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Abstract—The Internet of Things (IoT) is nowadays affected
by significant interoperability issues. One of the most popular
countermeasures is the Web of Things (WoT), proposed recently
in a consistent standardization effort. On the other hand, several
IoT-oriented frameworks are already established in industrial
scenarios and provide SOA-like features such as discovery and
orchestration. In this paper, we study how to bridge these two
worlds by proposing a tool that enables a two-way translation
between a WoT ecosystem and a System-of-Systems composed
of well-described Web services. We evaluate the efficiency and
scalability of our solution over the Eclipse Arrowhead framework
through a series of experiments that assess the scalability of our
solution under realistic workloads.

Index Terms—IoT, WoT, SOA, Arrowhead framework, Inter-
operability, Performance Evaluation

I. INTRODUCTION

The rapid growth of the Internet of Things (IoT) in the last
few years is generating new and increasing demands over sys-
tems architectures, platforms, and smart applications [1]. Con-
sequently, a vast number of novel technologies, applications,
and devices emerged, creating an unprecedented fragmented
and heterogeneous scenario [2]. The lack of interoperability
in IoT is a well-known issue, and studies show that it is one
of the main factors hindering the large-scale adoption of IoT-
based systems [3].

The Web of Things (WoT) standard proposed by the W3C
consortium is a promising solution to tackle the heterogeneity
in the IoT and has attracted the attention of both academia
and market [4]. The W3C WoT enables easy integration across
IoT platforms and application domains through a descriptive
approach, i.e., it aims at defining a uniform representation of
the capabilities of a Thing rather than prescribing the way to
implement it.

At the same time, in the context of Industry 4.0, the Eclipse
Arrowhead project [5], based on Service-Oriented Architecture
(SOA) concepts, has gained significant momentum. It aims
to enable all of its users to work in a common and unified
approach that interconnects several IoT-based local clouds,
leading to high interoperability levels. Any RESTful API
service can be easily added to the Arrowhead ecosystem and
be part of the global Arrowhead cloud of Systems of Systems
(SoS).

It is worth highlighting that the presence of multiple solu-
tions for IoT interoperability in the market may further exac-

erbate the fragmentation issue since it may lead to separate
data islands and vertical silos. On the other hand, several
Web services and platforms do not comply with any specific
standard. In fact, modifying each relevant IoT-based service
to follow a given standard – such as the WoT – is a herculean
task. Based on these considerations, we propose a method
to seamlessly bridge Arrowhead-compliant services to a WoT
ecosystem and vice-versa, opening a world of possibilities to
new WoT-based services and interactions.

More in detail, the main contributions of this paper are:
• We propose and implement a middleware, namely, WoT-

Arrowhead Enabler (WAE), capable of discovering and
converting Arrowhead services into Web Things and vice-
versa. Thus, seamlessly connecting both ecosystems.

• We propose a way to convert special services struc-
tured via OpenAPI Specification (OAS) into WoT Thing
Descriptions and deploy those as fully functional Web
Things.

• We validate the proposed solution through a series of
performance analysis experiments that enlighten the scal-
ability of the application when tested in a close-to-real
environment under high workloads.

In the remainder of this paper, Section II presents the
background and the related work. The architectural design
of the proposed solution composes Section III. Section IV
goes in-depth in the interactions of the WoT, the Arrowhead
framework, and the WAE. The implementation details are in
Section V, followed by the performance analysis of the tool
in Section VI. Finally, Section VII concludes and proposes
relevant future works.

II. BACKGROUND AND RELATED WORK

A. Eclipse Arrowhead

Over the last years, the industrial context witnessed a steady
shift from legacy monolithic systems to decoupled and service-
oriented environments. Single systems are seen as atomic
units of operation and interact seamlessly without a prefixed
setting. This trend is one of the bases upon which Industry
4.0 has settled. The Eclipse Arrowhead Framework [5] is one
of the most successful implementations of such a paradigm,
bringing together loose coupling, late binding, and discovery
capabilities. More in detail, Eclipse Arrowhead is built on



top of the concept of “Local Clouds”, which are service-
oriented architectures of Systems-of-Systems (SoS) managed
by a set of Core Services [5]. Thereby, other systems are
service providers or service consumers and refer to the Core
Services as a central authority. Among the most critical Core
Services, we mention the Service Registry, the Authorization,
and the Orchestration modules.

In this paper, we deal primarily with the Service Registry
(SR), that stores the services offered by each service provider
in the local cloud as service records. Each service record
contains the essential details for interacting with such service
(i.e., the endpoint and the service name) as well as additional
details in case the service is annotated via a well-known
standard (e.g., OpenAPI or WSDL). Each service provider all
its offered services independently all its offered services in the
SR via its API, so that service consumers can subsequently
fetch the necessary reference to the services of interest.

B. Web of Things

The recent W3C WoT architecture [4] extends already
established Web Technologies to counter the inherently frag-
mented landscape of IoT. This approach enables interoperabil-
ity through cross-domain applications and IoT Platforms. The
core of the WoT architecture is the Web Thing (WT), defined
as ”physical or a virtual entity whose metadata and interfaces
are described by a Thing Description (TD)” [4]. The TD
comprises metadata descriptions of the WT building blocks in
a human- and machine-readable JSON-LD document. Figure
1 depicts the main WT architecture components encompassed
by the TD:

Behavior: represents the overall application logic – e.g. the
code of the handlers for the WT affordances.

Interaction Affordances: provide an abstract model of the
WT interface in terms of properties (i.e., the state variables of
the WT), actions (i.e., commands that can be invoked on the
WT), and events (i.e., notifications sent by the WT).

Data Schemas: describe the information model and payload
structure exchanged between WTs and consumers during
interactions.

Security Configurations: define the control access mecha-
nisms to the affordances and manage the security metadata.

Protocol Bindings: map the Affordances to the network
strategies (e.g., the protocols) to communicate with the WT.

A run-time software named Servient implements the soft-
ware object described by the TD. The Servient allows to host
and expose a WT (i.e., to make the TD available over a
network) and to interact with a remote WT by consuming the
TD and accessing the WT affordances. It also binds multiple
protocols and data models to enable interactions with different
platforms.

C. Related Work

IoT heterogeneity is a significant issue that prevents the
emergence of large-scale IoT-based systems [6]. Consequently,
the research community put efforts into bringing interoperabil-
ity to the many facets of IoT. One of these attempts is the

Fig. 1. W3C Web Thing architecture proposed in [4].

BIG IoT API [7] that enables interactions between different
proprietary IoT platforms utilizing a novel approach for self-
description and semantic annotation to adapt arbitrary IoT
platforms.

The Arrowhead framework has been attracting academic
attention for enabling IoT interoperability in between almost
any IoT elements. Campos et al. [8] propose and implement
the integration of IoT devices with the Arrowhead framework
in the domain of industrial maintenance engineering. Campos-
Rebelo et al. [9] propose a transparent protocol translator
– i.e. a protocol proxy – for the Industrial IoT utilizing
the Arrowhead framework to provide the operating environ-
ment for the translator. A similar approach was adopted by
Moutinho et al. [10], who contribute to support the semantic
compatibility verification and the generation of translators for
XML messages, focusing on IoT message schemes.

Sciullo et al. [11] first introduced WAE and utilized it to
perform the discovery and registration of WTs in Arrow-
head SR. Our work represented substantial progress, enabling
the dual integration of WoT and Arrowhead ecosystem, and
made significant evolution on the architecture and interactions
initially proposed. Additionally, WAE was re-implemented
entirely.

III. ARCHITECTURAL DESIGN

Although WoT is a potential solution to enable interoper-
ability in IoT-based systems, not all systems can communicate
directly with WTs, due to the strict WoT interfaces defined by
the W3C [4]. Further, applications may not know the loca-
tion of those WTs, unless implementing a discovery service.
The Arrowhead SR solves both problems. It can expose the
location and interface – as a REST API – of WTs. Thus, our
application first automatically registers WTs as Arrowhead ser-
vices; a detailed explanation of those interactions can be found
at [11]. On the other hand, the Arrowhead ecosystem encom-
passes different services for several purposes and application
domains. Hence, it will be a significant advantage for WoT-
based applications to interact with those services. This feature
enables seamless integration of both ecosystems, i.e., from
WoT to Arrowhead and vice-versa, to reduce the fragmentation
issue among interoperability solutions previously mentioned.



Therefore, we propose the WAE, an application that spawns
a WT proxy for each Arrowhead service. In this manner, WoT
applications can interact with a variety of applications that do
not follow the W3C standard architecture and interfaces [4].
In a typical Arrowhead implementation, there are numerous
services registered onto the SR. Our proposal does not aim
to convert all services to individual WTs since it would
generate unnecessary computational resource usage. Instead,
WAE monitors an array of services using a specific identifier.
Whenever a new service is registered with the monitored
identifier, our solution automatically detects it and attempts
to convert it into a new WT. The instantiation of a WT into a
service proxy requires mapping the service REST API into
a TD, i.e., mapping REST endpoints to WoT affordances.
We utilize the OAS of each service, when available, to
convert that API documentation into a TD. The OAS defines a
standard, language-agnostic description interface to RESTful
APIs (the standard is also used in Swagger1). Any other
API specification can be used for this purpose. We opted for
OAS since it is widely adopted in commercial and academic
applications. Clearly, the approach can be extended to other
methods, provided that appropriate translators are developed.

Converting a REST API in a WoT TD is challenging since
there is no exact match between HTTP methods and WoT
affordances. However, we can identify some similarities be-
tween HTTP methods and WoT affordances: the WoT property
and the HTTP GET method both aim to retrieve data from a
specified resource; additionally, the WoT action and the HTTP
POST request both submit data to a specified resource.

On top of these premises, our application reads the speci-
fication of a REST API and converts the GET endpoints into
WoT read-only properties and POST endpoints into actions,
thus, creating a minimal TD that can be used to instantiate a
WT. Unfortunately, not all operations can be easily translated
into TD since there are some mismatches between generic
REST interfaces and the W3C WoT interface [4], such as:

• RESTful APIs support different parameters, as: path pa-
rameters (/users/{id}), query parameters (/users?
role=admin), header parameters (X-MyHeader:
Value) and cookie parameters. WoT interfaces do not
support any of those parameters; consequently, endpoints
that require them cannot be translated into a TD.

• The hierarchical tree structure of paths in a REST API
does not have an equivalent in WoT. Hence, all endpoints
are mapped as a plain affordance – e.g. a GET end-
point as /sensor/moisture/depth3 is translated
to sensor--moisture--depth WoT property;

• PUT and DELETE endpoints do not have a direct corre-
spondence to WoT affordances, therefore, such endpoints
are not translated into a TD.

The translated TD is instantiated as a WT that acts as
a proxy of the real service. When a property is queried
or an action is evoked, the WT makes the correspondent
request to the service. Then, it forwards the reply in a WoT-

1https://swagger.io/specification/

understandable way. The communication only involves the
instantiated WT and the proxied service. Consequently, the
interactions of the instantiated WTs are entirely decoupled
from the WAE – they are managed as regular WTs –thereby,
WAE is not a potential communication bottleneck or a single-
point-of-failure for the system.

All WTs created by WAE are automatically registered in a
Thing Directory (e.g., MODRON [12]), ensuring that the WTs
can be discovered and managed within the WoT ecosystem.
Moreover, MODRON allows users to search, list, and query
the instantiated WTs in a friendly Web dashboard.

IV. SERVICE INTERACTION

This section details the interactions between the software
modules from an architectural standpoint to enable the two-
sided integration: (i) the automatic discovery of new WT and
their registration in Arrowhead SR, and (ii) the automatic
discovery and conversion of Arrowhead services into WTs.

A. WT Discovery and Registration in Arrowhead

Figure 2 depicts the service interactions performed by the
WAE to discover new WTs and register them in the Arrowhead
SR. The WAE application periodically queries the Thing
Directory, monitoring if a new WT was created. Figure 2
illustrates this 3-step process:

1) The WAE retrieves the list of all current WTs in the
Thing Directory;

2) The WAE checks if each WT is registered and up-to-date
in the Arrowhead SR. Hence, the WAE issues a GET
request in the Arrowhead SR API with the metadata
information for each WT. An empty reply means that
the WT is not registered. Further, the WAE compares the
TD of the WT with the one register in the Arrowhead.
If any difference is detected, there is the need to update
the WT in the Arrowhead.

3) The WAE registers or updates the WTs identified in the
previous step.

B. Discovery and Conversion of Arrowhead Services into Web
Things

Figure 3 depicts the service interactions performed by the
WAE to filter and convert Arrowhead services into WTs. To
this aim, the WAE periodically queries the Arrowhead SR
and checks if a new service was created matching the service
names it is currently monitoring. If so, the WAE instantiates
a WT that acts as a proxy of that service. The detailed steps
illustrated in Figure 3 are:

1) The user specifies one or more service names in a
JSON format via the WAE API. Then, the WAE starts
monitoring all services with such names.

2) The WAE obtains all services in Arrowhead SR and
filters those that match the service names currently being
monitored. Next, it checks if the filtered services have
not been already deployed as WTs.



TABLE I
WAE’S RESTFUL API ENDPOINTS

Name Method Description

/arrowhead
GET returns metadata regarding the Arrowhead polling for the conversion of Arrowhead services to WTs

POST adds a new serviceName to be monitored and translated as a Web Thing
/wotRepository GET returns metadata regarding the Thing Repository polling for the discovery and registration of WTs to Arrowhead
/management GET returns the metadata in both /arrowhead and /wotRepository endpoints in a single object
/health GET returns the status of the service and the current uptime
/api-docs GET Swagger GUI interface of OAS specification
/openapi GET returns WAE OAS specification in JSON

Fig. 2. Discovery and registration of WoT in the Arrowhead SR

3) If the WAE identifies one or more applications deployed
as WT, it gets the application OAS specification and con-
verts it to a TD, applying the translation rules previously
mentioned in Section III.

4) The WAE instantiates a WT that acts as a proxy of the
real service with the converted TD.

5) The WAE registers the new WT in the Thing Directory.

V. IMPLEMENTATION

WAE is an open-source application (available at [13])
developed in JavaScript using the NodeJS v10 engine, entirely
re-implemented from its previous design [11]. The node-wot2

framework – the official W3C framework for the WoT –
supports the creation of TDs and WTs. Our implementation
follows best design practices and state-of-art technology:

• Modular: the ecosystem of WoT and Arrowhead is com-
posed of a multitude of different services independently
interacting with each other, often, applications that com-
posed those system need to be loosely coupled. Therefore,
the WAE is also available as a lightweight virtualized

2github.com/eclipse/thingweb.node-wot

Fig. 3. Conversion of Arrowhead services into Web Things.

Docker3 container, operating without knowledge of the
definitions of other components .

• Customizable: the user can choose, through a configura-
tion file, the WAE operation modes, either the standard
W3C Thing Repository or MODRON [12]. Also, the user
can configure polling intervals and chose if the WAE
converts WT to Arrowhead services, convert Arrowhead
services to WT, or both.

• Well Documented: the application follows the directives
of clean code [14]. The git repository provides informa-
tion about the installation and use, the commits follow
the conventions defined by the Google Angular developer
team4, and the WAE has a Swagger graphical interface
intuitively exposing its OpenAPI documentation.

• Traceable Errors: the WAE offers informative log mes-
sages using pino5, with configurable log levels.

• Easy to Manage: the application provides various man-
agement information through its API, such as the last
time it polled data from Arrowhead SR and the Thing
Directory, the number of converted WT to Arrowhead

3docker.com
4gist.github.com/brianclements/841ea7bffdb01346392c
5https://github.com/pinojs/pino



services, and vice-versa. Also, it exposes a /health
endpoint, commonly used by third-party management
tools.

Table I presents a complete list of WAE API endpoints and
their descriptions.

VI. PERFORMANCE ANALYSIS

We conducted a performance analysis study with a twofold
scope: (i) to validate WAE conversion of Arrowhead Services
to WTs; (ii) to investigate the application’s scalability in
scenarios in which thousands of services need to be translated
and instantiated.

For supporting the experiments, we developed a tool that
generates REST APIs, detailed in Subsection VI-A. Also, we
modeled and designed the experiments that are presented in
Subsection VI-B. Finally, the results are included in Subsec-
tion VI-C.

A. Data Analysis: REST API Statistical Inference and OAS
Generation

To run and control the experiments, we developed the Ope-
nAPIGenerator [15], an open-source application for generating
a configurable number of random OAS and exposing them
in predetermined URIs. The OpenAPIGenerator also registers
each generated OAS in the Arrowhead SR as a service.

A synthetic OAS needs to have size and complexity mim-
icking a real-world set of service APIs to approximate the
experiments to a real scenario. Hence, we made statistical
inferences in the public directory of REST API definitions
available at APIs.guru6 in OAS format. The APIs.guru direc-
tory filters out private and non-reliable APIs, thus consists of
public, persistent, and helpful APIs – i.e., that provide useful
functions, not only for its owner. The dataset is composed of
2,283 different APIs, resulting in 52,203 endpoints and 77,171
methods.

Figure 4 depicts the occurrence percentage of each opera-
tion, i.e., HTTP method, in the directory. We filter operations
that are not IANA-valid HTTP methods [16] – specific to a
particular domain or company – and methods that represent
less than 0.5% of the total. The WAE translatable operations
– GET and POST – correspond to 77.25% of the total. The
histograms in Figure 5 depict the probability distributions of
API Endpoints and GET and POST methods. Both distribu-
tions are similar and follow a long tail behavior. The x-axis
in both histograms was limited to 100 to improve the graph
visualization, encompassing 96.2% of the API Endpoints data
and 95.6% of the GET and POST method data. From the WAE
point of view, the OAS processing workload is tied to the
number of GET and POST methods in the specification since
those are translatable to WoT affordances. Thus, we utilize
the dataset to create an empirical probability distribution of
the occurrence of those operations. The OpenAPIGenerator
uses such distribution to generate OAS in the experiments
synthetically.

6https://apis.guru/

Fig. 4. Percentage of the valid HTTP Methods in the analysed dataset

Fig. 5. Histograms of API Endpoints and GET and POST methods

B. Experimental Design

In a single server, we instantiated the three services utilized
in the experiments: the WAE, the OpenAPIGenerator, and the
Arrowhead SR, each virtualized as a Docker container. Prelim-
inary to each experiment, the OpenAPIGenerator creates a set
of OAS, exposes them, and registers them in the Arrowhead
SR. A subgroup of the services has the same service name.
Each experiment consists of the WAE converting the OAS of
that subgroup of Arrowhead services to TDs and deploying
them as WTs. We performed four experiments, varying the
number of services of the subgroup, starting from a single



Fig. 6. Experimental Processing Times

service, then increasing by a factor of 10 for each experiment
(i.e., 1, 10, 100, 1,000). In every experiment, we record the
time that the WAE takes to: (i) fetch the OAS once detects an
Arrowhead service that needs to be converted; (ii) translate
the OAS to a TD; (iii) deploy the service as a WT.

We set the initial time reference for all the recorded metrics
as the last Arrowhead SR response time - the timestamp of
the last poll operation performed by WAE.

C. Results

Figure 6 summarizes the key results of the performance
analysis, depicting the processing time for all recorded metrics
in the different evaluated workloads. The y-axis is expressed
on a logarithmic scale. Overall, the experiments validated
the WAE conversion of Arrowhead services to WTs and
showcased that it can scale to convert a significant amount
of services in a suitable time. The WAE can convert a
batch of 1,000 services to WT in less than 16s, and, for a
single service, it takes less than 50ms. The step taking more
processing time in all workloads is the deployment of a new
WT. This behavior is expected, especially for WTs that comply
with the specifications of the W3C standard, thus needing to
bind different protocols and support complex interactions. The
fastest process is the translation, as it parses the OAS and
maps it to another format via plain string manipulations. The
process of fetching the OAS can potentially take more time
in a real environment due to network latency issues (which
we did not consider since the applications were deployed in
the same server in the experiments) and workload issues since
servers can take more time to respond to a request,e.g. due to
the current use of computational resources.

VII. CONCLUSION

The paper proposes and implements a solution that seam-
lessly bridges WTs with Arrowhead services. Our application
automatically converts REST API specifications to TDs and
deploys them as WTs that proxy the services. Using this

method, we introduce a multitude of new services to the WoT
ecosystem. This paper presents a significant evolution of the
application and architecture initially presented in [11].

Further, the proposed solution was evaluated regarding its
scalability as we undergo experiments converting batches of
services to WTs. As future works, we plan to enable the
complete conversion of OAS to WT, thus, including the
other HTTP methods and request parameters. Further, we will
expand our performance analysis with more comprehensive
experiments to measure the impacts of consuming a service
through a WT proxy.
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