based approach.[55]

Even if food products are correctly defined at the
correct resolution, intersubjective variability still remains
an important source of confounding errors in any simple
model of correlation between diet and health status.
Simple models consider food as a static source of nutri-
ents, poorly defined by its composition. For modern food
scientists and nutritionists, it is clear that the underesti-
mation of the kinetics of nutrient release from the food
matrix, and subsequent absorption into the digestive
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tract, is by far the most important cause of the failure to
find links between diet, characterized at the molecular
level, and the health status described through
metabolomic descriptors. For this reason, attention must
be paid to the design of in silico experiments capable of
simulating the kinetics of digestion and absorption, with
the result of being able to identify, through metabolic
flows analyses, different human phenotypes that, once
correctly classified, can be parameterized in more effec-
tive predictive models.

4 | KINETIC SIMULATION FOR
NUTRIMETABOLOMICS WITH NMR
DATA

The sheer complexity of food–human interactions
involves a high number of phenomena happening at very
different observational scales: from food structure break-
down to digestive functions, all the way down to effects
on enzymatic activities. Linking these interdependent
phenomena to reach a holistic physiological model of
such interactions is thus a very hard task. However, the
advent of omics data production, which stems from the
use of high-throughput sources such as NMR spectros-
copy, coupled with ever-increasing computational power,
has opened the way for data-driven approaches and
simulation-based modeling in the field. Within this pic-
ture, the role of machine learning is that of finding links
between complex patterns of molecular data, through
classification, clustering, features discovery, and integra-
tion. At present, machine learning is the branch of artifi-
cial intelligence (AI), a term that groups a broad set of
methods and paradigms, that majorly impacted data-
driven modeling in the field. Machine learning frame-
works act on two main levels when applied to NMR
metabolomics data: (i) dimensionality reduction of
spectral data, through single value decomposition of the
covariance matrix (principal components analysis, factor
analysis, partial least square discriminant analysis);
(ii) classification and clustering of spectral data in latent
feature spaces (with linear classifiers, hierarchical clus-
tering, decision trees, random forests …). When combined
in a pipeline, these two steps can help etiological
findings from studies and experiments by (i) detecting
and representing sources of variance in the data and
(ii) analyzing latent structures to ultimately link spectral
features (and thus molecules) to physiological outcomes,
through classification tasks. On the other hand, true deep
learning approaches are still missing from these types of
frameworks due to the requirement of a huge amount of
suitable data for proper training (which are currently not
available in the field) and a general higher difficulty in

the interpretation of results, except for classification
performances, from complex deep architectures (the
black box problem). Overall, even at the early stage, data-
driven approaches are helpful to link some of the levels
of complexity of the food–human interaction problem. In
this section, ways of tackling some of the problematics
using NMR spectroscopy and MS data alike will be
outlined.

4.1 | Food structure and digestion: An
overview on complexity

The growing interest in understanding the effect of food
on human health has led to an inevitable demand for
modeling and computational tools to predict food–
human interactions. However, many intertwined
compartments must be modeled and connected, making
holistic in silico approaches a hard goal to reach.
Food–human interaction modeling revolves around two
main stages: food structure and breakdown, transit, and
absorption of nutrients in the gastrointestinal tract (GIT).
While physiologically based kinetic models (mainly used
in pharmacokinetics) exist to predict overall exposures to
macronutrients, they are not capable of taking food struc-
ture effects into account. As a matter of fact, of the main
issues of modeling, real food is simulating the structure
and its breakdown in the oral phase and how they affect
the activation of digestive function through the GIT. A
complete overview of the state of the art of tools for in sil-
ico simulations available for the different compartments
of the GIT is given by le Feunteunet al.[56]

4.2 | Characterization of food as an
ensemble of patterns of biomolecules

Food can be considered a complex overlap of soft matter
structures over different length scales. As such, when
investigating food intake effects through biomarkers
detectable in serum or urine, one can rarely expect to be
able to characterize foods using a single or a small cluster
of biomolecules. Furthermore, biomarkers of intake
require extensive and dedicated studies to be validated.
However, spectral data from human biofluids coupled
with machine learning can help disentangle the patterns
of detected compounds to characterize food. A successful
example of such an approach is given by
Reisdorphet al.[57] in a recent paper. This study aimed to
detect specific food compounds related to blood pressure
in individuals following Dietary Approaches to Stop
Hypertension (DASH). To do this, the metabolome of the
various food constituting the diet was investigated using
MS. Spectra of food metabolome were decomposed using
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projection on latent variables methods (principal compo-
nent analysis) and clustered, to obtain patterns of com-
pounds (both identifiable and unknown) as food
signatures. The metabolomic signatures were compared
with pre-diet urines and post-diet urines metabolomes. In
this way, food specific compounds and post-diet unique
compounds patterns could be discriminated and identi-
fied (when possible). The comparison yielded two main
results: a detailed characterization of food in the diet
using food-specific patterns and the individuation of
intervention diet food by-products and endogenous com-
pounds in post-diet urines significantly associated with
changes in blood pressure.

Spectral data allow complex food characterization,
and with carefully designed experiments, it can be joined
with spectral data of human biofluids to investigate inter-
actions and health-related effects at systemic levels.

4.3 | Characterization of pathological
conditions using food-related kinetics

The human metabolome is characterized and affected by
individual variability, lifestyle, dietary habits, and patho-
logical conditions. As such, studying how nutrients and
biomolecules are metabolized in different individuals
using spectral data can help to engineer personalized
nutritional interventions. In their recent study,
Bütikoferet al.[58] suggested that postprandial response of
the ingestion of high fat meals can be used to discrimi-
nate between obese and healthy subjects.[58] The authors
isolated patterns of high-fat meals administration dose-
dependent metabolites in serum using decomposition on
latent structure and clustering, in a cohort with healthy
and obese subjects. By studying the kinetics of such com-
pounds, mostly amino acids and amino acids derivatives,
the authors were able to classify healthy and obese sub-
ject. Approaches of these types are helpful in discriminat-
ing dose-dependent and interindividual dependent
patterns in metabolomic spectra, characterize sets of
food-related compounds and their kinetics, and shed
light on food–human interactions associated with clinical
and physiological conditions.

4.4 | Systemic data integration and in
silico simulations at cellular levels

Systemic spectral data obtained from biofluids (serum,
urine) can also be used to build constraint based models
with metabolic control and flux balance analysis. This
type of modeling originates from mapping the metabolic
pathways of different cells and evaluating the evolution

of the fluxes of reactions at fixed starting conditions. This
means that abnormal metabolites presence (in example
associated with a certain health condition) observed at
the systemic level can be used to set the parameters for
the model and predict changes in the overall cellular
metabolism and enzymatic activity. Savoglidis et al.[59]

developed an extension of this type of modeling, by
reverse-engineering the matrix of reactions of
sphingolipid metabolism to predict lipidomic kinetic
data.[59] The authors used metabolites from spectral data
to input the inverse matrix of the network of enzymatic
activities. In this way, they used metabolite imbalances
from a class of mutated cells to predict changes in enzy-
matic activities. These changes have been used to create
the input parameters for traditional metabolic control
analysis that computes metabolite levels from a starting
set of parameters regarding enzymatic activities, allowing
them to predict new perturbations in expression levels of
metabolites and confirm the observed ones. This type of
back-and-forth approach between simulations and data
allows to simultaneously refine metabolism modeling
(optimizing computational efficiency) while focusing the
search for important patterns in spectral data. In a
similar fashion, Simonettiet al.[60] integrated NMR met-
abolomics and genomics data with a machine learning
pipeline and fed them to a flux balance model, to extract
metabolic fingerprints of leukemia mutated cells and
predict possible target pathways for treatment.[60] NMR
spectral data are particularly suitable for such
approaches, thanks to their reproducibility and high-
throughput nature, which are key features for semi-
stochastic modeling and machine learning algorithms.
Furthermore, these approaches are capable of linking the
systemic and cellular scale: a key aspect when exploring
the complex nature of food–human interaction. Thus,
translating data integration and these types of in silico
models to foodomics studies can be a crucial step in
solving certain modeling problems in the field.[61]
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