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Abstract—The rising need of precision in several sectors, agri- for their specificity, are not economically affordable for the
culture included, brings to the development of new monitoring farms.
systems customised for the specific application. These systems
often take advantages of probes offered by the market, however,
the integration between market probes and home-built systems,

Recently, the industrial and scientific research is working
for the development of monitoring systems that can fit the

requires tests to validate the recorded measurements. farm requirements but to an affordable price. Considering all
This paper provides a methodology to perform a calibration these characteristics, in order to analyse the productions and
procedure when the probes fail the validation test. measure the efficiency of control systems, several metrics must

The results show the comparison of the measurements collected be monitored. collected and stored and should be remotel
by investigated sensors and reference sensor coupled with the ’ y

application of simple correlation methods can bring to an im- available in real time.

provement of the sensor precision as far as to pass the validation Since a monitoring system able to collect all the involved

test. metrics usually is not available on the market, specific monitor-

_ Index Terms—smart monitoring systems, aquaculture, agro-  ing system must be developed and realised. Modern monitor-

industrial facilities, validation test, calibration. ing systems are currently used for different purposes in order
L. INTRODUCTION to ensure welfare and safety of humans, plants and animals,

and support the management of facilities and buildings [6]-[8].

Some of the main aspects in the definition of the most
suitable system, concern the choice of the sensors, the val-
idation of the acquired measurements and the calibration of
the sensors.

A few works proposed methodologies to validate the mea-
surements, [9]-[12] suggesting to compare the measurements
recorded by the investigated sensor with a more accurate
reference sensor and then calculate an indicator based on the
difference between the two measurements [13].

The papers in the literature do not investigate the case of
sensors that fail the validation test. One of the solution to this
problem is to use a more precise, and often expensive, sensor.

However, according to the producers and the normal prac-
tice, some operations, such as a new calibration of the sensor,
SIMTAP project can be carried out to improve the measurement quality. The

In the recent years, several sectors, agriculture included, are
asking to increase production and therefore precision [1]-[3].

The application of remote monitoring techniques to the
agro-industrial and food processing facilities have proven to be
a favourable approach to improve the sustainability, the quality
of the hosted processes, the safety of products and personnel
and the efficacy of control systems [4], [5].

Nevertheless, some issues reduce the development and dif-
fusion of monitoring systems in particular in the agricultural
sector. The latter in fact often involves several applications that
require to measure and monitor different metrics, systems must
be easy to understand, manage and use, moreover systems and
sensors must be robust to resist to strongly aggressive environ-
ments. Moreover, nowadays, the market offers solutions that,
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present paper aims at investigating and assessing measure
improvements of accuracy and reliability achieved by different
models for the sensor calibration.

II. MATERIALS AND METHODS
A. SIMTAP project and ISMaCS system

The aquaculture is one of the sector where the continuous
monitoring is considered more and more necessary, in partic-
ular in IMTA (Integrated MultiTrophic Aquaculture) systems.

In this sector, the SIMTAP (Self-sufficient Integrated Multi-
Trophic AquaPonic) project [14] aims at combining in-land
aquaculture and hydroponic crops in a saltwater re-circulating
loop to reduce the required fish feed inputs (e.g., fishmeal, fish
oil, soybean, etc.) and the consumption of resources. In this
project, four experimental sites have been implemented and,
due to its multitrophic nature, SIMTAP requires that several
metrics must be under control.

For each site, a specific Integrated Smart Monitoring and
Control System (ISMaCS) is designed, built and installed. The
ISMaCS is made by nodes that have a wireless communication
to a gateway connected to the internet. While the hardware
and software are specifically designed for this equipment, the
ISMacCS uses probes available on the market. This integration
requires specific calibration and validation tests since the one
proposed by the producers can be insufficient.

Each node can host a few sensors to monitor metrics from
indoor, outdoor and water environments and system energy
consumption. One of the most important metric to monitor
is the dissolved oxygen (DO) in the fish tanks. While some
probes simply underwent to a validation test [9], the DO
failed the validation test and needed a calibrations procedure
as explained later.

B. Calibration procedure

The study was conducted with six sensors (Atlas Scientific

Industrial Dissolved Oxygen Probe ENV-50-DO) and one
sensor (OXY 70 Vio), used as a reference.
The aim of the study is to train a model able to apply a
calibration for dissolved oxygen measurement (Os) of the
sensors, based on the measure of a reference sensor. Each
sensor is submerged in water and is capable of measuring
dissolved oxygen, temperature and conductivity. Data were
acquired every 10 minutes for 4 days from 2021-03-17 to
2021-03-21.

After a data cleaning procedure (eliminating missing data,
NaN values etc...), the dataset is divided in train set and test
set, respectively composed by 80% and 20% of the data. Three
calibration models have been trained and tested: the difference
between them is in the number of the input features adopted.

The input features, i.e. dissolved oxygen (O3), water tem-
perature (T) and conductivity (C), are measured by the sensors.
The target are the values of Oy measured by the reference,
therefore the task is classified as a regression problem. The
test set will be used exclusively to evaluate and compare the
different calibration models.

The evaluation of the calibration models has been carried
out by using the Mean Absolute Error (MAE), the Identical
Reference Value (IRV) and the Acceptance Reference Value
ARV as defined in [15]. The three metrics have been computed
before and after that each calibration model is applied. The
models used to calibrate each sensor are Linear Regression
(LR) models.

Given a target quantity y and a set of M input features
T = T1,xs,..x) (With both y and x variable in the time),
the general definition of a linear model is:

M
yi =) w'a] +wo (M
j=1

where: wg, wy..., wps are the weights of the model. In this
case, the objective is to train the LR model in order to adjust
the measurements of each sensor according to their relation
with the reference instrument.

The weights of the model are computed using the Ordinary
Least Square method (OLS) [16]. The method consist in
finding the best set of weights w = wq,w;...,w, which
minimises a loss function L(w) defined as the sum of squared
differences between the reference and the sensor:

M

L(w) =" —yi(w))? = |ly" —y@)|[> @)
1=0

The first linear model takes into account only the values of
dissolved oxygen measured by a sensor. Therefore, (1) will
translate into:

057", = wy - Oy + wo 3)

where: 055"

;" 1is the i-th corrected measure for the corre-
sponding value Os;.
The second linear model considers also the water tempera-

ture 7', so that (1) becomes:

057", = wa - T; +wy - Og; +wo )

In addition, in the third model is introduced the water
conductivity C, therefore (1) can be rewritten as:

Ogor'r’i = w3 - Cz + wy - Tl + wq - OQi + wo (5)

C. Experimental campaign

To validate the ISMaCS measurements of the O, metric, an
experimental campaign has been performed. The tests, aimed
at acquiring data from different sensors and at comparing the
data collected by the sensors of ISMaCS system with the data
of the reference sensors, were planned and designed according
to the specific metric monitored.

Thus, the expected range of values (i.e., min, max, average
values) and the recording time step were properly selected.



TABLE I
SUMMARY OF RESULTS BEFORE AND AFTER CALIBRATION FOR EACH SENSOR AND MODEL

Metric | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6

No calibration MAE 1.21 1.61 1.78 2.00 1.71 2.19
AX 1.34 1.65 1.83 2.09 1.76 2.25

Model 1 MAE 0.19 0.13 0.19 0.13 0.14 0.14

AX 0.29 0.17 0.30 0.20 0.25 0.27

Model 2 MAE 0.17 0.10 0.19 0.14 0.13 0.14

AX 0.25 0.17 0.27 0.22 0.25 0.26

Model 3 MAE 0.18 0.11 0.23 0.15 0.14 0.17

AX 0.27 0.18 0.3 0.26 0.26 0.32

D. IRV and ARV E. MAE

The procedure reported in [15] describes the indices IRV
and ARV. They can be introduced in order to evaluate the
matching of two measurements.

As first, is to define AO; as the difference between the oxygen
value measured by the reference sensor and by the sensor to
validate at time ¢:

AO; = O — Opens (6)
Then, is to calculate the index AX as in the following:
£l s if s Us S 0
s > 0= AX = “:U . ?M 7
68" perc of AO; distr if py — g > 0
(7N
‘ o if >0
p<omax < [Iltor it
68" perc of AO; distr if s + o, <0
3

where: ps and o, are mean and standard deviation of the
distribution of AO;, respectively.

Then, we assume that:

- if AX < IRV = reference and investigated sensors
return identical measurements;

- if IRV < AX < ARV = measurements taken by the
investigated sensor are suitable for the experiment;

- if AX > ARV = measurements taken by the investi-
gated sensor are not suitable for the experiment.

In the present work the two parameters /RV and ARV have
been set as in the following:

- IRV =0.5 myg/l
- ARV =1.0 mg/l

As second row in Table I shows, for the no calibration case,
all the investigated sensors report a A X value bigger than ARV
entailing the measurements collected by the six investigated
sensors cannot be considered enough accurate for the purposes
of the study, i.e. their use in the SIMTAP project.

The MAE is a measure of dissimilarity between two vectors.
In this case is used to quantify the dissimilarity between the
time series of each one of the six sensors with the reference
sensor. MAE is defined in the following way [17]:

N

1
M _ E ref
AE = N £ |y1 —

yil )
where: N is the number of time-steps of the time series,
y"¢f; is the i-th value measured by the reference sensor and

?
y; is the ¢-th value measured by the sensor to investigate.

FE. Model evaluation

As reported before, from the original data set, the 80% of
data has been used as training and the 20% as test.
Each model were calibrated on the training set and saved
in order to be used to predict test data. The goodness of
prediction is then estimated by means of the MAE value of
each calibration model.

III. RESULTS

The three models have been qualitatively and quantitatively
evaluated in their ability to correct unseen sensors measure-
ment, in order to obtain values closer to the reference sensor.
As an example, in Fig. 1 is shown the the separation between
train and test set for the time series of the first sensor (orange
line), the time series of the data after the application of the
calibration following the model 1 (green line) and the time
series of the reference sensor (blue line).

It is clear that there is high difference between the measure-
ments of the sensor 1 and the ones of the reference sensor. That
seems to be mostly due to a systematic error. In this case, after
the training has been performed, (3) for model 1 becomes:

057" = 0.57- O3 + 8.48 (10)
In the case of model 2, (4) becomes:
05°™ = 0.535- O — 0.109 - T' + 8.47 (1
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Fig. 1. Time series of oxygen measurements for the reference sensor (blue
line) and the sensor 1 (orange line). The red vertical line separates the train
set (left) from the test set (right). The green line is the measurements of the
sensor 1 after the calibration following the model 1.
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Fig. 2. MAE (left) and AX (right) computed for the six sensors for every
calibration model for the test set. In blue the metrics computed with oxygen
measurement without any correction of a calibration model, in orange the
first model is used to calibrate the sensors, in green the results of the second
model and in red those of the third model.

and for model 3, (5) becomes:

05" = 0.54 - Oy — 0.137 - T +0.0568 - C' + 8.47  (12)

All the models highlight a strong bias (intercept of the linear
model) which may indicate a systematic error in the Oy sensor
measurements. Models 2 and 3 show an inverse dependency on
temperature, while model 3 shows a relatively low dependency
on the water conductivity.

In Fig. 2 is shown the comparison between MAE computed
before any calibration (blue bars), and after each calibration
(orange, green and red bar) for every sensor. The metrics are
computed only in the test set, shown in the previous figure 1.

For every sensor, the calibration procedure has a clear
benefit in terms of MAE, which is greatly reduced for every
model with respect to the raw data. On the other hand, it seems
that adding only the temperature as input - model 2 of (4) -
has a very small effect on the quality of the output results.
Moreover, adding the conductivity - model 3 of (5) - has a
slight degrading effect on the scores for every sensor.

In Table I are collected all the scores in terms of AX
and MAE for each sensor and for each model and before
calibration.

The data confirm that sensor measurements benefit from
a data level calibration, since every score, is reduced. In
particular, the values of AX after calibration, are in range
of acceptability, since the values are lower than ARV, and
therefore, as described in section II-D, the results can be
considered valid for the purpose of the study. Finally, the
calibration procedure allowed to increase the precision of
sensors bringing the reliability within the limits required by
the specific research, avoiding to substitute the sensors with
more precise - and therefore expensive - models.

IV. CONCLUSIONS

The rising need of precision in several sectors, agriculture
included, brings to the development of new monitoring sys-
tems specifically built for the single experience. These systems
often take advantages of probes offered by the market, how-
ever, the integration between market probes and home-built
systems, requires tests to validate the recorded measurements.
This paper investigates a methodology to perform a calibration
procedure when the probes fail the validation test.

The results shows that the comparisons of measurements of
six investigated sensors and reference sensor and the applica-
tion of simple correlation methods, can drive to improve the
sensor precision and to pass the validation test. All the tested
methods proved to drastically increase the precision, accuracy
and reliability with little differences among each other.

Under this light, the results confirms the importance of a
calibration procedure, even tough cannot provide a general
rank of method efficacy to apply to other experiments. For
this reason, the Authors suggest to test all the methods in
case of calibration and, considering the work was set in a
specific period of the year, to repeat the calibration procedure
periodically, to cover all the expected values monitored by the
sensor. Moreover, the paper shows that the integration of dif-
ferent metrics can provide a considerable accuracy increment.

Finally, the calibration procedure can improve the reliability
of the sensors, homogenise the measurements of different
sensors, and in some cases, avoid to purchase more expen-
sive sensors when probes fail the validation test making the
monitoring systems more affordable for the agricultural sector
improving the quality of the processes, the safety of products



and personnel, the efficacy of control systems increasing the
environmental sustainability of the farms.
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