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Abstract

Objectives: To evaluate three-dimensional external gap progression after chewing

simulation of high translucency zirconia (HTZ) and zirconia-reinforced lithium silicate

(ZLS) applied on endodontically treated teeth with different preparation designs.

Materials and Method: Endodontically treated molars were prepared with

low-retentive (adhesive overlay) and high-retentive (full crown) designs above

cementum-enamel junction and restored with HTZ and ZLS. Micro-computed tomog-

raphy analysis was assessed before and after chewing simulation to evaluate three-

dimensionally the external gap progression. Results were statistically analyzed with

two-way ANOVA and post-hoc Tukey test.

Results: High-retentive preparation design had a significantly inferior gap progression

compared to the overlay preparation (p < 0.01); ZLS exhibited a significant inferior

gap progression compared to HTZ (p < 0.01).

Conclusions: High-retentive preparations restored with ZLS seem to better perform

in maintaining the sealing of the external margin after cyclic fatigue.

Clinical significance: The clinician should pay attention to the proper combination of

preparation designs and ceramic material selection for an endodontically treated

molar restoration. HTZ seems to perform worse than lithium silicate in terms of mar-

ginal sealing, still showing lacks in resistance to cyclic fatigue when adhesive prepara-

tions are performed.
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1 | INTRODUCTION

Modern restorative procedures on endodontically treated teeth (ETT)

aim to improve their mechanical properties, which are inferior to

those of their vital counterparts,1,2 while being minimally invasive to

healthy dental tissues. To accomplish these goals, ETT are frequently

restored with adhesive procedures and partial restorations which rep-

resent a valid alternative to conventional crowns.3–5

Several materials have been successfully applied in full-coverage

adhesive restorations on ETT, such as glass-reinforced ceramics, resin

composites, and hybrid materials.6–8 These materials showed good

performance in both in vitro and in vivo studies.9,10 However, every

year, new restorative materials are developed and produced with the

aim of restoring the optical and mechanical properties of natural

teeth, even in severely compromised teeth.

Among the recently introduced monolithic CAD/CAM materials

that can be used for cuspal coverage indirect restorations on severely

damaged teeth, zirconia has certainly experienced the greatest evolu-

tion. In particular, high translucency zirconia (HTZ) has been recently

introduced in restorative dentistry, replacing the tetragonal version,

especially for monolithic single-tooth restorations. The introduction of

a variable amount of cubic phase, which is optically isotropic, was

meant to improve the translucency of the material, at the expense of

strength and toughness due to the lack of transformation toughening

and the coarser microstructure.11 As a recent study pointed out, cubic

grains are wider than tetragonal ones and generate more stabilizing

oxides, making the tetragonal phase more prone to aging.12 As result,

HTZ was initially considered less suitable for posterior restorations

and indicated only for the anterior area. Today, however, industries

have been able to produce various types of zirconia with varying per-

centages of cubic phase, ultimately creating HTZ specifically indicated

for the posterior sectors and with a good balance between optical and

mechanical proprieties.13 On the other hand, an alternative ceramic

material with high mechanical and esthetic performances suitable for

cuspal coverage restorations is the zirconia-reinforced lithium silicate

ceramics (ZLS). Its microstructure has a homogeneous glassy matrix

which contains a crystalline component made of round and sub-

micrometric elongated grains of lithium metasilicates and lithium

orthophosphates; in addition to these, tetragonal zirconia fillers are

added, aimed at increasing strength values, obtain favorable optical

properties within increased mechanical characteristics compared to

other glass-ceramics.14,15

A crucial consideration when dealing with adhesive preparations

is the luting protocol and its efficiency, since the adhesive preparation

design is, by definition, less macromechanically retentive than a con-

ventional crown. Despite significant developments in adhesive proto-

cols towards enamel and dentin, failures related to secondary caries

are still the major issue when adhesive restorations are addressed,9,10

above all with unexperienced operators.16 It should be considered

that, prior to clinical dramatic failure, usually considered as the resto-

ration debonding or fracture, the interfacial gap formation plays an

important role as it represent the first sign of restoration deteriora-

tion, since this hard-to-clean area contribute to the reduction of the

tooth-restoration complex's resistance5,17 and it can lead to bacterial

recolonization of the tooth crown and the root canal system, with

subsequent endodontic failure.18 These interfacial gaps tend to pro-

gressively expand during oral function and parafunction due to fatigue

stresses from cyclic loading.19–21 Therefore, as highlighted in a recent

review, fatigue parameters obtained from cyclic loading experiments

should be considered more reliable predictors of the mechanical per-

formance of contemporary adhesive restorative materials than quasi-

static mechanical properties.22 Moreover, the scientific community

has put forth significant effort in testing and proposing adhesive treat-

ments able to ensure effective bonding and interfacial seals using

HTZ23 to let the material be employable in low-retentive minimally

invasive preparations. The absence of a glassy phase makes the bond-

ing mechanisms of HTZ to dental tissues more difficult24: recent stud-

ies showed how the physicochemical conditioning method tends to

increase the bond strength of resin-based cements towards zirco-

nia.23,25 However, to the best of our knowledge, no studies reported

the effects of fatigue cycling on the external gap opening of ETT

restored with indirect adhesive restorations made with HTZ or ZLS.

The aim of the present in vitro study was to evaluate the external

gap progression after cyclic fatigue of HTZ and ZLS applied on ETT

with low and high retentive preparation designs. The following null

hypotheses were tested: (1) there is no difference in terms of external

gap progression between low-retentive and high-retentive prepara-

tion designs, and (2) there is no difference between HTZ and ZLS.

2 | MATERIALS AND METHODS

2.1 | Study design

This study was designed in four study groups (n = 12 each), where

the specimens were randomly allocated considering:

a. “Preparation design” in two levels: extracted molars, once end-

odontically treated, were prepared for a cuspal coverage restora-

tion with two different designs: a low-retentive adhesive overlay

preparation and a high-retentive full crown preparation with mar-

gin located 1 mm above cementum-enamel junction (CEJ).

b. “Restorative material” in two levels: Cuspal coverage adhesive res-

torations were performed using two different cad-cam monolithic

materials: a HTZ designed for posterior teeth (Katana STML,

Kuraray Noritake) and a ZLS (Celtra Duo, Dentsply).

The materials employed in the present study are detailed in

Table 1.

2.2 | Sample preparation

A total of 48 (n = 48) human sound upper molars were selected for

the present study within 2 months from extraction due to periodontal

reason. The inclusion criteria were as follow: sound teeth, similar root
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(length > 12 mm) and crown size (10 mm ± 2 mesiodistal, 10 mm ± 2

bucco-oral) and no crack or demineralization under visual examination

with light trans-illumination and magnification. After proper disinfec-

tion (ultrasonic scaling and 0.5% chloramine for 48 h), selected teeth

were stored in distilled water at 37�C.

Each specimen was endodontically treated by the same operator

using PathFiles (1–2–3) and ProTaper Next (X1/X2) (Dentsply

Maillefer) to reach the working length, set at the visible apical fora-

men. Irrigation was performed with 5% NaOCl (Niclor 5, OGNA) alter-

nated with 10% EDTA (Tubuliclean, OGNA). Thereafter, specimens

were obturated with gutta-percha points (Gutta-Percha Points

Medium, Inline, B&M Dental) using a Down Pack heat source (Hu-

Friedy) and an endodontic sealer (Pulp Canal Sealer EWT, Kerr). Back-

filling was performed with the Obtura III system (Analytic

Technologies).

A standardized mesio-occlusal-distal cavity was prepared by an

expert operator setting the residual wall thickness of the buccal and

oral cusps at the height of the contour to 1.5 ± 0.2 mm, measured

with a conventional caliper. Mesial and distal boxes were finished with

dedicated sonic points (n�34 and 35, SONICflex, KaVo) to standardize

their dimensions. A core composite build-up was performed for all

specimens, following the same protocol. A 30-s selective enamel etch-

ing was performed with 35% phosphoric acid (K-ETCHANT, Kuraray

Noritake Dental), then rinsed for 30 s and air-dried. Then, a self-etch

adhesive was applied (CLEARFIL SE BOND 2, Kuraray Noritake) fol-

lowing the manufacturer's instructions. Build-up restoration was per-

formed with a nanohybrid resin composite (CLEARFIL MAJESTY ES-2,

Kuraray Noritake) with a 2-mm-thick oblique layering technique. Light

curing of both adhesive and resin composites was accomplished with

an LED curing lamp (Celalux 2, VOCO) using a conventional program

for 20 s at 1000 mW/cm2.

Samples were randomly allocated to one of two groups (n = 24

each) using https://www.randomizer.org/ according to the selected

preparation design:

• Low-retentive (ADH). A standardized 1.5 mm occlusal reduction

was performed with a cylindrical bur (6836 KR 014, Komet) follow-

ing occlusal anatomy. Boxes were finished with dedicated sonic

points (n�34 and 35, SONICflex, KaVo) to remove eventual built-

up composite excesses. Finally, the occlusal margins were beveled

with a football-shaped bur (8368 L, Komet), and all corners were

rounded with an Arkansas tip (661, Komet) and a rubber point

(9436 M, Komet).

• High-retentive (CRW). A standardized 1.5 mm full preparation was

executed with a chamfer margin 1 ± 0.5 mm above CEJ. Both initial

preparation and finishing were performed with dedicated chamfer

burs (6881 014, Komet; 8881 014, Komet). Finally, all corners were

rounded with an Arkansas tip (661, Komet) and a rubber point

(9436 M, Komet).

An exemplificative image reporting transversal sections of a low-

retentive and high-retentive designs is reported in Figure 1.

Samples were scanned with an intraoral scanner (CEREC

Omnicam, Dentsply) and divided into two subgroups (n = 12 each)

according to the CAD/CAM material employed: HTZ (KATANA,

Kuraray Noritake) and ZLS (Celtra Duo, Dentsply). All restorations

were designed with a CAD system, that allowed to standardize a mini-

mum of 1.5 mm thickness (Cerec 4.5.2 software, Dentisply, Sirona,

Konstanz, Germany) and milled with material-specific default settings

in extra-fine mode (Cerec MC XL, Dentsply, Sirona, Konstanz,

Germany). In all specimens, the parameters for luting space and mini-

mum occlusal ceramic thickness were set to 80 μm and 1.5 mm,

respectively. Once milled, ZLS was crystallized (Cerec Speedfire, Den-

tisply, Sirona, Konstanz, Germany) and HTZ was sintered according to

the manufacturer instructions. Each restoration was luted with a dual-

cure resin cement, following the manufacturer's instructions

(PANAVIA V5, Kuraray Noritake). Either ADH either CRW were

cemented with digital pressure applied by the same operator, with

more than 10 years of clinical experience, until fully seated onto the

TABLE 1 General description of the main materials used in the present study

Description Manufacturer Composition

KATANA STML High translucency

zirconia

Kuraray Noritake Zirconium oxide (wt%: 59.9% c-ZrO2, 39.5% t-ZrO2, 0.4% m-

ZrO2, 0.2% r-ZrO2), 4.8% Y2O3, pigments

Celtra Duo Zirconia-reinforced

lithium silicate

Dentsply 58% Silicon dioxide, 10.1% crystallized zirconium dioxide, 10%

zirconium dioxide, 5% phosphorous pentoxide, 2.0% ceria,

1.9% alumina, 1% terbium oxide

CLEARFIL MAJESTY ES-2 Nanohybrid resin

composite

Kuraray Noritake Bisphenol A diglycidyl methacrylate, barium glass, pre-

polymerized organic filler, hydrophobic aromatic

dimethacrylate, hydrophobic aliphatic dimethacrylate dl-

Camphorquinone, accelerators, initiators, pigments

PANAVIA V5 Dual resin cement Kuraray Noritake Bis-GMA, TEGDMA, aromatic and aliphatic multifunctional

monomer, accelerators, dl-Camphorquinone, surface-treated

barium glass, fluoroaluminosilicate glass, fine particulate

CLEARFIL SE BOND 2 Two-bottle self-etch

adhesive

Kuraray Noritake Primer: 10-MDP, HEMA, hydrophilic dimethacrylate,

photoinitiator, water

Bond: 10-MDP, dimethacrylate resins, HEMA, Vitrebond

copolymer, ethanol, water, filler, initiators, silane
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tooth margin. Table 2 reports the details of the adhesive procedures

performed on both teeth and restorative materials. Excesses of cement

were removed with a micro-brush, then, after 3 min of setting, photo-

polymerization was carried out for a total of 3 min (approximately 40 s

per surface) with an LED lamp at 1000 mW/cm2 (Celalux 2, VOCO).

Finishing and polishing were performed with fine and extra-fine dia-

mond burs and rubber points on a handpiece. Margins were double-

checked to exclude samples with under-contours, while over-contours

were corrected with a new cycle of finishing and polishing. All samples

were confirmed to be clinically acceptable by an expert operator (more

than 10 years of experience in prosthodontic field).

2.3 | Micro-CT acquisition and fatigue simulation

Samples first underwent a micro-CT scan (Skyscan 1172, Bruker) with

the following parameters: voltage = 100 kV, current = 100 A, alumi-

num and copper (Al + Cu) filter, pixel size = 10 μm, averaging = 4,

and rotation step = 0.1�. Images were reconstructed (NRecon, Bruker)

to obtain DICOM files with standardized parameters: beam hardening

correction = 15%, smoothing = 5, and ring artifact reduction = 6.

HTZ samples (SG1) showed a higher radiopacity than ZLS, which was

managed by doubling the aluminum and copper filters, using averag-

ing = 7, and properly positioning the sample.

Fatigue simulation was accomplished with a chewing simulator

(CS-4.4, SD Mechatronik) using 6 mm diameter steatite balls as antag-

onists with the following settings: load = 50 N, frequency = 1 Hz,

speed = 16 mm/s, sliding = 2 mm over the buccal triangular crest,

and number of cycles = 500,000. A loading force of 50 N was

selected in accordance with previous studies on fatigue testing.26–28

2.4 | External gap progression analysis

Specimens which survived to chewing simulation were submitted to a

second micro-CT scan, with the same parameters as the baseline, to

maintain data consistency and evaluate the effect of fatigue on exter-

nal gap progression. The obtained DICOM data were imported into a

segmentation software (Mimics Medical 20.0, Materialise). A stan-

dardized workflow consisting of thresholding, region growing, and

Boolean and morphological operations was used to specifically ana-

lyze the external interfacial gap. Segmented masks were converted

into optimal quality STL files and imported into the analysis software

(Geomagic Studio 12, 3D Systems) for noise removal and volume cal-

culation (mm3). Figure 2A–D presents a schematic representation of

the protocol steps for clarification.

To have significant data to discuss and to highlight the interfacial

gap progression caused by cyclic fatigue, a subtraction was made

between the final gap volume and the baseline gap volume. Figure 3

presents a random sample gap analysis, before and after the chewing

simulation, with the external gap progression highlighted.

2.5 | Statistical analysis

A Shapiro–Wilk test revealed that the data were normally distributed.

To evaluate the effect of materials and preparation design on the tridi-

mensional interfacial gap progression, a two-way analysis of variance

(ANOVA) and post-hoc Tukey test were performed. The significance

level was set to 95% (p < 0.05). All statistical analyses were performed

using the STATA software package (ver. 14.0, StataCorp, College

Station).

F IGURE 1 Random samples
transversal sections of a low-retentive
design (Fig. 1A) and high-retentive design
(Fig. 1B). Both the restorations were
performed above the CEJ level, as
highlighted in Fig. 1B

TABLE 2 Detailed adhesive procedures performed on different
materials

Substrate Adhesive procedure performed

Tooth Enamel etching for 15 s, rinse and dry, apply tooth

primer (PANAVIA V5 kit, Kuraray Noritake) for 20 s,

dry with air

HTZ Dry sandblasting with 50 micron alumina powder

(RONDOflex Plus 360, KaVo), 5-min ultrasonic bath in

98% alcohol, dry, apply CERAMIC PRIMER PLUS

(PANAVIA V5 kit, Kuraray Noritake) for 20 s, dry,

apply PANAVIA V5 cement through dedicated mixing

tips

ZLS 9.6% Hydrofluoric acid (Porcelain Etch Gel, Pulpdent) for

30 s, 5-min ultrasonic bath in 98% alcohol, dry, apply

CERAMIC PRIMER PLUS (PANAVIA V5 kit, Kuraray

Noritake) for 20 s, dry, apply PANAVIA V5 cement

through dedicated mixing tips
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3 | RESULTS

None of the tested specimens showed critical cracks, fractures, or

debonding after cyclic fatigue. The external gap progression data

(±SD, expressed in cubic millimeters) of the tested specimens are

shown in Table 3.

Two-way ANOVA reported significant differences between the

tested materials (p = 0.0001) and preparation designs (p = 0.005),

while their interaction did not show a significant difference (p = 0.75).

Pairwise comparison showed that the high-retentive preparation

design had a significantly inferior gap progression compared to the

overlay preparation. However, ZLS exhibited an inferior gap progres-

sion compared to HTZ.

4 | DISCUSSION

Degradation of restorative interfaces is a key topic in better under-

standing and preventing biomechanical and microbiological failures of

modern restorations that use adhesion to properly reinforce tooth

structures while preserving dental tissues.4,29 In the present study,

F IGURE 2 Random sample external
gap analysis (ADH, ZLS) in stages A–D.
Figure A presents a random cross-section
with external gaps highlighted. Figure B is
a magnification of Figure A, showing in
red the pixels corresponding to the
external gap used in the analysis. Figure C
shows a 3D rendering (Geomagic Studio
12, 3D Systems) of the tooth-restoration

complex (in blue) and the analyzed gap (in
yellow). Figure D presents the analyzed
gap in yellow

F IGURE 3 Random sample (ADH,

HTZ) external gap progression analysis.
Figure A presents the baseline gap in light
blue aligned with the transparent blue
tooth-restoration complex. It is worth
mentioning that even if a gap is reported
throughout the whole interface, it is
extremely thin, making its total volume
almost irrelevant. Figure (B) presents the
same sample gap after fatigue simulation
in yellow, with red circles indicating some
of the area that showed a significant gap
progression. Figure (C) presents the
superimposition of the baseline (light
blue) on the final gap (yellow), with the
same highlights presented in Figure B.
Figure (D) presents a detailed view of
Figure C for better understanding

TABLE 3 External gap progression, expressed as mean ± standard
deviation (mm3) for all tested subgroups

HTZ ZLS

ADH 0.16 ± 0.08 0.10 ± 0.06

CRW 0.11 ± 0.09 0.02 ± 0.02

BALDI ET AL. 5



cyclic fatigue simulation induced external gap progression in all speci-

mens, in agreement with several papers that previously demonstrated

that fatigue stresses are able to cause degradation of adhesive inter-

faces.30,31 Although there is no clear correlation between in vitro gap

formation and interfacial failures observed in vivo, none of the speci-

mens showed external gap higher than 150 μm after cyclic fatigue,

which is considered clinically acceptable.32

Based on the present study's results, the first null hypothesis was

rejected, since the high-retentive preparation design showed lower

external gap progression than the low-retentive ones. Several explana-

tions might be offered for this finding. First, adhesive cementation

helps to distribute forces, ultimately improving a restoration's fatigue

resistance.33,34 The tested high-retentive design possessed a wider

adhesive interface, which might have acted as a cushion, better dissi-

pating forces and preventing gap progression. Second, the fatigue sim-

ulation included a sliding movement meant to increase the lateral

forces applied to the restorative material, forcing the system to flex.

Therefore, the axial walls of the crown design probably dissipated

some of these lateral forces, acting like a ferrule and increasing not

only the retention but also the stability of the system.35,36 Finally, gap

progression in low-retentive restorations was probably augmented

due to the direction of the chewing sliding pattern, which started from

the central fossa and moved along the buccal triangular crest. In fact,

in the selected adhesive overlay design, buccal and oral cusps had the

lowest stability due to the lack of vertical walls. Moreover, the differ-

ent margin configuration and the consequent restoration marginal pro-

file could also justify the external gap progression showed in the

present study. In fact, the beveled chamfer of the low-retentive prepa-

ration corresponds to a wider amount of enamel exposure but a

slightly thinner restoration in the external part, that might be more

prone to chipping.37 Partially in disagreement with the present study's

results, a recent paper by Gupta et al. reported that both zirconia

crowns and overlays had similar marginal behavior after fatigue.38

However, they performed their analysis with SEM and focused on

microcracks and marginal integrity rather than volumetrically quanti-

fied gaps; thus, it is impossible to directly compare results. As under-

lined in a review on marginal adaptation, micro-CT is the only method

that allows both a precise identification of critical gaps and sufficient

measurements to define margin conditions.39

The results of the present study also showed significant differ-

ences between ZLS and HTZ in terms of gap progression; thus, the

second null hypothesis was rejected. A first possible explanation

regarding the external gap progression results concerns the adhe-

sive cementation. In fact, it has already been demonstrated that

ZLS can be successfully luted, achieving high bond strength, if the

surface is properly treated.40 However, HTZ, due to the absence of

any glassy matrix, cannot be conditioned with conventional acid

etching techniques and, consequently, might be considered less

suitable for adhesive procedures.41,42 Thus, the stability of the HTZ

cement-restoration interface might be inferior compared to that of

ZLS. A recent study on tensile bond strength in ZLS showed good

performance and stability with aging, even if thermocycling signifi-

cantly influenced the bond strength values.43 Similar studies on

zirconia, however, reported major loss of bond strength after

thermocycling, with prevalent adhesive failures, even if data were

cement-dependent.44,45 Another possible explanation relates to the

mechanical proprieties of HTZ compared to those of ZLS. HTZ has a flex-

ural strength of approximately 600–800 MPa and an elastic modulus of

200–210 GPa,11 while ZLS flexural strength of 400–500 MPa and an

elastic modulus of 60–67 GPa.46 Several papers support the fact that low

elastic modulus restorative materials have better biomechanical perfor-

mance when applied to full-coverage adhesive restorations. They demon-

strate a better stress distribution due to the partial absorption of

stress47,48 which might cause interfacial overloading in HTZ samples, ulti-

mately bringing to premature fatigue micro-failure of the restorative inter-

face, recorded as volumetric gap progression in the present study's

methodology.

Within the limitations of the present study, it is worth mentioning

the difficulty encountered in HTZ sample analysis due to the presence

of X-ray artifacts. Micro-CT has been widely used to analyze the inter-

nal and marginal fit of zirconia crowns49,50 and therefore can be con-

sidered a reliable method of qualitative analysis. However, when it

comes to quantitative evaluation through software-automated analy-

sis, thresholding of gap was found to be harder in HTZ than in ZLS.

The scattering effect of HTZ caused pixel blurring that the software

sometimes incorrectly included in the region of interest. This problem

was managed with a few manual adjustments and a modification of

the acquisition phase, as described in Section 2.

5 | CONCLUSIONS

Based on the obtained results and within the limitations of the pre-

sent study, it can be concluded that external gap progression was sig-

nificantly inferior for the high-retentive preparation design and

significantly lower for ZLS compared to HTZ.

Further studies are necessary to confirm the given results, to pro-

vide a better understanding of the biomechanical behavior of HTZ

and ZLS in minimally invasive dentistry and to find a possible correla-

tion between the marginal gap progression and the interfacial bacte-

rial colonization in indirect adhesive restorations.
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