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Simple Summary: Despite high rates of remission obtained with conventional chemotherapy, the
persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main
challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell
mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML
cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-
dependent mechanisms of therapy resistance. The understanding of these processes will help find
new drug combinations and conceive novel and more effective treatments.

Abstract: Acute myeloid leukemia (AML) has been considered for a long time exclusively driven
by critical mutations in hematopoietic stem cells. Recently, the contribution of further players,
such as stromal and immune bone marrow (BM) microenvironment components, to AML onset
and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily
remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning
their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia
drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the
activation status of immune cells in the BM leukemic microenvironment may vary by influencing
their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune
cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML
biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on
eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing
evidence on the contribution of stromal and immune cells in response to therapy underscores the need
to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions
will help provide novel applications for drugs already under experimentation and open a wide array
of opportunities for new drug discovery.

Keywords: hematology; chemotherapy resistance; bone marrow microenvironment; mesenchymal
stromal cells; immune microenvironment

1. Introduction

Acute myeloid leukemia (AML) originates from genetic or epigenetic lesions in
hematopoietic stem cells (HSCs) or myeloid progenitors, which give rise to clonal ex-
pansion and accumulation of damaged undifferentiated cells in the bone marrow (BM) and
peripheral blood (PB) [1].

Despite the high remission rates after induction therapy, treatment failure and relapse
are still significant hurdles in AML. Relapse is mainly caused by tumor regrowth initiated
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by chemoresistant leukemic cells. Chemoresistant AML cells are thought to be enriched in
leukemic stem cells (LSCs), an AML cell subpopulation, owing to quiescence and typically
resistant to proliferation-targeting chemotherapy [2–4]. However, the precise characteristics
of chemoresistant cells and the mechanisms underlying the switching between the drug-
sensitive and -resistant state are still elusive, mainly in vivo.

AML chemoresistant cells are highly heterogeneous in vivo [5,6]. Chemotherapy
resistance is thought to be controlled by intrinsic factors, i.e., growth factor signaling,
epigenetic regulation, and metabolic reprogramming [7–9]. More recently, it has been
outlined that immune and stromal cells could also promote drug resistance by influencing
and modifying cell-intrinsic features [10,11]. In particular, among stromal cells, MSCs,
initially recognized as essential components to the HSC niche, have revealed unexpected
roles in leukemic cell protection from therapies.

Here, we will describe new emerging mechanisms driven by the BM microenviron-
ment, emphasizing MSCs’ capacity to nurture a leukemia drug-resistant phenotype. We
will also recapitulate the most recently acquired knowledge on the contribution of the
immune system in the acquisition of resistance to therapy in AML. We will also speculate
on the consequences of the stromal-immune BM microenvironment interplay on therapy
response. Finally, we will discuss how these new pieces of the ‘chemoresistance puzzle’
can be exploited to design new combinatorial therapies and maximize treatment efficacy.

2. The Stromal-Dependent Anti-Apoptotic Effects

The final result of a successful cytotoxic treatment is the induction of programmed cell
death, namely apoptosis. BM microenvironment offers protection against cytotoxic agents,
activating anti-apoptotic signals and leading to enhanced cell survival and resistance to
therapy (Figure 1A) [12,13]. In turn, the activation of signals which inhibit apoptosis is
correlated with a poor response to chemotherapy in AML [14–17]. Soluble factors [18,19]
and adhesion molecules [20] expressed by stromal cells activate pro-survival pathways.
But whatever the upstream mechanism is, the activation of pro-survival pathways involves
pro-/anti-apoptotic protein balance as a common target.
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Figure 1. MSC-dependent mechanisms of resistance to therapy. Mesenchymal stromal cells (MSCs) support leukemic cells
in diverse ways (purple): (A) supplying pro-survival factors (directly, mediated by extra-vesicle EVs or depending on BM
retention), (B) providing metabolic substrates alternative to glucose, (C) rewiring metabolism. Each of these mechanisms
interferes with a different therapeutic strategy (red). CKs, cytokines; GFs, growth factors; aa, amino acids; FA, Fatty acids;
TNT, tunneling nanotubes; ROS, reactive oxygen species.

2.1. MSC-Dependent Pro-Survival Pathways

B-cell lymphoma 2 (BCL-2), a critical pro-survival factor, has an altered expression
in leukemic cells [21] and is further up-regulated in co-cultures with stromal cells [19].
The highly selective BCL-2 inhibitor venetoclax (VEN) has proven highly effective in
pre-clinical models [22,23]. However, its application as a single agent in clinical trials
has been disappointing due to the development of resistance [24,25]. As a possible ex-
planation, in vitro experiments have demonstrated that VEN efficacy was attenuated by
cytokines (i.e., soluble factors) produced by stromal cells (Figure 1A) [26]. In particular,
granulocyte-macrophage colony-stimulating factor (GM-CSF), and to some extent, gran-
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ulocyte colony-stimulating factor (G-SCF), were shown to vicariate the effect of stromal
cell-conditioned medium on AML cell viability, thus were indicated as the main culprits
in stroma-mediated resistance to VEN [26]. Mechanistically, stromal cytokines activate
Janus kinase (JAK)/STAT signaling and decrease the expression of BCL-2 relative to the
other BCL-2 family members (i.e., BCLXL, MCL1, and BFL1). Consistently, drugs targeting
anti-apoptotic proteins different from BCL-2 (e.g., navitoclax) maintain cytotoxic activity in
the presence of the stroma [22,26]. Moreover, JAK-inhibitors synergize with VEN activity
and override stroma protection [26].

New promising scenarios result from targeting induced myeloid leukemia cell differen-
tiation protein (MCL-1), a BCL-2 family member essential for AML development and AML
cell survival [27,28]. MCL-1 upregulation characterizes about half of resistant/relapsed
AML patients and is associated with poor prognosis [29]. Specific inhibitors of MCL-1 and
MCL-1-transcriptional regulator CDK9 have recently entered clinical trials [30–32]. Further-
more, to potentiate the anti-leukemic apoptotic mechanisms, the combination of MCL-1
and BCL-2 inhibition has been successfully applied in vitro and in vivo. MCL-1 inhibition
sensitizes AML cells to anti-BCL-2 drugs (e.g., VEN), overcoming stroma-promoted resis-
tance [32–34]. Interestingly, this process does not involve the dissociation of apoptotic/anti-
apoptotic proteins. Indeed, MCL-1 has recently revealed unexpected functions beyond
the cell-intrinsic anti-apoptotic effect [35]. MCL-1 promotes the adhesion-mediated inter-
action between AML cells and stromal cells. MCL-1 expression in AML cells positively
correlates with the levels of Chemokine (C-X-C motif) receptor (CXCR) 4 and CD44, which
are known to be involved in leukemia-MSC interactions, MSC-mediated support to AML
cell survival, and engraftment [35]. Moreover, MCL-1 regulates redox and metabolic
functions in AML cells. The MCL-1/BCL-2 combined inhibition prolongs the survival
of mice-bearing xenografts derived from VEN-resistant patients, suggesting that these
patients may potentially benefit from a similar combination. Although the underlying
pathway remains unknown, the inhibition of CXCR4 and oxidative phosphorylation (OX-
PHOS) overcomes MSC-induced VEN resistance [35], suggesting that interference with
stromal-mediated adhesion and metabolism regulation contributes to sensitizing AML
cells to apoptosis induction.

Among factors regulating leukemia-MSC interactions, CXCL-12/CXCR4 axis plays a
central role in leukemia resistance to therapies (Figure 1A) [36]. Stromal cell-derived factor
(SDF)-1/CXCL-12, abundantly secreted by MSCs, stimulates malignant cell survival [37].
Moreover, despite both normal and malignant hematopoietic cells expressing CXCR4, the
SDF-1 receptor, the expression level is higher in AML cells, having a major prognostic im-
pact [38]. Leukemic cells utilize CXCR4 to enter niches normally restricted to HSCs, thereby
competing for a microenvironment that favors their growth and survival. Disruption of
CXCL-12/CXCR4 interactions with CXCR4 inhibitors efficiently blocks LSC homing to the
BM niche and likely sensitizes leukemic cells to chemotherapy (Figure 1A) [39,40]. Based
on their ability to mobilize leukemia cells out of protective BM niches, CXCR4 antagonists
have been explored as therapy in combination with cytotoxic drugs, including VEN [36,41].

2.2. The Emerging Role of Extracellular Vesicles

Among the extrinsic microenvironmental factors with a putative relevance in AML
chemoresistance, extracellular vesicles (EVs), including exosomes, ectosome, and microvesi-
cles, have progressively attracted crucial attention (Figure 1A) [42]. Several types of cells,
including immune and stromal cells, under physiological and pathological conditions,
release EVs containing tumor-derived material (DNA, RNA, proteins, and lipids) and act
as a reservoir of clinically relevant biomarkers, and as carriers of complex intercellular
information within the microenvironment, even in AML [42]. In AML patients, EV levels
are elevated in plasma at diagnosis and remain elevated in complete remission (CR) after
chemotherapy [43]. Additionally, the miRNA content of EVs can predict both the risk of
relapse and death in AML patients [44]. Accumulating evidence has reported a key role for
EVs in drug resistance and immune response modulation [45,46].
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Interestingly, EVs from healthy or leukemic niches reveal differences in chemopro-
tection. The EVs from AML-MSCs (AML-MSC-EVs) protect AML cells against cytarabine
or AC220 (FLT3 kinase suppressor) and contain higher levels of well-known clinical risk
factors, such as transforming growth factor-β1 (TGF-β1) and miR-155, compared to EVs
from healthy donors [47]. Consistently, AML-MSC-EVs regulate the AML progression
promoting cell proliferation, migration, and invasion, inhibiting GSK3β expression and
activating Wnt/β-catenin signaling in AML cells [48].

By contrast, EVs derived from healthy MSCs (HD-MSC-EVs) suppress cell prolifer-
ation and promote apoptosis in KG-1a cells, likely acting through miR-124-5p [49]. HD-
MSC-EVs transfer miR-222-3p to THP-1 cells and exert pro-apoptotic effects targeting the
IRF2/INPP4B signaling pathway [50]. However, in another study HD-MSC-EVs promote
resistance to cytarabine via the upregulation of S100A4, a calcium-binding protein with a
prominent role in tumorigenesis [51]. Different outcomes may be due to the EV population
heterogeneity, the contained cargo, and the cell line used for the study.

In addition, AML cells generate EVs (AML-EVs). EV transfer from AML cells to MSCs
might remodel the BM cell composition and concomitantly influence AML survival [52].
AML-EVs transfer to MSCs, BMP-2, a protein upregulated in AML and related to endo-
plasmic reticulum (ER) stress. BMP-2-transfer activates the unfolded protein response
pathway (UPR) as an enhancing extrinsic mechanism of chemoresistance [53]. Interestingly,
AML-EVs upregulate IL-8 in MSCs, promoting AML cell resistance to etoposide [45].

Intriguingly, blocking the effects of EVs in the cross-talk between leukemic cells and the
supportive microenvironment might be considered a promising therapeutic approach [54].
To the best of our knowledge, few data are explicitly reported in AML. However, Paggetti
et al., using a heparan sulfate analog, suggest a way to counteract tumor growth, decreasing
the uptake of chronic lymphocytic leukemia (CLL)-derived EVs by target cells [55]. Accord-
ingly, in lymphoma cell lines, blocking EV release through indomethacin decreases tumor
progression [56]. To date, despite the fascinating involvement of EVs in AML resistance, the
standardization of protocols for EV isolation and the effectiveness and safety of blocking
EV cargo need to be addressed before exploiting EV targeting as therapy.

3. The Stromal-Dependent Metabolic Reprogramming

Similar to other cancer cells, AML cells hold the capacity to adapt their metabolism
to microenvironment conditions and stimuli [57]. AML cells put in the field different
strategies to sustain tumoral accelerated metabolism and adequately feed the tricarboxylic
acid (TCA) cycle. Enhanced glucose catabolism mainly provides advantages, such as
rapid adenosine triphosphate (ATP) production and building blocks for nucleotides, amino
acids, and lipids [58]. In contrast, metabolic source alternatives to glucose, such as amino
acids [59] and fatty acids (FA) [60], operate as a supplier of the TCA cycle for energy
production [57]. Metabolism rewiring confers to AML cells a selective advantage over
normal HSCs and protection from therapeutic agents (Figure 1B,C) [57]. At the same time,
the re-organization of metabolic pathways frequently renders AML cells autotrophs for
some nutrients offering therapeutic opportunities.

3.1. Glucose Addiction

AML samples show a higher glycolytic flux compared to healthy controls [61]. The
glycolytic rate divides AML patients into subgroups with different prognostic values [62].
Altered glucose metabolism is also associated with resistance [63]. Blocking glycolysis has
been revealed as a promising strategy against AML cells [64,65]. The stroma upregulates
glycolysis in AML cells through a not completely defined mechanism [66], but depending,
at least in part, on mammalian Target of Rapamycin (mTOR) kinase hyper-activation. Stro-
mal interaction increases the glycolytic flux of AML cells through the CXCR4/CXCL12 axis,
which activates mTOR [67]. Stromal contact also upregulates the AML cell expression
of Glucose transporters (GLUT1-4), paralleled by an increased glucose uptake [67]. Tar-
geting glycolytic pathways overrides stroma-mediated protection [67]. mTOR inhibition
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by rapamycin decreases glucose uptake and downregulates glycolytic pathway genes in
AML cell lines [68,69]. Although with conflicting results, rapamycin has been observed
to cross-react with glucose deprivation or glycolysis inhibiting drugs [64,69]. Moreover, a
highly selective mTORC1/2 inhibitor is able to target leukemic cells within the BM microen-
vironment [70]. Thus, stroma-mediated ‘glucose addiction’, on the one hand, increases the
resilience of AML cells to cytotoxic agents (Figure 1B) [13,67], but on the other hand, can
be exploited in novel drug combinations.

3.2. Biofuels Alternative to Glucose: Glutamine, Asparagine, and Cysteine

Unlike normal HSCs, leukemic cells are highly dependent for survival and prolifer-
ation on asparagine (ASN) and glutamine (GLN) as alternative carbon sources [71]. The
inhibition of the synthesis or utilization of GLN and ASN has detrimental effects on AML
cells. Targeting such metabolic vulnerability, e.g., amino acid deprivation, can be consid-
ered a successful strategy to target AML cells. However, it must be taken into account that
stromal cells in the leukemia BM microenvironment, particularly MSCs and adipocytes,
can provide AML cells with different metabolic substrates other than glucose (Figure 1B).
Specifically, MSCs show a strong overflow metabolism that leads to the secretion of diverse
amino acids that can be exploited by AML cells as metabolic substrates [72,73].

Inhibitors of Glutaminase (GLS), the enzyme deaminating GLN to the alpha-ketoglutarate
(α-KG) precursor glutamate (GLM), reduce AML cell growth and induce apoptosis [71,74].
IDH1 and IDH2 mutants, which cannot produce α-KG through alternative pathways, are
more susceptible to GLS inhibition [75].

The protective effect of stromal cells on the apoptosis induced in AML cells by GLS
inhibition has not been investigated yet. However, it is known that the release of GLN
by adipocytes causes leukemia cell resistance to Asparaginase (ASNase) [76]. ASNase
is a universally used component of acute lymphoid leukemia (ALL) treatment and in
the context of multiagent chemotherapy. Leukemia cells adapt to ASNase treatment by
increasing the synthesis and transport of GLN [76]. Thus, while considering detrimental
side effects [77], targeting GLN metabolism is necessary to override ASNase resistance [78].

In a murine model of AML, it has been demonstrated that aspartate produced by MSCs,
fuels pyrimidine synthesis in leukemic blasts. Thus, amino acid production by MSCs could
also mediate resistance to nucleotide deprivation-based chemotherapy (Figure 1B) [77].

To sustain their energy metabolism, AML cells, specifically LSCs, also rely on cys-
teine [79,80]. MSCs, but not leukemic cells, import cystine and convert it to cysteine. In
turn, cysteine is secreted by MSCs and uploaded by leukemic cells to generate glutathione
(GSH) [81,82]. Thus, stromal cells regulate cysteine metabolism and increase GSH levels
enhancing leukemia cell survival and protecting them from drug-induced cytotoxicity and
oxidative stress (Figure 1C) [81]. As discussed below, targeting GSH metabolism has been
considered a promising avenue to eradicate AML [74,83].

3.3. Biofuels Alternative to Glucose: Fatty Acids

Besides glucose and amino acids, fatty acids (FA) can also be utilized by AML cells
as alternative sources of energy [7] and converted in acetyl-CoA to feed the Krebs cycle
and OXPHOS aimed at ATP production [84]. Tumor cells obtain FA from their microenvi-
ronment through lipolysis of triglycerides stored in the adipocytes. Lipolysis is initiated
by activating the β-adrenergic receptor, which stimulates lipolytic enzymes, e.g., the
hormone-sensitive lipase (HSL) [85]. The ‘FA store’ is particularly rich in AML. BM stromal
cells are reduced in AML [86,87], but adipocytes are abundant and increase in elderly
patients [88,89]. Tabe et al. [60] have recently discussed the mechanisms by which the
stromal BM microenvironment and specifically adipocytes support leukemic cell survival
and metabolic demand of FA, as well as the therapeutic potential of fatty acid oxidation
(FAO) inhibitors. Here, we will briefly recapitulate some key concepts.

• Leukemia cells prompt their microenvironment to increase FA production and availability.
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In the BM microenvironment, adipocytes induce a pro-inflammatory/secreting cytokine-
phenotype in leukemic cells, which causes increased lipolysis in adipocytes [90]. AML cells
also directly promote lipolysis by inducing in the adipocytes the phosphorylation and acti-
vation of HSL [91]. Increased lipolysis in adipocytes results in a greater FA release [90,91].

• FAO promotes AML cell survival.

The FA released by adipocytes are captured by AML cells with the help of two
fundamental players: the fatty acid transporter CD36 and the chaperon fatty acid-binding
protein 4 (FABP4) [91,92]. FABP4 transports FA out of the adipocytes and in AML cells
to the mitochondria, where FA are oxidation substrates. FA, transferred in the nucleus,
bind to Peroxisome proliferator- activated receptor (PPAR)-γ and induce the transcription
of downstream targets, including CD36 and FABP4, and the anti-apoptotic protein BCL2.
Disruption of FAO in BM adipocytes reduces their protective effect [93]. FABP4 inactivation
in the adipocytes has a significant inhibitory effect on co-cultured AML cells. Moreover,
FABP4 inactivation in AML cells prolongs survival in a murine leukemia model [91]. By
inducing lipolysis in adipocytes, a CD36+ LSC subpopulation holds an increased FA uptake
and oxidation rate, facilitating their survival [90]. Additionally, MSCs favor FAO in AML
cells and activate the anti-apoptotic machinery [93]. However, adipocytes seem to be more
effective if compared with MSCs. Adipogenic differentiation of MSCs was associated with
enhanced leukemia engraftment in a mouse model [94].

• BM-adipocytes impair the efficacy of anti-leukemia drugs.

‘FA addiction’ of AML cells can be exploited for therapy purposes. Pharmacological
inhibition of FAO effectively sensitizes human AML cells to apoptosis induction [93]. How-
ever, the adipocyte pro-survival effect can interfere with this kind of therapy (Figure 1B).
Co-culture with BM-derived adipocytes inhibits the anti-leukemic effect of the FAO in-
hibitor, avocatin B [95]. Accordingly, in vivo, the relapse rate was higher in obese mice
than their normal-weight counterparts [93,96].

FAO inhibition can trigger metabolic adaptation. FAO inhibition causes adaptive stim-
ulation of FABP4-mediated FA uptake, enhances glucose uptake and metabolic switching
to glycolysis [95]. Combinatorial regimens can override microenvironment-dependent
metabolic adaptation. FAO inhibitors are highly synergistic with conventional treatment,
like paclitaxel or cytarabine [95,97].

3.4. Glycolysis versus OXPHOS

Recent findings indicate that, unlike other cancer cells, in AML cells, the Krebs cy-
cle is intact, and OXPHOS is highly active [23,93]. In particular, LSCs considered the
real perpetrators for the propagation of AML rely on OXPHOS to generate ATP [98].
Thus, chemo-resistant AML cells are not simply enriched in LSCs, as previously thought,
but own the specific feature to rest on mitochondrial OXPHOS for their high metabolic
demand [7,23,99,100]. In particular, AML cells hold a distinctive high OXPHOS gene sig-
nature that is also predictive for treatment response in a xenograft model [7]. Moreover,
modulation of mitochondrial OXPHOS status markedly affects chemotherapy efficacy
in vitro and in vivo [7].

However, MSCs can induce a ‘Warburg phenotype’ in AML cells (i.e., aerobic gly-
colysis for energy metabolism) where the oxidative capacity impairment is mimed by
mitochondrial uncoupling (i.e., the abrogation of ATP synthesis in response to mitochon-
drial potential). MSCs, increase leukemia cells’ expression of uncoupling protein 2 (UCP2),
a mitochondrial inner membrane protein that dissipates the electrochemical gradient gen-
erated by the mitochondrial respiration chain. Uncoupled mitochondria are more resistant
to cytotoxic insults, produce less reactive oxygen species (ROS), and block the activation of
the intrinsic apoptotic pathway (Figure 1C) [66,101].

Acquiring metabolites and organelles, like mitochondria, is a cancer cell alternative
strategy to building up ATP production. AML cells present a higher number of mitochon-
dria in comparison with normal HSCs [102]. MSCs could provide additional mitochondria
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to AML cells through a process still to be defined but which likely involves tunneling nan-
otubes (TNTs) and/or endocytosis and requires a cell-to-cell contact [103,104]. AML cells,
through the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-(NOX)-2
activity, locally increase oxidative stress and boost MSC mitochondria production [103].
The extra-mitochondria are transferred to AML cells by activating peroxisome proliferator-
activated receptor γ coactivator (PGC)-1α, the master regulator of mitochondrial bio-
genesis [105]. Mitochondrial transfer increases upon chemotherapy and is proposed
as an additional resistance mechanism by reducing mitochondrial depolarization and
chemotherapy-induced oxidative stress (Figure 1C) [104]. Moreover, AML cells equipped
with extra-mitochondria could acquire other anti-apoptotic proteins, e.g., from the BCL-2
family, gaining a survival advantage and resistance to standard therapy, as mentioned
before [106]. Thus, targeting MSC-mediated mitochondria transfer, specifically NOX2 and
PGC-1α, could emerge as an intriguing therapeutic approach, especially as normal CD34+

HSCs are less prone to receive extra-mitochondria, giving a chance for targeted therapy
with limited detrimental effects [104].

More generally, mitochondrial OXPHOS represents a putative point of vulnerability
for AML chemo-resistant cells, including LSCs. The inhibition of mitochondrial metabolism
selectively targets LSCs, and high OXPHOS AML cells that are metabolically inflexible,
i.e., cannot shift to glycolysis when mitochondrial respiration is inhibited [23]. Initial
results suggest that targeting mitochondrial OXPHOS may be a promising strategy in AML
therapy alone or in combination with chemotherapy [23,107]. Recently, a highly potent
and selective small-molecule inhibitor of complex I of the mitochondrial electron transport
chain (IACS-010759) has shown promising anti-leukemic activity. In glycolysis-deficient
and OXPHOS-reliant AML cells, OXPHOS disruption creates a microenvironment of energy
and macromolecule depletion, impairs nucleotide biosynthesis, leading to AML cell cycle
arrest and apoptosis [108]. Combining VEN with hypomethylating agents is proposed
to selectively target amino acid dependent OXPHOS in LSCs [79,99]. Consistently, VEN
and hypomethylating agent synergistic activity have also been demonstrated in vivo in
AML patients [99,109]. MSCs could negatively affect AML cell resistance to OXPHOS-
targeting drugs by increasing the bioenergetic capacity of AML cells [110]. Thus, in this
case, MSC-protective contribution must be considered (Figure 1C).

3.5. ROS and Redox Metabolism

Besides generating metabolic intermediates, AML cells utilize alternative energy
sources to counteract oxidative stress, a metabolic state characterized by damage to DNA,
amino acids, lipids, and carbohydrates [52]. Oxidative stress is due to a defect in antioxidant
defense or excessive ROS production. ROS are highly active molecules generated by
OXPHOS in the mitochondria or partly by the NOX complexes’ activity [111].

Physiologically, ROS participate in the crosstalk between HSCs and their BM microen-
vironment, including MSCs, affecting the maintenance of stem cell functions, differentiation,
and migration [112]. The release of ROS within the BM microenvironment may represent a
mechanism of apoptosis induction. Thus, modulation of ROS levels can be exploited as a
therapeutic strategy. Intuitively, chemotherapy efficacy may lie on increased ROS-mediated
cellular damage [113]. However, multiple genes can potentially contribute to ROS produc-
tion, and it might be worthy of avoiding compensatory effects dangerous for the patients.
Moreover, HSCs are sensitive to ROS, hence therapeutic intervention might impair normal
hematopoiesis. Finally, ROS signaling could increase genomic instability and favor the
survival of resistant cells to therapy, promoting, in turn, disease progression [114].

Excellent reviews reported different approaches to modify ROS levels with an anti-
leukemia purpose: lowering the ROS level to prevent their role in cellular transformation
or counteracting the redox adaptation by inducing oxidative stress with elevated ROS
levels [115,116].

However, to date, not much attention has been given to microenvironmental driven
mechanisms of resistance depending on ROS. MSCs provide AML cells protection against



Cancers 2021, 13, 5319 8 of 23

excessive ROS levels (Figure 1C). In vitro, MSCs supply a chemo-resistant niche for
leukemic blasts promoting a quiescent phenotype in a side population with a low ROS
transcriptional pathway [117]. In leukemic cells, the presence of BM-MSCs promotes
the overexpression of GPX3, the cytoplasmic relocalization of Nrf2, and inactivation of
p38MAPK with a concomitantly decrease in ROS levels. Of note, a reverse effect was
observed in BM-MSCs in contact with leukemic cells, with a particular rise in ROS levels,
decrease in GPX3 expression, and nuclear relocalization of Nrf2 [118]. One explanation
could be ascribable to a mechanism of ROS transfer between AML cells and MSCs mediated
by Connexin(CX)-43, a gap junction protein [119]. Remarkably, CXs are involved in the
transfer of ROS from HSCs to the BM microenvironment. Disruption of gap junctions
attenuates AML chemoresistance induced by MSCs, suggesting CX-mediated interactions
between AML cells and their BM microenvironment as a putative therapeutic target for
AML [119].

As mentioned before, chemoresistance mechanisms involving ROS modulation might
be associated with metabolic rewiring induced by the BM microenvironment [78]. BM-
MSCs (i.e., nestin+ cells) increased the bioenergetic capacity of AML cells contributing to
their chemoresistance (Figure 1C) [110]. In particular, MSCs increase the energy production
of LSCs, promoting GSH-mediated antioxidant defense against excessive ROS. AML cells
can instruct MSCs to supply protection against ROS. Of note, mitochondria are the main
source of ROS, which are key regulators of mitochondrial transfer in AML [120]. The
co-culture with AML blasts increases ROS levels and oxidative stress in MSCs, leading to
the transfer of mitochondria from MSCs to AML cells, feeding the mechanism of resistance
to chemotherapy mentioned before [103]. Thus, the MSC-mediated support allows AML
cells to satisfy their high metabolic demands and resist chemotherapy-induced oxidation
(Figure 1C) [110].

Microenvironmental metabolic reprogramming linked to redox metabolism could
offer a complementary therapeutic strategy to target AML cells. The synergistic effects of
FAO inhibitors and cytarabine cause ROS induction and apoptosis in AML cells abrogating
the BM adipocytes-induced AML protective effects. Specifically, combination treatment
increases ROS production only in AML cells co-cultured with adipocytes compared to
mono-cultured cells [95]. We also reported a synergistic effect of GSH inhibition using
buthionine sulfoximine (BSO) with standard chemotherapy. In particular, the adjuvant
GSH inhibition improved survival rate and significantly delayed leukemia relapse in mice.
Thus, targeting the antioxidant support mediated by nestin+ MSCs could be considered a
further therapeutic option [110].

4. The Immune BM Microenvironment in Chemoresistance

A functional immune system is required to prevent cancer onset and progression.
Innate and adaptive immune cells recognize and destroy tumor cells in a process collectively
indicated as cancer immune surveillance [121,122]. However, in parallel, cancer cells avoid
the immune response exploiting many strategies of immune escape [123].

4.1. AML-Mediated Mechanism of Immune Evasion

Immune escape in AML includes AML cell-intrinsic mechanisms to reduce their
immunogenicity, such as the low expression of AML tumor antigens, the genomic loss
of human leukocyte antigens (HLA) haplotype [124], the downregulation of major his-
tocompatibility complex (MHC) class II gene expression [125], and the defective forma-
tion of immune synapses (Figure 2A) [126]. Moreover, AML cells cooperate to create
a suppressive microenvironment, exploiting physiological mechanisms of immune tol-
erance [127]. The interaction between the immune checkpoint (IC) receptors and their
ligands preventing the proliferation and activation of immune cells, which regulate au-
toimmunity and self-tolerance, is a well-known immune escape mechanism in AML [128].
T cells express the respective co-inhibitory receptors (IRs), including programmed cell
death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), T cell im-
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munoglobulin and mucin domain 3 (TIM-3), lymphocyte activating-3 (LAG-3), and T cell
immuno-receptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory
motif domains (TIGIT) [128]. At the same time, AML cells overexpress the regulatory
ligands, such as programmed death-ligand 1 (PD-L1), B7-H3 (CD276), and Galectin 9
(Gal-9), CD112, CD155 (Figure 2A) [129,130]. These mechanisms of AML immune evasion
are recognized as fundamental for the relapse after allogeneic hematopoietic stem cell
transplantation (allo-HSCT).
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AML cells can also favor an immunosuppressive niche by directly promoting T regu-
latory cell (Treg) induction (Figure 2C) [131,132] or through diverse indirect mechanisms:
secretion of soluble factors altering T-cell immune responses (i.e., IL-10, TGF-β) [133], the
release of EVs with immunosuppressive functions [134,135] or exploitation of the activa-
tion of other immunosuppressive cells, i.e., MSCs, M-2 polarized macrophages [136], and
myeloid-derived suppressor cells [137].

Last but not least, the AML cell aberrant metabolism mentioned above can act
as a checkpoint limiting immune-mediated leukemic cell destruction. AML cells ex-
press metabolism-regulating enzymes with an immunosuppressive function, such as
Indoleamine 2,3-Dioxygenase 1 (IDO1) and Arginase II. In particular, Arginase II leads
to arginine deprivation, which causes T cell apoptosis and autophagy [138]. IDO1 cat-
alyzes the first and rate-limiting step of tryptophan degradation along the kynurenine
pathway [139]. IDO1 activity increases T cell apoptosis, reduces T cell proliferation, and
induces Tregs (Figure 2B) [140,141]. IDO1 expression in AML cells has been correlated to
poor clinical outcomes [142,143].

Glucose depletion in the BM microenvironment operated by high consuming AML
cells could impact immune cells’ survival, proliferation, and functions (Figure 2B). Overall,
metabolic remodeling of the BM microenvironment by AML cells favors the induction and
the survival of immune-regulatory cells, such as Tregs [144].

4.2. Immune System Dysregulation

Besides AML cell-directed immune evasion, immune system dysregulation, leading
to impaired recognition of altered cells and hampered anti-tumor immune response, has
been extensively described in AML patients. Comparing the immune profile changes
among the different leukemias and healthy subjects suggests a disease-related immune-
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regulation [145,146]. Immune cell abnormalities in AML include proliferation and acti-
vation status, misproportion between T effectors (Teffs) and Tregs in favor of the latter,
CD8+ T cell exhaustion and senescence [147], increased suppressive macrophages [136],
and myeloid-derived suppressor cells (MDSCs), increased release of immunosuppressive
factors [123,148], defective antigen presentation by antigen presenting cells (APCs) [123],
suppression of natural killer (NK) cell-mediated cytotoxicity [149,150]. In particular, a
specific enrichment in T cells expressing PD-1, a marker of exhaustion [151], has been
identified in leukemias, including AML [152]. Furthermore, in AML, specific immune
evasion mechanisms can occur in the BM, which is characterized, differing from the PB
counterpart, by a decreased lymphocyte population due to blast expansion [152].

A comprehensive discussion of all these mechanisms is out of the scope of the present
review [128,130]. Below we will focus on Tregs and Teffs. Tregs are a specialized suppres-
sive subset of CD4+ T cells showing a high expression of CD25 (interleukin [IL]-2 receptor)
and transcription factor FoxP3 [153]. Tregs are fundamental to control inflammatory status
and establish peripheral tolerance [154]. The immunosuppressive effect of Treg is necessary
to prevent and minimize graft versus host disease (GVHD) after allo-HSCT. Thus, the
presence of Tregs can have a beneficial impact on AML patients after transplantation [155].

Besides their physiological role, Tregs are also involved in cancer immune evasion
and progression [156,157]. Thus, Tregs act as a ‘double-edged sword’: on the one hand,
they protect the host from autoimmunity, on the other hand, they can be exploited by
cancer cells to hamper antitumor immunity. Tregs increase among tumor-infiltrating
lymphocytes is associated with poor survival in many solid cancers [158]. Although
Tregs’ role in pathogenesis, prognosis, and treatment of hematological malignancies is
still under debate [159], a higher number of Tregs is associated with adverse outcomes in
patients [160–162]. In particular, an increased frequency of Tregs associated with a hyper-
activated and suppressive phenotype has been identified in BM and PB of AML patients
(Figure 2C) [163,164]. Moreover, AML harbors an immune suppressive microenvironment
associated with poor prognosis [165,166].

Our unpublished data demonstrate that in the BM of a subgroup of AML patients at
diagnosis, the percentage of Tregs is higher compared to healthy donors. Interestingly, AML
patients with lower PB Treg frequency at diagnosis respond better to induction chemother-
apy [164]. Conversely, elevated PB Treg frequency, persisting after CR, is correlated to an
increased risk of relapse [165,167]. Murine models of AML confirm an increased presence
of Tregs in the liver and spleen, paralleled by AML cell engraftment, and a correlation
between Treg infiltration and leukemia progression [168].

Treg reduction enhances an anti-leukemic effect mediated by CD8+ cells and delays
disease progression [169]. Thus, temporary removal of Tregs is able to evoke and enhance
antitumor effects resulting in suppression of tumor outgrowth [170,171]. Moreover, Treg
depletion, by using an interleukin-2 diphtheria toxin, improved the long-term survival of
mice [168]. However, the antitumor effect can be associated with autoimmune reactions, a
side effect that must be considered in the immunotherapy protocols.

The mechanisms underlying the abnormal Treg increase in AML are still under in-
vestigation; migration, local expansion, and conversion from conventional CD4+ T cells
may be involved [169,172,173]. Treg accumulation can be reduced by blocking CCL3-
CCR1/CCR5 and CXCL12-CXCR4 axes, suggesting increased migration mechanisms [169].

Other T cell dysfunctions have been associated with the response to induction chemother-
apy in AML patients. In the early ‘70s’ a correlation between a diminished function of
T helper cells and the chemotherapy response and maintenance of remission was sug-
gested [174,175]. An altered CD8+ T cell function, characterized by features of exhaustion
and senescence, has been described in the PB of AML patients at diagnosis (Figure 2C) [147].
Furthermore, the phenotypic and transcriptional profile of CD8+ T cells is different in pa-
tients achieving CR after chemotherapy compared with those who did not achieve CR.
After therapy, the gene expression profile of CD8+ T cells is similar to that of healthy donors,
indicating that the reversion toward a healthy-like pattern of gene expression in CD8+
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T cells is essential to achieve CR. The restoration of T cell functions, namely the down-
regulation of apoptotic and exhaustion markers and the upregulation of co-stimulatory
pathways in the BM CD8+ T cells, correlates with an effective therapeutic response [147].
Interestingly, AML blasts can directly alter CD8+ T cell expansion, viability, and expression
of senescence and co-signaling markers, including the IRs, PD-1, 2B4, and CTLA-4, and the
co-stimulatory receptors, ICOS and OX40 [147].

Besides a senescent and exhausted phenotype, the expression of PD-1 on CD8+ T cells
is also predictive of poor overall survival and event-free survival in AML patients [176].
In addition, in patients with de novo AML, the increased co-expression of PD-1 and
TIGIT on CD8+ T cells is associated with the failure to achieve remission after induction
chemotherapy [177]. CD8+ T cell dysfunction may be revealed as critical prognostic
biomarkers and help understand the most efficient therapeutic strategies to improve the
clinical prognosis of AML patients.

Of note, a growing body of evidence indicates that the anti-tumor effect of some
drug regimens is mediated at least in part by immune activation. Thus, the AML cell-
dependent immune microenvironment modulation, the increased frequency of Tregs,
and the unbalancing of Treg/Teff ratio all contribute to creating an immune-suppressive
microenvironment in AML that can result in the inhibition of immune-mediated anti-tumor
effects and response to therapy.

4.3. Immune System Modulation as a Chance for Therapy

On the other side of the coin, the immune system can be successfully harnessed to elim-
inate leukemia cells (Figure 3). After chemotherapy, higher recovery of lymphocytes and
neutrophils is associated with increased survival in AML patients [178–180]. In rare cases,
concomitant pathogen infections activating the immune system can lead spontaneously to
remission in AML patients [181].

From these observations, immunotherapy, where therapeutic agents target immune
cells rather than cancer cells, has been applied to AML. Graft-vs.-leukemia effect, namely
the ability of donor immune cells to eradicate host leukemic cells after allo-HSCT, is a well-
established proof-of-concept that an effective immune response could eliminate leukemia
and represents the first example of immunotherapy. Nowadays, allo-HSCT is regarded as
a potent immunotherapeutic treatment. However, the risk for severe and potentially fatal
complications, including GVHD, must be considered [182].

The awareness of the complex and dynamic interactions between leukemic and im-
mune cells potentially favoring blast proliferation and chemoresistance gave strength to
the further development of immunotherapy protocol in AML [152]. A few years ago, the
uncovering of the immune microenvironment biology had driven the development of
immunotherapies based on the immune checkpoints inhibitors, including anti-CTLA-4,
TIM-3, PD-1, and PD-L1 antibodies, adoptive T cell therapy, adoptive NK therapy, vac-
cines, monoclonal antibody therapy [183,184]. The available data on the immune-based
therapeutic protocols have been reviewed elsewhere [185,186].

Several trials are ongoing to investigate the ideal immunotherapy setting [185]. In
silico studies paved the way for identifying and correlating immunogenomic features
with therapeutics/prognostic indicators in solid tumors, suggesting that the activation
of immune pathways has a prognostic impact varying between different tumors [187].
Thus, also for AML, the study of tumor immunology acquired a central role in looking
for an immune signature, able to predict which group of patients may benefit from per-
sonalized immunotherapies. A growing body of evidence indicates that disease-specific
factors, including the immune milieu features, can strongly influence the response and
the resistance to IC blockade. Functional T cell populations are required to guarantee the
successful application of immunotherapies [123]. BM-mediated immune dysfunction and
tumor immune evasion represent the main challenges for immunotherapy. Brück and
collaborators described two main immunologic profiles in AML patients, differing from the
age, T cell receptor clonality, and survival, suggesting a rationale for including the tumor
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immunology in risk stratification [152]. Notably, a correlation has been found between
the immune landscape of AML and the clinical response [188]. In particular, by applying
gene and protein profiling on primary AML BM samples, the identified IFN-dominant
immune subtypes, obtained as the sum of IFN-γ signaling, inflammatory chemokine, and
immune-related scores, predicts shorter overall survival, chemotherapy resistance, and the
response of primary refractory/relapsed AML to flotetuzumab immunotherapy, which
activates and expands residual T cells mediating AML cell eradication [188].
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Similar to what was observed with conventional chemotherapy, primary and acquired
resistance to immune therapy frequently occurs. Nowadays, it is becoming increasingly
clear that both response and resistance to immune therapy are influenced by the tumor
types and/or genotypes and the disease-specific immune milieu [189]. Indeed, besides the
low neo-antigen burden of AML, one of the significant challenges for immunotherapeutic
treatment of AML is overcoming the immunosuppressive mechanisms which character-
ize the disease. The combination of different immune-based therapies could represent a
way [123]. For example, AML treatment with immunotherapeutic agents that activates
T cells, leading to proinflammatory conditions, induces the PD-L1 upregulation in pri-
mary AML blasts preventing their lysis as an adaptive immune response–driven resistance
mechanism [127]. AML patients non-responders to the treatment with azacitidine and
nivolumab, an anti-PD-1, show the upregulation of CTLA-4 on CD4+ T cells, supporting
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the rationale to add ipilimumab, an anti-CTLA-4, to the regimen [190]. Thus, besides under-
standing the disease-specific immune microenvironment, the regulatory effect mediated by
immune therapy on the immune system is crucial for designing more effective treatment.

5. Stromal/Immune BM Microenvironment Interplay

Besides the individual contribution of stromal and immune cells to induce and feed
therapy resistance, extra layers of complexity are provided by their mutual interactions
(Figure 3). It is well known that stromal cells can modulate immune cells’ proliferation,
differentiation, and activity [191]. Specifically, MSCs hold a unique capacity to inhibit
immune response as a cumulative result of different actions, among which are the inhibition
of T-cell proliferation, blocking dendritic cell (DC) maturation, regulation of NK cells and
macrophages, and above all, Treg induction [192]. MSCs are not immune-suppressive per
se but acquire this capacity when stimulated by inflammatory signals [193]. MSC immune
modulating capacity depends on several mediators among which, IDO1 plays a pivotal role.
IDO1 exerts immune-regulating activity in different settings, including AML [194]. AML
cells, but not normal HSCs, expressed IDO1 [195], which mediates immune tolerance [132]
and correlates with a poor clinical outcome, as described above [142,143]. MSCs, including
those isolated from myelodysplastic syndrome (MDS) and AML patients, up-regulate
IDO1 following pro-inflammatory stimulation [86,193]. Specifically, after exposure to IFN-
γ, IDO1-expressing MSCs become able to induce, in vitro and in vivo, fully functional
Tregs recognized as essential contributors in microenvironment immunosuppression and
ultimately in helping leukemic cells to evade immune surveillance, as mentioned before
(Figure 3) [196–198]. Accordingly, an increased number of IDO1-expressing MSCs is
associated with high levels of Tregs in AML patients [199]. In particular, co-culture with
MSCs increases the immunosuppressive activity of Tregs [196]. Besides IDO1, the increase
of inducible nitric oxide synthase in MSCs and the resulting production of nitric oxide (NO)
play a major role in immunosuppression in murine systems [200]. A regulatory role of NO
production in MSC-induced immune suppression has also been reported in hematological
malignancies [201].

In the leukemic BM microenvironment, other inflammatory signals have been de-
scribed. MSCs produce the inflammatory cytokine IL-6, which could have opposite effects
on immune cells and immunosuppression [202]. Co-culture with leukemic cells upreg-
ulates TNF-α levels in MSCs [201]. Thus, MSC-produced TNF-α, a well-known crucial
mediator in all steps of hematologic malignancies [203,204], may contribute to the genera-
tion of an inflammatory niche able to favor tumor growth and immune suppression. MSCs
also produce IL-10, an anti-inflammatory cytokine, indicated as an adverse prognostic
factor in AML patients [205], corroborating an emerging dual role of inflammation in the
immune response [206]. In addition, MSCs secrete growth factors, such as GM-CSF and
G-SCF, directly involved in drug resistance [26,207]. Thus, changes in the MSC-dependent
inflammatory status of the microenvironment can collectively result in immune modulation
and contribute to tumor progression and drug resistance within the BM niche.

It is to be considered that chemotherapy by itself can induce inflammatory modifi-
cations in the leukemic BM microenvironment, including inflammatory cytokine release
eventually affecting MSC immune-suppressive potential (Figure 3). Indeed, it has been
demonstrated that chemotherapy-treated dying AML cells release ATP, which in turn up-
regulates IDO1 expression in DCs, favors the induction of Tregs and contributes to creating
an immune suppressive microenvironment in AML [208]. Accordingly, chemotherapy
could potentially lead to the upregulation of IDO1 expression on MSCs, exacerbating the
immune-tolerant microenvironment.

6. Conclusions

Many gaps remain to be filled, though it is becoming increasingly clear that, along
with well-known cell-intrinsic determinants, the contribution of the BM microenvironment
is crucial for a comprehensive understanding of AML. However, current leukemia treat-
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ments mainly focus on eradicating malignant cells and often neglect stromal and immune
cell alterations.

Mutual interactions between the diverse components of the BM microenvironment,
leukemic, stromal, and immune cells all participate in creating a permissive niche favorable
to escape therapy and immune response. Thus, the direction of future research must
be aimed at the design of synergistic therapies targeting multiple microenvironment-
dependent mechanisms, thus turning out more effective control of AML progression
and relapse.
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