
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Asperti, A., Evangelista, D., Marzolla, M. (2022). Dissecting FLOPs Along Input
Dimensions for GreenAI Cost Estimations. In: , et al. Machine Learning,
Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science, vol
13164. Springer, Cham, pp. 86–100

The final published version is available online at

https://dx.doi.org/10.1007/978-3-030-95470-3_7

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1007/978-3-030-95470-3_7

Dissecting FLOPs along input dimensions for
GreenAI cost estimations

Andrea Asperti1, Davide Evangelista2, and Moreno Marzolla1

1 University of Bologna
Department of Informatics: Science and Engineering (DISI)

2 University of Bologna
Department of Mathematics

Abstract. The term GreenAI refers to a novel approach to Deep Learn-
ing, that is more aware of the ecological impact and the computational
efficiency of its methods. The promoters of GreenAI suggested the use of
Floating Point Operations (FLOPs) as a measure of the computational
cost of Neural Networks; however, that measure does not correlate well
with the energy consumption of hardware equipped with massively par-
allel processing units like GPUs or TPUs. In this article, we propose a
simple refinement of the formula used to compute floating point opera-
tions for convolutional layers, called α-FLOPs, explaining and correcting
the traditional discrepancy with respect to different layers, and closer to
reality. The notion of α-FLOPs relies on the crucial insight that, in case
of inputs with multiple dimensions, there is no reason to believe that the
speedup offered by parallelism will be uniform along all different axes.

1 Introduction

Artificial Intelligence, especially in its modern incarnation of Deep Learning,
has achieved remarkable results in recent years, matching – and frequently tres-
passing – human capabilities in a number of different tasks. These techniques
usually require the deployment of massive computational resources, with huge
implications in terms of energy consumption. To make a couple of examples
the hyper-realistic Generative Adversarial Network for face generation in [19]
required training on 8 Tesla V100 GPUs for 4 days; the training of BERT [12], a
well known generative model for NLP, takes about 96 hours on 64 TPU2 chips.
Researchers at the University of Massachusetts [26] have recently performed a
life cycle assessment relative to the training of large state-of-the-art AI mod-
els, discovering that the process can emit a quantity of carbon dioxide roughly
equivalent to the lifetime emissions of five medium cars. Other authors reached
similar conclusions [20].

Until a few years ago, the ecological impact of artificial intelligence was en-
tirely neglected by researchers and industry, who were mostly focused on improv-
ing performance at any cost. However, this has changed in recent years, with a
growing awareness that this trend of research is not sustainable any more [28],
and an increased attention towards energetic efficiency [27].

ar
X

iv
:2

10
7.

11
94

9v
1

 [
cs

.L
G

]
 2

6
Ju

l 2
02

1

2 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

The GreenAI paper [25] summarizes well the goal and objectives of the new
philosophy: it promotes a new practice in Deep Learning, that is more focused
on the social costs of training and running models [2,7,15], encouraging the
investigation of increasingly efficient models [21,5].

To this aim, it is essential to identify widely acceptable and reliable metrics
to assess and compare the cost and efficiency of different models. Several met-
rics are investigated and discussed in [25]; in conclusion, the number of Floating
Point Operations (FLOPs) is advocated and promoted, since it is easily com-
puted for Neural Networks while offering a hardware independent, schematic but
meaningful indication of the actual computation cost of the model [20].

Unfortunately, the mere computation of FLOPs does not cope well with
the massively parallel architectures (GPU and TPU) typically used in Deep
Learning [17]. Efficient implementation of neural networks on these architec-
tures depends both on complex algorithms for General Matrix Multiplication
(GEMM) [18] and sophisticated load balancing techniques [13] splitting the
workload on the different execution units. As we shall see, these algorithms
usually perform better for specific layers and, especially, along specific axes of
the input dimension of these layers.

Our claim is that it is possible to study the performance of neural layers
(especially, convolutions) as “black boxes”, measuring the execution time for a
number of different configurations, and separately investigating the execution
time for increasing dimensions along different axis.

As a result, we propose a simple correction to the formula used to compute
FLOPs for convolutional layers, that provides better estimations of their actual
cost, and helps to understand the discrepancy with respect to the cost of different
layers.

Organization of the article This paper has the following structure. In Section 2
we briefly discuss some possible metrics for measuring the efficiency of models;
we particularly focus on FLOPs, discussing their computation for some basic
operations relevant for Neural Networks. In Section 3 we introduce the GEMM
(GEneral Matrix Multiply) operation, that helps to understand the canonical
computation of FLOPs for the Convolution layers. In Section 4 we present some
experiments which show that, if Convolutions are executed on GPU, FLOPs
are not a good measure for efficiency. That is the motivation for introducing a
correction, that we call α-FLOPs, defined and discussed in Section 5. Section 6
offers more experimental results, validating the formula with respect to growing
input dimensions along specific axes.

2 Measures of Efficiency

In this section we review some of the metrics that can be used to measure the
efficiency of an AI algorithm, following the discussion of [25].

Dissecting FLOPs along input dimensions for GreenAI cost estimations 3

Carbon Emission As already remarked in the introduction, the present work
is motivated by the need to reduce the energy consumption of training large
state-of-the-art AI models. Unless a significant fraction of such energy comes
from renewable sources, reducing the power required for AI training means that
less carbon dioxide is released into the atmosphere. Unfortunately, precise quan-
tification of carbon emission associated with computational tasks is impractical,
since it depends both on the hardware hosting the computation, and also on the
local energy production and distribution infrastructure.

Number of parameters The number of parameters of a Deep Learning model is
an interesting and hardware-independent measure of the complexity of models.
Unfortunately, the number of parameters alone is poorly correlated with the total
training time, since parameters may refer to different operations. For example,
Convolutional Layers have relatively few parameters, relative to the kernel of
the convolution; this does not take into account the actual cost of convolving
the kernel over the input.

Execution time The total running time is a natural measure of efficiency: faster
algorithms are better. Execution time depends on the number of instructions
executed and hence is strictly correlated with the total energy consumption [24];
therefore, it is a good proxy of power usage when direct energy measurement is
impractical. There are a couple of important considerations that must be made
when considering execution time as a metric: (i) it requires an implementation of
the algorithm being measured, which may take time and effort to be developed;
(ii) execution time is hardware- and language-dependent, since it depends on
both the underlying hardware and on the efficiency of the compiler/interpreter.

FLOPs The number of FLoating Point OPerations (FLOPs) is a metric that is
widely used in the context of numerical computations [23,14,29,22]. It is defined
as the total count of elementary machine operations (floating point additions
and multiplications) executed by a program. Floating point operations have a
latency of several CPU cycles on most current processor architectures [10,9,3],
although the use of pipelining, multiple-issue and SIMD instructions significantly
increase the throughput. In general, floating point operations have higher latency
than most of the other CPU instructions (apart from load/stores from/to main
memory, where memory access is the bottleneck); therefore, they tend to domi-
nate the execution time of numerical algorithms. For this reason, the number of
floating point operations is used as a proxy for the execution time of a program.

As an example, suppose that v and w are n-dimensional arrays. Then, the
inner product between v and w

〈v;w〉 =

n∑
i=1

viwi (1)

4 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

requires n multiplications and n− 1 additions, for a total of 2n− 1 FLOPs.
Similarly, the matrix-vector product between an m × n matrix A and an n-
dimensional vector v requires m inner product, for a total of 2mn−m FLOPs.

Since operations similar to (1), where a sequence of multiplications are added
together, are very common, modern CPUs supports FMA (Fused Multiply-Add)
instructions, where a multiplication followed by an addition are executed as a
single operation and require less time than two separate instructions. For this rea-
son, the definition of FLOPs is usually modified to be the total number of FMA
operations needed for a full iteration of an algorithm. With this definition (that
it is usually followed by some authors), the inner product of two n-dimensional
arrays requires n FLOPs, while the product between an m × n matrix with an
n-dimensional vector requires nm FLOPs. Nonetheless, since we are interested
in measuring the performance under massively parallel architectures, through
this paper we will follow the classical definition of FLOPs.

3 Computation of FLOPs for basic layers

The basic operation that dominates training of Neural Network models is the
dense matrix-matrix product. This operation is often referred in the technical
literature as GEMM (for GEneral Matrix Multiply), owing its name to the xGEMM
family of functions provided by the Basic Linear Algebra Subprograms (BLAS)
library [6]. BLAS is a widely used collection of subroutines implementing basic
operations involving vectors and matrices, such as vector addition, dot product,
vector-matrix multiplication and so on; these functions act as building blocks on
which more complex linear algebra computations can be programmed. Being at
the core of many applications, the performance of BLAS primitives are critical,
so most hardware vendors provide their own optimized implementations, e.g.,
cuBLAS for nVidia GPUs [11], and clBLAS for OpenCL devices [8], including
various brands of GPUs and multicore processors.

A GEMM operation takes the general form:

C← αAB + βC (2)

where A,B,C are matrices of compatible size, and α, β are scalars. The matrix-
matrix product C← AB is a special case of (2) where α = 1, β = 0.

Assuming that the size of A is m×k and the size of B is k×n, then the size
of C must be m×n and the direct computation of (2) using vector dot products
requires:

– 2mkn+mn FLOPs for the matrix product αAB, assuming that dot prod-
ucts are implemented with an inner loop involving a multiply-accumulate
operation like s← s+ xiyi

– mn FLOPs for the computation of βC

– mn additional FLOPs for the computation of the matrix sum αAB + βC

Dissecting FLOPs along input dimensions for GreenAI cost estimations 5

from which we get that a total count of 2mkn+mn+mn+mn = mn(2k + 3)
FLOPs are required for the general GEMM. Neglecting lower-order terms we
can approximate the operation count with 2mkn.

We can apply this result for the layers of a Neural Network. Consider a Dense
layer, with input and output dimensions Din and Dout, respectively. We need
to compute the product between the weight matrix of size Dout ×Din and the
input, plus a bias term B of dimension Dout; therefore, the number of FLOPs is

2DinDout −Din +Dout

As above, we omit the lower order terms as they are asymptotically negligible.
As a consequence, we will consider a Dense layer to have a number of FLOPs
equal to

2DinDout (3)

The case of a convolutional layer is slightly more complex. Let us consider the
case of a 2D convolution. Let (Win, Hin, Cin) the dimension of the input (written
with the notation (Width, Height, Channels)), (Wout, Hout, Cout) the dimension
of the output (depending on the stride and number of kernels), and let K1,K2

be the dimensions of the kernel. Then, the number of FLOPs is given by

2 ·K1 ·K2 · Cin︸ ︷︷ ︸
kernel dim

·Wout ·Hout︸ ︷︷ ︸
input dim

· Cout︸︷︷︸
output dim

(4)

In the following, we shall frequently consider the case of convolutions with
stride 1 in “same” padding modality. In this case, Win = Wout and Hin = Hout,
so we shall drop the subscripts, and just write W and H. Moreover, in the
frequent case kernels are squared, we drop the subscripts in K1,K2 and just
write K.

4 The problem of convolutions

A dense layer of dimension Din×Dout is the same as a unary convolution (K = 1)
with Cin = Din, Cout = Dout and H = W = 1; it is easy to experimentally
check that both require the same time to be evaluated. However, as soon as we
distribute the total number of FLOPs of equation (4) across different dimensions,
we observe a significant speedup, that has no justification in terms of FLOPs.
This raises concerns about the use of FLOPs for estimating running time (and
hence energy consumption). In this section we provide empirical evidence of this
phenomenon.

In Figure 1, we compare the time required to evaluate a dense layer with
several different convolutional layers with a same amount of FLOPs computed
according to (4); the execution time has been measured on an NVIDIA Quadro
T2000 graphics card and a Intel Core i7-9850H CPU. Times are averaged over 2000
experiments for each scenario.

6 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

327.68 M FLOPs

Dense layer
(D1, D2) time (ms)

(12800, 12800) 6.401

Convolutional layers
(W,H,Cin, Cout,K1,K2) time (ms)
(1, 1, 12800, 12800, 1, 1) 6.392
(1, 2, , 6400, 12800, 1, 1) 3.224
(2, 2, 6400, 6400, 1, 1) 1.626
(4, 4, 3200, 3200, 1, 1) 0.454

(a) (b)

Fig. 1: Comparison of execution times for Dense and Convolutional layers with
the same amount of FLOPs. In Table (a) we provide numerical values for layers
with 327.68 Million FLOPs; in the right we show the execution time of similar
configurations for increasing dimensions. All layers for a given value of 2x (i.e.
along any vertical section) have the same amount of FLOPs.

In particular, in Table 1a we evaluate a scenario of maximum size compat-
ible with our hardware, corresponding to a Dense layer of size 12800 × 12800
(163, 852, 800 parameters), and compare it with several different convolutional
layers with the same total amount of FLOPs. The dense layer takes about 6.4
milliseconds (ms), while a unary convolution with Cin = Cout = 3200 on an
input of spatial dimension 4 × 4 just takes 0.46 ms, approximately 16 times
faster.

In Figure 1b, we repeat the same experiment, varying the total amount of
flops with powers of 2. For the dense layer we go from dimension 100 × 100 to
dimension (100× 27)× (100× 27).

In the following experiments, we keep the number of FLOPs constant while
we increase some dimensions and proportionally decrease others. If (4) had a
good correlation with time, we should observe straight horizontal lines.

In all experiments, we consider four different amounts of FLOPs identified
by different colors: 2025 × 106 (red line in Figure 2), 900 × 106 (green line),
490 × 106 (orange line) and 225 × 106 (blue line). We progressively increase K
from 1 to 30. In the first experiment, we compensate it by enlarging the input
and output dimension of channels (Cin and Cout), keeping a constant (small)
spatial dimension 10× 10.

In the second test we compensate the growing convolutions by reducing the
spatial dimensions, starting from an initial dimension of 300×300. Channels are
constant, in this case. Result are reported in Figure 2.

In the case of the first experiment (Figure 2a), apart from the exceptional
performance of 1 × 1 convolutions already discussed in [17], we observe the ex-
pected constant behavior. However, we have a completely different result in the

Dissecting FLOPs along input dimensions for GreenAI cost estimations 7

(a) Increasing K, decreasing C (b) Increasing K, decreasing W,H

(c) Same as (a) on a CPU (d) Same as (b) on a CPU

Fig. 2: Execution time vs different input dimensions, keeping the number of
FLOPs constant. In plot (a) we increase K and proportionally decrease Cin

and Cout. In plot (b) we increase K and proportionally decrease W and H. We
would expect constant lines, but this is not the case. In plots (c) and (d) we
repeat the experiment on a (single core) CPU, instead of a GPU.

case of the second experiment (Figure 2b). Here the execution time increases
with the kernel dimension, possibly at a quadratic rate; this growth should have
been compensated by the simultaneous decrease along both spatial dimensions,
but clearly this is not the case.

By comparing the results of the two experiments, we can draw another con-
clusion. Remember that the number of FLOPs along lines of the same color is
the same; therefore, the nonlinear behaviour in Figure 2b is not due to an over-
head but, on the contrary, there is an important speed up of the computation
of increasing relevance for small kernels. In other words, the formula computing
FLOPs is overestimating the total number of operations, presumably because it
does not take into consideration the fact that convolutions can be easily paral-
lelized along spatial dimensions (but not quite so along kernel dimensions).

The goal of the work is to derive a simple correction to the formula for
computing FLOPs explaining the observed behaviours. The correction might

8 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

depend on the specific hardware, but it should be possible to evaluate the relevant
parameters in a simple way.

5 α-FLOPs

In this section we introduce our correction to the formula for computing FLOPs,
that we call α-FLOPs. Instead of FLOPs, that count the total number of floating
point operations, α-FLOPs provide an estimation of the “perceived” FLOPs,
that are less than FLOPS due to parallelism. The crucial idea is that when we
run in parallel an algorithm with a multidimensional input there is no reason to
suppose that the total number of operations have similar latency along different
dimensional axes. Our proposal is to adjust the formula for computing FLOPs
by multiplying it by the following scaling factor:

αK(S) =

(
SK + βK(S − SK)

S

)γK
(5)

where S = W ×H, and 0 < βK � 1, 0 < γK ≤ 1, and 1 ≤ SK ≤ S (S1 = 1) are
parameters (moderately) depending from K. We call α-FLOPs the correction to
the usual formula for FLOPs by the previous factor.

The parameters βK and γK can be easily evaluated by regression on a given
GPU/TPU. Although they are hardware dependent, some preliminary investi-
gations seem to suggest that fluctuations are smaller than expected.

For the purposes of this article, using an Invida Quadro T2000 GPU we
obtained good predictions just distinguishing two cases: K = 1 and K > 1. For
K = 1, βK = 0.02 and γK = .99; for K > 1, βK = 0.001 and γK = .56.

Before discussing the main properties of αK(S), let us have a look at the
prediction of the execution time (dashed line) for the problematic experiments
shown above. More examples will be presented in Section 6.

The experiment in Figure 1 is replicated, with the time predicted by means
of α-FLOPs, in Figure 3b. In the Table on the left, we give the computed and
predicted times for the convolutional configurations (1-4) with 327.68M FLOPs.

Similarly, in Figure 4 we show the predicted execution time for the experi-
ments of Figure 2.

5.1 Main properties of the α-correction

Before discussing our intuition behind (5), let us point out some of its distinctive
properties. First of all the equation can be rewritten in the following, possibly
more readable form:

αK(S) =

(
(1− βK)× SK

S
+ βK

)γK
(6)

From that, the following properties can be observed:

1. αK(S) < 1 for any K and S. This is evident, given the constraint Sk < S.

Dissecting FLOPs along input dimensions for GreenAI cost estimations 9

327.68 M FLOPs

Convolutional layers
config. time predicted

(1) 6.392 6.154
(2) 3.224 3.351
(3) 1.626 1.847
(4) 0.454 0.611

(a)

(b)

Fig. 3: Predicted execution time by means of α-FLOPs for the same convolutional
configurations of Figure 1; in (b) predictions are depicted as dashed lines.
.

2. If βK = 1, then αK(S) = 1, independently from γK and S. In this case, we
recover the original expression for FLOPs, that is hence a subcase with no
additional speedup.

3. α1(1) = 1 independently from βK and γK . This is due to the fact that
S1 = 1 = S. The case S = 1,K = 1 is important since, as discussed at
the beginning of Section 3, it gives the relation between convolutional and
dense layers, and for a dense layer we want no correction. Moreover, the fact
that the fundamental equation α1(1) = 1 holds independently from β and γ
improves the stability of the property.

4. The formula with γ = 1 already gives reasonable approximations. However, it
tends to underestimate the execution time for large S, in a more sensible way
for increasing values of K. By raising the correction to a power smaller than
1 we mitigate this phenomenon without giving up the appealing properties
provided by β.

5. The parameter SK increases slowly with K. The point is to take into account
a plausible overhead for growing dimensions of the kernel, especially when
passing from K = 1 to K > 1. This constant can be possibly understood
as a minimum expected spatial dimension for kernels larger than 1. It does
not make much sense to apply a kernel of dimension 3 × 3, on an input of
dimension 1× 1, and it is hard to believe that reducing the dimension of the
input below the dimension of the kernel may result in any speedup. However,
fixing SK = K does not seem to be the right solution.

5.2 Rationale

We now provide a possible explanation for the α-FLOP formula (6). Let us
consider a computational task requiring a given amount of work W . Let β ∈ [0, 1]
be the fraction of that work that can be executed in parallel; therefore, the

10 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

(a) Increasing K, decreasing C (b) Increasing K, decreasing W,H

Fig. 4: Predicted execution time by means of α-FLOPS, depicted as dashed lines,
for the same convolutional configurations of Figure 2

sequential portion of the task is (1− β)W . Let us scale the problem by a factor
N > 1; in a purely sequential framework, the amount of work would become
NW . However, Gustafson’s law [16] suggests that when we scale the size of a
parallel task, the sequential part tend to remain the same. This means that the
amount of work actually done by the parallel program is (1−β)W +βNW . The
ratio between the actual amount of work done by the parallel version versus the
expected amount of work done by the serial version is:

(1− β)W + βNW

NW
=

1− β
N

+ β (7)

where we readily recognize the backbone of equation (6). We already dis-
cussed the small adjustments we had to do to this formula to fit it to the em-
pirical observations.

Gustafson’s law describes the theoretical speedup of a parallel task in terms
of growing resources, on the reasonable assumption that programmers tend to set
the problem size to fully exploit the available computing power. Gustafson’s law
was meant to address a shortcoming of a similar law formulated by Amdahl [1],
that on the other hand assumes a fixed workload that does not depend on the
number of execution units used.

In our case, computational resources are fixed and we focus on different
input dimensions. Our assumption is that suitable programs and load balancing
techniques will optimize the use of resources, eventually resulting in different
speedups along different spatial dimensions.

6 Additional experimental results

We conducted several experiments to assess the rate of grow of the execution
time along different input dimensions. Data providing the base for this paper are
available on Github (https://github.com/asperti/alpha_flops_dataset),

https://github.com/asperti/alpha_flops_dataset
https://github.com/asperti/alpha_flops_dataset)

Dissecting FLOPs along input dimensions for GreenAI cost estimations 11

together with analysis tools and plotting facilities, including the predictions by
means of α-FLOPs. Additional data are currently being collected.

All experiments discussed in this Section involve convolutions where we pro-
gressively increase the dimension of a specific input axis x, keeping a constant
dimension for the others axes Xc. For each experiment, we draw the execution
time for three different dimensions of an auxiliary axis xaux in Xc. We found
this more understandable than plotting three dimensional surfaces, that would
be quite difficult to draw and decipher.

In the case of the plot in Figure 5a, x is W , and xaux is Cin; H = 100
and the Kernel dimension is 3 × 3. For Figure 5b, x is Cout, and xaux is Cin;
H = W = 100 and the kernel dimension is 3 × 3. For Figure 6a, x is Cout, and
xaux is H; Cin = 50 and the kernel dimension is 1× 1. Finally, for Figure 6b, x
is Cin, and xaux is K; H = W = 10 and Cout = 1000.

(a) Increasing W for different values of Cin

and a kernel of dimension 3x3
(b) Increasing Cout for different values of
Cinandakernelofdimension3x3

Fig. 5: Execution time and predictions by means of α-FLOPs (dashed lines)

6.1 Dense layers vs batchsize

We already observed that a dense layer can be assimilated to a convolutional
layer with kernel 1×1 and spatial dimension 1. In this perspective, it is plausible
to conjecture that the batchsize can be assimilated to a spatial dimension. In-
deed, the general wisdom across Deep Learning researchers and practitioners is
that, for making predictions over a large set of data – e.g., over the full training
or test set – it is convenient to work with a batchsize as large as possible, com-
patibly with the resource constraints of the underlying hardware, e.g., memory.
This has no justification in terms of FLOPs, since the total number of operations
is always the same; however, using a large batchsize is much more efficient.

12 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

(a) Increasing Cout for different values of H,
with a kernel of dimension 1x1

(b) Increasing Cin for different kernels 1x1,
3x3 and 5x5

Fig. 6: Execution time and predictions by means of α-FLOPS (dashed lines)

To test this behaviour, we take large
dense layers (at the limit of our
hardware capacity), and then ap-
ply them to inputs with increasing
batch size.
The results are summarized in Fig-
ure 7. Under the FLOPs assump-
tion, the lines should be straight
lines departing from the origin. In
terms of α-FLOPs we start with the
cost relative to batchsize 1, and then
slowly grow along the batchsize di-
mension, reflecting the experimental
behaviour.

Fig. 7: Computational time for dense
layer increasing the batchsize. The jump
between 32 and 33 is probably due to
some discretization in the software.

7 Conclusions

In this paper we introduced the notion of α-FLOPs that is meant to provide a
simple numerical correction to the mismatch between FLOPs and execution time
in case of hardware equipped with massively parallel processing units like GPUs
or TPUs. Since this kind of hardware is the norm for AI applications based on
Deep Neural Networks, α-FLOPS may become an important tool to compare
the efficiency of different networks on a given hardware.

The definition of α-FLOPs is based on the crucial observation that, in case
of an input with multiple dimensions, the computational speedup offered by
parallelism is typically far from uniform along the different axes. In particular,

Dissecting FLOPs along input dimensions for GreenAI cost estimations 13

we provided extensive empirical evidence that growing spatial (and batchsize)
dimensions in convolutional layers has less impact than growing different dimen-
sions. The idea of dissecting the cost along the different input dimensions was
inspired by recent investigations of the first author on computational complexity
over finite types [4].

The notion of α-FLOPs lays between the number of parameters of the layer,
and the traditional notion of FLOPs; in a sense, it can be understood as a
revaluation of the former as a measure of cost: if it is true that, in the case
of convolutions, the number of parameters does not take into account the ac-
tual cost of the convolution, the traditional notion of FLOPs seems to largely
overestimate it.

Much work is still ahead. On the experimental side, we are currently col-
lecting more data, on architectures with different computing capabilities. On
the theoretical side, it would be interesting to provide a low-level algorithmic
justification of α-FLOPs. The formula itself, that was derived empirically, can
be eventually fine-tuned and possibly improved, both in view of additional ob-
servations, and of a better understanding of the phenomenon. In particular, we
mostly focused on the spatial dimension, since it is the axis most affected by
parallelism, but the dependency along different axes does eventually deserve
additional investigation.

In this article, we mostly focused on convolutional and dense layers, since they
are the most computationally intensive layers in Neural Networks. Extending
the work to additional layers, or more sophisticated forms on convolutions, like
Depth-Separable Convolutions, is another major research direction.

References

1. Gene M. Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, volume 30, page
483–485, 1967.

2. Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbon-
tracker: Tracking and predicting the carbon footprint of training deep learning
models. CoRR, abs/2007.03051, 2020.

3. Arm cortex-r8 mpcore processor, 2018. https://developer.arm.com/

documentation/100400/0002/floating-point-unit-programmers-model/

instruction-throughput-and-latency?lang=en, Last accessed on 2021-04-26.

4. Andrea Asperti. Computational complexity via finite types. ACM Trans. Comput.
Log., 16(3):26:1–26:25, 2015.

5. Andrea Asperti, Davide Evangelista, and Elena Loli Piccolomini. A survey on
variational autoencoders from a green AI perspective. SN Comput. Sci., 2(4):301,
2021.

6. An updated set of basic linear algebra subprograms (blas). ACM Trans. Math.
Softw., 28(2):135–151, June 2002.

7. Qingqing Cao, Aruna Balasubramanian, and Niranjan Balasubramanian. Towards
accurate and reliable energy measurement of NLP models. CoRR, abs/2010.05248,
2020.

https://developer.arm.com/documentation/100400/0002/floating-point-unit-programmers-model/instruction-throughput-and-latency?lang=en
https://developer.arm.com/documentation/100400/0002/floating-point-unit-programmers-model/instruction-throughput-and-latency?lang=en
https://developer.arm.com/documentation/100400/0002/floating-point-unit-programmers-model/instruction-throughput-and-latency?lang=en

14 Andrea Asperti, Davide Evangelista, and Moreno Marzolla

8. clblas. http://clmathlibraries.github.io/clBLAS/. Last accessed on 2021-04-
26.

9. AMD corporation. Software optimization guide for amd family 19h processors
(pub), November 2020. https://www.amd.com/system/files/TechDocs/56665.

zip, Last accessed on 2021-04-25.
10. Intel Corporation. Intel® Xeon scalable processor® in-

struction throughput and latency, August 2017. https://

software.intel.com/content/dam/develop/public/us/en/documents/

intel-xeon-scalable-processor-throughput-latency.pdf, Last accessed
on 2021-04-25.

11. cublas. https://docs.nvidia.com/cuda/cublas/index.html. Last accessed on
2021-04-26.

12. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Asso-
ciation for Computational Linguistics, 2019.

13. Mohamed Gadou, Tania Banerjee, Meena Arunachalam, and Sanjay Ranka. Mul-
tiobjective evaluation and optimization of cmt-bone on multiple cpu/gpu systems.
Sustainable Computing: Informatics and Systems, 22:259–271, 2019.

14. Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and
Edward Choi. Morphnet: Fast & simple resource-constrained structure learning
of deep networks. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 1586–
1595. IEEE Computer Society, 2018.

15. Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. Chasing carbon: The elusive environ-
mental footprint of computing. CoRR, abs/2011.02839, 2020.

16. John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 1988.
17. Yunho Jeon and Junmo Kim. Constructing fast network through deconstruction

of convolution. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 5955–5965, 2018.

18. Chetan Jhurani and Paul Mullowney. A gemm interface and implementation on
nvidia gpus for multiple small matrices. Journal of Parallel and Distributed Com-
puting, 75:133–140, 2015.

19. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

20. Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.
Quantifying the carbon emissions of machine learning. CoRR, abs/1910.09700,
2019.

21. Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. Efficient document re-ranking for transformers by
precomputing term representations. In Proceedings of the 43rd International ACM

http://clmathlibraries.github.io/clBLAS/
https://www.amd.com/system/files/TechDocs/56665.zip
https://www.amd.com/system/files/TechDocs/56665.zip
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-xeon-scalable-processor-throughput-latency.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-xeon-scalable-processor-throughput-latency.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-xeon-scalable-processor-throughput-latency.pdf
https://docs.nvidia.com/cuda/cublas/index.html

Dissecting FLOPs along input dimensions for GreenAI cost estimations 15

SIGIR conference on research and development in Information Retrieval, SIGIR
2020, Virtual Event, China, July 25-30, 2020, pages 49–58. ACM, 2020.

22. Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning
convolutional neural networks for resource efficient inference. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

23. David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2017.

24. Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu. A
study on the use of performance counters to estimate power in microprocessors.
IEEE Transactions on Circuits and Systems II: Express Briefs, 60(12):882–886,
2013.

25. Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun.
ACM, 63(12):54–63, 2020.

26. Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy
considerations for modern deep learning research. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 13693–13696. AAAI Press, 2020.

27. Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceed-
ings of Machine Learning Research, pages 6105–6114. PMLR, 2019.

28. Aimee van Wynsberghe. Sustainable ai: Ai for sustainability and the sustainability
of ai. AI and Ethics, 2021.

29. Tom Veniat and Ludovic Denoyer. Learning time/memory-efficient deep archi-
tectures with budgeted super networks. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 3492–3500. IEEE Computer Society, 2018.

