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Abstract: Due to their interesting thermal properties, liquid metals are widely studied for heat transfer
applications where large heat fluxes occur. In the framework of the Reynolds-Averaged Navier–
Stokes (RANS) approach, the Simple Gradient Diffusion Hypothesis (SGDH) and the Reynolds
Analogy are almost universally invoked for the closure of the turbulent heat flux. Even though
these assumptions can represent a reasonable compromise in a wide range of applications, they are
not reliable when considering low Prandtl number fluids and/or buoyant flows. More advanced
closure models for the turbulent heat flux are required to improve the accuracy of the RANS models
dealing with low Prandtl number fluids. In this work, we propose an anisotropic four-parameter
turbulence model. The closure of the Reynolds stress tensor and turbulent heat flux is gained through
nonlinear models. Particular attention is given to the modeling of dynamical and thermal time scales.
Numerical simulations of low Prandtl number fluids have been performed over the plane channel
and backward-facing step configurations.

Keywords: turbulent heat transfer; low-Prandtl fluids; RANS modeling; Reynolds stress tensor;
anisotropy; liquid metals

1. Introduction

Liquid metals with their low Prandtl number have gained increasing attention in
recent years. Compared with other coolant fluids, such as air or water, liquid metals
provide large heat fluxes and can withstand high temperatures. Furthermore, some liquid
metals, like sodium, can flow in the liquid phase at a wide range of temperatures without
need for high pressurized systems [1]. Due to these properties, liquid metals are currently
considered in a broad range of industrial applications, including the production of steel
and semiconductors, in thermal solar plants [2,3] and in Generation IV nuclear power
plants [4–6], i.e., the Lead Fast Reactor (LFR) and the Sodium Fast Reactor (SFR).

In a nuclear context, thermal-hydraulics is recognized as one of the key issues in the
design and construction of liquid metal-cooled reactors. Since the possibilities for detailed
measurement of local flow parameters in liquid metal cooled reactor components are
challenging [7], numerical simulations of flow configurations are more important for low
Prandtl number fluids than in usual cases. In this respect, Computational Fluid Dynamics
(CFD) is regarded as a valuable tool to analyze the thermal-hydraulics behavior of nuclear
systems. The more challenging aspects of the thermal-hydraulics of these systems are the
low Prandtl number of liquid metals at operating conditions, the non-negligible buoyancy
effects in the flow, and the significant turbulence anisotropy [8]. For these reasons, very
sophisticated models are required to accurately simulate turbulent liquid metals flow and
heat transfer.

In the Reynolds-Averaged Navier–Stokes (RANS) framework, several models have
been developed in past decades for the computation of the Reynolds stress tensor u′iu

′
j.
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The first-order models are based on the isotropic eddy diffusivity νt while the second-
order models use transport equations for each component of the Reynolds stress tensor.
From an academic point of view, the second-order models would be the best modeling for
anisotropic momentum transfer, but the usage of these techniques requires a considerably
increased numerical effort [9]. In this work, for the closure of the momentum equation,
we propose an Explicit Algebraic Shear stress Model (EASM) that belongs to a class of
models between first and second order. This class of models is derived from the second-
order transport equation with the hypothesis of local equilibrium between production and
dissipation, therefore convection and diffusion terms are neglected. The remaining closure
terms are formulated in terms of the turbulent kinetic energy k and its dissipation rate ε.

For the turbulent heat flux u′iT
′, only a restricted number of models have been devel-

oped and validated. Most of them are first-order models based on the Simple Gradient
Diffusion Hypothesis (SGDH) that assumes the similarity between the turbulent heat flux
and the molecular heat conduction introducing the turbulent thermal diffusivity αt and
the turbulent Prandtl number Prt, which is often set equal to a constant value in the range
0.8–1. This concept can reproduce reasonable results in the forced convection regime and
for fluids with Pr ≈ 1 whereas it is inadequate for applications involving non-unity Prandtl
number fluids like liquid metals and/or non negligible buoyancy effects [10]. For these
applications, the most promising models require the introduction of additional transport
equations. In [11,12], an implicit Algebraic Heat Flux Model (AHFM) model has been
proposed and implemented in STAR-CCM+. Its closure requires one additional transport
equation for the evaluation of the temperature variance T′2. In [11], the thermal model
has been coupled with a low-Reynolds linear k-ε model, while in [12], the coupling with
a second-order Reynolds stress model has shown better results. In [13–16], an isotropic
four-parameter model has been proposed. The model introduces two additional thermal
transport equations for the evaluation of the squared temperature fluctuations kθ and
its dissipation εθ . In the original formulation of this model, the turbulent heat flux is
evaluated with an SGDH approach. In this work, we propose an anisotropic version of
the above-mentioned four-parameter model and suggest an Explicit Algebraic Heat Flux
Model (EAHFM) for the modeling of the turbulent heat flux. The thermal model is coupled
to an Explicit Algebraic Shear stress Model (EASM) for the dynamical turbulence. For the
closure of u′iu

′
j and u′iT

′, we solve the four-transport model equation k-ε-kθ-εθ .
To validate the proposed anisotropic four-equation turbulence model (A4P), we con-

sider two benchmarks. First, we simulate the plane channel geometry, a simple configura-
tion widely studied in the literature. For this case, a database of DNS data is available for
different Reτ and Pr number [17–20]. Then, we consider a more complex configuration,
such as the flow over a backward-facing step in forced convection. Additionally, for this
configuration, several studies are present in the literature and DNS data are available
for Re = 9610 and Pr = 0.088 [21,22]. Both configurations have been tested with the
isotropic four-parameter turbulence model. Plane channel simulations for several Reτ and
Pr = 0.01, 0.025 have been successfully performed [13,14,16]. Numerical simulations in
forced and mixed convection regimes are very promising for the backward-facing step
configuration [15], however the adoption of an anisotropic formulation is required to
improve the prediction of turbulent heat flux components.

In Section 2, we present the new anisotropic four-parameter turbulence model, in-
troducing the governing equations and the explicit algebraic expressions for both the
Reynolds stress tensor and turbulent heat flux. We give special attention to dynamic and
thermal time-scale modeling to reproduce the near-wall behavior of Reynolds stress tensor
and turbulent heat flux. Then, we introduce the four equation model for the turbulent
variables to close the system with near-wall boundary conditions. In Section 3, we illustrate
the computational domain and numerical settings for the numerical simulations of the
plane channel and backward-facing step configurations. We compare, then, the obtained
results with the reference DNS data. Finally, conclusive remarks and future perspectives
are provided in Section 4.



Fluids 2022, 7, 6 3 of 19

2. Mathematical Model
2.1. Dynamic Turbulence Modeling

The governing equations for the velocity field are written as:

∂ui
∂xi

= 0 , (1)

Dui
Dt

= −1
ρ

∂p
∂xi

+
∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj

∂xi

)
− u′iu

′
j

]
, (2)

where ui and u′i are the mean and fluctuating velocity components respectively, p is
the mean pressure, and ν and ρ are the kinematic viscosity and density. The overbar
operator () implies the mean value of a quantity, while D/Dt is the substantial derivative
D/Dt = ∂/∂t + uj∂/∂xj. The Reynolds stress tensor u′iu

′
j is the averaged product of

velocity fluctuations.
The Explicit Algebraic Stress Model (EASM) derives from the full transport equation

for the Reynolds stress tensor under the hypothesis of local equilibrium between production
and dissipation [23]. The hypothesis of local equilibrium is not coherent with many flow
configurations. However, these are the usual hypotheses needed to close the model.
The explicit expression here presented is only valid for two-dimensional flows in an inertial
frame. The Reynolds stress tensor u′iu

′
j can be expressed as follows [24]:

u′iu
′
j =

2
3

kδij −
2νt

fR
Sij −

4CDk fτ

fR

(
SikΩkj −ΩikSkj − SikSkj +

1
3

S2δij

)
, (3)

where Sij is the strain-tensor and Ωij the vorticity tensor:

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (4)

Ωij =
1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
, (5)

while S2 = SijSij and Ω2 = ΩijΩij. The eddy viscosity νt is given by νt = Cµ fµkτlu, where
Cµ and fµ are the model constant and function, τlu denotes the characteristic dynamical
time scale, k is the turbulent kinetic energy, and ε is its dissipation rate:

k =
1
2

u′iu
′
i , ε = ν

∂u′i
∂xk

∂u′i
∂xk

. (6)

The value assigned to the constant Cµ is the standard value 0.09. The function fµ and
the time scale τlu play a key role in the eddy viscosity description and turbulence modeling.
The modeling of fµ is performed using the non-dimensional wall-distance Rd [25], defined

as Rd = υyd/ν = yd/η, where υ is the Kolmogorov velocity scale υ = (νε)
1
4 , η is the

Kolmogorov length scale η = (ν3/ε)
1
4 , and yd is the wall distance at a point, i.e., the

distance between that point and nearest point on the wall surfaces. We define the function
fµ as follows:

fµ = 1− exp

[
−
(

Rd
26

)2]
. (7)

The characteristic time scale τlu is generally expressed with the scale of energy-
containing eddies, τu = k/ε. However, in the proximity of the wall, there are always
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dissipation eddies that have to be taken into account. The effect of the dissipation eddies is
added to the contribution of energy-containing eddies in the expression of the time scale:

τlu = τu

(
1 +

Bµ

R
3
4
t

fη

)
. (8)

The model constant Bµ and the model function fη represent the effectiveness of
dissipative motions and the limitation of their influence. We set Bµ = 35 and fη =

exp(−(Rt/30)
3
4 ), where Rt is the turbulent Reynolds number Rt = k2/νε. The function fR

is given by:

fR = 1 +
22
3
(CDτR0)

2Ω2 +
2
3
(CDτR0)

2(Ω2 − S2) fB , (9)

where CD = 0.8 and the quantity τR0 is the characteristic time scale of turbulence defined
as τR0 = νt/k. The model function fB is introduced to guarantee non-negative turbulent
intensities when S2 � Ω2. The formulation proposed is the following [23]:

fB = 1 + Cη(CDτR0)
2(Ω2 − S2) . (10)

The function fτ reproduces the wall-limiting behavior and anisotropy of the Reynolds
normal stress components near the wall and it is defined as:

fτ = τ2
R0

+ τ2
RW

, (11)

where τRW is the wall reflection time scale, defined by the expression:

τRW =

√
fR

6CD fSΩ

(
1− 3Cv1 fv2

8

)
f 2
v1 , (12)

where fv2 = 1− exp(−√Rt/100), fv1 = exp(−R2
tm/2025) and Cv1 = 0.4. In the model

function fv1 the modified Reynolds number Rtm is defined as follows:

Rtm =
130RdR

1
4
t

130R
1
4
t + Rd

. (13)

The modeling of the function fSΩ is a crucial aspect. In [24], the following expression
is suggested for fSΩ:

fSΩ =
Ω2

2
+

S2

3
−
[(√

S2

2
−
√

Ω2

2

)
fw(1)

]2

, (14)

with fw(1) = exp(−R2
tm).

Once the model for u′iu
′
j and νt is chosen, it is necessary to compute the variables

appearing in the model functions, in particular the turbulent kinetic energy k and the
characteristic time scale τu. We propose a logarithmic turbulence model K-Ω which im-
proves the stability of a standard k-ω model since the state variables are maintained always
positive during the solution process [26]. The specific dissipation rate of turbulent kinetic
energy ω and the logarithmic form of k and ω are defined as:

ω =
ε

Cµk
, Ω = ln(ω) , K = ln(k) . (15)
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The system of equations for the K-Ω model is the following:

DK
Dt

=
∂

∂xi

[(
ν +

νt

σk

)
∂K
∂xi

]
+

(
ν +

νt

σk

)
∂K
∂xi

∂K
∂xi

+
Pk
eK − CµeΩ , (16)

DΩ
Dt

=
∂

∂xi

[(
ν +

νt

σω

)
∂Ω
∂xi

]
+

(
ν +

νt

σω

)
∂Ω
∂xi

∂Ω
∂xi

+ 2

(
ν +

νt

σω

)
∂K
∂xi

∂Ω
∂xi

+

+
Pk
eK (Cε1 − 1)− Cµ(Cε2 fε − 1)eΩ ,

(17)

where Pk = −u′iu
′
j∂ui/∂xj is the production rate of turbulent kinetic energy. The turbulent

diffusion terms in Equations (16) and (17) are modeled using the Simple Gradient Diffusion
Hypothesis (SGDH).

The model function fε has been modified since [13–15,25], now we set [23]:

fε =

{
1− 0.3 exp

[
−
(

Rt

6.5

)2]}{
1− exp

[
−
(

Rd
3.7

)2]}
, (18)

and model constants σk = σω = 1.4 , Cε1 = 1.5 , Cε2 = 1.9.

2.2. Thermal Turbulence Modeling

The governing equation for the thermal field can be written as:

DT
Dt

=
∂

∂xi

(
α

∂T
∂xi
− u′iT

′
)

, (19)

where T and T′ are the mean and fluctuating temperature, α is the thermal diffusivity,
and u′iT

′ is the turbulent heat flux. The explicit Algebraic Heat Flux Model (EAHFM)
derives from the transport equation for the turbulent heat flux in the local equilibrium state
neglecting the diffusive term [27]. Under this hypothesis, the explicit algebraic expression
for the turbulent heat flux can be written as:

u′iT
′ = − Ct1

fRT
τmu′iu

′
j
∂T
∂xj

+
Ct1
fRT

τ2
m[(Ct2 − Ct3)Sij + (Ct2 − Ct3)Ωij]u′ju

′
k

∂T
∂xk

, (20)

where Ct1 = 0.18, Ct2 = 0.18, and Ct3 = 0.02 are model constants. In contrast with tra-
ditional models, the components of turbulent heat flux u′iT

′ and the mean temperature
gradient are not necessarily in alignment due to the effects of the mean-velocity gradient
and the Reynolds stress tensor u′iu

′
j. To predict the heat transfer in wall flows, the character-

istic time scale τm plays a key role since the turbulent heat flux (20) derives from the local
equilibrium hypothesis, which does not hold in the near-wall region. The characteristic
time scale τm is defined as the harmonic average of the dynamical time scale τu = k/ε and
the thermal time scale τt = kθ/εθ :

τm ∝
1

1
τu

+ Cm
τt

= τu
R

Cm + R
, (21)

where we have introduced the ratio between the two scales R = τt/τu. The terms appearing
in the expression of the thermal time scale are kθ , the temperature fluctuations variance,
and εθ , its dissipation:

kθ =
1
2

T′
2

, εθ = α
∂T′

∂xk

∂T′

∂xk
. (22)
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The composite time scale defined by Equation (21) is the harmonic average of the
velocity and temperature time scales. The shortest time scale among τu and τt is the most
important for turbulent heat flux.

In the bulk region, τm is independent of the time ratio R and the turbulent diffusion
is assumed to be dominated only by velocity fluctuations. In the bulk region therefore
we assume τm ∝ τu/Prt,∞, where Prt,∞ can be assumed constant and uniform or can be
modeled, for example by means of Kays model Prt = 0.85 + 0.7/Prνt [28]. We also should
introduce a model function in the τm expression to account for the wall-proximity effects.

For the near-wall region, the characteristic time scale is τm ∝
√

2R/PrR
3
4
t . The characteristic

thermal time scale is then modeled as:

τm = τu f1t

(
1

Prt
+

2R
R + Cγ

f2t + 1.3

√
2R

PrR
3
4
t

f3t

)
, (23)

where Cγ = 0.25/Pr
1
4 . The model function f1t accounts for wall-proximity effects, and we

set as in previous works:

f1t =

[
1− exp

(
−Rd

14

)][
1− exp

(
−
√

PrRd
14

)]
. (24)

The blending functions f2t and f3t are defined as:

f2t = exp

[
−
(

Rt

500

)2]
, f3t = exp

[
−
(

Rt

200

)2]
. (25)

In order to evaluate kθ and εθ appearing in the model functions, we propose a log-
arithmic Kθ-Ωθ turbulence model, where Kθ and Ωθ represent the logarithmic values of
mean temperature fluctuations kθ and its dissipation rate ωθ , defined as ωθ = εθ/Cµkθ .
The transport equations for the logarithmic quantities can be written as:

DKθ

Dt
=

∂

∂xi

[(
α +

αt

σkθ

)
∂Kθ

∂xi

]
+

(
α +

αt

σkθ

)
∂Kθ

∂xi

∂Kθ

∂xi
+

Pkθ

eKθ
− CµeΩθ , (26)

DΩθ

Dt
=

∂

∂xi

[(
α +

αt

σωθ

)
∂Ωθ

∂xi

]
+

(
α +

αt

σωθ

)
∂Ωθ

∂xi

∂Ωθ

∂xi
+

Pkθ

eKθ
(Cp1 − 1)+

2

(
α +

αt

σωθ

)
∂Kθ

∂xi

∂Ωθ

∂xi
+ Cp2

Pk
eK − (Cd1 − 1)CµeΩθ − Cd2CµeΩ ,

(27)

where Pkθ
= −u′jT

′∂T/∂xj and Cd2 is the following model function:

Cd2 =

{
1.9

[
1− 0.3 exp

(
− R2

t
42.25

)]
− 1

}[
1− exp

(
−R2

d
25

)]
, (28)

while Cp1 = 1.025, Cp2 = 0.9, Cd1 = 1.1, and σkθ
= σωθ

= 1.4. The eddy thermal
diffusivity appearing in the diffusive terms of (26) and (27) is simplified as the scalar
quantity αt = Cθkτm, with Cθ = 0.1.

2.3. Boundary Conditions

In this subsection, we describe the boundary conditions that can be imposed on the
state variables of the turbulence models. When a near-wall approach with no wall functions
is used, the boundary conditions can be computed by a near-wall Taylor series expansion
for the turbulence variables. For the description of the boundary conditions, we refer to the
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case of a plane channel where x is the wall distance, y is the streamwise coordinate, and z
is the spanwise one. Moreover, u, v, and w are respectively the wall-normal, streamwise,
and spanwise velocity components. In Table 1, we report the expansion for the mean and
fluctuating velocity and temperature. Following the definitions (6) and (15), we obtain the
following dynamical turbulence variable expansions:

kw ≈
1
2
(b2

1 + c2
1)x2 =

1
2

ξx2 , εw ≈ ν(b2
1 + c2

1) = νξ , ωw ≈
2ν

Cµx2 , (29)

Kw ≈ ln
(1

2
ξx2
)

, Ωw ≈ ln
( 2ν

Cµx2

)
, (30)

where the lower-script w means the near-wall behavior. Since the value of ξ depends on the
components of fluctuating velocity and it is not known a priori, we transform the Dirichlet
conditions (29) and (30) into Neumann conditions. By taking the derivative of k in the
wall-normal direction x, we obtain ∂k/∂x|w = ξx = 2kw/x, and considering the same
derivative for the logarithmic variable ∂K/∂x|w = 2/x, then for both variables it is possible
to impose Neumann boundary conditions. The dissipation of turbulent kinetic energy ε
has a constant near-wall value that can be determined from kw, in particular ε = 2kw/x2,
thus an exact Dirichlet boundary condition cannot be imposed on ε, but the value of ξ
is iteratively calculated from the value of k on the wall and this can lead to convergence
issues [14]. This aspect does not affect ω and Ω since their values on the walls depend only
on the kinematic viscosity of the fluid ν, on the wall distance x, and on the model constant
Cµ. For these variables we can then impose the exact Dirichlet conditions (29) and (30).

Table 1. Near-wall Taylor expansion for the components of the mean velocity ui, fluctuating velocity
u′i , mean temperature T, and fluctuating temperature T′.

Mean Components Fluctuating Components

u = A2x2 + A3x3 u′ = a2x2 + a3x3

v = B1x + B2x2 + B3x3 v′ = b1x + b2x2 + b3x3

w = C1x + C2x2 + C3x3 w′ = c1x + c2x2 + c3x3

T = D0 + D1x + D2x2 T′ = d0 + d1x + d2x2

The issue of boundary conditions on fluctuating thermal variables is still an open
question [13,17,29,30]. For the energy equation, we can impose a constant wall temperature
or a uniform wall heat flux. In the case of a constant wall temperature boundary condition,
namely T = Tw, the condition must be fulfilled by both temperature and fluctuating
values, so that T′ = 0 along the wall. If a constant heat flux is applied, then temperature
fluctuations can be considered null or not. If we assume that the temperature fluctuations
are null (MX boundary conditions) we have d0 = 0 and T′w ≈ d1x, then from definitions
we obtain the following expressions:

kθ ≈
1
2

d2
1x2 , εθ ≈ αd2

1 , ωθ ≈
2α

Cµx2 , (31)

Kθ ≈ ln
(1

2
d2

1x2
)

, Ωθ ≈ ln
( 2α

Cµx2

)
. (32)

As in the dynamical turbulence case, the expressions of kθ , εθ , and Kθ depend on
d1 which is not known “a priori”. We can then reformulate (31) and (32) considering the
derivative of kθ and Kθ in the wall normal direction x as:

∂kθ

∂x

∣∣∣
w
= d2

1x =
2kθw

x
,

∂Kθ

∂x

∣∣∣
w
=

2
x

, (33)

and impose Neumann boundary conditions. The quantity εθw is affected by the same issue
of εw since we cannot impose an exact Dirichlet condition on this variable but only apply a
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Dirichlet boundary condition with a value αd2
1 that changes iteration by iteration. For ωθ

and Ωθ , we can impose the exact Dirichlet conditions (31) and (32).

3. Numerical Results and Validation of the A4P Model

In this section, we aim to validate the anisotropic four-parameter turbulence model
that we have illustrated in Section 2. The A4P model has been validated, simulating two dif-
ferent benchmark configurations. First, we have considered a plane channel configuration
at different friction Reynolds numbers Reτ for different low Prandtl numbers. The results
obtained with the A4P are compared with the reference DNS data [17,19,20]. Then, a more
complex configuration as a backward-facing step is considered and the numerical results
are compared with DNS data [22] in a forced convection regime. The simulations have
been performed using the in-house finite element multigrid code FEMuS developed at the
University of Bologna [31]. The code is based on a C++ main program that handles several
external open-source libraries, such as MPI and PETSc libraries. FEMuS contains solvers
for Reynolds-Averaged Navier–Stokes and energy equations, four-parameter turbulence
model, and explicit algebraic models for Reynolds stresses and turbulent heat flux.

3.1. Plane Channel Geometry

The plane channel flow configuration has been investigated by different authors in the
framework of turbulence modeling [32,33]. This two-dimensional geometry has enabled
the development of DNS reference databases, where the channel flow is characterized
by different properties such as Reτ , Pr, and Gr in the case of buoyancy, but also for the
temperature boundary condition at the wall. Therefore, our simulations with RANS
modeling are computed with fixed parameters in order to refer to specific DNS data. In this
work the following Reτ = 180, 395, 640, 1020 are considered for a Pr number equal to
0.025 [17], meanwhile for the Pr number equal to 0.01 we consider the friction Reynolds
number cases for Reτ = 180, 395, 590 [19], and 1000 [20]. In Figure 1, the computational
domain is shown with the specific dimensions and the axis orientation. The problem
consists of two plates located at the distance D = 2Lx = 0.0605 m characterized by the
presence of a constant heat flux q equal to 3.6× 105 W/m2. The other directions have infinite
dimensions. The configuration computed is a fully developed turbulent channel flow with
the presence of periodic boundary conditions on the inlet and outlet. From Figure 1, we
can refer to the inlet section for the Γi section, the outlet for Γo, the heated wall for Γw, and
the center of the channel for Γsym. A pressure drop force F ∝ Reτ , drives the channel flow,
where Reτ is defined as uτ Lx/ν. Following this definition, we introduce the friction velocity

uτ =
√

τw/ρ using the wall shear stress τw = µ ∂v
∂x

∣∣∣
w

, where v is the flow velocity parallel

to the wall and x is the distance to the wall. In Table 2 the fluid properties are reported,
with the first value of the thermal conductivity λ referring to the case of Pr = 0.025, and the
second one for the case of Pr = 0.01. Concerning the thermal field, the temperature has
been redefined with the introduction of the variable θ = T − Tw0 − Ly∆Tb, where ∆Tb is
the normal temperature difference, Tw0 is a constant value on Γw, and Ly is the axial length
of the computational domain. From a computational point of view, the simulations have
been computed only for one-half of the channel flow configuration, due to the symmetry of
the problem. A mesh refinement near the wall Γw is performed to have the first mesh point
in the viscous laminar region, in particular x+ < 1, where the non-dimensional distance
from the wall x+ is defined as xuτ/ν.

In the following graphs, all the variables are plotted in their non-dimensional forms.
The variables are normalized using wall units, i.e., the friction velocity uτ , friction tempera-
ture Tτ , and kinematic viscosity ν. The friction velocity is used to normalize the velocity

v+ = v/uτ and the components of the Reynolds stress tensor u′iu
′
j
+
= u′iu

′
j/u2

τ . The fric-
tion temperature Tτ = q/uτρCp is used to normalize the temperature θ+ = θ/Tτ and the

components of the turbulent heat flux u′iT
′+ = u′iT

′/uτTτ .
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Figure 1. Plane channel: Sketch of the computational domain.

Table 2. Physical properties employed for the numerical simulations.

Property Symbol Value Units

Viscosity ν 0.001844 Pa s
Density ρ 10340 kg/m3

Thermal conductivity λ 10.72–26.88 W/(mK)
Specific heat Cp 145.75 J/(kgK)

In Figure 2, the non-dimensional streamwise velocity v+ is plotted against the non-
dimensional distance from the wall x+, for different Reτ numbers, i.e., 180, 395, 640, and
1000, corresponding to the following Reynolds numbers, i.e., Re ≈ 5700, 14,100, 24,400, and
41,400. The comparison with the DNS data shows a good matching both in the linear and
logarithmic region for different cases of friction Reynolds number.

10−1 100 101 102

x+

0

5

10

15

20

v
+

A4P, 180

DNS, 180

10−1 100 101 102

x+

0

5

10

15

20

v
+

A4P, 395

DNS, 395

(a) (b)

10−1 100 101 102 103

x+

0

5

10

15

20

25

v
+

A4P, 640

DNS, 640

10−1 100 101 102 103

x+

0

5

10

15

20

25

v
+

A4P, 1020

DNS, 1020

(c) (d)

Figure 2. Non-dimensional streamwise velocity v+ for Reτ = 180 (a), 395 (b), 640 (c), and 1020 (d).
DNS data from [17].

In Figure 3, the components of the Reynolds stress tensor are shown. We can notice
from Figure 3a a good match between the non-dimensional turbulent shear stress u′v′

+

and the corresponding DNS data. On the right, in Figure 3b, the non-dimensional turbulent
streamwise normal stress v′v′

+
is shown. We can observe an overall good agreement with
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DNS for every Reτ , even though the quantities are slightly underestimated. The dimen-
sionless wall-normal normal stress u′u′

+
is shown in Figure 3c,d for Reτ = 180, 395 and

Reτ = 640, 1020 respectively. In all these cases, the simulations results show an overall
overestimation of the peak of the wall-normal normal stress component with respect to the
DNS data.
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Figure 3. Non-dimensional components of the Reynolds stress tensor u′iu
′
j
+

: turbulent shear stress

u′v′
+

(a), streamwise normal stress v′v′
+

(b) and wall-normal normal stress u′u′
+

(c,d) for different
Reτ = 180, 395, 640, 1020. DNS data from [17].

To better understand these results, we underline that the plane channel configuration
is a typical example of shear flow. Due to the symmetry of the problem, the only component
of the Reynolds stress tensor that affects the mean velocity field is the turbulent shear
stress, i.e., the off-diagonal component u′v′. For this reason, the mean velocity is correctly
estimated even though the diagonal components of the Reynolds stress tensor present
some discrepancies from DNS data. These stresses are only used for the estimation of the
turbulent heat flux components, according to Equation (20).

Concerning the thermal fields, the simulations results are shown for both Pr numbers
to validate the new anisotropic four-parameter turbulence model. The non-dimensional
temperature profiles are shown in Figure 4a,b for the case Pr = 0.025 and Pr = 0.01
respectively. For both cases, the temperature field is in good agreement with the reference
DNS data, that are available for all the test cases except for the case Reτ = 1020 and
Pr = 0.025.

In Figure 5, we report the non-dimensional wall-normal turbulent heat flux u′T
+

profiles for different Reτ and Pr numbers. For shortness, only two cases of different Reτ

are shown for each Pr number. In Figure 5a,b, the plots show the results for Pr = 0.025,
while in Figure 5c,d for Pr = 0.01. We also report the effective wall-normal heat flux q+e f f ,x
which is defined as the sum of the molecular heat flux and the turbulent heat flux in the
wall-normal direction, i.e.,

q+e f f ,x =
(

α
∂θ

∂x

)+
− u′T′

+
. (34)
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We can notice some discrepancies for the u′T′
+

component from DNS data in the near-
wall region. However, in this region, the thermal conductivity contribution is dominant
and the turbulent heat flux is almost negligible, then the total heat flux q+e f f ,x is almost

equal to the molecular heat flux. Thus, the bad prediction of u′T′
+

in this region does
not affect the total heat flux and, consequently, the mean temperature field. Moreover,
increasing the distance from the wall, the turbulent heat flux contribution becomes higher
but the molecular heat flux is still dominant. For this reason, the slight discrepancies
in u′T′

+
near the center of the channel for Pr = 0.025 do not compromise the mean

temperature estimation.
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Figure 4. Non-dimensional mean temperature profile θ+ in the cases of Pr = 0.025 (a) and Pr = 0.01
(b) for different Reτ = 180, 395, 590, 640, 1000, 1020. DNS data from [17] for Pr = 0.025 and [19,20]
for Pr = 0.01.
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Figure 5. Non-dimensional normal total heat flux q+e f f and non-dimensional normal component of the

turbulent heat flux u′T′
+

for Reτ = 180 Pr = 0.025 (a), Reτ = 640 Pr = 0.025 (b), Reτ = 395 Pr = 0.01
(c), and Reτ = 1000 Pr = 0.01 (d). DNS data from [17] for Pr = 0.025 and [19,20] for Pr = 0.01.
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In Figure 6, the non-dimensional streamwise component of the turbulent heat flux
v′T′

+
is shown for Pr = 0.025 and Pr = 0.01. We report in Figure 6a the streamwise heat

flux profiles for Pr = 0.025 and Reτ = 180, 640, while in Figure 6b the profiles are shown
for Pr = 0.01 and Reτ = 395, 1000. The streamwise component of the turbulent heat flux
is underestimated for all the cases with respect to the DNS reference data. We can then
conclude that the anisotropic four-parameter turbulence model is not able to properly
predict this component in the plane channel configuration. However, this bad prediction
does not affect the mean temperature estimation. Indeed, due to the symmetry of the plane
channel configuration, the mean temperature field is only affected by the wall-normal
component of molecular and turbulent heat flux. Moreover, we underline that with the
isotropic version of the presented model, the wall-normal turbulent heat flux component
would be identically zero in this configuration.
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Figure 6. Non-dimensional streamwise component of turbulent heat flux v′T′
+

for Pr = 0.025
(Reτ = 180 , 640) (a) and Pr = 0.01 (Reτ = 395 , 1000) (b). DNS data from [17] for Pr = 0.025
and [19,20] for Pr = 0.01.

3.2. Backward Facing Step Geometry

In this subsection, we report the results obtained for the simulation of a turbulent
flow of liquid sodium over a vertical backward-facing step. This type of flow has been
extensively studied in the literature. In [21,22,34,35], DNS simulations with different
Reynolds numbers have been performed, in forced and/or mixed convection regimes.
In [36], a comparison between the solutions of a RANS system of equations closed with
various turbulence models is proposed for the forced convection case, showing that four-
equation turbulence models, coupled with nonlinear expressions for the Reynolds stress
tensor, allow for improving the predictions of the turbulent heat flux. In [11], an anisotropic
three-equation turbulence model has been proposed and applied to this configuration in
forced and mixed convection regimes showing a promising potential for the prediction of
the turbulent heat flux. In [16], RANS simulations have been performed with an isotropic
four-parameter turbulence model (4P) in forced and mixed convection regimes considering
a linear expression for the Reynolds stress tensor and the turbulent heat flux. Results are
promising in both regimes but the adoption of the anisotropic formulation that we are
proposing could improve the prediction of the turbulent heat flux components.

The computational domain reproduces the reference DNS domain [22] and a repre-
sentative sketch is reported in Figure 7. The inlet section length is Lin, the step height is
h, the domain width is W, and the downstream channel height is E. The expansion ratio
is Er = E/(E − h). The geometrical parameters of the simulated domain are reported
in Table 3. The system of equations is solved with the finite element code FEMuS [31].
The mesh consists of 27,820 cells with 107,411 biquadratic nodes. Mesh cells are clustered
near the corner step and reattachment zone. Mesh refinement is performed near wall
boundaries to obtain a non-dimensional wall distance x+ < 1 on the first mesh point near
wall boundaries.
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Figure 7. Backward-facing step geometry.

Table 3. Backward facing step: Geometrical parameters of the simulated domain.

Lin/h Lh/h W Er Reb Pr

2 20 0 1.5 9610 0.0088

In terms of boundary conditions, a fully-developed inflow condition has been set
for the velocity field and turbulent variables corresponding to Reτ = huτ/ν ≈ 300 and
Reb = 2hUb/ν = 9610. The Reynolds number is calculated with respect to the inlet
channel width 2h and the bulk inlet velocity Ub. For the temperature, a uniform value
is set, i.e., Tre f = 423.15K. The same temperature is used as the reference value for the
evaluation of liquid sodium properties obtaining Pr = 0.0088. At the outlet section,
an outflow boundary condition is imposed on the velocity field and for all the other
variables homogeneous Neumann conditions are set. All the remaining boundaries have
been treated as adiabatic no-slip walls, except for the wall behind the step where a uniform
heat flux q̇ is imposed.

Numerical simulations have been performed for the forced convection calculations
using the anisotropic four-parameter turbulence model (A4P) and the results are compared
in the next subsections with DNS data and with the results from numerical simulations
using the standard isotropic four-parameter model (4P) [4,13–16,37].

3.3. Dynamical Fields

In this subsection, the results obtained with the anisotropic four-parameter model
(A4P) for flow fields are compared with DNS data and with simulations results using the
isotropic four-parameter model (4P).

In Figure 8a, the contours of the non-dimensional streamwise velocity component
v+ = v/Ub and the streamlines of the velocity field are shown. The typical flow features
for a backward-facing step configuration are observed, i.e., the flow separation taking place
behind the step, the reattachment of the flow, and the formation of two main vortexes
behind the step: A bigger one rotating in the clockwise direction and a smaller one rotating
in the opposite direction.

Non-dimensional profiles of velocity taken on channel cross-section planes are re-
ported for several streamwise coordinate y/h values for the A4P results, reported with
solid lines, and the 4P results, shown in dashed lines. The streamwise positions included
in these plots correspond to the locations where DNS data are available [22].

The streamwise v+ and wall-normal velocity component u+ = u/Ub are reported
respectively in Figure 9a,b. The velocity field prediction with the anisotropic four-parameter
model is in good agreement with DNS results, while the isotropic model shows a slight
deviation of the wall-normal velocity u+ from DNS data at the non-dimensional height
y/h = 3. The typical features of the flow over a backward-facing step, i.e., the separation
and reattachment behind the step, can be observed from the plot taken at y/h = 3 where
v+ assumes negative values close to the heated wall.
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Figure 8. Velocity streamlines with contour of the non-dimensional streamwise velocity v+ = v/Ub
(a) and contour of the non-dimensional temperature T+ = (T − Tre f )/∆T (b).
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Figure 9. Profile of dynamical fields: Mean streamwise velocity v+ (a), mean wall-normal velocity
u+ (b), and shear stress u′v′+ (c). : Simulation results with the anisotropic four-parameter (A4P)
model; : Simulation results with the isotropic four-parameter (4P) model. ◦ : DNS data.

In Figure 9c, the non-dimensional shear stress component u′v′
+
= u′v′/U2

b is reported
in comparison with DNS data. The turbulent shear stress is mainly present in the layer
behind the step at x/h ≈ 0. The prediction of the shear stress is in good agreement with
reference data for the anisotropic model results. For the isotropic four-parameter model
results, we have computed the shear stress as u′v′ = νt(

∂u
∂y + ∂v

∂x ). The prediction obtained
with the isotropic model (4P) is in good agreement with DNS data, even though there are
some discrepancies in the plot taken at y/h = 3.

The wall-normal normal stress u′u′
+
= u′u′/U2

b and the streamwise normal stress

v′v′
+
= v′v′/U2

b are reported respectively in Figure 10a,b. In Figure 10c, the turbulent ki-
netic energy k+ = k/U2

b is shown. These turbulent fields present a general good agreement
with DNS data even though there are some discrepancies in the region behind the step.
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For the isotropic four-parameter model simulations, we have computed u′u′ = 2
3 k + 2νt

∂u
∂x

and v′v′ = 2
3 k + 2νt

∂v
∂y , according to Boussinesq approximation.
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Figure 10. Profile of dynamical fields: wall-normal normal stress uu+ (a), streamwise normal
stress vv+ (b), and turbulent kinetic energy k+ (c). : Simulation results with the anisotropic
four-parameter (A4P) model; : Simulation results with the isotropic four-parameter (4P) model. ◦ :
DNS data.

In Figure 11, the skin friction coefficient c f along the heated wall is reported. The skin
friction profile is subjected to a double change of sign, denoting the presence of two reat-
tachment points. The skin friction coefficient assumes negative values in the recirculation
zone, which is composed of a large clockwise rotating vortex. Directly behind the step,
the principal recirculating vortex causes a secondary vortex rotating in the opposite di-
rection. The position of the first reattachment point is approximately y/h ≈ 1.26 for the
anisotropic four-parameter model and y/h ≈ 1.91 for DNS data. The second reattachment
point is located approximatively at y/h ≈ 6.52. The DNS data give this point at y/h ≈ 7.01,
while Kasagi [38] gives this point at y/h ≈ 6.51 through measurements.
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Figure 11. Skin friction coefficient c f along the heated wall. : Simulation results with the anisotropic
four-parameter (A4P) model; : Simulation results with the isotropic four-parameter (4P) model. ◦ :
DNS data.
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3.4. Thermal Fields

In this subsection we propose a comparison for thermal fields between the results
obtained with the anisotropic four-parameter model (A4P) and DNS data. We also report
the results of simulations performed using the isotropic four-parameter model (4P). In

Figure 8b, contours of the non-dimensional temperature T+ =
T−Tre f

∆T are reported for the
simulation with the anisotropic four-parameter model (A4P). The hot fluid is located in
the corner between the step and heated wall. A strong temperature increase is observed
moving from the insulated wall towards the heated wall. The highest wall temperature is
located in the recirculation zone and reaches a maximum closely behind the step due to the
reduced heat transfer due to the backward flow.

Non-dimensional profiles of the mean temperature T+ = T/∆T are reported in
Figure 12a for different values of streamwise coordinate y/h. The temperature difference
∆T is defined using the applied heat flux q̇ setting ∆T = q̇h/λ, where λ is the liquid
sodium thermal conductivity calculated for T = Tre f . The discrepancies with DNS results
are limited to the plot taken at y/h = 0 where the temperature is slightly overestimated.
With the isotropic model, the major discrepancies with DNS values are found on the
plots taken at y/h = 0 and y/h = 3 where an over- and under-prediction of T+ is
respectively obtained.
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Figure 12. Profile of thermal fields: Mean temperature T+ (a), mean wall-normal turbulent heat
flux u′T′

+
(b), and mean streamwise turbulent heat flux v′T′

+
(c). : Simulation results with the

anisotropic four-parameter (A4P) model; : Simulation results with the isotropic four-parameter (4P)
model. ◦ : DNS data.

The turbulent heat flux components along wall-normal u′T′
+
= u′T′/(Ub∆T) and

streamwise v′T′
+

= v′T′/(Ub∆T) directions are reported respectively in Figure 12b,c.
The anisotropic model allows improving the prediction of the streamwise component
which is completely underestimated with the isotropic model. The isotropic model as-
sumes a unique scalar thermal diffusivity αt for both turbulent heat flux components,
i.e., u′T′ = αt

∂T
∂x and v′T′ = αt

∂T
∂y . However, the mean temperature gradient along the

streamwise direction is small and for this reason the streamwise component is totally un-
derestimated. With the proposed anisotropic model, the wall-normal component shows a
better agreement with DNS data and the streamwise component results are only slightly un-
derestimated.

Nusselt number profiles along the heated wall are shown in Figure 13. The Nusselt
number is computed as Nu = q̇h/(T − Tre f )λ. When the Nusselt value is around 1 then
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the heat transfer is mostly diffusive due to the low Prandtl number of the liquid metal.
Inside the recirculation zone, we have Nu < 1, then the heat transfer is prevented by
the recirculating flow. As one can see in Figure 13, in the recirculation zone, the Nusselt
number is slightly overestimated with the isotropic model, while the anisotropic model is
in good agreement with DNS data in all the regions.
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1.2

1.4
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u

Figure 13. Nusselt number Nu along the heated wall. : Simulation results with the anisotropic
four-parameter (A4P) model; : Simulation results with the isotropic four-parameter (4P) model. ◦ :
DNS data.

4. Conclusions

In this work, we presented a new anisotropic four-parameter turbulence model (A4P)
that derives from the four-parameter turbulence model (4P) widely studied in [4,13–16]
within the framework of heat transfer modeling for low-Prandtl number fluids. An Explicit
Algebraic Stress Model (EASM) and an Explicit Algebraic Heat Flux Model (EAHMF) was
proposed for the closure of the Reynolds stresses and turbulent heat flux instead of first-
order closure relations used in the isotropic version of the model. Special attention is given
to the modeling of the dynamical and thermal time scales to overcome the local equilibrium
hypothesis typical of algebraic models. The closure of the model and estimation of the
time scales were performed with four transport equations for the logarithmic variables
K-Ω-Kθ-Ωθ and suitable near-wall boundary conditions were presented. For the validation
of the new anisotropic four-parameter turbulence model, we considered two different
configurations, i.e., forced convection in a plane channel and over a backward-facing step,
considering different Re and low-Pr numbers. The simulation results were compared with
the available DNS data and for the backward-facing step configuration, and a comparison
was also proposed with the isotropic version of the proposed model. The prediction of the
velocity and temperature fields was in good agreement with DNS reference data for all
the considered configurations. For the forced convection over the backward-facing step
configuration, we could observe a general improvement in the prediction of dynamical
and thermal fields with respect to the isotropic version of the model, above all in the
estimation of the turbulent heat flux components. It can be concluded that the anisotropic
four-parameter turbulence model represents a promising approach towards the accurate
prediction of both turbulent momentum and heat flux for low-Prandtl number fluids.
Further simulations, including complex geometries and buoyancy effects will be presented
in future works.
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