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ORIGINAL ARTICLE

A Prolog application for reasoning on maths puzzles with 
diagrams
Riccardo Buscaroli, Federico Chesani , Giulia Giuliani, Daniela Loreti and Paola Mello

Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

ABSTRACT
Despite the indisputable progresses of artificial intelligence, some 
tasks that are rather easy for a human being are still challenging for 
a machine. An emblematic example is the resolution of mathematical 
puzzles with diagrams. Sub-symbolical approaches have proven suc
cessful in fields like image recognition and natural language proces
sing, but the combination of these techniques into a multimodal 
approach towards the identification of the puzzle’s answer appears 
to be a matter of reasoning, more suitable for the application of a 
symbolic technique. In this work, we employ logic programming to 
perform spatial reasoning on the puzzle’s diagram and integrate the 
deriving knowledge into the solving process. Analysing the resolution 
strategies required by the puzzles of an international competition for 
humans, we draw the design principles of a Prolog reasoning library, 
which interacts with image processing software to formulate the 
puzzle’s constraints. The library integrates the knowledge from differ
ent sources, and relies on the Prolog inference engine to provide the 
answer. This work can be considered as a first step towards the 
ambitious goal of a machine autonomously solving a problem in a 
generic context starting from its textual-graphical presentation. An 
ability that can help potentially every human–machine interaction.
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Introduction

Over the last years, Artificial Intelligence (AI) achieved results that were just unthinkable some 
decades ago. Sub-symbolical techniques were successfully applied to a plethora of contexts, 
like image recognition, Natural Language Processing (NLP) and many aspects of the problem- 
solving process, often achieving performance that equal or overcome the abilities of a human 
being. Nonetheless, there still exist some tasks that are rather easy for a person but extremely 
complex for a machine. From the point of view of cognitive science, these tasks involve 
different types of intelligence (e.g. mathematical, spatial, logical, or common-sense reason
ing), which must be applied and combined in the correct way in order to accomplish the final 
goal (Schneider & McGrew, 2012). In these tasks, computers cannot overcome human abilities 
because they still lack effective ways to automatically arrange together various techniques 
and the knowledge brought by each one. As also pointed out by Chesani et al. (2017), the 
best method to perform this combination of techniques is unlikely to be fully sub-symbolical, 
because arranging different intelligences together is not a matter of pure perception, like 
image processing, or voice recognition. It is rather a reasoning operation.
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Mathematical puzzles are a perfect example of tasks that are quite easy for humans but still 
impossible for a machine. Indeed, as described by Chesani et al. (2017), one of the most interesting 
challenges of modern AI is the following. ‘By the middle of the 21st century, (a team of) fully 
autonomous agent(s) shall win a mathematical puzzle competition against primary school students, 
winners of the most recent competitions.’

In particular, those puzzles that require the interpretation of both a natural-language text and a 
diagram pose interesting questions to AI. Some of them can be solved by primary-school children, 
but no computer can autonomously provide a solution when only the textual and visual descriptions 
are given as input.

For example, consider the problem in Figure 1, assigned during an international competition 
between primary school students organised by PRISTEM Research Centre.1 The puzzle requires 
to solve a simple map-colouring optimisation problem, which would be trivial for a computer, if 
only text and diagram were converted into a machine-oriented formulation of the problem 
beforehand.

Obviously, the key challenge for computers is not connected to the complexity of the calculation 
required – which is quite limited – but rather to the steps that should precede the actual resolution, 
i.e. (i) understanding the diagram; (ii) understanding the text; (iii) identify the best modelling and 
solving technique; (iv) possibly identify hidden knowledge . Moreover, these steps would not be 
necessarily performed in the mentioned order (Chesani et al., 2017). Remarkably, the gaps of NLP 
techniques in understanding the data and the question of the problem from the text cannot account 
alone for the machine’s incapacities, because all sub-tasks must be investigated in a comprehensive 
multimodal approach. Sub-symbolical approaches are crucial to effectively grasp the content of 
image and text, but the information derived in this way must be processed altogether and – if need 
be – combined with common-sense knowledge. This assembly task is akin to what is required by 
Visual Common-sense Reasoning on an image (Zellers et al., 2019): in order to grasp those contents 
that go beyond the recognition-level perception (i.e. beyond the ‘simple’ detection of objects and 
their attributes), a kind of cognition-level reasoning is required (e.g. to deduct the intents of the 
subjects in a scene). Analogously, a tool combining the textual and graphical description of a maths 
puzzle must be capable of – at least – inferring conclusions from given premises and rules. In our 
opinion, a suitable tool for this task is a logic-based framework.

Mathematical puzzles with diagrams are an excellent training scenario to explore how logic can 
act as glue between different symbolical and sub-symbolical techniques to properly realise a multi
modal approach. The things we can understand from this field are much likely to be useful in more 
complex scenarios involving human–computer interaction like for example, the interpretation of 
textbooks and manuals devoted to query answering or automatic problem solving.

In this work, we focus on the challenging scenario of maths puzzles with diagrams, and we 
propose a Prolog library that interacts with image-processing software to extract information from 
the problem’s graphical representation. The library allows spatial analysis at different levels of 
complexity, from points to more elaborated puzzle-specific shapes, enabling the machine’s reason
ing towards the identification of the puzzle’s solution.

Figure 1. Example of maths puzzle with diagram. Translated from the Italian version available online1.
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Our proposal does not aim to fill all the gaps in autonomous puzzle resolution. In particular, it 
does not encompass techniques to discover hidden knowledge or understand the text, but assuming 
to have a convenient method to extract the relevant information from text, the library is able to 
integrate such a knowledge with the one extracted from the puzzle’s diagram. As a first training 
ground, the library was applied to a subset of the maths puzzles belonging to the PRISTEM Research 
Centre catalogue1 of Bocconi University of Milan, Italy.

This study fills some of the gaps and underlines the shape of the obstacles that still stand in the 
way of the ambitious goal of a machine autonomously solving maths puzzles from their textual- 
graphical descriptions.

The contribution of this work can be summarised as follows:

• A brief analysis and classification of the math puzzles composing the considered case study in order to 
underline their most relevant characteristics from the solver point of view.

• The definition of the framework architecture of a system able to integrate the various modules that are 
necessary to address the different tasks required by puzzle resolution.

• A three-layer multimodal Prolog library devoted to puzzle resolution, addressing low-level diagram proces
sing, high-level spatial reasoning and problem solving. The library also makes use of a Prolog notation 
specifically conceived to simplify the elicitation of the puzzle’s constraints, and express its query in a clear 
and concise way.

• An experimental evaluation of the library’s performance when solving different problems, coupled with a 
qualitative study of the framework’s strength and weaknesses.

• The open source code of the library, as well as an online demo to verify its working principles through a web 
interface.

Related work

Games have always been an important training ground for AI. The first remarkable result was 
obtained when DeepBlue from IBM (Campbell, Jr., & Hsu, 2002) was able to beat the chess champion 
Kasparov in 1996. More recently, AlphaGo from Google DeepMind defeated Fan Hui, one of the best 
players of Go in the world (Silver et al., 2016).

Despite these successes, AI still lacks the ability to defeat a fourth grade student on a simple 
maths or logical puzzle provided in natural language text and/or graphical form. Several works 
addressed the resolution of maths world problems by means of a declarative logic-based language, 
like Prolog. This solution is particularly suitable for those logic puzzles – like the ones collected in 
(Smullyan, 1978) – aiming at determining the truth value of a proposition, given some assertions 
known to be true (Alzboon & Nagy, 2020; Nagy, 2003; Ohlbach & Schmidt-Schauß, 1985; Ramsey, 
1986).

Csenki (2006) focuses on a specific kind of puzzles connected to the numbers-in-diagram 
class, and proposes a logic-based solution employing a combination of discrete mathematics 
and Prolog. However, the approach was only devoted to exploit the power of first order logic to 
create an effective declarative solver, rather than an autonomous, multimodal one. In (Lev et al., 
2004), the authors propose a solver for logical puzzles expressed in an intermediate language. 
An automatic translation into first-order logic enable the resolution through a theorem prover. 
More recently, Dries et al. (2017) adopt a two-step approach to solve probability word problems. 
In the first step, the text in natural language is analysed and converted into an ad-hoc 
declarative modelling language, which takes inspiration from the entities defined in (Hosseini 
et al., 2014). Then, in the second step, Probabilistic Inductive Logic Programming (PILP; De Raedt 
et al., 2008; De Raedt & Kimmig, 2015) is used to infer the solution. Akin to Statistical Relational 
Learning (SRL; Koller et al., 2007; De Raedt et al., 2016), PILP is particularly suitable for the 
domain of probability world problems because it allows to manage the complexity through 
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logic, while uncertainty is addresses by probabilistic reasoning. A combination of logical infer
ence and statistical approach is used also in (Liang et al., 2016) to transform the text of maths 
world problems into an intermediate form, and then into a first-order logic program.

Answer Set Programming (ASP; Baral, 2009; Gelfond & Lifschitz, 1991) is em- ployed by Mitra and 
Baral (2015) to solve ‘logical grid puzzles’, intended as maths problems expressed in natural 
language without diagrams, whose solution can be derived by building a table with the input 
data. The NLP task of converting each textual constraint of the problem into an ASP predicate is 
carried out by a Maximum Entropy classifier (Berger et al., 1996). Logical grid puzzles are also the 
subject of (Cheung, 2016b), who focuses on the extraction of Prolog clauses instead of ASP 
constraints.

Similarly to our work, the goal of all these approaches is to make a step towards the definition 
of an autonomous puzzle solver. The main difference is in the type of problems considered, 
because none of the approaches described so far addresses the case of maths puzzles with 
diagrams.

The extraction of precious information from the puzzle’s diagram is a delicate operation which – 
we believe – cannot be carried out with the adoption of sub-symbolical techniques only. Spatial 
reasoning and logic are essential to correctly identify all important data in the figure. A logical 
expression is the output of the tool described in the work by Seo et al. (2015), which was devoted to 
the resolution of multiple-choice geometry questions from high-school tests expressed in both 
natural language and diagrams. Cheung (2016a) gives a description of spatial reasoning puzzles, 
highlighting that the truth of some logical constraints depends on spatial relation which may or may 
not be described in the texts, but is certainly shown in diagram. The solving procedure is enabled by 
a manual conversion of the figure into Prolog atoms and terms.

Physics questions with texts and diagrams are the subject of the work by Forbus et al. (2009), 
which employ analogy reasoning to create a system that is agnostic of the puzzle’s context in the 
beginning, but can create a parallelism between the given problem and a set of previously given 
solved examples.

Other related works (Bhatt & Flanagan, 2010; Loreti et al., 2019) focus on spatiotemporal reason
ing in specific contexts. Bhatt and Flanagan (2010) in particular, apply abduction to automatic 
cinematography in order to control the cameras and the perspectives given a graphical and textual 
description of the scene to be constructed.

Strongly connected to this work are the multimodal approaches in the field of Visual Question 
Answering (VQA), which aim to provide a natural language answer to an image-related question. 
Most of the works (Antol et al., 2015; Fukui et al., 2016; Krishnamurthy et al., 2017; Lu et al., 2016) 
on VQA have a strong sub-symbolical nature and mainly involve neural networks: the possible 
answers to a question are seen as categories, and the network can be trained to learn the mapping 
between the features of text and image, and the correct answer. Notably, the work by Andreas, 
Rohrbach, Darrell and Klein (2015) combines this strategy with a semantic analysis of the question. 
Being devoted to answer different kinds of questions, the system includes different neural net
works in a modular way. The structure of the sentence and its words are used to guide the system 
through the right combination of modules to compose the neural network more suitable for the 
case.

The work by Kembhavi et al. (2017) focuses on the interpretation of text and diagrams from 
primary school tests with a multimodal approach. The authors evaluate state-of-the art VQA 
approaches on a ‘textbook’ dataset of over 1,000 lessons and 26,000 multimodal questions, 
highlighting their strengths but also their poor performance on some tasks. For example, when 
the text shows a strong lexical variation w.r.t. the lesson, when the size of the network 
generated from the input lesson is so big that making it fit into a single memory becomes a 
non-trivial task, or – more interestingly from our point of view – when the question cannot be 
answered by simple lookup but requires reasoning.
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The mathematical puzzles case study

The PRISTEM catalogue1 is an archive of maths puzzles assigned to the participants of the ‘Giochi 
d’Autunno’ (literally ‘Autumn Games’) competition organised every year by the Bocconi University 
since 1994. The competition encompasses a sequence of matches from national to international level 
involving children of 4th and 5th grade of primary school. Hence, the given puzzles are not very 
complex and do not require advanced mathematical or logical skills. They can be abstract or maths- 
world problems and their answer can be a word, a number, or a graphical sketch. Some puzzles have 
more than one solution, but the participants are rarely required to provide them all. According to the 
Cattell-Horn-Carroll theory (Schneider & McGrew, 2012), the human skills required to solve these 
puzzles are structured into strata, where the lower layers identify very simple concepts, which are put 
together and elaborated by the layers above.

A considerable portion of the catalogue is composed of puzzles with a diagram. In particular, 60% 
of puzzles with figure are ascribable to the following categories (Gambetti et al., 2020).

• Geometrical figures; which usually require the identification and counting of polygons inside the diagram. The 
text explicates the kind of polygon and, possibly, some constraints. An example of these puzzles is given in 
Figure 2a

• Spatial logic; such as tiling puzzles, or games where a grid must be partitioned into a certain number of equal 
pieces (see the example in Figure 2b). Several variants are possible, where pieces can be rotated and/or 
overturned.

• Numbers-in-diagram; i.e., puzzles that require inserting numbers into the boxes of a diagram according to a 
certain logic explained in the text. For some puzzles, the proposed diagram has some boxes already filled with a 
number, which must be recognised to further constrain the solution. Examples of this category are Figures 1, 2c 
and 2d.

From the image processing point of view, the task of extracting relevant information from these 
diagrams can be seen as a VQA: the puzzle’s input data contained in the figure are retrieved through 
a set of queries to the image processing engine. This obviously entails the non-trivial ability to 
formulate the right image-related questions, which are helpful to complete the input. What is most 
relevant for the solver implementation is that some of these puzzles (around 18%, often ascribable to 
the category of geometrical figures) require only the image analysis and some basic concepts of 
geometry, whereas a significant part can be interpreted as a Constraint Satisfaction Problem (CSP; 
Russell & Norvig, 2010).

Figure 2. Other maths puzzles with diagram form PRISTEM Research Centre catalogue1 representing examples of the three 
categories: numbers in a diagram (Figure 2c and 2d), geometrical figures (Figure 2a) and spatial logic (Figure 2b).
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CSP can be modelled through a set fX1; . . . ; Xng of variables, a set fD1; . . . ;Dng of domains of 
each variable, and a set of constraints fC1; . . . ; Cmg, which may involve one or more variables thus 
limiting the values they can be assigned.

As an example, consider the puzzle of Figure 2c. Each empty cell of the grid can be seen as 
a variable, to which we can assign a value from 2 to 5. The cell already containing a digit is a 
variable bounded to the value 1. Therefore, the puzzle can be formalised through a CSP with 
variables fX1; . . . ; X5g and domains D1 ¼ f1g, D2 ¼ D3 ¼ D4 ¼ D5 ¼ ½2; 5�. The requirement ‘the 
sum of the digits on the horizontal line must be equal to the sum of those on the vertical line’ 
can be expressed through the constraint X1 þ X2 þ X3 ¼ X2 þ X4 þ X5. Furthermore, the puzzle 
implies that all the values in the cells must be different to one another, 
i.e., X1�X2; X1�X3; X1�X4; X1�X5; X2�X3; X2�X4; X2�X5; X3�X4; X3�X5; X4�X5:

The approach to CSP resolution is a search of the solution inside a space of possible results: it 
starts by performing an initial assignment of each variable to one of the values in its domain. When 
the process is able to assign all the variables without violating any constraint, a solution of the 
problem is found. In the case of the puzzle of Figure 2c, there is more than one solution satisfying all 
the constraints: 

X1 ¼ 1; X2 ¼ 3; X3 ¼ 5; X4 ¼ 2; X5 ¼ 4 

X1 ¼ 1; X2 ¼ 3; X3 ¼ 5; X4 ¼ 4; X5 ¼ 2 

X1 ¼ 1; X2 ¼ 5; X3 ¼ 4; X4 ¼ 2; X5 ¼ 3 

X1 ¼ 1; X2 ¼ 5; X3 ¼ 4; X4 ¼ 3; X5 ¼ 2 

Framework architecture

The system we envisage takes as input a textual and a graphical description of the puzzle. Our 
framework is depicted in Figure 3.

We imagine the input text and diagram processed by a dedicated Classification module, able to 
classify the type of the puzzle. The implementation of this component is a rather challenging task, 
which – in our vision – encompasses the ability to extract information through text and image 
analysis. To this end, this module should be able to perform a multi-modal analysis of the various 
input data.

Figure 3. Framework architecture of the puzzle solver.
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Then, in order to extract the information needed to build a computer-understandable 
representation of the puzzle, the system analyses the diagram and the text, together with the 
puzzle type. In Figure 3 this data extraction is performed by a component that exploits two 
different technologies dealing with different input formats. Part of the component is devoted 
to tackle the data within the diagram, while the other part is focused on the NLP task over 
the puzzle’s text. Notice that the Data Extraction module is guided by the puzzle’s type into 
the search of interesting data. Once data is extracted from diagram and text, the system 
constructs a logic-based (and Prolog-based, in particular) representation of each problem in a 
defined syntax.

The final step involves the Puzzle Reasoning Library, which takes as inputs the aforementioned 
representation and the diagram. If need be, the latter is inspected from different points of view, e.g., 
the reasoning component searches for the presence of polygons, or the possibility to divide the 
current diagram into sub-shapes. The solution is computed by exploiting the puzzle description in 
logical terms and the diagram, when needed.

The output of the whole system is the puzzle’s result, which can assume the form of a number, a 
word, or a graphical sketch, often drawn on top of the provided image.

Puzzle classification and objective identification

The Classification module attempts to answer two very close-related questions: firstly, to which 
category a certain puzzle belongs; and secondly, which is the general objective of the puzzle.

The task of identifying and understanding the general objective of the problem is still a very 
challenging task for machines. As described in Section 2, albeit NLP and image analysis 
techniques have done impressive progresses in the last years, no sub-symbolic approach 
alone is currently able to tackle this problem, to the best of our knowledge. We might notice, 
however, that the general objective is usually directly related to the puzzle’s type: correctly 
classifying the puzzle would provide then a strong hint about the right general objective. For 
example, once it is known that the puzzle belongs to the number-in-diagrams category, it is 
straightforward that the final goal will be to determine the values of a set of variables 
subjected to some constraints.

Regarding the identification of the puzzle’s type, we might notice that both the text and the 
diagram play a fundamental role in the recognition task. Considering the diagrams only, for 
example, could lead to ambiguities. It might be that the same diagram can be referred to 
different puzzles types; e.g. if we focus on the diagrams of Figure 2b and 2a, we might not be 
able to discriminate the puzzle type, since both the diagrams might be classified as a 
geometrical figures or a spatial logic problem. As an interesting side effect of such ambiguity, 
it happens that the diagram of Figure 2b can be paired with Figure 2 a’s text, thus leading to a 
new maths puzzle.

A similar issue arises if we consider the text in isolation: the identification of the right puzzle type 
might lead to ambiguities. Indeed, it is the conjunction of text and diagram that usually leads to the 
proper identification of the puzzle type.2

In Figure 3 the classification component is depicted with dashed edges. This is because we 
still consider that part of our framework as an open issue. We achieved very good results by 
exploiting a rather specific approach where simple NLP analysis is performed on the text 
(through Stanford CoreNLP3 Manning et al. (2014), and WordNet4). Indeed, given their primary 
aim of being recreational for humans, puzzle’s texts adopt a very limited vocabulary: as a 
consequence, solutions that looks for specific terms apparently provide very good results. 
However, the generality and adaptability of such solutions towards novel or unforeseen 
problem descriptions is highly questionable.
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Extraction of puzzle’s data

Extracting data from the diagram and from the textual description of the puzzle is a difficult task as 
well. A first consideration is related to the extraction of the relevant data: for example, the structure 
of a sentence, or even some numbers in the text, might not be relevant at all for a certain puzzle. 
Hence, we focus on implementing Data Extraction Modules that extract the relevant information, 
rather than pursuing an accurate comprehension of every bit of information from the puzzle’s 
description.

A second consideration stems from the fact that knowing in advance the puzzle’s type 
might guide the search for relevant data. For example, if a puzzle is known to belong to the 
geometrical figures class, an immediate question is ‘which figure type should we look for in the 
diagram?’, whose possible answers might be ‘triangles’, ‘squares’, ‘hexagons’, etc. In other 
words, the puzzle type suggests which are the information we should look for.

Implementing such approach requires two steps. Firstly, it is necessary to analyse all the problems 
and precisely identify which parameters are actually relevant to solve them. This information can be 
organised into a sort of decision tree, which – starting from general questions, such as providing the 
class of the problem – deepens the knowledge about the problem’s request until the identification of 
all the necessary data. Secondly, a completely autonomous Data Extraction module would need the 
ability to follow the decision tree, answering every question from the root to the leaves by means of 
text and diagram analysis.

In this work, we mainly focus on the first of these steps, whereas for the second step we are 
investigating two alternative – possibly complementary – approaches: on one side we are exploiting 
the use of BERT (Devlin et al., 2019), a renowned tool for NLP understanding and query answering. 
On the other side we are experimenting a query-answering system involving the final user, who is 
therefore requested to reply to every question following the path of the decision tree. Based on 
these answers (collected either from BERT or from the user), the system dynamically composes the 
problem description in logical terms.

As regards the first category of puzzles, i.e. geometrical figures, they require to count specific 
polygons. Therefore, the parameters that must be provided to the solver involve the kind of polygon 
and, if need be, some constraint on its characteristics (e.g. its area expressed in number of smaller 
pieces as in Figure 2a).

The second category, spatial logic puzzles, can be either jigsaws or games where a grid must be 
partitioned into a certain number of equal pieces. In both the cases, the possibility to rotate and 
overturn the pieces represent a parameter of the problem. As regards the jigsaws, the information 
regarding which are the pieces and which is the grid (as well as the presence of tiles already in place) 
is not reported in the text, but must be extracted from the diagram. Therefore, this information 
should not be requested to the user, but autonomously found by the Puzzle Reasoning Library 
module through image analysis. Similarly, the grid-partitioning puzzles require just the list of actions 
that can be performed on the pieces, as well as the number of same-shape tiles that must be 
employed.

Finally, numbers-in-diagram puzzles are characterised by the need to insert numbers into the 
boxes of a diagram according to a certain logic. The parameters that must be provided are:

• a list of constraints of various natures (expressing the domain in which the numbers must be picked, and the 
relation that must hold between the digits in certain boxes);

• an indication about the form of the wanted result, which can be either drawn on the diagram or provided 
through a numeric answer (e.g., “What is written on the left lower box?”).

As regards the number’s domain, it can be either explicitly elicited (e.g. ‘numbers 25, 29, 37, etc.’), or 
expressed through a starting and an ending number (e.g. ‘numbers from 2 to 5’). It can also be 
parametric as it is for example, in any map-colouring puzzle like the one in Figure 1. There, the 
implicit domain of the variables is ½1;N� (and we need to minimise the N).
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About the relation between the numbers in certain boxes, it can be some simple requirement like 
providing all different values or ensuring adjacent boxes have different values; or it can be some 
more complicated constraint involving the relative or absolute position of the boxes and some 
operation on the numbers inside it (e.g. as in the puzzle of Figure 2c, whose request is ‘the sum of the 
digits on the horizontal line must be equal to the sum of those on the vertical line’).

It is important to underline that for some puzzles the diagram already contains numbers in some 
boxes, which must be recognised and included in the parameters. Nonetheless, in our vision of the 
resolution process the tasks of understanding if numbers are present and which are they are 
demanded to the Puzzle Reasoning Library, that deepens the analysis of the diagram with the 
Optical Character Recognition (OCR) feature.

The combination of all this information determines the form of the decision tree. Following such a 
structure, the system is able to compose the logic-based formulation of the puzzle’s request that 
feeds the Puzzle Reasoning Library. The current decision tree with the questions is available in the 
form of an excel file in the GitHub repository5 of this project.

The puzzle reasoning library

The Puzzle Reasoning Library performs image analysis and reasoning on the diagrams driven by the 
problem description in logical terms that is emitted by the previous Data Extraction module.

From the point of view of diagram analysis, if we consider the examples of puzzles provided in 
Section 3, it is easy to see that all the problems, regardless to the category they belong, need some 
low-level features, like the ability to identify points and segments. For this reason, the library 
provides a first low-level layer to identify the main building blocks of spatial reasoning. Indeed, 
like the human abilities to solve puzzles, our library – depicted in Figure 4 – is made of overlapping 
layers.

At the lowest level, the primitives module is composed of functions written in C++, making use of 
the OpenCV6 library to identify points, segments, shapes, and text/numbers. The choice of OpenCV is 
motivated by the fact that it is one of the most famous open source libraries for computer vision. 
Originally written in C++, this library was progressively applied in several fields, from video surveil
lance to autonomous driving. Thanks to its portability on different operating systems, its interfaces 
towards various programming languages, and the integration with CUDA and OpenCL to take 
advantage of graphical hardware, the current implementation has reached outstanding levels of 
efficiency and performance. OpenCV offers over 2,500 computer vision algorithms for automated 

Figure 4. Architecture of the spatial reasoning library.
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learning, and a series of additional modules which can be compiled from source to provide advanced 
or experimental features – e.g. object recognition from images, action recognition or object tracing 
from video streams, etc.

For the purposes of this project, we used an additional module for scene’s text detection and 
recognition. In particular, we employed the module which directly interact with Tesseract OCR,7 a 
widely-adopted open source software, initially conceived for the digital acquisition of text from 
scanned documents. Given its initial goal, Tesseract makes a series of hypothesis on the text under 
analysis. For example, it usually searches for a text spatially organised into lines, with all letters 
having more or less the same dimension. Those letters that are too small, too big or not aligned with 
the average of the others are considered as diacritics, punctuation or noise. If, as in the case of 
puzzle’s diagrams, the text going to be recognised does not fit these initial assumptions, a proper 
segmentation strategy must be adopted, to subdivide the image into parts where text is searched 
and recognised. Tesseract offers the possibility to segment the image looking for a single word, a 
line, or a text with multiple lines, possibly organised into multiple columns. The choice of the 
segmentation technique must be driven by the kind of spatial organisation of the text that is 
more often found in the images.

As puzzle’s diagrams may contain text spread all over the figure without a uniform organisation in 
lines and columns, none of the three segmentation techniques offered by Tesseract is enough to 
guarantee good recognition performance. Our choice was therefore to repeatedly segment the 
image as if its content was a text with multiple lines organised into a single column. At each 
segmentation attempt, we impose to look for text of increasing size. This strategy allows to find 
letters and numbers scattered across the whole figure (even if they are not aligned), and overcomes 
the issues deriving from text with different dimensions.

It is nonetheless important to underline that this technique is not sufficient to recognise all possible 
kinds of text that can be included into a diagram. Letters and numbers that are represented with heavy 
distortions cannot be identified in this way. Fortunately, as the aim of the puzzles we consider is not to 
assess the visual abilities of the participant, the number of diagrams with distorted text is very little.

After the segmentation step, which allows to identify portions of the image that are likely to 
contain text, the recognition process is necessary to assess the actual nature of the found letters and 
numbers. Tesseract offers the possibility to perform this step by means of a statistical classifier, a 
neural network-based approach, or a combination of these two. For the considered diagrams we 
verified that the best results can be obtained with a pure neural network. In particular, we adopted 
the Tesseract’s strategy that involve a Long Short Term Memory (LSTM) network (Hochreiter & 
Schmidhuber, 1997) pre-trained on documents of a specific language.

The C++ primitives of the lower level are made available to the Prolog layers above thanks to a C+ 
+ interface to SWI-Prolog.8 By means of this interface, the middle layer extracts and combines 
together the basic data from the diagram, turning them into more complex information useful to 
solve the puzzle. This layer includes several modules:

• geometry, defines fundamental concepts of plane geometry, such as segments and polygons, based on the 
most elementary geometrical element: the point;

• shapes, contains functions to determine the type of polygons and extract their segments;

• color, encompasses colour-related operation, like the identification of the image colour scheme, or the precise 
colour in a certain point;

• image, defines functions to load/release images, and a basic interface to lower-level primitives to draw and 
cancel objects on the image;

• debug, contains basic functions to check the execution flow and show intermediate graphical results of the 
reasoning process;

• text, provides an interface to lower-level primitives to read letters or numbers.
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On top of these modules, the third layer is responsible for initiating the solving process by 
combing the Prolog formalisation of the text with the data that can be extracted from the image. 
Indeed, the image processing task realises a VQA guided by the puzzle’s goal. It is therefore 
fundamental to establish what the right questions about the diagram are, i.e. the questions whose 
answers allow to complete the set of puzzle’s input data. Considering the categories described in 
Section 3 it is easy to see that puzzles belonging to the same category require answering very similar 
questions. For example, finding the correct partitioning of a grid into equal parts, or composing a 
tiling puzzle with predefined pieces on a grid, both require to know the form and dimension of the 
grid. On the other hand, puzzles from different categories pose very different questions about the 
diagram (e.g., geometrical figures puzzles require counting polygons, hence they do not need the 
concept of grid at all). For this reason, the top layer of the library is composed of a solver module for 
each considered type of problem.

The diagram solver is devoted to the resolution of numbers-in-diagram puzzles. It makes use of 
the underlying shape and geometry modules to assess the presence of boxes containing numbers 
and lines connecting those boxes, whereas the actual shape of such boxes (circles, squares, etc.) is 
obviously irrelevant for solving the puzzle.

The polygon solver deals with the recognition of specific polygons in the diagram given some 
constraint, e.g. on their area or number of edges. To this end, this solver provides functionalities to 
explore all the possible ways to construct polygons by progressively combining together the 
diagram’s segments.

The grid solver deals with spatial logic tasks involving pieces on a grid, and therefore makes use 
concepts such as the shape and the area of a portion of the figure (irrespectively to the kind of 
polygon), the possibility to rotate and overturn pieces, and that of filling a part of the grid with a 
certain piece.

The external interface of the library is realised by the generic solver, which loads the puzzle’s type 
and constraints from the Data Extraction module, and dynamically calls the correct solver.

As most puzzles can be interpreted as a CSP, orthogonally to the three layers, the library makes 
use of Constraint Logic Programming over Finite Domains (CLP(FD)),9 which extends SWI-Prolog with 
reasoning over finite domains of integers. Constraint Logic Programming over a theory X (CLP(X ); 
Jaffar and Maher (1994)) is an extension of Logic Programming that provides the capability of 
expressing constraints over variables, which are then treated not as ‘normal’ logic variables, but 
rather subjected to the constraint theory specified for the type X . CLP(FD) allows to consider 
variables whose range is over a finite domain, and that can be subjected to arithmetic constraints 
(such as equalities, disequalities and inequalities), but also global constraints such as all_different.

Given these features, the CLP(FD) library seems the best candidate to simplify the declarative 
elicitation of arithmetic, domain, and combinatorial constraints – involving sets of variable and 
reification predicates – and perform the problem solving task.

Puzzle resolution process

The resolution process, the extraction of input parameters from the diagram, and the nature of the 
output we must provide, are all strictly influenced by the puzzle’s category. A specific Prolog notation 
is therefore necessary to specify different puzzle’s information (input data and constraints) depend
ing on the problem’s type. Our library represents each puzzle through a Prolog term in the form 

CategoryðParameter1; Parameter2; . . .Þ: (1) 

where the term’s name is used to identify the solver of the problem, and the parameters report the 
input data and constraints derived from the Classification&NLP module.

Parameters expressing constraints must be specified in the form constr(Constraint), where 
Constraint can be either a single or a set of Prolog predicates. In order to simplify the specification 
of constraints involving collections of objects, the following syntax can be used.. 
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constrðX=Condition � > ConstraintÞ: (2) 

The system will apply the Constraint to all and only the X for which Condition is true. Notice that, to 
the best of our knowledge, the notation proposed in Eq. (2) is new w.r.t. the application domain, but 
is rather similar to many other notations used to apply constraint on a restricted set of elements, 
selected from a larger set through the specification of a condition.

The top level solver declares a generic predicate 

solveðþProblem;þImg; � ResultÞ (3) 

where Problem contains the puzzle’s description through the Prolog term Category(Parameter1, 
Parameter2, . . .) presented before, Img is the OpenCV object representing the image, and Result 
may be unified with a word, a number, or a modified version of the input Img with the solution 
drawn on it. The actual implementation of the solve predicate is assigned to the category-specific 
solvers, which are examined in the following.

Numbers diagram resolution
In the diagram solver, the puzzle’s category and definition can be stated through the Prolog 
following term: 

numbers diagramðConstraintsList; ResultÞ: (4) 

where the first parameter (ConstraintsList) is a list of constraints on the puzzle’s variables and Result is 
another constr term that the solver will unify with the solution of the problem. The constraints in the 
ConstraintsList can be expressed by either CLP(FD) or other predicates defined by the library for 
convenience’s sake.

For example, the puzzle of Figure 2d can be described by the following logic form. 

numbers diagramð½constrðI=ðvariableðIÞ; var shapeðI; circleÞÞ � > ðvar valueðI; XÞ; Xin3::8ÞÞ;

constrðL=ðlineðLÞ; lengthðL; 3ÞÞ � > ðline valsðL; LXÞ; sumðLX;# ¼; 18ÞÞÞ�;
constrðR; ðvars by positionð½bottom; left�; ½Ij �Þ; var valueðI; RÞÞÞÞ:

(5) 

The first constr term in the ConstraintsList states that “For any variable I such that it is associated to a 
circle shape in the figure, its value must be constrained in ½3; 8�“. The second constr term expresses 
the requirement that the sum of the numbers on the same line of boxes must be 18. To state this 
constraint, the line and line_vals predicates are employed to address the aligned boxes and the 
values inside them, respectively. Finally, the last constr term is related to the result R and specifies we 
want to extract the value of the variable located in the bottom left box.

The term in Eq. (5) is passed as first parameter to the solve predicate of Eq. (3) in order to trigger 
the image analysis and the resolution process. In particular, for numbers-in-diagram puzzles, the goal 
is to insert numbers in the boxes of the diagram according to a certain logic. Therefore the image 
analysis must first focus on extracting information about the presence and disposition of the boxes in 
the diagram. This information is represented in the form diag(BoxList, LineList). As the variable’s name 
suggest, BoxList is a list of boxes, each represented by a specific box(Poly, Colour, Txt) predicate, 
where the parameters clearly report the type of polygon realising the box, its colour, and its possibly 
enclosed text. LineList is the list of spatial relations between the boxes. Such relations are represented 
through line(LineElements, Orientation) predicates, where Orientation specifies the horizontal, vertical, 
or oblique spatial relation between the set of boxes in LineElements.

Whereas these definitions have a rather simple semantics, from the image processing point of 
view, the identification of what is a box, and the process of distinguish it from other closed forms in 
the diagram is less straightforward. The human brain usually classifies as boxes all those closed 
spaces corresponding to geometric figures or characterised by relevant symmetries. For this reason, 
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we currently identify circles, rectangles and equilateral polygons as boxes, but this criterion can be 
extended by declaring additional shapes accepted as boxes. This operation can be easily performed 
by changing of the true_box(Box) predicate .

The search of spatial relations between the boxes have similar issues. In some diagrams, adjacent 
boxes are polygons with common borders or vertex as in Figure 2c. In some others, the spatial 
relation is defined by straight, curve, continuous or dashed lines connecting the boxes as shown in 
Figure 2d. Two different kinds of image analysis are therefore needed. To this end, the library first 
identifies relations of the first type (polygons with common vertex and borders), then considers all 
the segments that do not belong to any box and performs the second type of search (boxes 
connected by segments).

Once the image features are extracted, the CSP model of the problem must be defined. As these 
puzzles require writing numbers inside the boxes, a variable is associated to each box. If the box 
already contains a number in the original image, the variable is obviously associated with such 
number.

The number recognition is the most expensive task of the diagram solving process. When the 
problem does not actually require to recognise numbers (as it is, e.g. in the puzzle of Figure 1), that 
task can be skipped by employing the term diagram(ConstraintsList,Result). The puzzle in Figure 1 can 
be formulated as follows. 

diagramð½constrðI=variableðIÞ � > ðvar valueðI; XÞ; count varsðNÞ; Xin1::NÞÞ;

constrððI1; I2Þ=ðvariableðI1Þ; variableðI2Þ; I1 ¼ I2; adjacentðI1; I2ÞÞ � >
ðvar valueðI1; X1Þ; var valueðI2; X2Þ; X1# ¼ X2ÞÞ;
constrðminimize maxÞ�;

constrðR; ðvalsðLXÞ;max listðLX; RÞÞÞÞ:

where the first constr term states that any variable I associated with a box must be an integer in the 
range between 1 and the total number of employed variables; the second constr term enforce to 
assign different values to those variables that are associated with adjacent boxes; and the third constr 
term minimises the total number of employed variables. Finally, the Result parameter is again a constr 
term which states to return the maximum value associated to a variable in the solution. The problem 
can be formulated in the same way by using numbers_diagram instead of diagram, but in that case 
the image processing task would be triggered before any reasoning to look for numbers in the boxes 
(in vain).

Geometrical figures resolution
When the puzzle requires to identify and enumerate certain shapes in the diagram, the polygon 
solver must be called. In this solver, the problem type can be specified by two predicates.. 

count polygonsðShapeÞ (6) 

count polygonsðShape; constrðX; FilterÞÞ (7) 

where constr(X,Filter) allows to specify if some additional constraint must be fulfilled besides the 
congruence with the specified Shape. For example, we could require the polygon to be equilateral or 
have a certain area (as in Figure 2a). Since in these puzzles the area is usually defined in terms of the 
number of base polygons composing a grid (e.g. in Figure 2a we look for squares composed of 4 
pieces), a min area(-Area) predicate is defined to extract the area of the smaller polygon in figure 
(i.e., the piece). This polygon can be of any kind, not necessarily a square. Another predicate, grid 
area(+Poly,-N), unifies the N variable with the number of minimal polygons needed to cover the area 
of the input polygon Poly. As an example, the logic programming description of Figure 2a is simply.. 
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count polygonsðsquare; constrðX; grid areaðX; 4ÞÞÞ:

which instructs the solver to identify and count the number of squares whose area is equal to 4 grid 
elements.

Despite the short logic-oriented description of the problem, the shape recognition task under
neath is not trivial. Instead of looking for all possible polygons in figure, and discard the ones not 
fulfiling the requirements – a strategy which can be time consuming – our algorithm starts from an 
image segment, and compose a polygonal chain by progressively adding a segment at a time until 
the desired number is reached. A line cannot be added if it intersects the chain in a point different 
from the initial one, and if two segments are aligned, they are obviously considered as a single 
segment. If the required number of sides is reached without closing the chain, the algorithm 
backtracks on other image segments. In this way, no time is wasted on searching polygons with 
more edges than required.

Grid resolution
In case of spatial logic problems, such as tiling puzzles, or games where a grid must be partitioned 
into a certain number of equal pieces, the grid solver module is employed. Similarly to the polygon 
solver, for this solver the puzzle’s logic description is again rather synthetic. It can be represented by 
two alternative predicates: 

puzzleðOptionsÞ (8) 

divide same shapeðN;OptionsÞ (9) 

where the puzzle predicate is used to address tiling puzzles (where a set of given pieces must be put 
on a grid); whereas divide_same_shape is devoted to situations where only the grid is provided in the 
figure, and the text requires to divide it into a certain number of equal pieces. The Options parameter 
is provided because often the puzzle allows to perform spatial operations on the pieces, such as 
rotate or overturn. The parameter N of divide_same_shape instead expresses the number of pieces in 
which the grid should be divided.

As an example, the puzzle in Figure 2b can be described by the following. 

divide same shapeð2; ½rotate; overturn�Þ:

In case of puzzle(Options) problems, the diagram reports both the grid and the pieces to be 
scattered on it. So, all the external borders of the picture’s elements are considered and the bigger 
one is found to be the grid (which is reasonable because it has to contain all the others). For both 
puzzle and divide same shape, the grid analysis starts by identifying its shape in terms of all its 
minimal building blocks: the smallest square of the grid, which the solver will represent through the 
position of its upper left vertex. The grid is therefore rendered as if it was on a Cartesian plane: a 
predicate grid_diag(LX,LY,Grid) serve the purpose. LX and LY are the lists of axis coordinates corre
sponding to the upper left vertices, and Grid is a matrix (a list of lists with the same length) where 
each element is either 0 or −1, to signify that a square was found or not found on the corresponding 
coordinates. Indeed grids might not always be convex forms, such as squares or rectangles. The 
strategy of representing the grid through two lists of coordinates and a matrix of 0/-1 allows to easily 
represent grids with various forms.

The solving strategy searches the first uncovered grid’s square and tries to cover the connected 
space around it with one of the pieces, possibly rotating and overturning it if such options are 
allowed. If the solver cannot cover the connected space, it backtracks by reconsidering the latest 
added piece. In case of divide same shape, the algorithm does not know the shape of the 
pieces, but only that their area must be the total area of the grid divided by N. So, the algorithm 
makes a first attempt to define a possible shape and generates N identical pieces to occupy the 
grid.
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Since for a machine the challenges in solving one of these puzzles is clearly not in the dimension 
of the problem, we do not investigate the performance of the library for increasing number of 
variables and constraints. However, we underline that the most time-consuming task is text detec
tion and recognition, whereas the executions of the grid, polygon or diagram solvers (once the 
numbers are recognised) all require a very limited amount of time, in the order of milliseconds. This 
was indeed expected, because the dimensions of the considered problems are extremely small with 
respect to the computing capabilities of modern hardware.

The whole source code of our spatial reasoning library can be found on GitHub5.

Experimental evaluation

In our framework, the puzzle resolution process involves several different tasks, from the extraction/ 
definition of the logic-based description of the puzzle, to the resolution of the problem specified in a 
computer-understandable form. The latter in particular is of less interest: as we discussed in Section 
1, in the AI research field many successes have been obtained when tackling with specific problems. 
With this respect, the mathematical puzzles are indeed toy problems w.r.t. the currently available 
resolution techniques. For example, let us consider the numbers-in-diagram category games: when 
properly mapped, the puzzles become CSP problems of some ten variables and twenty constraints at 
most (remember that puzzles are aimed to human recreation). The performance of Constraint 
Programming solvers is usually measured against problem instances with tenth of thousands of 
variables, and hundred thousand constraints. As a consequence, the computational time required to 
solve a properly represented puzzle is usually in the order of nanoseconds, thus making any 
measurement meaningless. For this reason, in subsection 5.1 we briefly discuss the computational 
performances of the solving process from the final user perspective, by simply exploiting the demo 
website.10

Of the greatest interest instead is the evaluation of the quality of the solving process. As 
previously discussed, the ‘hard’ part of solving the puzzles is getting a correct computer-under
standable representation of the puzzle. In subsection 5.2 we discuss a more qualitative evaluation of 
our approach, trying to highlight achievements but also weaknesses of the current framework. We 
do not introduce any metric on the quality of the obtained puzzle’s model, but rather we investigate 
if and when our framework manage to achieve a puzzle model that will in turn lead to a correct 
solution.

The demo website and its performance

A demo of our framework is available online10, and interested users can freely experiment with part 
of the presented tools.

As shown in Figure 5, the web-based application presents four areas: the ‘Human readable’ area 
is devoted to show the puzzle in its original aspect, while the ‘Prolog translation’ area shows the 
prolog query whose parameters are indeed the problem description in logical terms. The user is 
also invited to freely change the parameters and experiment with the reasoning library: tips are 
provided suggesting parameters that indeed will make the puzzle feasible, thus leading to a 
solution.

The user can freely choose among fifteen puzzles: upon the selection of a puzzle, its image and 
textual description are shown, together with the problem translation into a Prolog data structure. By 
pressing the button ‘Solve’, the selected image with its text, and the Prolog query, are processed to 
the server, which start a Prolog interpreter.11 The ‘SWIPL Console’ area reports the output of the 
Prolog interpreter running on the server, while the‘’Output image” shows those solutions that are 
required to be drawn on top of the original image (such as, e.g. the geometrical puzzles). At every 
pressing of the ‘Solve’ button the time to execute the SWIPL invocation is reported below the ‘SWIPL 
Console’ area.
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In Table 1 we report the execution time (in sec.) requested to solve each of the puzzles available in 
the demo web application. The reported times are not comprehensive of the network overload. For 
each puzzle, resolution times are taken for ten consecutive tests, and the average time is reported.

Figure 5. Web interface of the demo application.

Table 1. Execution times of the demo web application. Average 
over ten runs for each puzzle.

Puzzle # Type Time (sec.)

1 Spatial Logic 0.713
2 Numbers-in-diagram 4.672
3 Geometrical figure 0.491
4 Numbers-in-diagram 0.830
5 Spatial Logic 0.653
6 Numbers-in-diagram 11.275
7 Numbers-in-diagram 19.518
8 Numbers-in-diagram 31.968
9 Spatial Logic 0.503
10 Spatial Logic 0.504
11 Numbers-in-diagram 17.710
12 Geometrical figure 0.546
13 Spatial Logic 0.500
14 Numbers-in-diagram 25.401
15 Spatial Logic 0.517
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The demo web application currently suffers some limits, partly because of security reasons, and 
partly as a consequence of some limits of our framework (see, Section 6 for a discussion): (i) it is not 
possible to upload a puzzle: the user can experiment only with the proposed fifteen examples; (ii) the 
puzzles are already classified into the right problem type; (iii) the problem description in logical 
terms is already provided, instead of being generated on the fly: the user can however modify it 
before starting the reasoning.

Qualitative assessment of the approach

Several different aspects have a great influence on the quality of the system outcomes. Regarding 
the diagram-related part, there is of course the quality of the image: jpeg artefacts or a too much low 
resolution might lead the OpenCV library to detect false edges, or to miss existing ones. For example, 
the recognition of polygons is based on the assumption that edges indeed meet each other in some 
vertex: the presence or absence of some pixel around such vertex might induce the library to false 
conclusions. Even, the font adopted for indicating some number directly in the diagram might 
impact the performances of the OCR component. Scanned images in particular might present 
distortions of the characters, thus leading to recognition mistakes.

Regarding the text-related part, we might stress that the variability in describing the puzzles 
heavily affects the data extraction module. Such problem is exacerbated from the fact that the 
available dataset is in Italian language only. We worked on an English-translation of the problems, 
but we can’t exclude that we involuntary introduced some language bias during the translation step. 
Resorting to translation software lead to poor results, given that the puzzle’s texts are usually very 
short sentences. Alternatively, we investigated the adoption of NLP tools for the Italian language, but 
when confronted with analogous tools for the English language, the maturity level of the former 
appears to be lower. A further difficulty relates to the length of the puzzle’s texts, combined with 
(sometime useless) references to a real-life context. While such references help the human to better 
understand the problem, they might result as misguiding information when dealing with NLP tools.

The use of Deep Learning-based approaches might appear as the perfect answer to the problems 
highlighted above. However, the total number of available mathematical puzzles counts up to 
around a hundred of examples, a number far insufficient for any Machine Learning training algo
rithm. Fine tuning of pre-trained neural networks might not be feasible as well, given the small 
dimension of the training data.

Conclusion

Maths puzzles with diagrams, even the most simple, are a perfect training field for AI. Indeed, despite 
the impressive progresses made so far, a lot of work is still needed to reach the ambitious goal of a 
machine autonomously solving a maths puzzle from its original textual and graphical formulation. 
No sub-symbolical technique can reach this goal alone. The case study of maths puzzles with 
diagrams inevitably requires a multimodal approach to problem solving, which combines sub- 
symbolical techniques to extract relevant information from text and diagram into a unique frame
work. We claim that such task must be guided by reasoning. Logic and its symbolical approach are 
therefore essential in this scenario.

Focusing on maths puzzles with diagrams, we propose a framework to allow knowledge integra
tion of concepts expressed by the text with what can be extracted from the diagram. In particular, we 
propose a Data Extraction module, which follows a decision tree of questions from the most general 
to the most specific in order to deepen the knowledge about the puzzle’s request; and a set of 
primitives, which interact with image processing software to extract and reason upon spatial 
information about the elements in the figure. Similarly to the human cognitive skills needed to 
reason on maths puzzles, the functionalities offered by the proposed software are organised into 
overlapping layers, from the basic to the most complex ones.
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The result is interesting not only for the wide set of puzzles that can be solved with our library but, 
more notably, because allows to verify that logic programming is the right tool to manage the 
complexity of the solving process, even when a multimodal approach is needed. Indeed, thanks to 
Prolog and the CLP(FD) library, we can easily express the knowledge extracted from the image and 
combine it with a logical description of the natural language text, leaving the burden of finding the 
best solving strategy for the puzzle to the underlying theorem prover.

Furthermore, we believe that the proposed decision tree of questions useful to data extraction 
represents itself a relevant contribution of our work, because it can be used by human beings to 
support the resolution process. For example, it can represent a guide to solve the puzzle for those 
children experiencing some difficulties in the identification of the correct resolution method; or it 
can have a didactical value if followed by the children looking for the relevant data in the text – thus 
helping the teacher to explain the crucial points of the problem description.

Our work also helps to highlight the limits of current approaches and the next steps required. As 
already discussed, the image processing and OCR software may show some shortcomings when 
recognising distorted letters and numbers. Besides that, an additional effort is needed to enrich the 
concepts that the library can manage. For example, the current version of the software can recognise 
geometrical figures, numbers, letters, and some more general concepts, like for example, the notion 
of ‘box’, which in the puzzle’s context can be a shape with a variety of forms. However, if the puzzle 
required to identify different real-world concepts (e.g. arrows, card’s suits, etc.), the integration of 
other, more sophisticated image recognition techniques into the library would be required.

The spatial reasoning library can manage puzzles that falls into the categories of numbers-in- 
diagram, geometrical figures, and spatial reasoning. These classes together cover the majority of 
puzzles from the considered source1, but another important part is represented by crypto-arithmetic 
games. This category could be integrated with a relatively contained effort because most of the 
spatial reasoning tools required for solving such puzzles is already provided by the library.

In our opinion, the biggest limit of our approach (and also the toughest problem so far) is related 
to the integration of NLP techniques to properly recognise the puzzle’s type and to convert the 
problem’s textual description into a set of logic facts and clauses. As mentioned earlier, we 
investigated different techniques, but none of them provided good results and at the same time 
proved to be robust enough against unforeseen examples. Other solutions might be inspired by 
some previous works on this topic (Berger et al., 1996; Mitra & Baral, 2015): we plan to investigate 
these techniques as well in the near future.

Finally, in the long run a challenging task would be to widen the application scope to contexts 
other than maths puzzles, where a problem-solving-oriented reasoning is required. An ambitious 
example of future work is the automated reasoning on technical problems after having understood 
the content of a related manual (with natural language descriptions and graphical schemas) without 
human intervention. In this regard, our proposal to integrate sub-symbolical techniques to account 
for perceptive tasks (like image processing) and symbolical techniques for higher-level reasoning 
reflects a widespread trend in model AI. In the broad range of scenarios that can benefit from a 
simplified human–machine interaction, the lesson learned from the multimodal approach to puzzle 
resolution can be extremely useful.

Notes

1. Catalogue of maths puzzles – PRISTEM Research Centre, Bocconi University of Milan. http://matematica.uniboc 
coni.it/articoli/archivio-giochi

2. Among the so called ‘recreational games’, there are also puzzles whose diagram and text purposely try to fool 
the user into classifying it in the wrong problem type. In this work we do not consider such a class of puzzles.

3. https://stanfordnlp.github.io/CoreNLP/
4. https://wordnet.princeton.edu/
5. https://github.com/ai-unibo/spatial-reasoning
6. https://opencv.org
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7. https://opensource.google/projects/tesseract
8. https://www.swi-prolog.org/pldoc/man?section=cpp-overview
9. https://www.swi-prolog.org/man/clpfd.html

10. http://games-ai.disi.unibo.it/games
11. We choose to rely on the SWI-Prolog Interpreter https://www.swi-prolog.org/
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