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Abstract: The deep Boltzmann machine on the Nishimori line with a finite number
of layers is exactly solved by a theorem that expresses its pressure through a finite
dimensional variational problem of min–max type. In the absence of magnetic fields
the order parameter is shown to exhibit a phase transition whose dependence on the
geometry of the system is investigated.

1. Introduction

A deep (restricted) Boltzmann machine can be considered as a special case of the mean
fieldmulti-species spin glassmodel introduced in [11], further studied in [13,27]. Specif-
ically the set of spins is arranged into a geometry made of consecutive layers and only
interactions among spins belonging to adjacent layers are allowed. In particular intra-
layer interactions are forbidden. Such architectural assumption makes it impossible to
fulfill the positivity hypothesis under which the results of [11,27] were obtained. In fact
the positivity property, encoded in an elliptic condition, requires dominant intra-group
interaction with respect to inter-group ones. While the general deep (restricted) Boltz-
mann machine is still an unsolved problem (see nevertheless [1,3–5,12,18,23,24] for
centered Gaussian interactions), we present here its exact and rigorous solution in a
subregion of the phase space known as Nishimori line. In a previous paper [2] we have
fully solved the elliptic multi-species model on the Nishimori line, where the property of
replica symmetry, i.e. the concentration of the overlap, was shown to hold. Such property
indeed is fully general on the Nishimori line, see [10] on this respect, and does not rely
on any positivity assumption of the interactions. While the positivity properties carry
with them the typical bounds of Guerra’s method [19,20], here the technical support to
control and solve the model is based on the presence, on the Nishimori line, of a set of
identities relating magnetizations and overlaps expectations [16,25,26] and correlation
inequalities [21]. Our work provides the first exact solution of a disordered Statistical
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Mechanics model in a deep architecture and describes how the relative size of the layers
influences the phase transition.

The relevance of the Nishimori line is twofold. On one side it provides the possibility
to investigate the replica symmetric phase of the model through an exact solution for
arbitrary strength of the interactions. On the other side it represents a bridge between a
class of inference problems and Statistical Physics [26]. For instance the Sherrington–
Kirkpatrick model on the Nishimori line corresponds to the Wigner Spiked model in the
inference Bayesian optimal setting with binary signals [8,9]. Analogously, any multi-
speciesmean-fieldmodel on theNishimori line can be seen as a spatially coupledWigner
spiked model first introduced and studied in [6,7]. From the inference point of view here
we deal with a deep spatially coupled Wigner spiked model with K layers, which in
the case K = 2 coincides with the Wishart model (rank-one non-symmetric matrix
estimation [9]).

The paper is organized as follows. In Section 2we introduce themodel andwe present
the main results in three theorems. Section 3 is a collection of tools and preliminary
results, starting form the Nishimori identities and the correlation inequalities, up to the
adaptive interpolation method. The proofs are contained in Section 4, Section 5 collects
some conclusions and perspectives.

2. Definitions and Results

Consider a set of sites with cardinality N , divide it into K disjoint subsets, called layers
and denoted by {Lr }r=1,...,K with cardinality |Lr | = Nr and

∑K
r=1 Nr = N . To each

site i we associate an Ising spin σi and we denote σ = (σ1, . . . , σN ) a configuration of
spins belonging to the space�N = {+1,−1}N . The Hamiltonian of the model is defined
as:

HN (σ ):= −
K∑

r,s=1

∑

(i, j)∈Lr ×Ls

J̃ rs
i j σiσ j −

K∑

r=1

∑

i∈Lr

h̃r
i σi (1)

where the interaction coefficients and the external fields are independent Gaussian ran-
dom variables distributed as follows

J̃ rs
i j

iid∼ N
(μrs

2N
,
μrs

2N

)
, h̃r

i
iid∼ N (hr , hr ) , (2)

and the matrix μ := (μrs)r,s=1,...,K and the vector h := (hr )r=1,...,K have non-negative
entries. Furthermore μ has the following tridiagonal structure:

μ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 μ12 0 · · · 0
μ21 0 μ23 · · · 0

0 μ32 0
. . . 0

...
...

. . .
. . . μK−1,K

0 0 0 μK ,K−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3)

and is assumed to be symmetric without loss of generality. The geometrical architecture
of the model is illustrated in Fig. 1.

We point out that the very special choice of theGaussian distribution (2), havingmean
values and variances tied to be the same, is called Nishimori line in Physics literature
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Fig. 1. Graph of the interactions between layers

[26]. We will recall correlation identities and inequalities holding on the Nishimori line
in the next Section.

We denote

mr (σ ) := 1

Nr

∑

i∈Lr

σi , qr (σ, τ ) := 1

Nr

∑

i∈Lr

σiτi ; (4)

m(σ ) := (mr (σ ))r=1,...,K , q(σ, τ ) := (qr (σ, τ ))r=1,...,K (5)

with bold characters here and below standing for vectors and σ, τ ∈ �N = {−1, 1}N .
We also set

Δ := (αrμrsαs)r,s=1,...,K , α̂ := diag(α1, α2, . . . , αK ) , (6)

where αr = Nr/N are called the form factors. Δ is the effective interaction matrix and
encodes all the information on the interactions of the system. For later convenience we
introduce also the matrix

M := (μrsαs)r,s=1,...,K (7)

We notice that Δ and M are tridiagonal matrices too.
It is useful to express the Hamiltonian (1) in terms of centered Gaussian random

variables plus a deterministic term (in vector notation):

HN (σ ) = − 1√
2N

K∑

r,s=1

∑

(i, j)∈Lr ×Ls

J rs
i j σiσ j −

K∑

r=1

∑

i∈Lr

hr
i σi − N

2
(m,Δm) − N (α̂h,m)

(8)

where (·, ·) denotes the Euclidean inner product in R
K and

Jrs
i j

iid∼ N (0, μrs) , hr
i

iid∼ N (0, hr ) . (9)
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The random term in (8) corresponds to the Hamiltonian studied in [3], but the addition
of a deterministic part changes the properties of the model.

We denote the random pressure per particle by

pN := 1

N
log

∑

σ∈�N

exp (−HN (σ )) (10)

and its quenched average by

p̄N (μ,h) := E pN , (11)

where E is the expectation with respect to all the Gaussian random variables.

Remark 1. While throughout this paper we keep the form factors αr ’s constant as N →
∞, all the results hold also under the weaker hypothesis that Nr/N → αr ∈ (0, 1)
(see also Remark 6, Sect. 4.3 for vanishing αr ’s). Indeed any vanishing correction to
αr doesn’t change the thermodynamic limit of the quenched pressure density (11). This
can be seen proving by interpolation method that at given N the quenched pressure is a
Lipschitz function of Δ w.r.t. the entrywise matrix norm

∑
r,s≤K |Δr,s |.

The (random) Boltzmann–Gibbs average will be denoted by

〈·〉N :=
∑

σ∈�N
e−HN (σ )(·)
Z N

, Z N :=
∑

σ∈�N

e−HN (σ ). (12)

To help the presentation we will occasionally make explicit the dependence of the
Boltzmann–Gibbs measure on further parameters by using sub and superscripts, for
instance 〈·〉(ε)N ,t . In the previous definitions (10)–(12) we have chosen to reabsorb the in-
verse absolute temperature β in the parameters μrs and hr . The first result of this paper
is the computation of the random pressure (10) in the thermodynamic limit.

Theorem 1. (Solution of the model) The random pressure (10) of a K -layer deep Boltz-
mann machine on the Nishimori line converges almost surely in the thermodynamic limit
and its value is given by a K -dimensional variational principle:

lim
N→∞ pN

a.s.= lim
N→∞ p̄N (μ,h) = sup

xo

inf
xe

pvar (x;μ,h) , (13)

wherexo andxe denote the vectors of the odd and even components of the order parameter
x ∈ [0, 1)K respectively,

pvar (x;μ,h) :=
K∑

r=1

αr ψ ((Mx)r + hr ) +
K∑

r=1

Δr,r+1

2
[(1 − xr )(1 − xr+1) − 2xr xr+1]

(14)

and for any x ≥ 0

ψ(x) := Ez log 2 cosh
(
z
√

x + x
)

, z ∼ N (0, 1). (15)

Moreover, defining x̄ as the solution of the variational problem (13), we have

lim
N→∞ E〈qr 〉N = lim

N→∞ E〈mr 〉N = x̄r (16)

for every r = 1, . . . , K and for all the points of the phase space (μ, α̂,h) where x̄ is
h-differentiable and the matrix Δ is invertible.
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The proof of Theorem 1 relies on the adaptive interpolation method [8] combined
with a concentration result and with the Nishimori identities, that will be presented in
the next section. The main difference with the model solved in [2] is that the matrix Δ is
not definite, indeed its eigenvalues have alternating signs. This entails that the remainder
identified by interpolation has not a definite sign and cannot be discarded a priori at the
expense of an inequality. Moreover, the concentration of the overlap strongly depends
on a notion of regularity of the path followed by the adaptive interpolation. Hence one
has to carefully choose a path that is regular and allows also to exploit the convexities
of the two sums involved in the functional (14).

Secondly, we focus on the properties of the consistency equation obtained from the
optimization problem (13) when the matrix Δ is invertible, that is when K is even.
The stability of the optimizers of (13) is a more delicate problem with respect to the
convex multi-species case [2], due to the min-max nature of the variational principle.
In the following, given a square matrix A we denote by ρ(A) its spectral radius and
by A(eo) the submatrix of A obtained by keeping only even rows and odd columns
of A. An analogous definition is given for A(oe), A(oo), A(ee). Notice that, when K is
even, Δ(eo) is an upper triangular K/2 × K/2 square matrix with non-zero diagonal
elements and therefore it is invertible. Similar considerations hold for the sub-matrix
Δ(oe) = [Δ(eo)]T . We prove the following

Theorem 2. Let K be even and h = 0. If ρ([M2](oo)) < 1 then x = 0 is the unique
solution to the variational problem (13). Conversely, if ρ([M2](oo)) > 1 then the solution
of (13) is a vector x = x̄(M) with strictly positive components satisfying the consistency
equation:

xr = Ez tanh
(

z
√

(Mx)r + (Mx)r

)
∀ r = 1, . . . , K (17)

where z denotes a standard Gaussian random variable.

The proof of Theorem2 amounts to the computation of theHessianmatrix of an auxiliary
function introduced later and in a check of its eigenvalues. The peculiar form of the
consistency equations due to the structure (3) plays a central role. Theorem 2 implies
the existence of a phase transition in our model localized at zero magnetic field and
unitary spectral radius as discussed inRemark 2 below.The followingProposition further
clarifies the structure of the phase transition and how the system’s geometry, encoded in
the form factors αr ’s, can influence it.

Proposition 1. For any given interaction matrix μ , we have

sup
α1,...,αK

ρ
(
[M2](oo)

)
= 1

4
max

r
μ2

r,r+1 (18)

where the sup on the l.h.s. is taken over the form factors α1, . . . , αK ≥ 0 ,
∑K

r=1 αr = 1
and the max on the r.h.s. is taken over r = 1, . . . , K − 1 . Furthermore the sup on the
l.h.s. of (18) is attained if and only if one of the following conditions is verified:

(a) there exists r∗ ∈ {1, . . . , K − 1} such that

αr∗ = αr∗+1 = 1

2
, μr∗, r∗+1 = max

r
μr,r+1 ; (19)
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(b) there exists r∗ ∈ {2, . . . , K − 1} such that

αr∗ = αr∗−1 + αr∗+1 = 1

2
, μr∗−1, r∗ = μr∗, r∗+1 = max

r
μr,r+1 . (20)

Remark 2. For even K , Proposition 1 together with Theorems 1 and 2 show that if the
interaction strengthsμr,r+1 < 2 for all r = 1, . . . , K −1, then themagnetisations and the
overlaps vanish as N → ∞ for every choice of the form factors (α1, . . . , αK ) ∈ (0, 1)K .
By Theorem 2 x̄ is not identically zero on the space of parameters (μ, α̂) , hence the
limiting quenched pressure (13) cannot be an analytic function.

Proposition 1 also shows that as soon asμr,r+1 > 2 for some r = 1, . . . , K −1, then,
by suitably localizing only two extensive layers near the maximal interaction (condition
(19)), their magnetisations and overlaps turn out to be positive in the limit N → ∞.

Finally, we prove a uniqueness result that holds for arbitrary spectral radius.

Theorem 3. Let hr > 0 ∀ r = 1, . . . , K . The consistency equation

xr = Ez tanh
(

z
√

(Mx)r + hr + (Mx)r + hr

)
∀ r = 1, . . . , K (21)

admits a unique solution x = x̄(M,h) ∈ (0, 1)K .

3. Preliminary Results

3.1. Nishimori identities and correlation inequalities. The main thermodynamic prop-
erties of the model are consequences of a family of identities and inequalities for cor-
relation functions that are due to the specific setting (2). The identities were introduced
in the original work by Nishimori [25] while the inequalities were proved in [21,22].
The proof of the Nishimori identities can be found in the book [15] (Paragraph 2.6). In
particular, for our purposes we will use the following:

E[〈σi 〉2n
N ] = E[〈σi 〉2n−1

N ] , n = 1, 2, 3, . . . (22)

E[〈σiσ j 〉2N ] = E[〈σiσ j 〉N ] . (23)

From the previous relations it follows that on the Nishimori line magnetizations and
overlaps moments coincide. This can be seen by

E[〈qs〉N ] =
∑

i∈Ls

1

Ns
E[〈σi 〉2N ] =

∑

i∈Ls

1

Ns
E[〈σi 〉N ] = E[〈ms〉N ] , (24)

E[〈qr qs〉N ] =
∑

(i, j)∈Lr ×Ls

E[〈σiσ j 〉2N ]
Nr Ns

=
∑

(i, j)∈Lr ×Ls

E[〈σiσ j 〉N ]
Nr Ns

= E[〈mr ms〉N ] ,

(25)

where the expectations 〈qs〉N and 〈qr qs〉N are taken with respect to the replicated Gibbs
measure. As a consequence we have:

E

〈
(q,Δq)

〉

N
= E

〈
(m,Δm)

〉

N
. (26)
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Concerning the correlation inequalities on the Nishimori line [16,21,22] (see also The-
orem 2.18 in [15] for a straightforward proof) we have that:

∂ p̄N

∂hr
= 1

2N

∑

i∈Lr

E[1 + 〈σi 〉N ] = αr

2
(1 + E〈mr 〉N ) ≥ 0 , (27)

∂2 p̄N

∂hr∂hs
= αr

2

∂E〈mr 〉N

∂hs
= 1

2N

∑

(i, j)∈Lr ×Ls

E

[(〈σiσ j 〉N − 〈σi 〉N 〈σ j 〉N
)2
]

≥ 0 .

(28)

Hence both the quenched pressure per particle and themagnetizations are non-decreasing
with respect to each parameter hr , r = 1, . . . , K .

3.2. One-body system on the Nishimori line. It is useful to consider the following simple
Hamiltonian on the Nishimori line, where only one-body interactions are taken into
account:

H (0)
N (σ ) := −

N∑

i=1

(zi
√

h + h) σi , zi
iid∼ N (0, 1) (29)

with h > 0. It is easy to show that the pressure of this model coincides with the function
ψ(h) defined by (15):

p(0)
N := 1

N
E log

∑

σ∈�N

e−H (0)
N (σ ) = ψ(h) . (30)

Since the Boltzmann–Gibbs average of a spin in the one body system equals 〈σ1〉(0)N =
tanh

(
z1

√
h + h

)
, the Nishimori identities entail the following identities:

E tanh2n−1
(

z
√

h + h
)

= E tanh2n
(

z
√

h + h
)

(31)

for every n ∈ N, n ≥ 1. Starting from expression (15) we are going to determine the
sign of the first derivatives of ψ . Gaussian integration by parts and identity (31) for
n = 1 show that

ψ ′(h) = 1

2

(
1 + E tanh

(
z
√

h + h
))

> 0 . (32)

Using again Gaussian integration by parts and identity (31) for n = 1, 2, one finds:

ψ ′′(h) = 1

2
E

[(
1 − tanh2

(
z
√

h + h
))2

]

> 0 . (33)

The sign of the third derivative can be obtained avoiding Gaussian integration by parts.
Indeed by setting y = z

√
h + h, replacing z

2
√

h
+ 1 = y+h

2h in the computations and using
the identities (31) for n = 2, 3, one finds:

ψ ′′′(h) = −1

h
E

[(
1 − tanh2 y

)2
y tanh y

]

− E

[(
1 − tanh2 y

)2
tanh2 y

]

< 0 .

(34)

The convexity of ψ will be crucial in the proof of Theorem 1. In particular, we will
use the following
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Lemma 1. The function

f (x) :=
K∑

r=1

αr ψ((Mx)r ) (35)

is convex for x such that Mx ≥ 0 component-wise.

Proof. ψ is convex on R≥0 by equation (33). Then, using the linearity of (Mx)r , it is
easy to verify that for any λ ∈ [0, 1] and x1, x2 ∈ A we have:

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2) . (36)

��
In the proof of Theorem 3 we will use the following

Lemma 2. Let z be a standard Gaussian random variable. The function

F(h) := E tanh
(

z
√

h + h
)

(37)

is strictly positive, increasing and concave for h > 0.

Proof. It follows immediately by equations (31), (33), (34), since F = 2ψ ′ − 1 . ��
Remark 3. As a consequence the function F is invertible on [0,∞) . Its inverse F−1 is
non negative and increasing on [0, 1) . Moreover one has

lim
x→1− F−1(x) = +∞ . (38)

3.3. Interpolating model. We now introduce an interpolating model that compares the
original model with a one-body model with suitably tuned external field.

Definition 1 (Interpolating model). Let t ∈ [0, 1]. The Hamiltonian of the interpolating
model is:

Hσ (t) := −
√
1 − t√
2N

K∑

r,s=1

∑

(i, j)∈Lr ×Ls

J rs
i j σiσ j − (1 − t)

N

2
(m,Δm) +

−
K∑

r=1

∑

i∈Lr

(√
Qε,r (t) Jr

i + Qε,r (t)
)

σi −
K∑

r=1

∑

i∈Lr

hr
i σi − N (α̂h,m)

(39)

with Jr
i

iid∼ N (0, 1) independent of all the other Gaussian random variables, and

Qε(t) := ε + M
∫ t

0
qε(s) ds, εr ∈ [sN , 2sN ], sN ∝ N− 1

16K .

Here Qε =: (Qε,r )r=1,...,K , while qε := (qε,r )r=1,...,K denotes a vector of K non-
negative functions that will be suitably chosen in the following.

Now we can write the sum rule, which is contained in the following proposition.
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Proposition 2 (Sum rule). The quenched pressure of the model rewrites as:

p̄N (μ,h) = O(sN ) +
K∑

r=1

αr ψ(Qε,r (1) + hr )

+
∫ 1

0
dt

[
(1 − qε(t),Δ(1 − qε(t)))

4
− (qε(t),Δqε(t))

2

]

+
1

4

∫ 1

0
dt Rε(t, μ,h) ,

(40)

where the remainder is:

Rε(t, μ,h) = E

〈
(m − qε(t),Δ(m − qε(t)))

〉(ε)

N ,t
. (41)

Proof. We stress that the interpolating model is on the Nishimori line for any t ∈ [0, 1],
as can be seen by direct inspection. This allows us to use the identities and inequalities
for any value of the interpolating parameter. See Proof of Proposition 2 in [2] for the
details. ��

The tridiagonal form of Δ allows us to specialize the previous sum rule as follows:

p̄N (μ,h) = O(sN ) +
K∑

r=1

αr ψ
(
Qε,r (1) + hr

)

+
K∑

r=1

Δr,r+1

2

∫ 1

0
dt
[
(1 − qε,r (t))(1 − qε,r+1(t)) − 2qε,r (t)qε,r+1(t)

]

+
K∑

r=1

Δr,r+1

2

∫ 1

0
dt E

〈
(mr − qε,r (t)) (mr+1 − qε,r+1(t))

〉(ε)
N ,t ,

(42)

or better, using the notation introduced for Theorem 2,

p̄N (μ,h) = O(sN ) +
K∑

r=1

αr ψ
(
Qε,r (1) + hr

)

+
1

2

∫ 1

0
dt
[
(1o − qε,o(t),Δ

(oe)(1e − qε,e(t))) − 2(qε,o(t),Δ
(oe)qε,e(t))

]

+
1

2

∫ 1

0
dt E

〈
(mo − qε,o(t),Δ

(oe)(me − qε,e(t)))
〉(ε)
N ,t ,

(43)

where again the subscripts o, e denote the odd or even components of a vector, 1 :=
(1)r=1,...,K . We also denote

Qε,o(t) = εo + M (oe)
∫ t

0
qε,e(s) ds , Qε,e(t) = εe + M (eo)

∫ t

0
qε,o(s) ds . (44)
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The sum rules (42), (43) motivate the definition of the variational pressure (14) that for
future convenience can be rewritten as:

pvar (x;μ,h) =
K∑

r=1

αr ψ ((Mx)r + hr ) +
(1o − xo,Δ

(oe)(1e − xe))

2
− (xo,Δ

(oe)xe) .

(45)

Remark 4. The variational function pvar is convex in the even components xe and the
odd components xo separately. This is due to the fact that the two bilinear forms in (45)
have vanishing second derivatives w.r.t. pure odd or even components, while the terms
containing ψ are convex by Lemma 1.

The sum rule exhibits a remainder (namely (41)) to deal with. Let us first introduce
the following

Definition 2 (Regularity of ε �−→ Qε(·)). We will say that the map ε �−→ Qε(·) is
regular if

det

(
∂Qε(t)

∂ε

)

≥ 1 ∀t ∈ [0, 1] (46)

This has to be combined with Liouville’s formula, a standard analysis result that we
report here for the reader’s convenience.

Lemma 3 (Liouville’s formula). Consider two matrices whose elements depend on a
real parameter: Φ(t), A(t). Suppose that Φ satisfies the Cauchy problem

{
Φ̇(t) = A(t)Φ(t)
Φ(0) = Φ0

. (47)

Then:

det(Φ(t)) = det(Φ0) exp

{∫ t

0
ds Tr(A(s))

}

(48)

Now, the remainder (41) can be proved to concentrate under the regularity hypothesis,
as stated in the following

Lemma 4 (Concentration). Suppose ε �−→ Qε(·) is a regular map. For every r =
1, . . . , K consider the quantity

Lr := 1

Nr

∑

i∈Lr

(

σi +
Jr

i σi

2
√

Qε,r (t)

)

, Jr
i

iid∼ N (0, 1) (49)

and introduce the ε-average:

Eε[·] =
K∏

r=1

(
1

sN

∫ 2sN

sN

dεr

)

(·) . (50)

We have:

EεE

〈 (
Lr − E〈Lr 〉(ε)N ,t

)2 〉(ε)

N ,t
−→ 0 as N → ∞ (51)
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and

E

〈 (
mr − E〈mr 〉(ε)N ,t

)2 〉(ε)

N ,t
≤ 4E

〈 (
Lr − E〈Lr 〉(ε)N ,t

)2 〉(ε)

N ,t
(52)

for every r = 1, . . . , K . Therefore the magnetization (or the overlap) concentrates in
ε-average.

The proof is carried out by treating the thermal and disordered fluctuations of Lr
separately. Actually, an estimate on the L2−convergence speed of the random pressure
to the quenchedone as N → ∞ is required and itwill be given in the proofs sectionbelow.
See Lemma 3 and Appendix A in [2] for the details. The role of ε is that of a regularizing
perturbation and it is crucial for the proof. Its introduction intuitively allows to avoid
critical points where the limiting pressure presents singularities and concentration may
not occur, thus helping us to select always the stable state of the system. Indeed, for
vanishing external magnetic fields h = 0 and in absence of ε, the system remains stuck
in a vanishing average magnetization state because of the resulting spin flip symmetry in
the Hamiltonian. However, as stated in Theorem 2 in the appropriate range of parameters
the latter is thermodynamically unstable, meaning that any arbitrarily small magnetic
field would bring the magnetization to positive values.

4. Proofs

4.1. Proof of Theorem 1. The almost sure equality in (13) is a standard result based on
the following concentration inequality:

Proposition 3. There exists C = C(μ,h) > 0 such that for every x > 0

P (|pN − p̄N (μ,h)| ≥ x) ≤ 2 exp

(

− N x2

4C

)

. (53)

As a consequence

E[(pN − p̄N (μ,h))2] ≤ 8C

N
. (54)

Proof. The random pressure pN is a Lipschitz function of the independent standard
Gaussian variables Ĵ = (Jrs

i j /
√

μrs)i, j,r,s , ĥ = (hr
i /

√
hr )i,r . Indeed:

N 2 |∇Ĵ ,ĥ pN |2 ≤ N

(
(1,Δ1)

2
+ (α̂h, 1)

)

≡ C N (55)

The inequality (53) then follows by a known concentration property of the Gaussian
measure (see Theorem 1.3.4 in [29]). A tail integration finally leads to (54). ��
Since the r.h.s. in (53) is summable the Borel-Cantellli Lemma guarantees almost sure
convergence. Now we move to the proof of the variational principle, i.e. the second
equality in (13) which is going to be achieved through upper and lower bounds. For
what follows, we neglect all the sub and superscripts in the Boltzmann–Gibbs averages,
except for the t-dependence.
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Lower bound. We select a path contained in [0, 1)K by means of the following coupled
ODEs

Q̇ε,e(t) = M (eo) xo =: fe(t,Qε(t)) , Qε,e(0) = εe (56)

Q̇ε,o(t) = M (oe)
E〈me〉t =: fo(t,Qε(t)) , Qε,o(0) = εo , (57)

where f(t,Q) is the velocity field of the ODE. The perturbation is here introduced as an
initial condition in order to have the interpolating functions in the form (44). Notice that
fe is constant, while fo is a positive Lipschitz function of Qε(t) ∈ (0,∞)K thanks to
identity (28) (where N is fixed). Therefore, by Cauchy-Lipschitz’s theorem, the system
of ODEs (56)–(57) has a unique global solution Qε(t) , t ∈ [0, 1] , whose components
are positive.

By (56)–(57) we have Δ(eo)qε,o(t) = Δ(eo)xo and Δ(oe)qε,e(t) = Δ(oe)
E〈me〉t ,

hence:
∫ 1

0
dt
(
1o − qε,o(t) , Δ(oe)(1e − qε,e(t))

)

=
(

1o − xo , Δ(oe)
(

1e −
∫ 1

0
dt E〈me〉t

))

(58)

and reasoning in a similar way for the other t-integrations appearing in the sum rule (43)
we obtain:

p̄N = O(sN ) + pvar

(

xo ,

∫ 1

0
dt E〈me〉t

)

+
∫ 1

0
dt Rε(t)

≥ O(sN ) + inf
xe

pvar (xo, xe) +
∫ 1

0
dt Rε(t) ,

(59)

where the reminder is

Rε(t) = 1

2
E
〈 (

(mo − xo) , Δ(oe) (me − E〈me〉t )
) 〉

t . (60)

Using Cauchy–Schwartz’s inequality,

|Rε(t)| ≤ 1

2

∥
∥
∥μ(oe)

∥
∥
∥ E

1/2〈|α̂(oo)(mo − xo)|2〉t E
1/2〈|α̂(ee)(me − E〈me)〉t |2〉t , (61)

thus, provided that the map ε �→ Qε(t) is regular, the remainder Rε(t) vanishes in ε-
average as N → ∞ by Lemma 4. To show thatQε is regular we introduce the following
matrix fields:

Φε(t) := ∂ Qε(t)

∂ε
, Aε(t) := ∂ f(t,Qε(t))

∂ Qε(t)
(62)

Applying the chain rule we have:

Φ̇ε(t) = ∂ Q̇ε(t)

∂ε
= Aε(t) Φε(t) , Φε(0) = �1 , (63)

hence, by Liouville’s formula (48) the Jacobian det(Φε(t)) is

det
(∂Qε

∂ε
(t)
)

= exp

{∫ t

0
ds Tr

(
Aε(s)

)
}

. (64)
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Now, using equations (56)–(57) one can compute:

Tr
(

Aε(t)
) =

K∑

r=1

(
Aε(t)

)
r,r =

∑

r odd

∂
(
M (oe)

E〈me〉t
)

r

∂ Qε,r (t)

=
∑

r odd

∑

r ′even
Mrr ′

∂ E〈mr ′ 〉t

∂ Qε,r (t)
≥ 0

(65)

where non-negativity is a consequence of the correlation inequality (28), since Qε,r (t)
can be seen as the variance of an external field on the Nishimori line in the interpolating
Hamiltonian (39). Combining (64) and (65), it follows that Qε is regular, as desired.

Now, averaging on ε and tanking the lim infN→∞ in inequality (59) we have

lim inf
N→∞ p̄N ≥ inf

xe
pvar (xo, xe) + lim inf

N→∞ Eε

∫ 1

0
dt Rε(t) . (66)

The last term vanishes by Fubini’s theorem, dominated convergence and Lemma 4.
Finally, optimizing w.r.t. xo we get:

lim inf
N→∞ p̄N ≥ sup

xo

inf
xe

pvar (xo, xe) . (67)

Upper bound. Now, we set

Q̇ε,e(t) = M (eo)F(M (oe)
E〈me〉t + ho) , Qε,e(0) = εe (68)

Q̇ε,o(t) = M (oe)
E〈me〉t , Qε,o(0) = εo . (69)

In (68) the application of F , defined in (37), to the vector M (oe)
E〈me〉t + ho has to be

understood as component-wise. For future convenience let us set

D(x,h) := diag
{

F ′ ((Mx)r + hr )
}

r=1,...,K . (70)

With a slight abuseof notationwewill stress the dependenceofD(oo)(x,h) andD(ee)(x,h)

on the even and odd components of x respectively as follows

D(oo)(x,h) ≡ D(oo)(xe,h) , D(ee)(x,h) ≡ D(ee)(xo,h) . (71)

M (eo)F(M (oe)
E〈me〉t + ho) is a positive function ofQε(t) with bounded derivatives for

fixed N thanks to Lemma 2, indeed

∂

∂ Qε,r
F(M (oe)

E〈me〉t + ho) = D(E〈me〉t ,h)(oo)M (oe) ∂E〈me〉t

∂ Qε,r
, (72)

This ensures the existence of a unique global solution over [0, 1] to the system of ODEs
(68)–(69). Moreover, the latter implies also that the map ε �−→ Qε(·) is still regular,
because F ′ is positive as proved in Lemma 2 and ∂E〈me〉t

∂ Qε,r
≥ 0 thanks again to (28). This

guarantees the positivity of the trace in (64) and forces the vanishing of the remainder
Rε in ε-average by Lemma 4. Using Jensen’s inequality, by the convexity of ψ we have

K∑

r=1

αrψ

((

M
∫ 1

0
qε(t) dt + h

)

r

)

≤
K∑

r=1

αr

∫ 1

0
ψ
(
(Mqε(t) + h)r

)
dt (73)
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and inserting it into the sum rule (43) we get

p̄N ≤ O(sN ) +
∫ 1

0
dt pvar (Fε,o(t), E〈me〉t ) +

∫ 1

0
Rε(t) dt

= O(sN ) +
∫ 1

0
dt inf

xe
pvar (Fε,o(t), xe) +

∫ 1

0
Rε(t) dt , (74)

where Fε,o(t) := F(M (oe)
E〈me〉t + ho) for brevity. As far as the last equality is con-

cerned, we used the following:

inf
xe

pvar (Fε,o(t), xe) = pvar (Fε,o(t), E〈me〉t ) . (75)

This is a consequence of the convexity of pvar inxe (seeRemark 4). In fact, a computation
of the gradient of pvar w.r.t. xe evaluated at E〈me〉t yields:

∂pvar

∂xe
(Fε,o(t), xe)

∣
∣
∣
∣
E〈me〉t

= Δ(eo)

2
[1o + Fε,o(t)]

+
Δ(eo)

2
[−1o + Fε,o(t)] − Δ(eo)Fε,o(t) = 0 , (76)

where we explicitly notice that the first term comes from the derivative of ψ (32). Then,
taking the sup of pvar over the odd components and the ε-average we get:

p̄N ≤ O(sN ) + sup
xo

inf
xe

pvar (xo, xe) + Eε

∫ 1

0
Rε(t) dt . (77)

Applying Lemma 4, Fubini’s theorem and dominated convergence the two boundsmatch
after sending N → ∞.

Proof of (16). Equations (27) and (28) imply that the quenched pressure is convex in
each hr . Hence it is possible to exchange the derivative w.r.t. hr in (27) with the N → ∞
limit where x̄ is differentiable in hr (see Lemma IV.6.3 in [17]). Since for invertible Δ

the optimal order parameter must be a critical point of pvar (see Proposition 4 below)
by (32) and (14) we have that:

lim
N→∞

∂ p̄N

∂hr
= ∂

∂hr
pvar (x̄(M,h);μ,h) = ∂pvar

∂x

∣
∣
∣
∣
x̄(M,h)

∂ x̄(M,h)

∂hr
+

∂pvar

∂hr
= ∂pvar

∂hr

= αr ψ ′((M x̄(M,h))r + hr ) = αr

2

[
1 + Ez tanh

(
z
√

(M x̄)r + hr + (M x̄)r + hr

)]

= αr

2
[1 + x̄r ] . (78)

A comparison with (27) and the Nishimori identity (22) lead to the identification:

lim
N→∞ E〈qr 〉N = lim

N→∞ E〈mr 〉N = x̄r . (79)

Remark 5. Assume for now that K is even. Observe that the entire proof could have been
carried out also by computing all the infxe over the convex set:

A := {xe | M (oe)xe + ho ≥ 0 component-wise} ⊇ [0, 1)K/2 , (80)
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on which all the functions involved are still real and well defined. This freedom is
essentially due to the convexity of pvar in xe. Indeed, pvar has always a critical point in
the domain A for any fixed xo ∈ [0, 1)K/2, that must coincide with its minimum point
by convexity as can be seen by direct inspection

∂pvar

∂xe

∣
∣
∣
∣
x̄e

= Δ(eo)

2

[
−xo + F(M (oe)x̄e + ho)

]
= 0 ⇔ x̄e = [M (oe)]−1(F−1(xo) − ho) .

(81)

The inequality (59), that leads to the lower bound, clearly holds also for xe ∈ A ⊇
[0, 1)K/2. The validity of (75) is less trivial and is due to the special choice Fε,o(t). In
this case in fact, the critical point falls inside [0, 1)K/2 and this lets us extend the domain
of xe to A without any loss of generality thanks to the mentioned convexity in xe. We
will see later that even with this extension the point that realizes the sup inf lies inside
the cube [0, 1)K .

4.2. Proof of Theorem 2. For this proof we rely on Remark 5, this will ease our com-
putations. Let us write the gradient of (14)

∂pvar (x;μ,h)

∂xr
=
(

Δ

2
(−x + F(Mx + h))

)

r

= Δr,r+1

2
[−xr+1 + F((Mx)r+1 + hr+1)] +

Δr,r−1

2

[−xr−1 + F((Mx)r−1 + hr−1)
]

.

(82)

where we have used (31). In absence of external magnetic field (h = 0) x = 0 is a critical
point for pvar , namely a solution to the consistency equation obtained by equating (82)
to 0.

First of all, by Remark 4 and Remark 5 we infer that the optimization w.r.t. the even
components xe is always stable, in the sense that there is always one optimizer once the
odd components xo are fixed and it belongs to A. Define now the auxiliary function:

π(xo;μ,h) := inf
xe∈A

pvar (xo, xe;μ,h) = pvar (xo, x̄e;μ,h) , (83)

with x̄e defined in (81). The following proposition investigates the possibility to have
boundary solutions to the variational problem.

Proposition 4. Let K be even. The points xo at which the supxo
π(xo;μ,h) is attained

fulfill the consistency equation:

x̄e = F(M (eo)xo + he) . (84)

As a consequence the necessary condition forx to realize the supxo
infxe pvar (xo, xe;μ,h)

is to be a critical point, namely to satisfy (84).

Proof. Using (81), the gradient of π is:

∂π(xo;μ,h)

∂xo
= ∂pvar

∂xo
+

∂pvar

∂xe

∣
∣
∣
∣
x̄e

∂ x̄e

∂xo
= Δ(oe)

2

[
−x̄e + F(M (eo)xo + he)

]
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= α̂(oo)

2

[
−F−1(xo) + ho + M (oe)F(M (eo)xo + he)

]
. (85)

We start by considering the case h = 0. One can immediately rule out the possibility
that the sup is attained at the right border, i.e. x2l−1 → 1− for some l, because thanks to
(38) ∂x2l−1π → −∞. Then, the necessary condition for a point xo ∈ [0, 1)K/2 to realize
the sup is that:

−F−1(xo) + M (oe)F(M (eo)xo) ≤ 0 , (86)

component-wise, where equality holds for those components for which x2l−1 > 0. If
we set M0,1 = MK ,K+1 = 0, the generic 2l − 1 component of the previous is given by

− F−1(x2l−1) + M2l−1,2l−2F(M2l−2,2l−3x2l−3 + M2l−2,2l−1x2l−1)

+ M2l−1,2l F(M2l,2l−1x2l−1 + M2l,2l+1x2l+1) (87)

whence we understand that if x2l−1 = 0 the only chance for the previous to be non
positive is to have also x2l−3 = x2l+1 = 0 because F is positive and monotonic. On the
contrary, if x2l−1 > 0 first the corresponding gradient component must vanish; second
by looking at the 2l + 1 component for instance

− F−1(x2l+1) + M2l+1,2l+2F(M2l+2,2l+3x2l+3 + M2l+2,2l+1x2l+1)

+ M2l+1,2l F(M2l,2l+1x2l+1 + M2l,2l−1x2l−1) (88)

we see that the last term is strictly positive. Necessarily, x2l+1 must be strictly positive
too with the corresponding gradient component that vanishes, and so on. Similar consid-
erations hold for x2l−3. Finally, iterating these arguments, we infer that the supremum
is attained at a point xo such that:

xo = 0 or x̄e = F(M (eo)xo) . (89)

The first in particular implies that also x̄e = 0 . In both cases we can say that (84) is
satisfied.

When any hr is strictly positive it is immediate to see that there is a component of (85)
with a positive contribution, the corresponding component of xo must then be positive.
Therefore one iterates the same arguments as above obtaining again (84). In any case,
by (81) the sup inf is attained at critical points of pvar . ��

Using property (33), the Jacobian matrix of F(Mx + h) is

DF(Mx + h) = D(x,h)M . (90)

D(x,h), defined in (70), is diagonal, positive definite, invertible and its spectral radius
is bounded by 1. From (85), an application of the Inverse Function Theorem leads to the
Hessian matrix

Hxoπ = Δ(oe)

2

[

−∂ x̄e

∂xo
+

∂

∂xo
F(M (eo)xo + he)

]

= Δ(oe)

2

[
−[M (oe)]−1[D(oo)(x̄e,h)]−1 +D(ee)(xo,h)M (eo)

]
. (91)
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Thanks to the peculiar tridiagonal form of M we also have that

[D(x,h)M](oe)[D(x,h)M](eo) = [(D(x,h)M)2](oo) , (92)

from which by a simple rearrangement we can write the Hessian in its final form

Hxoπ = α̂(oo)[D(x̄e,h)(oo)]−1

2

[
−�1 + (D(x,h)M)2

](oo)

= [α(oo)]1/2[D(oo)]−1/2

2

[
−�1 + S(oo)

]
[α(oo)]1/2[D(oo)]−1/2 (93)

with

S(oo) := [D(oo)]1/2[α̂(oo)]−1/2Δ(oe)D(ee)[α̂(ee)]−1Δ(eo)[α̂(oo)]−1/2[D(oo)]1/2 (94)

where for brevitywe have neglected all the dependencies after the second equality in (93)
and used (92). (93) uses only symmetric matrices in order to make manifest the global
sign of the Hessian. It remains to show that the spectral radius of S(oo) is controlled by
that of [M2](oo). S(oo) is symmetric because Δ(oe) = [Δ(eo)]T , thus its spectral radius
coincides with the matrix norm induced by the Euclidean scalar product. Then by norms
sub-multiplicativity and matrix similarity one easily gets

ρ
(

S(oo)
)

≤ ρ
(
D(oo)

)
ρ
(
[α̂(oo)]−1/2Δ(oe)D(ee)[α̂(ee)]−1Δ(eo)[α̂(oo)]−1/2

)

≤ ρ
(

M (oe)D(ee)M (eo)
)

= ρ
(
D(ee)M (eo)M (oe)

)

= ρ
(
[D(ee)]1/2[α̂(ee)]−1/2Δ(eo)α̂(oo)−1Δ(oe)[α̂(ee)]−1/2[D(ee)]1/2

)
. (95)

Iterating the same arguments we get to

ρ
(

S(oo)
)

≤ ρ
(

M (eo)M (oe)
)

= ρ
(

M (oe)M (eo)
)

< 1 , (96)

where the last equality follows again by matrix similarity. The previous implies that
the matrix [−�1 + S](oo) in (93) is negative definite, making Hxoπ negative definite
too, and hence π is concave under the hypothesis ρ([M2](oo)) < 1. In turn, this ensures
uniqueness of the solution to the consistency equation (84) and to the variational problem
(13). In particular when h = 0, x = 0 is the unique solution.

Conversely, for h = 0 and ρ([M2](oo)) > 1 the Hessian has at least one positive
eigenvalue at the origin xo = 0, but this is in general not enough to ensure xo = 0 does
not realize the sup anymore. One has to check that there is a direction of increment of π

that intersects the cube [0, 1)K/2, otherwise the system could remain stuck on the border
at xo = 0 due to the positivity constraints on the variables.

It is easy to see that [M2](oo) is irreducible, because its associated graph is strongly
connected, and it has non negative entries. Hence, by Perron–Frobenius Theorem the
eigenvector v relative to the largest eigenvalue ρ([M2](oo)) is component-wise strictly
positive, thus pointing inside the cube, and by a Taylor expansion around xo = 0 we
have:

π(εv;μ, 0) − π(0;μ, 0) = ε2

2

(

v,
α̂(oo)

2
v

)
[
−1 + ρ([M2](oo))

]
+ o(ε2) (97)

that is positive form small enough ε > 0. Finally, by Proposition 4 the solution shifts in
favour of a point x = x̄(M) ∈ (0, 1)K .
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4.3. Proof of Proposition 1. Proposition 1 relies on an algebraic lemma, which we write
here for convenience. Its proof can be found in [3] (see Lemma 1 therein).

Lemma 5. Let P ≥ 2, x1, . . . , xP ≥ 0 and b1, . . . , bP−1 ≥ 0 . Set S ≡ ∑P
p=1 x p and

B ≡ maxp=1,...,P−1 bp . Then:

P−1∑

p=1

bp x p x p+1 ≤ B S2

4
. (98)

Moreover we have equality in (98) if and only if one of the following conditions is
verified:

(a) there exists p∗ ∈ {1, . . . , P − 1} such that

x p∗ = x p∗+1 = S

2
, bp∗ = B ; (99)

(b) there exists p∗ ∈ {2, . . . , P − 1} such that

x p∗ = x p∗−1 + x p∗+1 = S

2
, bp∗−1 = bp∗ = B . (100)

Proof of Proposition 1. Denote by ρ the spectral radius of the matrix [M2](oo). We have

ρ ≤
∥
∥
∥[M2](oo)

∥
∥
∥∞ . (101)

As [M2](oo) is a tridiagonal matrix, its ∞-norm can be easily computed leading to

∥
∥
∥[M2](oo)

∥
∥
∥∞ = max

r

∑

s

(M2)2r−1,2s−1 = max
r

2r∑

p=2r−3

b(r)
p αp αp+1 ≤ μ̂2

4
,

(102)

where we set μ̂2 ≡ maxr μ2
r,r+1 and for every r, p

b(r)
p ≡ δp, 2r−3 μ2r−3, 2r−2 μ2r−2, 2r−1 + δp, 2r−2 μ2

2r−2, 2r−1 +

+ δp, 2r−1 μ2
2r−1, 2r + δp, 2r μ2r−1, 2r μ2r, 2r+1 .

(103)

For conveniencewe setαp ≡ 0 for p /∈ {1, . . . , K } andμp,p+1 ≡ 0 for p /∈ {1, . . . , K −
1}. The last inequality in (102) follows by Lemma 5, since b(r)

p ≤ μ̂2 and
∑

p αp = 1 .

Therefore ρ ≤ μ̂2

4 combining inequalities (101), (102).

Now assume that ρ = μ̂2

4 . In particular the inequality in (102) must be saturated,
hence there exists r such that

2r∑

p=2r−3

b(r)
p αp αp+1 = μ̂2

4
. (104)

Then by Lemma 5, condition (19) or (20) must be verified.
Vice-versa assume that condition (19) or (20) holds true. In this case notice that many

of the αr ’s are zero, since
∑K

r=1 αr = 1 . Thus thematrix [M2](oo) notably simplifies and

one can check directly that μ̂2

4 is (the only non-zero) eigenvalue. This proves ρ = μ̂2

4 . ��
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Remark 6. It is not difficult to realize that Theorem 1 holds also when αr → 0 for some
r . Indeed, by (61) and Lemma 4 we see that it is sufficient to require:

α2
r E

〈 (
Lr − E〈Lr 〉(ε)N ,t

)2 〉(ε)

N ,t
−→ 0 as N → ∞ . (105)

The proof of Lemma 4 consists in showing that (see inequalities (A.11) and (A.24) in
[2]):

α2
r EεE

〈 (
Lr − 〈Lr 〉(ε)N ,t

)2 〉(ε)

N ,t
= O

(
αr

NsK
N

)

α2
r EεE

[(
〈Lr 〉(ε)N ,t − E〈Lr 〉(ε)N ,t

)2
]

= O

(
1

s4K/3
N N 1/3

)

. (106)

The previous equalities both vanish in the thermodynamic limit with the choice sN ∼
N−1/16K for instance, independently on αr . Hence the remainder of the interpolation in
the proof still goes to 0 with no variation in the hypothesis.

When a form factor, say αr , vanishes the related component of the order parameter
xr disappears from the variational pressure (14). Moreover, if the corresponding Lr is
an intermediate layer one can see that the system decouples into two independent DBMs
because the effective interaction matrix Δ becomes block diagonal and the convex ψ-
term related to the mentioned layer is weighed by αr . The global variational pressure is
thus constant in xr in the thermodynamic limit.

4.4. Proof of Theorem 3. Uniqueness of the solution of the consistency equation for
positive external fields can be proven adapting the strategy used in [3], where the replica
symmetric equation of a deepBoltzmannmachineswas proved to admit a unique solution
when the couplings and the external fields are centred Gaussian random variables. In
particular the layers structure permits to “decouple” the interactions as shown in the
following

Remark 7. The consistency equation (21) is equivalent to the following:
{

xr = E tanh
(
z
√

�r (a) xr + hr + �r (a) xr + hr
)

r = 1, . . . , K
αr xr ar = αr+1 xr+1 r = 1, . . . , K − 1

(107)

where we have introduced the auxiliary variables a1, . . . , aK−1 > 0 and the functions

�r (a) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ12 a1 for r = 1
Δr,r−1

ar−1
+ Δr,r+1 ar for r = 2, . . . , K − 1

ΔK−1,K

aK−1
for r = K

. (108)

Indeed, using the definition of the matrix M , it can be easily verified that (Mx)r =
�r (a) xr for r = 1, . . . , K , for a satisfying the second relation in (107).

The proof of Theorem 3 relies on the following
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Lemma 6. Let z be a standard Gaussian random variable. For every t, h > 0 the
equation

x = E tanh
(

z
√

t x+h + t x+h
)

(109)

has a unique positive solution that we denote by x = x̄(t, h) > 0 . Moreover x̄ is strictly
increasing as a function of both t > 0 and h > 0.

Proof of Theorem 3. Equation (109) rewrites as x = F( t x+h) ,where F(h) ≡ E tanh(z√
h + h) . By Lemma 2, F takes values in (0,1), is strictly increasing and concave. It

follows that equation (109) admits a unique solution in (0, 1) and in particular we can
show that the function f (x) ≡ 1

x F( t x + h) is strictly decreasing for x > 0 . Indeed by
Lemma 2 we have:

x2 f ′(x) = t x F ′(t x + h) − F(t x + h) < 0 in x = 0 , (110)

d

dx
(x2 f ′(x)) = t2 x F ′′(t x + h) < 0 (111)

hence

x2 f ′(x) = t x F ′(t x + h) − F(t x + h) < 0 ∀ x > 0 . (112)

Now denoting by x̄(t, h) the unique positive solution of equation (109), we can prove
its monotonicity with respect to both parameters by differentiating the self-consistent
equation

x̄(t, h) = F ( t x̄(t, h) + h) , (113)

which leads to

(
1 − t F ′(t x̄ + h)

) dx̄

dt
= x̄ F ′(t x̄ + h) (114)

(
1 − t F ′(t x̄ + h)

) dx̄

dh
= F ′(t x̄ + h) . (115)

Lemma 2 ensures that (114), (115) are positive quantities, hence to conclude it suffices
to show that 1− t F ′(t x̄ +h) > 0. Indeed, dividing the inequality (112) by x , evaluating
it at x = x̄(t, h) and using the self-consistent equation (113), one finds precisely:

0 > t F ′(t x̄ + h) − F(t x̄ + h)

x̄
= t F ′(t x̄ + h) − 1 . (116)

��
Proof of Theorem 3. By Lemma 6, the first line of (107) is equivalent to:

xr = x̄
(
�r (a), hr

) ∀ r = 1, . . . , K (117)

where x̄ is uniquely defined and strictly increasing with respect to both its arguments.
On the other hand the second line of (107) rewrites as:

α1 x1 a1 · · · ar = αr+1 xr+1 ∀ r = 1, . . . , K − 1 . (118)
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It is convenient to set X1(a1) ≡ α1 x̄
(
�1(a) , h1

) = α1 x̄
(
Δ1,2 a1 , h1

)
and for r ≥ 2

Xr

(
1

ar−1
, ar

)

≡ αr x̄
(
�r (a) , hr

) = αr x̄

(
Δr,r−1

ar−1
+ Δr,r+1 ar , hr

)

. (119)

Therefore equation (107) is equivalent to the following:

X1(a1) a1 · · · ar = Xr+1

(
1

ar
, ar+1

)

∀ r = 1, . . . , K − 1 . (120)

We will show by induction on r ≥ 1 that for any given ar+1 ≥ 0 there exists a unique
ar = ār (ar+1) > 0 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ar−1 = ār−1(ar )
...

a1 = ā1(a2)

X1(a1) a1 · · · ar−1 ar = Xr+1

(
1

ar
, ar+1

)
(121)

and moreover ār is a strictly increasing function with respect to ar+1 . The uniqueness
of solution of (120) will follow immediately by stopping the induction at r = K − 1
and choosing aK = 0 and the Theorem will be proven thanks to Remark 7.

• Case r = 1: given a2 ≥ 0, let’s consider the equation

X1(a1) a1 = X2

(
1

a1
, a2

)

. (122)

By Lemma 6 the left-hand side of (122) is a strictly increasing function of a1 > 0
and takes all the values in the interval (0,∞), while the right-hand side is a decreasing
function of a1 > 0 and takes non-negative values. Therefore there exists a unique
a1 = ā1(a2) > 0 solution of (122). Now taking derivatives on both sides of (122) and
using again Lemma 6, one finds:

dā1
da2

= ∂

∂a2
X2

( 1

a1
, a2

) [ ∂

∂a1

(
X1(a1) a1

)− ∂

∂a1
X2

( 1

a1
, a2

)]−1

∣
∣a1=ā1(a2)

> 0

(123)

hence ā1 is a strictly increasing function of a2 .
• For r > 1 , r −1⇒ r . Fix ar+1 ≥ 0 . By inductive hypothesis ā1, . . . , ār−1 are well-

defined and strictly increasing functions. Defining the composition Al ≡ āl ◦ · · · ◦ ār−1
for every l = 1, . . . , r − 1, equation (121) rewrites as:

(
X1 ◦ A1

)
(ar ) A1(ar ) · · · Ar−1(ar ) ar = Xr+1

(
1

ar
, ar+1

)

. (124)

By inductive hypothesis and Lemma 6, the left-hand side of (124) is a strictly increasing
function of ar > 0 and takes all the values in the interval (0,∞), while the right hand-
side of (124) is a decreasing function of ar > 0 and takes non-negative values. Therefore
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for every ar+1 ≥ 0 there exists a unique ar = ār (ar+1) > 0 solution of (124). Now taking
derivatives on both sides of (124) one finds:

dār

dar+1
= ∂

∂ar+1
Xr+1

( 1

ar
, ar+1

)
·

·
[

∂

∂ar

(
(
X1 ◦ A1

)
(ar ) A1(ar ) · · · Ar−1(ar ) ar

)

− ∂

∂ar
Xr+1

( 1

ar
, ar+1

)]−1

∣
∣ ar =ār (ar+1)

(125)

which, using again the inductive hypothesis and Lemma 6, entails that ār is a strictly
increasing function of ar+1 . ��

5. Conclusions and Perspectives

In this work we have solved the K -layer deep restricted Boltzmann machine on the
Nishimori line which is an instance of a non-convex multi-species model. The solution
consists in the computation of the pressure in the thermodynamic limitwhich is expressed
in terms of an ordinary min-max variational principle over K real positive numbers.
The properties of the optimizer show the presence of a phase transition related to the
interaction strength and to the relative size of each layer defining the geometry of the
system. In particular we discovered that the geometry of the system may tune the phase
transition.

A possible way to investigate themodel for general values of the parameters would be
to test the stability of our results when the system is in a neighborhood of the Nishimori
line.We plan to perturb the distribution (2) and check under which conditions the replica
symmetry property breaks down.

After the completion of this work, paper [28] was brought to our attention where
the mutual information for a wide class of inference problems is solved by means of
a variational principle. While it is possible to obtain our model as an instance of the
one considered there, the variational principle presented has no clear correspondence
to ours. We finally mention that a subsequent work [14] contains a general result that
extends the one in the present paper. In particular the authors compute the limiting free
energy with a Hamilton-Jacobi approach which proves to be effective also when dealing
with lack of convexity in the interactions. On the other hand, the simplicity of our setting
allows us to carry out a thorough study of the variational formula by locating the phase
transition and investigating its dependency on the geometry of the system as in Theorem
2, Proposition 1 and Theorem 3.
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