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Abstract

With the aim at developing a landscape dynamics framework for environmental

planning and management and testing the effectiveness of protected areas in

achieving the 2030 Agenda of the United Nations sustainability goals, we charac-

terized the historical transformation trajectories of forest area changes from 1936

to 2010 in the Metropolitan City of Rome Capital (Italy). Remote sensing-based

products coupled with landscape pattern metrics and fragmentation analysis have

been implemented, comparing different historical forest maps. The results show a

remarkable forest area gain – from 17.6% to 25.5% – thanks to 68,299 ha of

recently established forest. Statistical descriptors showed that the highest relative

gain occurred in mountain zones, confirming a wide European forest recovery pat-

tern in marginal areas from past deforestation and overexploitation. Deforestation

mainly occurred in the flat and hilly areas where almost 26,000 ha of forests were

lost since 1936. In summary, two main forest landscape dynamics were

reconstructed: (I) the increase of forest cover fragmentation in the lowland areas;

and (II) the rise in the forest area in the interior sectors of the mountain landscape,

mainly within protected areas. Restoring the forest ecosystem's bioecological integ-

rity has been highlighted as an urgent action for biodiversity conservation and car-

bon mitigation. In lowland areas, the study revealed the urgent need to establish

new protected areas and rewilding spaces as landscape metrics are relatively below

the sustainability targets for healthy forest ecosystems. The proposed framework

can be used for testing the effectiveness of environmental planning and manage-

ment in other forest landscapes to achieve the Agenda 2030 goals.
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1 | INTRODUCTION

Nowadays, few terrestrial ecosystems have remained undisturbed by

anthropic activities (Foley, 2005; García-Vega & Newbold, 2020).

Therefore, many forest landscapes worldwide reflect ecological and

socio-economic history (Caetano-Andrade et al., 2020; Curtis

et al., 2018). In Europe, forests have been used for millennia by

humans, who have transformed the species composition, structure

and spatial patterns of the community (Munteanu et al., 2015), and

consequently their natural disturbance regimes and functionality com-

pared to natural ecosystems (Sommerfeld et al., 2018). In the Mediter-

ranean biodiversity hotspot, the current structure and physiognomy

of the remaining forests have been altered by recurring degradation

and deforestation activities (e.g., Mensing et al., 2018) and tracking

the progress in halting habitats and species loss through ecosystem

restoration and conservation programmes is an urgent action (Watson

et al., 2020). In recent times, most forests have been maintained and

managed for their wood and non-wood products and for many other

functions, such as slope stabilization, to prevent hydrogeological insta-

bility (Führer, 2000). Since the beginning of the last century, there has

been a natural recovery of forests in many temperate regions world-

wide as a consequence of the abandonment of traditional mountain

agriculture, driven by socio-economic factors such as immigration in

urban areas (Geri et al., 2010; Gibon et al., 2010; Nadal-Romero

et al., 2016; Romero-Calcerrada & Perry, 2004; Sitzia et al., 2010;

Tasser et al., 2007). In the same period, deforestation activities

occurred for farming and urban sprawl in lowland environments, for

which characterizing historical forest transformation trajectories is a

fundamental step in environmental landscape planning.

It is essential to investigate the landscape changes in forest eco-

systems to meet the goals of the 2030 Agenda of the United Nations

(www.un.org/sustainabledevelopment/development-agenda) and

improve effective planning strategies to increase their resilience

(Turner, 2010).

In the global framework of biodiversity conservation and carbon

stores, protected areas are recognized as the cornerstones of the global

conservation strategy and can reduce forest loss compared to unpro-

tected areas (Wolf et al., 2021). Protected areas can maintain higher

biodiversity levels and carbon stocks than neighboring alternative land

use areas (Coetzee et al., 2014) and must be seen as an irreplaceable

tool to guarantee complex ecosystem functions (Coad et al., 2019). As

recognized by the key multilateral environmental agreement aimed at

slowing biodiversity decline (UN Agenda 2030, 2015; UN CBD, 2010),

the expansion and effective management of protected areas is needed

to mitigate the loss of biodiversity (Watson et al., 2014); thus, describ-

ing long-term regional changes in forest cover is critical for effective

environmental management planning.

Understanding the dynamics of change and its impact on forest

landscape functioning is crucial for biodiversity conservation (García-

Vega & Newbold, 2020), and carbon mitigation strategies (Erb

et al., 2018) and interesting solutions are being developed thanks to

the integration of ecological history and remote sensing data. In this

framework, landscape metrics and/or indices are often proposed and

evaluated to assess landscape characteristics and to monitor changes in

land use (Diaz-Varela et al., 2009; Geri et al., 2010; McGarigal, 2014;

Modica et al., 2012; Uuemaa et al., 2009). The survival of threatened

species also depends on the landscape dynamics and habitats' spatial

configuration (Itani et al., 2020; Palmero-Iniesta et al., 2020; Rocha-

Santos et al., 2020; Williams et al., 2020; Zhang, 2020), which change in

quality, shape and position. Forest fragmentation can lead to the extinc-

tion of some species by isolating populations from each other and cre-

ating forest areas that are too small to be functional and maintain viable

populations (Kettunen et al., 2007). Fragmentation can cause a change

in ecological conditions with consequences on the abundance and dis-

tribution of species (May et al., 2019) due to the increase in forest

edges and reduction in carbon storage capacity compared to a canopy-

closed forest (Brinck et al., 2017).

In this regard, remote sensing data represent an alternative source

for quantifying forest cover and its change over time (Lillesand

et al., 2015; Taylor et al., 2020). Firstly, remote sensing products can

cover large areas coherently, avoiding discontinuities due to administra-

tive and national borders (Fagua et al., 2019; Hansen et al., 2013;

Potapov et al., 2015). Second, long-term recording of satellite observa-

tions allows the quantification of forest cover trends over several

decades (Cheng & Wang, 2019; Hermosilla et al., 2019; Ho�sciło &

Lewandowska, 2019; Qin et al., 2019; Vogeler et al., 2018). Besides,

new research impulses have arisen, especially after the emergence of

remote sensing applications based on cloud computing platforms

(Gasparini et al., 2019; Potapov et al., 2012; Praticò et al., 2021).

This study presents a novel approach through the integrated

use of historical forest cover data and remote sensing-based prod-

ucts to support environmental policies aimed at sustainable forest

management, according to the development targets of the 2030

Agenda goals. The proposed framework is tested and applied in an

important and representative Mediterranean environment, the

Metropolitan City of Rome Capital (MCRC), in Italy. Here, different

factors have influenced the natural and cultural landscape dynamics

during the long history of landscape transformation. The

reconstructed long-term forest cover changes, coupled with land-

scape pattern metrics and in-depth fragmentation analysis, were

used to identify the primary forest landscape dynamics and their

distribution according to an altitudinal gradient and concerning

protected areas. Since we hypothesized that protected areas could

guarantee greater integrity of forest ecosystems than non-

protected areas, we derived an indirect indicator of forest function-

ing (�Cosovi�c et al., 2020) based on remote sensing products such as

the global tree cover data (GTCD) to describe their effectiveness as

a tool in achieving the sustainability goals. In this context, our work

suggests an innovative way to improve environmental knowledge

to develop an effective landscape planning and management frame-

work targeted to achieve the 2030 UN Agenda goals focused on

restoring forest bioecological integrity.

2 | MATERIALS AND METHODS

Our proposed method can be summarized in the following main

phases: (a) data acquisition and forest maps derivation; (b) altitudinal
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classification of the study area; (c) forest cover change detection anal-

ysis; (d) forest canopy density reference map; (e) landscape metrics

and forest fragmentation analysis; and (f) landscape dynamics and sus-

tainable development (Figure 1).

2.1 | Study area

The study area is the whole MCRC, covering 5363 km2 in the Lazio

region, Italy. It comprises the territory of Rome and 120 other munici-

palities, with more than 4.3 million inhabitants representing the larg-

est metropolitan area in Italy. It is delimited to the west by the

Tyrrhenian Sea and north to the southeast by mountains belonging to

the central Italian Apennines (Figure 2a). A complex topography char-

acterizes the MCRC with flat land, coastal and internal uplands, and

mountain areas (up to 1854 m a.s.l. of Mount Autore) (Figure 2b). The

mean annual temperature ranges from 13.1 to 15.2�C, with mean

annual rainfall ranging from 700 to 1500 mm (meteorological stations

are located at lowland and hilly sites; http://www.arsial.it/

portalearsial/agrometeo/, accessed on 20 December 2020). Latest

CORINE Land Cover data (Büttner et al., 2017) show that the area is

mainly occupied by agricultural land (56%) and built-up areas (14%),

while natural and semi-natural forests cover around 27%. Lowland

forests are predominantly occupied by deciduous (Quercus cerris L., Q.

pubescens Willd.) and evergreen (Quercus ilex L.) oak formations

together with the hop hornbeam (Ostrya carpinifolia Scop.), whereas

chestnut (Castanea sativa Mill.) and beech (Fagus sylvatica L.) dominate

forests in the hills and mountains, respectively (Figure 2c).

2.2 | Data acquisition and forest maps derivation

To investigate the forest cover changes over time, we used the histor-

ical, geographical data of the 1936 Italian Kingdom Forest Map (IKFM)

F IGURE 1 Workflow of the proposed method for developing an effective landscape planning and management framework targeted to
achieve Sustainable Development Goals [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 (a) study area location and (b) distribution of elevations over the Metropolitan City of Rome Capital (MCRC). Examples of high-
forest types: 200 year- old umbrella pine stand along the coast (c1); mixed oak woods (c2) and old-growth mixed beech forest (c3) in the hilly belt;
pure mountain beech forest (c4) [Colour figure can be viewed at wileyonlinelibrary.com]
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and the forest typology map of the Lazio (FTML) region of 2010, all-

owing us to analyse a period of 74 years. The IKFM digital vector data

were acquired from the dedicated WebGIS tool (http://carta1936.

dicam.unitn.it/webgis/map1.php, accessed 20 December 2020). It

represented the first homogenous map that reports Italian forests cat-

egorized under a recognizable scheme (Ferretti et al., 2018). The

FTML was downloaded from the Lazio open data geoportal (http://

dati.lazio.it/catalog/it/dataset/carta-forestale-su-base-tipologica-

della-regione-lazio, accessed on 20 December 2020) in the digital vec-

tor format. It was obtained by exploring the fourth- and fifth-level

CORINE Land Cover data of the Lazio Region Land Use Map

(ARP, 2010). For all datasets, three general forest categories were

extracted: broadleaved (BL), conifer (Co) and mixed forest (MF),

adding a class of non-forest (NF) areas obtained by overlapping the

two datasets with the boundary of the study area. To allow

the extraction of these forest categories, we homogenized the leg-

ends from the two datasets. Since the 1936 dataset included a class

labelled ‘degraded forests’, which was not in the 2010 dataset, it was

decided to report an in-depth analysis separately from the other

categories.

2.3 | Altitudinal classification of the study area

A digital elevation model (DEM) with a spatial resolution of

20 m � 20 m was used for dividing the study area into three main alti-

tudinal zones. According to the mountain area definition of the Italian

National Statistics Institute (ISTAT, 2007), we resampled the DEM in

three altitudinal belts: (I) lowland belt, from 0 to 300 m. a.s.l.; (II) hilly

belt, from 300 to 700 m a.s.l.; and III) mountain belt above 700 m a.s.l.

For each forest dynamic (gain, loss and persistence), the values of

topographical variables such as elevation and slope were extracted

and compared in terms of differences by using univariate statistics

and applying the Kruskal–Wallis nonparametric test (Kruskal &

Wallis, 1952). Statistical analyses were performed with R statistical

software (R Core Team, 2020).

2.4 | Forest cover change detection analysis

To detect the changes that occurred in the time interval investi-

gated (1936–2010), we performed a change detection

(Singh, 1989) followed by a post-classification comparison approach

(Lu et al., 2004; Modica et al., 2017) for diachronic analysis. The

two forest cover vector datasets (1936–2010) were overlaid in a

GIS environment, obtaining unique vector data showing the forest

categories' cover changes. We built a complete matrix of changes

to quantify changes, reporting in rows the value of changes in the

1936 category and in columns the number of changes in the 2010

category. Finally, this dataset was overlaid on the resampled DEM

to analyse the changes within different altitudinal belts and

converted into a vector format. Then, another change matrix was

implemented.

2.5 | Forest canopy density reference map

To reconstruct the forest canopy dynamics and qualify them from an

ecological functional point of view, we used advanced remote

sensing-based products that users can suitably customize to distin-

guish and identify the forest and NF components (Chiarucci &

Piovesan, 2020). As the reference layer for forest cover status in

2010, we used the GTCD with a spatial resolution of 30 m � 30 m,

(https://glad.umd.edu/dataset/global-2010-tree-cover-30-m,

accessed on 27 January 2021). The GTCD dataset for the year 2010

(Hansen et al., 2013) is per-pixel estimates of percent maximum tree

canopy cover, expressed as an integer value percentage (1%–100%).

The dataset was first clipped using the study area boundary. Then, we

defined the corresponding forest area using a threshold of percentage

tree cover as an area that was larger than 0.49 ha and with a tree

cover of more than 10%, consistent with the forest definition of the

FAO (FRA, 2018) and resampled at the spatial resolution of

20 m � 20 m with class intervals every 10%. We performed an accu-

racy assessment to use the obtained map as a reference layer for for-

est canopy density. To produce sufficiently precise estimates of the

classes' area, the sample size for each mapping class was chosen to

ensure that the sample size was large enough (Global Forest Observa-

tions Initiative, 2013). Therefore, we calculated an adequate overall

sample size for a stratified random sampling distributed among differ-

ent strata (Cochran, 1977). First, we determined the number of sam-

ple units for the study area using the following Equation (1) (Olofsson

et al., 2014)

n¼
P

WiSið Þ2
S ôð Þ½ �2þ 1

n

� �P
WiS

2
i

≈
P

WiSi
S ôð Þ

� �2

, ð1Þ

Where: n is the total sample size, Wi is the mapped proportion of the

area of class i, and Si is the standard deviation of class i (forest/non-

forest). Si was obtained according to the following formula

(Equation (2))

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ui 1�Uið Þ

p
, ð2Þ

Where: Ui is the expected user accuracy of class i. For both selected

classes (forest/non-forest) we used 0.09 and 0.91 as mapped propor-

tions of the forest class areas for the NF area. We also set an Ui of 0.9

and 0.8 for forest and non-forest classes, respectively. The overall

sample size resulting from this calculation was 1528 sample points,

and we applied stratified random sampling to allocate the samples to

each stratum (altitudinal belt). As suggested by FAO (2016) and Con-

galton & Green (2019), we assigned a minimum size of 100 sample

points to each altitudinal belt. We allocated the remaining number of

samples proportionally, according to each stratum area (Table 1). Sam-

ple points were generated and randomly distributed in each altitudinal

belt (Figure 3) using QGIS software (QGIS Development Team, 2020).

According to the FAO forest definition, we set, for each sample

point, a square buffer zone of 70 m � 70 m (0.49 ha) with a system-

atic grid of 5 � 5 points and used them as ground truth references

4712 SOLANO ET AL.
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(Figure 4). Within each plot, we identified forest or NF areas by cou-

nting the number of points covered by trees, based on a screen pho-

tointerpretation of Google Earth very high-resolution imagery for the

year 2010 (Hansen et al., 2013; Lui & Coomes, 2015; Lwin

et al., 2019; Potere, 2008; Tilahun, 2015). In each plot, when the tree

crowns covered at least three points on the grid (3/25 = tree cover

>10%), the sample was classified as forest, otherwise as non-forest. A

confusion matrix (Congalton & Green, 2019; FAO, 2016) was then

used to assess the accuracy of the forest canopy density map pro-

duced, using overall accuracy (OA), producer's accuracy (PA) and

user's accuracy (UA), between the forest cover map and reference

data. Once the canopy density reference map's accuracy was verified,

the 2010 forest dataset (FTML) was used to extract the corresponding

values, resulting in a reference forest canopy density map.

Furthermore, the forest canopy density reference map was used

to analyse the canopy density percentage variations by distinguishing

it by altitudinal belts and considering the forests within the protected

areas (PrAs), that is, nature parks and Natura 2000 network areas, and

non-protected (NP) wooded areas of the MCRC. The PrAs' official

boundaries were downloaded from the WebGIS tool of the Lazio

region (http://dati.lazio.it/catalog/it/dataset, accessed on 23 January

2021) in the vector format, suitably customized, and selected for the

study area (Figure S1). Differences in canopy density values were

tested applying the Kruskal–Wallis non-parametric test (Kruskal &

Wallis, 1952) and the Mann–Whitney U test (Zar, 1996) as a post hoc

pairwise comparison method after verifying the normality and homo-

scedasticity of the data with the Levene test (Levene, 1960) and

Shapiro–Wilk test (Shapiro & Bradbury Wilk, 1965).

2.6 | Landscape metrics and forest fragmentation
analysis

To quantify landscape changes closely linked to ecological processes,

we analysed the forest landscape's structure and composition

(McGarigal, 2014). To this end, metrics on size, shape and edge were

used, selecting a few significant variables from the many available in

the literature (Mcgarigal et al., 2002; Uuemaa et al., 2009). A set of

seven metrics were calculated at class and landscape level: the number

of patches (NP), mean patch size (MPS), edge density (ED), mean patch

TABLE 1 Number and allocation of the sample points in the three altitudinal belts

Altitudinal belt Area (ha) % Sample points

(I) Lowland belt (0–300 m. a.s.l.) 376,007 70.1 1072

(II) Hilly belt (300–700 m. a.s.l.) 106,696 19.9 304

(III) Mountain belt (> 700 m. a.s.l.) 53,618 10.0 153

Total 536,3321 100 1528

F IGURE 3 (a) the MCRC forest canopy density derived from the global 2010 tree cover data (Hansen et al., 2013) customized according to
the FAO forest definition, (b) study area classification of the altitudinal belts showing sample point allocation used for the forest canopy density
map classification accuracy (lowland belt = 0–300 m. a.s.l.; hilly belt = 300–700 m. a.s.l.; mountain belt ≥700 m. a.s.l.) [Colour figure can be
viewed at wileyonlinelibrary.com]
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edge (MPE), mean shape index (MSI), mean perimeter area ratio (MPAR)

and mean fractal dimension (MFRACT). To calculate landscape metrics

with the highest accuracy, referring to the input data, we used the vec-

torial data model and the plugin V-Late (vector-based landscape analy-

sis tools extension) for ArcGIS (Lang & Tiede, 2003). Then, we

computed the forest fragmentation using the raster-based forest frag-

mentation model of Riitters et al. (Riitters et al., 2000; Riitters

et al., 2002). In this model, based on image convolution, the input raster

must be binary (i.e., all cells are classified as forest= 1 or non forest= 0).

Each forest cell is analyzed with the surrounding cells falling in a square

mobile window centred on it. According to the six fragmentation clas-

ses, the analysed landscape is classified through the fragmentation

index combining two different indicators: the density index (Pf) and the

connectivity index (Pff). Pf represents the proportion (density) of forest

pixels falling in the defined moving window. Pff is a measure of forest

connectivity. It is obtained by dividing the number of forested pixel

pairs in cardinal directions falling in the defined moving window by the

total number of pixel pairs containing one or two forested pixels. The

higher the value of Pff, the higher the connectivity value. Combining Pf

and Pff maps according to the rules defined by Riitters et al. (2000), the

following six categories of the forest fragmentation index (FFI) can be

obtained: (1) interior (Pf = 1.0); (2) undetermined (density > 0.6 and

density = connectivity); (3) perforated (density > 0.6 and density – con-

nectivity > 0); (4) edge (Pf > 0.6 and density – connectivity < 0); (5) tran-

sitional (0.4 < density < 0.6); and (6) patch (density < 0.4). The cells that

are classified as ‘interior’ are surrounded by forest cells. Therefore, they

are not fragmented, that is, undisturbed. The other four categories

exhibit some degree of fragmentation in a gradient from the interior to

the perforated, edge, transitional, and patch fragmentation classes. The

perforated category is dominated by relatively large and noncompact

forest clusters alternating with ‘holes’ created by small patches of NF

areas. In the case of the transitional category, forested pixels tend to be

connected to other forested pixels but, at the same time, tend to be

surrounded by other fragmentation categories (Fichera et al., 2015).

The edge category concerns those landscape areas between compact

forest clusters neighbouring to and compact NF clusters. Considering

the scale dependence of spatial metrics and that low data resolution

could lead to inaccurate landscape pattern analysis (Wickham &

Riitters, 2019), as input data, we used a raster with 10 m � 10 m of

geometrical resolution. Moreover, following Riitters et al. (2000, 2002)

and other scholars (Kowe et al., 2020; Li et al., 2011), the square mov-

ing window was fixed to 5 � 5 pixels.

2.7 | Landscape dynamics and Sustainable
Development Goals

This study's results were applied for addressing environmental manage-

ment policies in favour of achieving the sustainable development goals

of the 2030 Agenda for Sustainable Development of the United

Nations (UN). In particular, we reconstructed the forest cover index

(FCI) dynamics given the development target 15.1.1 (Forest area as a

proportion of total land area) of the 2030 Agenda (https://unstats.un.

org/sdgs/metadata/?Text&Goal=15&Target). The FCI was calculated

as the relationship between the forest and the total study area, ana-

lysing the forest cover gain, loss, and persistence between 1936 and

2010. A set of forest landscape transformation indicators was used to

evaluate the progress towards sustainable forest resources manage-

ment (target 15.2.1). The net forest cover during the 74 years analysed

was considered a legacy indicator for tracing sub-indicator 1 (Forest

area annual net change rate). Data of forest canopy density was consid-

ered a proxy for describing the sub-indicator 2, ‘Aboveground biomass

stock in a forest’. By integrating the results of the FCI and forest

change net rate and analysing their metrics within the protected areas

of the MCRC, it was finally possible to evaluate their consistency and

effectiveness in protected area management (sub-indicator 3, 'Propor-

tion of forest area located within legally established protected areas').

While evaluating this indicator, nature parks and reserves were consid-

ered separately from Natura 2000 sites.

3 | RESULTS

3.1 | Forest land cover changes (1936–2010) in
the MCRC

The forest cover increased from 94,624 ha in 1936 to 136,823 ha in

2010, representing a rise of FCI from 17.6% to 25.5% (Table 2). The

general trend observed corresponded to an absolute increase of

44.6% (42,199 ha) in forest cover, 7.9% if referred to the whole study

F IGURE 4 Sample point and the buffer zone of 0.49 ha
generated in a GIS environment for ground truth reference data
collection using Google Earth imagery. (a), An example of identifying
forest area; (b), an example of identifying non-forest areas; (c),
reference scheme of the reference plot and the systematic grid of
5 � 5 points [Colour figure can be viewed at wileyonlinelibrary.com]
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area extension. Overall, there was a forest cover gain of 68,299 ha,

against a cover loss of 26,100 ha. Forest cover persistence involved

68,524 ha of forest over the total forest area of the study area. The

BL forest class recorded the largest areal increase, passing from

27,188 ha in 1936 to 122,828 ha in 2010 (gain of about 352%),

followed by coniferous forest from 1626 ha to 4084 ha (+151%)

(Table 2).

3.2 | Forest cover changes by topography

Forest area is unevenly distributed in the three altitudinal belts. In

2010, the FCI represented about 13% of belt I, 47% in belt II and 71%

of the total land cover in belt III. The highest forest cover gain (new

forests) occurred (25%) in hilly and mountain belts (Figure 5a). In com-

parison, the lowland belt showed the slowest net increase in the FCI

TABLE 2 Contingency matrix showing the transition between different forest and non-forest land cover (values in ha) from 1936 to 2010 in
the Metropolitan City of Rome Capital (MCRC) study area

2010

Forest/non-forest land cover Non-forest Coniferous Broadleaved Mixed forest Total

1936

Non-forest 373,401 2169 57,804 8325 441,700

Coniferous 744 764 109 8 1626

Broadleaved 4402 117 22,403 264 27,188

Mixed forest 20,953 1033 42,511 1313 65,811

Total 399,502 4084 122,828 9911 536,325

F IGURE 5 Percentage of forest cover
gain, loss, persistence, and net cover
change referring to the single altitudinal
belt's (i.e., zones) total area, which
occurred in the period between the years
1936 and 2010 (a); kernel density
distribution plot of forest cover gain, loss,
and persistence referring to differences in
elevation (b1) and slope (b2). Data are
reported according to the three defined
altitudinal zones: (I) lowland belt, (II) hilly
belt and (III) mountain belt [Colour figure
can be viewed at wileyonlinelibrary.com]
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(3% instead of 20% in the other two belts). Forest persistence has a

marked geographic distribution with a steep decreasing trend from

mountain to lowland belt (Figure 5b).

As shown by the Kruskal-Wallis test (with α = 0.05), the areas

that experienced forest cover gain, loss or persistence dynamics dis-

played a significant difference concerning topographic factors (eleva-

tion and slope) (Table 3).

The dynamics of change within each altitudinal belt results in

a general net increase (forest persistence plus forest cover gain) in

the forest area. Indeed, the most considerable forest area loss – in

terms of absolute value – is located at low altitudes, mainly in the

lowlands and secondary, low hilly belts. In the mountain belt, BL

forests were the most common category in 1936 (13,801 ha) and

remained so even in 2010 with an increase in tree cover equal to

161% (36,576 ha in total) (Table S2). A similar cover gain occurred

in the hilly belt, with +290% (from 11,842 ha in 1936 to

46,771 ha in 2010) and +150% in lowland areas (Table S2). A dis-

tinctive compositional dynamic occurred in the mountain belt

because in 1936 there were no conifers in this belt. In the hilly

and lowland belts, the increase of conifers was 221% and 76%,

respectively (Table S2).

In 1936, there were about 3630 hectares of degraded forests, of

which 1728 ha (48%) was in the mountain belt, 1068 ha (29%) in the

hilly belt and the remaining 831 ha (23%) in the lowland belt

(Figure 7). In 2010, most of the degraded forest in the mountain

belt turned into BL forests (1173 ha), while 516 ha became def-

orested. A similar trend occurred in the hilly belt where 708 ha of

1068 ha became BL, and 333 ha became NF. The opposite trend was

recorded in the lowland belt where about 76% of the degraded for-

ests in 1936 (628 ha) were deforested, and only 22% (189 ha) turned

into BL ones (Figure 6).

3.3 | Forest canopy density estimation according
to the GTCD in 2010

The estimation of the forest canopy density reference map (Table S3)

obtained an overall accuracy level of 99.01% for the altitudinal belt I,

TABLE 3 Univariate statistics summary regarding forest cover gain, loss, and persistence dynamic processes considering topographic factors

such as elevation and slope

Mean SD Min Q1 Median Q3 Max Kruskal-Wallis test (χ2)

Elevation (m) Gain 403.75 314.50 0 164 319 575 1600 272.5*

Loss 272.18 334.19 0 62 134 340 1850

Persistence 610.40 456.59 1 245 450 925 1840

Slope (�) Gain 13.67 10.04 0 5 12 20 65 234.2*

Loss 8.14 8.31 0 2 5 12 75

Persistence 15.30 11.04 0 6 14 22 75

Note: Kruskal-Wallis test (χ2) with α = 0.05

Abbreviations: Q1, first quantile; Q3, third quantile
*p-value < 0.05

F IGURE 6 Extension of land cover
changes in areas described as degraded
forest in 1936. Data are presented
according to the three altitudinal belts (I,
lowland belt; II, hilly belt; III, mountain
belt). Left y-axis label refers to the total
area of the single forest or non-forest

category; the right y-axis label refers to
the total area of the 1936 degraded forest
category [Colour figure can be viewed at
wileyonlinelibrary.com]
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98.03% for the altitudinal belt II and 97.39% for the altitudinal belt III.

The PA for the ‘forest’ classification varies with increasing altitude,

from 98.95 to a value of 96.34. The UA reached the highest values in

belts II and III (Table S3). The PA for the ‘non-forest’ classification

achieved an overall value of 98% for all three altitudinal belts. In con-

trast, the UA decreases with altitude but still shows the classification

process's reliability.

3.4 | Forest canopy density assessment

Forest canopy densities for areas that gained trees show that growth

dynamics have led to forests' formation with an average canopy den-

sity value of 46% (for the whole study area) (Figure 7a). As the canopy

density percentage's class increases, the forest extension decreases.

The most widespread density percentage class in the cover gain area

is 10%. Moving to canopy density up to a threshold value of 60%, the

forests' frequency gradually decreases to only 8%. It then increases in

frequency again for classes >70% of density values, with the latter

class covering 12% of the MCRC. A canopy cover density ratio of

100% is present only on a tiny part of the study area (0.2%; � 14 ha).

In forest grain areas, BL forest confirms a U shape distribution with a

minimum of around 70%–80% of canopy density cover (Figure 7a). In

2010, no coniferous forest reached 100% canopy density (Figure 7a).

The other MF category's frequency shows an increasing trend with

increasing canopy density up to 80%, with a 133.33% increase in the

distribution (from 21% to 49%) (Figure 7a).

Where persistence dynamics occurred (Figure 7b), the BL forests'

frequency increases with canopy density. In contrast, the frequency

of MF decreases. Moreover, in this case, coniferous forests do not

reach a closed canopy structure (Figure 7b).

Considering the 2010 canopy density of forest cover gain areas

within the altitudinal belts, low canopy densities (between 10% and

40%) are mainly distributed in the lowland belt (altitudinal zone I).

Higher canopy density values are mainly distributed between the hilly

belt and the mountain belt (zones II and III) (Figure S4).

The trend is confirmed even considering all MCRC (Figure 8), where

the forests in the lowland belts, especially the coastal strip, have a lower

canopy density than the forests of the mountain belt. Most deciduous

and mixed deciduous forests are intensely coppiced, and these forest

types occur in correspondence with sparsely, low- and medium- settled

areas. These woodlands, therefore, maintain a lower density value than

mountain forests that are managed following high forest systems. More-

over, a higher forest canopy density is a distinctive trait of protected

areas (nature parks and Natura 2000 network areas) (Figure 8).

3.5 | Forest landscape dynamics

The number of patches shows the quantitative changes in forest

cover both in the whole landscape and for different categories

(Table 4; Table S5). In 1936, the forest area had minor fragmentation

(Table 4) with respect to 2010 (Table S5). The general trend of the

increase in the forest area is also linked to growth in the number of

patches, as reflected in the MPS metric decrease, observed for all for-

est categories (Table S5). The MSI showed a general increase in size

variability (Table 4) and individual categories (Table S5). The shape of

the forests has also changed clearly, with an increase in the MPAR

and MFRACT for all categories, showing an increase in the forest

patch shapes' geometric complexity. The ED showed a different total

margin between 1936 and 2010 (Table 4), with a relatively high

increase for MFs. The MPE showed a considerable gain for BL forests

and decreased for coniferous and MFs (Table S5).

Two different forest dynamics affected the landscape over this

time period. On-the-one-hand, there was a slight increase in the inte-

rior areas (i.e., forest areas not affected by fragmentation). The domi-

nant process was a significant rise in edge and patch categories that

F IGURE 7 Forest canopy density percentage distribution:
Forest cover gain (a) and forest cover persistence (b). The two

categories' dynamics occurred between 1936–2010 in the MCRC
study area. BL, broadleaved forest; Co, coniferous forest; Mf,
mixed forest; and Mean, mean percentage cover value referred to
the whole cover gain and persistence areas. Left y-axis label refers
to the canopy density percentage frequency of a single forest
category; the right y-axis label refers to the canopy density
percentage frequency of all forest categories referring to the whole
cover gain and persistence areas [Colour figure can be viewed at
wileyonlinelibrary.com]
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passed from 3.15% to 6.94% and from 2.40% to 6.42% of the total

surface, respectively, causing an increase in the landscape fragmenta-

tion metrics (Table S6). While the transitional category characterizes

most of the new forest areas of the 2010 landscape, the edge cate-

gory affects most of the interior area in the 1936 landscape, highlight-

ing a consistent forest fragmentation. In the central and northern part

of the study area, the 2010 landscape is characterized by scattered

and isolated forest patches (Figure 9). These dynamics are also shown

by the MPS (Table 4), which significantly decreased in the four

analysed landscape classes. On-the-other-hand, the form of patches

in the 2010 landscape is more complex in all landscape classes, partic-

ularly for the BL forests (Table S5).

From 1936 to 2010, a loss of interior areas occurred in zone I,

while an increase was recorded in the hilly and mountain belts (zones

II and III) (Figure 10). An increase in forest fragmentation is associated

with the loss of interior areas in the lowland belt, as shown by the rise

in transitional and patch areas.

Major expansion (allocation) of interior areas is distributed in both

protected and nonprotected areas in the altitudinal belt II and III while

decreasing in the lowland areas (belt I) (Figure S7). Minor forest fragmenta-

tion in 1936 is reflected in edge, transitional, and patch area distribution

over all altitudinal belts, inside and outside protected areas which are

always lower than in 2010. Nevertheless, most of the increase in fragmen-

tation has occurred in the mountain belt, according to a higher forest

cover gain within protected areas such as natural parks (Figure S7).

4 | DISCUSSION

4.1 | Forest cover change distribution and
fragmentation

The proposed integrated methodology has provided a landscape pic-

ture of forest cover and composition dynamics in the last 74 years in

the metropolitan area of Rome. The identified changes provided some

key drivers of the forest landscape transformation where forest cover

gain and persistence dominated the reconstructed land use matrix.

However, a general loss of forest area (deforestation) was seen from

lowland to mountain environment. Nevertheless, forest loss was

lower than the observed gain, generating a net increase in the forest

area of around 8%, in line with the slow but stable trend of

forest recovery observed in the Mediterranean area of Europe in the

past 30 years (FAO & Plan Bleu, 2018). Our results are also consistent

with other studies showing forest cover increase in this area (Biasi

et al., 2015; Salvati et al., 2017). The depopulation of mountain vil-

lages (Falcucci et al., 2007) and the abandonment of agricultural activi-

ties in marginal areas are the leading causes of the expansion of forest

ecosystems in particular in mountain areas (Geri et al., 2010; Salvati &

Sabbi, 2011), also leading to transitions in regimes and values (Gulinck

et al., 2018). Conifers and BL forests showed a general increase, with

the latter expanding mainly in the mountain belt, confirming the trend

observed for most of the Apennines (Malandra et al., 2018).

TABLE 4 Summary of landscape metrics analysis for the MCRC

Year

No. of
patches
(NP)

Mean patch size
in ha (MPS)

Edge density in
m ha�1 (ED)

Mean patch
edge in m (MPE)

Mean shape
index (MSI)

Mean perimeter-
area ratio (MPAR)

Mean fractal
dimension
(MFRACT)

1936 1369 391.24 17.84 6979.77 1.612 0.018 1.286

2010 7391 72.47 64.99 4709.88 2.245 0.046 1.381

F IGURE 8 (a): Box plot of the forest canopy density percentage value in the three altitudinal zones (I, lowland belt; II, hilly belt; III, mountain
belt) of the MCRC and (b) forest canopy density percentage value distribution of forests in nature parks, Natura 2000 network areas and non-
protected areas (NPAs). There were statistically significant differences between forest canopy densities belonging to different protection levels as
assessed using the Kruskal–Wallis test (p < 0.001). The Mann–Whitney U post hoc test showed that differences between nature parks, Natura
2000 and NPAs were significant (Mann–Whitney U test, * = p < 0.01; ** = p < 0.001) [Colour figure can be viewed at wileyonlinelibrary.com]
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Most of the relative forest cover increase, concerning every single

belt, occurred at higher altitudes. (Geri et al., 2010) (Figure S8).

Although the mountain belt represents only 10% of the metropolitan

area, forests cover 71% of the zone, with the highest cover gain and

persistence rate. This result confirms the rewilding trend that has

characterized the Apennine landscape in the past 60 years. One of

F IGURE 9 Map of forest fragmentation classes from the year 1936 (left) and 2010 (right) in the MCRC study area [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 10 Forest
fragmentation metrics changes and
distribution by altitudinal belt for the

MCRC study area [Colour figure can
be viewed at wileyonlinelibrary.com]
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the main reasons is also to be found in the environmental manage-

ment policies that have been adopted to promote the hydrogeological

stability of the mountain territory. National laws enacted in 1923

(Royal Decree of 30 December 1923, n. 3267) and in 1952 (so-called

‘Fanfani’ law) for conserving and restoring forests are an example of

this. These legislative measures, promoting silvicultural and reforesta-

tion activities, led to an increase in the FCI, thus anticipating the 2030

Agenda objectives. The increase of about 1100 hectares of coniferous

forests (Figure S8) was due to such reforestation activities (Malandra

et al., 2018) particularly with Pinus nigra, starting from the 1950s

(De Sillo et al., 2012) that occurred on pastures or degraded forest

landscapes.

The dominance of closed forests in the mountain landscape is also

due to the progressive reduction of pastoral and harvesting activities,

which, in turn, triggered the processes of secondary forest succession

and recovery towards mature stages (De Sillo et al., 2012). However,

while canopy recovery in forest ecosystems can be quite fast, the

composition of recently established forests is characterized by many

pioneer species of open habitats for which forest dynamics towards

mature forest communities need more extended time periods (Amici

et al., 2013). A noteworthy example found in the Simbruini mountains

is the invasion by shrubs and trees of abandoned traditional terraces

because they are no longer an economically sustainable cultivation

technique.

In the last decades, forest restoration was principally due to a

passive landscape rewilding due to the depopulation of mountain

areas and ad hoc mountain management policy, mainly through the

institution of protected areas. However, small patches of deforesta-

tion were detected up to the mountain belt, where new infrastructure

and buildings were built primarily for tourist purposes of summer rec-

reational activities and winter skiing (Figure S8).

A different forest dynamic occurred in the lowland belt. The

actual FCI of 14% is well below the 40% of optimal human-modified

landscapes for forest biodiversity conservation (Arroyo-Rodríguez

et al., 2020). Here, the primary historical process is linked to new for-

est expansion in marginal areas and deforestation. There are two lead-

ing causes for the few forest persistent areas: deforestation for

agricultural land reclamation (up to 1950s) and urban expansion

(Salvati, 2013). In the flat areas around Rome's city area (campagna

Romana), the forest and agricultural lands were the most exposed to

increased human pressure driven by urban sprawl (Salvati

et al., 2014). In some coastal and flat inland areas, beyond some exam-

ples of relict forests characterized by structural and compositional

heterogeneity (Pratesi, 2015), woodlands have always been subjected

to intensive forestry (e.g., coppices) for providing goods and extensive

grazing by domestic animals. Nevertheless, umbrella pine (Pinus pinea

L.) woods (Figure 2; Di Filippo et al., 2015) together with chestnut

(C. sativa) stands play a fundamental role in shaping the coastal and

hilly landscape and represent a historical heritage, which are destined

to disappear without active forest management. Indeed, a lower FCI,

together with lower canopy density, illustrates the lowland zones'

poor conservation status regarding the interior areas. Higher FCI

values found in the mountain belt suggest the progression towards

the formation in mature closed forests, especially in protected areas,

from where rewilding processes are underway due to the decrease of

anthropogenic pressures (Dandy & Wynne-Jones, 2019). These two

different forest dynamics are also evident concerning the degraded

forests in 1936. Most of them recovered their canopy density in the

mountain belt, while in the lowlands forest disappeared, was degraded

increasing the high fragmentation pattern. These results point to the

rewilding and gaining of forest cover in the mountain and hilly belts,

denoting an effective environmental management for these interior

areas, thus ensuring numerous ecosystem services. We showed that

the increase in the FCI and canopy density percentage characterizes

mountain ecosystems that have are located within the protected areas

of the MCRC.

Canopy density monitoring and its continuity over time have

proved to be a key action to measure forest's multifunctionality.

Although the GTCD has a global reach, it has proved to be very reli-

able on a local scale. Visual interpretation of very high-resolution

imagery, employed for data validation, confirms good results in deriv-

ing statistics on forest cover over large regions (Schepaschenko

et al., 2019). As reported in the literature, photointerpretation can

lead to an error that is less than 10% in estimating the extent of forest

at a global scale (Bastin, Berrahmouni, et al., 2017; Bastin, Mollicone,

et al., 2017; Schepaschenko et al., 2017). Using prior maps with satis-

factory accuracy, integrating the accuracy of visual interpretation and

performance of classification methods could be implemented in order

to extend this approach to broader regions. In addition to the already

known advantages of visual interpretation (Schepaschenko

et al., 2019), further possibilities to improve forest observation will be

given by the rising development of dedicated tools for visual interpre-

tation providing very high-resolution (VHR) satellite imagery that can

be viewed by users over many parts of the world (Lesiv et al., 2018).

Canopy density is connected to biomass stocks; high stocking levels

ensure water regulation, conservation of biodiversity, carbon sinks

and the mitigation of climate change effects. For this reason,

maintaining and implementing a continuous forest cover through the

application of close to nature forestry will guarantee a better net

value of timber, carbon sequestration, production of secondary prod-

ucts, scenic beauty and large numbers of habitat trees, compared to

forests managed with higher impacting silvicultural models such as

the even-aged coppice system (Peura et al., 2018). Forest canopy den-

sity can thus be considered as an indicator of harvesting pressure.

Besides, it is possible to highlight the urgent need for a new envi-

ronmental policy and management of forest landscapes in the lowland

belt to increase their cover as well as the level of naturalness. There is

a need for an in-depth revision of planning and management strate-

gies targeted to resolve issues related to anthropogenic pressure

(Cosentino et al., 2018) and disturbances in the lowland belt. Reducing

the forest's excessive exploitation, restoring forest cover and halting

new infrastructure (urban expansion) are the main goals for achieving

environmental sustainability. In future planning, other environmental

man-induced disturbances should be addressed, such as preventing

wildfires or the spread of exotic species that compromise forest eco-

systems' functioning and reduce environmental sustainability.
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4.2 | Protected areas as an effective tool towards
Sustainable Development Goals

In this framework, we highlight the key role the protected areas have

played in Rome's metropolitan area because of persisting forest eco-

systems where the highest canopy density is guaranteed. The differ-

ences in tree cover density between forests within nonprotected and

protected areas demonstrate how the latter provides considerable

attention in managing the impact of forestry activities. This is due to

conservation measures for effective nature protection. The establish-

ment of a protected area network and management policies, with lim-

ited anthropogenic impact, have made it possible for forest

ecosystems to follow more natural dynamics, at least in some well-

defined zones, as in mountain landscapes.

However, the extension of interior areas is circumscribed to the

mountain and hilly belt, while in the lowlands, human pressures have

caused forest degradation and fragmentation. The restoration of the

FCI to reach the 40% target and the delimitation of large forest blocks

(10% of the whole landscape) are requisite for the conservation of for-

est interior species (Arroyo-Rodríguez et al., 2020). Indeed, the resto-

ration of the forest interior area is an urgent task in lowlands. In the

hilly belt, especially in Rome's suburban areas, numerous interior and

transitional forests are mixed with agricultural areas, small urban set-

tlements and seminatural elements. Here, environmental management

for achieving the 2030 Agenda goals should be oriented to ensure the

maintenance of a biodiversity-friendly forest landscape. Remarkably

well-preserved interior areas surrounded by different-sized forest pat-

ches and a high-quality matrix with seminatural elements can play an

important role in biodiversity conservation (Arroyo-Rodríguez

et al., 2020).

Several studies confirm that a higher degree of forest cover con-

tributes to mitigating heat waves within the ecosystems (von Arx

et al., 2012, 2013). In contrast, the loss of cover leads to increased

local heat, which aggravates the imbalance between the community's

responses and climate change (Zellweger et al., 2020). The climatic

processes' analyses are fundamental for understanding the relation-

ship between land use, forest biodiversity and its functioning in this

global change era. Moreover, a higher canopy density is connected to

a greater mitigation capacity of surface runoff and reduced damage

caused by floods during intense rainfall (EEA-European Environment

Agency, 2015). Mature forests, ordinarily characterized by deeper

soils, guarantee a better regulation of evapotranspiration phenomena,

therefore positively affecting the ecosystem's hydrological balance.

Continuous canopy coverage is also linked to a more significant pres-

ence and abundance of endangered species such as saproxylic insects

(Hardersen et al., 2020; Rossi de Gasperis et al., 2016). For a sustain-

able future, we need a general and greater availability of mature and

old-growth forest habitats for conserving endangered species depen-

dent on ancient trees and deadwood (Peura et al., 2018).

The restoration of old-growth forests remains a relevant goal in

these regions because conserving and restoring forest ecosystems

with a high naturality level have a priority ranking in environmental

planning for a sustainable future (Chiarucci & Piovesan, 2020).

Protected areas can maintain higher biodiversity levels and carbon

stocks than neighbouring alternative land use areas (Coetzee

et al., 2014) and must be seen as an irreplaceable tool to guarantee

complex ecosystem functions (Coad et al., 2019). As recognized by

the key multilateral environmental agreement aimed at slowing biodi-

versity decline (UN Agenda 2030, 2015; UN CBD, 2010), the expan-

sion and effective management of protected areas is needed to

mitigate biodiversity loss (Watson et al., 2014).

The European Union (EU) is preparing a post-2020 global trans-

formation framework centred on biodiversity and forest strategies

(Visconti et al., 2019). It is driven by the ultimate ambition to ensure

that by 2050 most ecosystems on the planet are restored and ade-

quately protected. To this end, the new EU Biodiversity Strategy for

2030 is anticipating the forthcoming new targets of the Convention

on Biological Diversity. The objective is to bring biodiversity in Europe

on the road to recovery by 2030 as the hearth of a European Green

Deal, in line with the 2030 Agenda for sustainable development and

the Paris Agreement's objectives on climate change. Among the over-

all actions implemented in the European level strategy, protecting at

least 30% of the Earth's surface through the increase of protected

areas, including 10% of the strict nature reserves, is a priority goal. In

this context, actions aimed at effectively managing all protected areas,

starting from the Natura 2000 network, must be undertaken within

the MCRC area. This area is located in the Mediterranean hotspot,

where extensive ecosystem restoration is a priority action for con-

serving biodiversity and stabilizing the Earth's climate (Strassburg

et al., 2020).

This research has highlighted many critical issues in protected

area management. Above all, the need to restore connectivity and

forest function in forests located in lowland areas, with the institu-

tion of new protected areas and corridors. Another key target will

be the set aside of forests in strict nature reserves by identifying

spaces to be left to rewilding processes to bring back functionality

in forest ecosystems. This process could benefit from the fact that

the lowland belt is characterized by fertile, deep soils and long veg-

etative seasons that guarantee a fast recovery of forest vegetation

with a high carbon sink activity, in line with the IPCC strategy of

carbon mitigation. A better protected areas strategy will bring

direct benefits to the community living in the suburbs of a densely

populated metropolitan area, particularly the health benefits asso-

ciated with a forest's mitigating power during heat waves (Twohig-

Bennett & Jones, 2018).

Starting from the methodology adopted in this research, further

studies are needed for a distinction based on the bioecological diver-

sity of ecosystems such as old-growth forest patches, rewilding for-

ests (exploited forest landscapes undergoing long-term natural

succession) and managed forests, as proposed by Chiarucci et al.

(2020). Defining clear conservation objectives and measures and sub-

jecting them to adequate monitoring is an immediate goal with

respect to the 2030 Agenda. In this framework, our results will allow

for effective landscape planning and management for biodiversity

conservation to strengthen the current metropolitan ecological net-

work (Modica et al., 2021).
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5 | CONCLUSIONS

This research aimed at implementing a forest dynamic methodology

through the integrated use of historical forest cover data and remote

sensing-based products, providing operational indicators to effectively

manage and restore the forest environments in the MCRC study area,

according to the sustainable development targets of the 2030 Agenda

goals. Our results have highlighted essential changes over the last

74 years, such as a global increase in the forest area and a net increase in

the BL forest. However, the establishment of new forests is a distinctive

trait of the mountain and hilly belts, with a trend in line with what has

been observed in the rest of the Italian Apennine areas and other moun-

tains of Europe due to land abandonment and specific management poli-

cies for mountain regions of Italy. On-the-other-hand, there was a

significant loss of forest cover and interior areas in the lowland belts, espe-

cially along the coast and Rome's inner marginal areas, as the main conse-

quence of urban sprawl and human pressure on natural ecosystems for

agricultural land reclamation. In summary, two main dynamics have charac-

terized the forest landscape: a widespread forest fragmentation located in

the lowland and some locations in the hilly belt, and a slight increase in

interior areas (not affected by fragmentation), especially in the mountain

belt. By combining landscape metrics of land cover dynamics with canopy

density values, we showed that the increase in the FCI and canopy

density percentage characterizes mountain ecosystems that are located

within the protected areas of the MCRC. Conversely, descending to the

lowlands, this study raises a warning for all landscape indicators describing

forest transformation in relation to sustainable development targets. In this

belt, widespread human pressure on forest ecosystems is still causing loss

of functionality (low canopy density), habitat degradation and fragmenta-

tion processes. In reviewing planning strategies, these different forest

dynamics will need to be considered to better respond to future environ-

mental sustainability challenges. The proposed approach, synthesizing dif-

ferent data inputs for dynamic landscape analysis and assessment in the

Mediterranean environment, improves our environmental knowledge for

the development of effective landscape planning and management,

targeted to achieve the 2030 Agenda goals, the Convention on Biological

Diversity and the IPCC strategy against climate change. Our findings could

support the MCRC follow-up work in designing new protected areas and

rewilding spaces in the lowland areas, where forests are far below the

environmental sustainability targets. Moreover, these results integrated

with updated data, provide useful geographical information base layers

that will allow the Rome metropolitan area authority to calibrate an effec-

tive environmental planning and management strategy, for restoring forest

functional integrity and naturalness. The proposed framework for charac-

terizing historical transformation trajectories can also be used to test the

effectiveness of environmental planning to achieve the 2030 Agenda goals

in other forest landscapes.
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