
Mathematical Structures in Computer Science (2021), 1–49
doi:10.1017/S0960129521000396

PAPER

The geometry of Bayesian programming
Ugo Dal Lago1,∗ and Naohiko Hoshino2

1Department of Computer Science and Engineering, University of Bologna, Bologna, Italy and 2Department of Computer
and Information Sciences, Sojo University, Kumamoto, Japan
∗Corresponding author. Email: ugo.dallago@unibo.it

(Received 4 February 2020; revised 3 September 2021; accepted 29 October 2021)

Abstract
We give two geometry of interaction models for a typed λ-calculus with recursion endowed with operators
for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calcu-
lus for higher-order Bayesian programming. The models are based on the category of measurable spaces
and partial measurable functions, and the category of measurable spaces and s-finite kernels, respectively.
The former is proved adequate with respect to both a distribution-based and a sampling-based operational
semantics, while the latter is proved adequate with respect to a sampling-based operational semantics.

Keywords: Probabilistic lambda-calculus; conditioning; Bayesian programming; geometry of interaction

1. Introduction
Randomisation provides the most efficient algorithmic solutions, at least concretely, in many
different contexts. A typical example is the one of primality testing, where the Miller–Rabin
test (Miller 1976; Rabin 1980) remains the preferred choice despite polynomial time determin-
istic algorithms are available from many years now (Agrawal et al. 2002). Probability theory can
be exploited even more fundamentally in programming, by way of the so-called probabilistic
(or, more specifically, Bayesian) programming, as popularised by languages like, among oth-
ers, ANGLICAN (Wood et al. 2014) or CHURCH (Goodman et al. 2008). This has stimulated
research about probabilistic programming languages and their semantics (Danos and Harmer
2002; Ehrhard et al. 2018a; Jones 1990), together with type systems (Breuvart and Dal Lago 2018;
Dal Lago and Grellois 2017), equivalence methodologies (Crubillé and Dal Lago 2014; Dal Lago
et al. 2014) and verification techniques (Sato et al. 2019).

Giving a satisfactory denotational semantics to higher-order functional languages is already
problematic in presence of probabilistic choice (Jones 1990; Jung and Tix 1998) and becomes
even more challenging in presence of continuous distributions and scoring. Recently, quasi-Borel
spaces (Heunen et al. 2017) have been proposed as a way to give semantics to calculi with all these
features, and only very recently (Vákár et al. 2019) this framework has been shown to be adaptable
to a fully fledged calculus for probabilistic programming, in which continuous distributions and
soft conditioning are present. Probabilistic coherent spaces (Danos and Ehrhard 2011) are fully
abstract (Ehrhard et al. 2018a) for λ-calculi with discrete probabilistic choice, and can, with some
effort, be adapted to calculi with sampling from continuous distributions (Ehrhard et al. 2018b),
although without scoring.

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction, provided the original article is properly cited.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S0960129521000396
https://orcid.org/0000-0003-2647-0310
mailto:ugo.dallago@unibo.it
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/S0960129521000396&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

2 U. Dal Lago and N. Hoshino

A research path which has been studied only marginally, so far, consists in giving semantics
to Bayesian higher-order programming languages through interactive forms of semantics, for
example, game semantics (Abramsky et al. 2000; Hyland and Ong 2000) or the geometry of
interaction (GOI) (Girard 1989). One of the very first models for higher-order calculi with
discrete probabilistic choice was in fact a game model, proved fully abstract for a probabilistic
calculus with global ground references (Danos and Harmer 2002). After more than 10 years, a
parallel form of GoI and some game models have been introduced for λ-calculi with probabilistic
choice (Castellan et al. 2018; Clairambault and Paquet 2018; Dal Lago et al. 2017), but in all these
cases only discrete probabilistic choice can be handled, with the exception of a recent work on
concurrent games and continuous distributions (Paquet and Winskel 2018).

In this paper, we will report on some results about two GoI models of higher-order Bayesian
languages: one is a GoI model closer to the standard GoI semantics presented in terms of so-
called token machines and the other is a GoI model based on s-finite kernels (Staton 2017). The
distinguishing features of the introduced GoI models can be summarised as follows:

• Simplicity. The categories on which the models are defined are the category of measur-
able spaces and partial measurable functions and the category of measurable spaces and
s-finite kernels, respectively. As such they are completely standard from a measure-theoretic
perspective.

• Expressivity. As is well known, the GoI construction (Abramsky et al. 2002; Joyal et al. 1996)
allows to give semantics to calculi featuring higher-order functions and recursion. Indeed,
our GoI model can be proved adequate for PCFSS, a fully fledged calculus for probabilistic
programming.

• Flexibility. The model we present is quite flexible, in the sense of being able to reflect
the operational behaviour of programs as captured by both the distribution-based and the
sampling-based semantics (Borgström et al. 2016).

• Intuitiveness. GoI visualises the structure of programs in terms of graphs, from which
dependencies between subprograms can be analysed. Adequacy of our model provides some
diagrammatic reasoning principles about observational equivalence of PCFSS.

This paper’s contributions, beside the model’s definition, are adequacy results which precisely
relate our GoI model to the operational semantics both in the distribution and in sampling styles.
As applications of our adequacy results, we show that integrating over the sampling-based opera-
tional semantics, one obtains precisely the distribution-based operational semantics, and we also
observe commutativity of let-bindings in our language.

Turning Measurable Spaces into a GoI Model Before delving into the details of our model, it is
worthwhile to give some hints about how the proposed model is obtained, and why it differs from
similar GoI models from the literature.

The thread of work the proposed model stems from is the one of so-called memoryful
GOI (Hoshino et al. 2014; Muroya et al. 2016). The underlying idea of this paper is very simi-
lar: program execution is modelled as an interaction between the program and its environment,
and memoisation takes place inside the program as a result of the interaction. In the previous
work on memoryful GoI by the second author with Hasuo and Muroya, the goal consisted in
modelling a λ-calculus with algebraic effects. Starting from a monad together with some algebraic
effects, they gave an adequate GoI model for such a calculus, which is applicable to a wide range
of algebraic effects. In principle, then, their recipe could be applicable to PCFSS, since sampling-
based operational semantics enables us to see scoring and sampling as algebraic effects acting on
global states. However, that would not work for PCFSS, since the category Meas of measurable
spaces is not cartesian closed, and we thus cannot define a state monad by way of the exponential
S⇒ S× (−).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 3

In this paper, we side step this issue by a series of translations, to be described in Section 4
below. Instead of looking for a state monad on Meas, we embed Meas into the category of Int-
objects and Mealy machines (Section 5) and use a state monad on this category. This is doable
because the category of Int-objects and Mealy machines is a compact closed category obtained by
applying the Int-construction (Abramsky et al. 2002) to the traced symmetric monoidal category
of measurable spaces and partial measurable functions. For more detail on categorical aspect of
our semantics, see Dal Lago and Hoshino (2019a). The use of such compact closed categories (or,
more generally, of traced monoidal categories) is the way GoI models higher-order functions.

Outline The rest of the paper is organised as follows. After giving some necessary measure-
theoretic preliminaries in Section 2 below, we introduce in Section 3 the language PCFSS, together
with the two kinds of operational semantics we were referring to above. In Section 4, we introduce
one of our GoI models, which is based on partial measurable functions, informally. In Sections 5
and 6, a more rigorous treatment of the involved concepts is given, together with the adequacy
results. We discuss in Sections 7 and 8 an alternative way of giving a GoI semantics to PCFSS
based on s-finite kernels, and as an application, we prove commutativity of let-bindings. We con-
clude in Section 9. This paper is a revised and extended version of our conference paper (Dal Lago
and Hoshino 2019b).

2. Measure-Theoretic Preliminaries
In this section, we recall some basic notions inmeasure theory that will be needed in the following.
We also fix some useful notations. For more about measure theory, see standard textbooks such
as Billingsley (1986).

A σ -algebra on a set X is a family � consisting of subsets of X such that ∅ ∈ �; and if A ∈ �,
then the complement X \A is in �; and for any family {An ∈ �}n∈N, the intersection⋂n∈N An is
in �. A measurable space X is a set |X| equipped with a σ -algebra �X on |X|. We often confuse
a measurable space X with its underlying set |X|. For example, we simply write x ∈ X instead of
x ∈ |X|. For measurable spaces X and Y , we say that a partial function f : X → Y (in this paper,
we use → for both partial functions and total functions) is measurable when for all A ∈ �Y , the
inverse image:

{x ∈ X | f (x) is defined and is equal to an element of A}
is in �X . Ameasurable function is a totally defined partial measurable function. A partial measur-
able function f : X → Y is invertible when there is a (partial) measurable function g : Y → X such
that g ◦ f and f ◦ g are identities. In this case, we say that f is an isomorphism from X to Y and say
that X is isomorphic to Y .

We denote a singleton set {∗} by 1, and we regard the set 1 as a measurable space by endowing
it with the trivial σ -algebra. We also regard the empty set ∅ as a measurable space in the obvious
way. In this paper, N denotes the measurable set of all non-negative integers equipped with the
σ -algebra consisting of all subsets of N, and R denotes the measurable set of all real numbers
equipped with the σ -algebra consisting of Borel sets, that is, the least σ -algebra that contains all
open subsets of R (with respect to the standard topology).

When Y is a subset of the underlying set of a measurable space X, we can equip Y with a
σ -algebra �Y = {A∩ Y |A ∈ �X}. This way, we regard the unit interval and the set of all non-
negative real numbers as measurable spaces and indicate them as follows:

R[0,1] = {a ∈R | 0≤ a≤ 1}, R≥0 = {a ∈R | a≥ 0}.
For measurable spaces X and Y , we define the product measurable space X × Y and the coproduct
measurable space X + Y as follows:

|X × Y| = |X| × |Y|, |X + Y| = {(•, x) | x ∈ X} ∪ {(◦, y) | y ∈ Y},

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

4 U. Dal Lago and N. Hoshino

where the underlying σ -algebras are

�X×Y = the least σ -algebra such that A× B ∈ �X×Y for all A ∈ �X and B ∈ �Y ,
�X+Y = {{•} ×A∪ {◦} × B |A ∈ �X and B ∈ �Y}.

For a finite family of measurable spaces {Xi}1≤i≤n, we write
∑

1≤i≤n Xi for X1 + · · · + Xn =
(· · · (X1 + X2)+ · · ·)+ Xn. When n= 0, we define

∑
1≤i≤n Xi to be ∅. We assume that × has

higher precedence than +, that is, we write X + Y × Z for X + (Y × Z). In this paper, we always
regard finite productsRn as the productmeasurable space onR. It is well known that the σ -algebra
�Rn is the set of all Borel sets, that is, �Rn is the least σ -algebra that contains all open subsets of
R
n. Partial measurable functions are closed under compositions, products and coproducts.
Let X be a measurable space. Ameasure μ on X is a function from �X to [0,∞], that is the set

of all non-negative real numbers extended with ∞, such that:

• μ(∅)= 0; and
• for any mutually disjoint family {An ∈ �X}n∈N, we have∑n∈N μ(An)= μ

(⋃
n∈N An

)
.

We say that a measure μ on X is finite when μ(X)< ∞. For a measurable space X, we write ∅X
for a measure on X given by∅X(A)= 0 for all A ∈ �X . If μ is a measure on a measurable space X,
then for any non-negative real number a, the function (aμ)(A)= a(μ(A)) is also a measure on X.
The Borel measure μBorel on R

n is the unique measure that satisfies

μBorel([a1, b1]× · · · × [an, bn])=
∏

1≤i≤n
|ai − bi|.

We define the Borel measure μBorel on 1= {∗} by μBorel(1)= 1. For a measurable function
f : Rn →R and a measurable subset X ⊆R

n, we denote the integral of f with respect to the Borel
measure restricted to X by: ∫

X
f (x) dx.

For a measurable space X and for an element x ∈ X, a Dirac measure δx on X is given by:

δx(A)= [x ∈A]=
{
1, if x ∈A;
0, if x /∈A.

The square bracket notation in the right-hand side is called Iverson’s bracket. In general, for a
proposition P, we have [P]= 1 when P is true and [P]= 0 when P is false.

Finally, let us recall the notion of a kernel, which is a well-known concept in the theory of
stochastic processes. For measurable spaces X and Y , a kernel from X to Y is a function k : X ×
�Y → [0,∞] such that for any x ∈ X, the function k(x,−) is a measure on Y , and for any A ∈ �Y ,
the function k(−,A) is measurable. When k is a kernel from X to Y , we write k : X� Y . If there is
r > 0 such that k(x, Y)< r for all x ∈ X, we say that k is a finite kernel. Those kernels which can be
expressed as the sum of countably many finite kernels are said to be s-finite (Staton 2017). We use
kernels to give semantics for our probabilistic programming language, to be defined in Section 7.
Kernels can be composed as follows, by way of a number of constructions.

• The pointwise addition of a countable family of s-finite kernels {ki : X� Y}i∈I is an s-finite
kernel and is denoted by

∑
i∈I ki : X� Y or k0 + k1 + · · · when I = {0, 1, . . .}.

• Every partial measurable function f : X → Y gives rise to an s-finite kernel f # : X� Y given
by f #(x,A)= [f (x) ∈A].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 5

• For s-finite kernels k : X� Y and h : Y� Z, we define an s-finite kernel h ◦ k : X� Z by:

(h ◦ k)(x, C)=
∫

h(y, C) k(x, dy).

The composition of s-finite kernels is associative (Staton 2017, Lemma 3) and satisfies the
unit laws, namely, we have k ◦ id#X = k and id#X ◦ k= k.

• Let k : X� Y and h : Z�W be s-finite kernels. We define s-finite kernels k⊗ h : X × Z�
Y ×W and k⊕ h : X + Z� Y +W by:

(k⊗ h)((x, z),A)=
∫

k(x, dy)
∫

h(z, dw) [(y,w) ∈A],

(k⊕ h)(w,A)=
{
k(x,AY), if w= (•, x),
k(y,AW), if w= (◦, y),

where AY = {y ∈ Y | (•, y) ∈A} and AW = {w ∈W | (◦,w) ∈A}. In the same way, for a family
of s-finite kernels {kn : X� Y}n∈N, we define an s-finite kernel

⊕
n∈N kn : N× X�N× Y

by: (⊕
n∈N

kn

)
((n, x),A)= kn(x,An) where An = {y ∈ Y | (n, y) ∈A}.

The tensor product and the coproduct of s-finite kernels are functorial, that is, these construc-
tions are compatible with the composition and preserves identities. For functoriality of the tensor
product, see Staton (2017, Proposition 5).

3. Syntax and Operational Semantics
3.1 Syntax and type system
Our language PCFSS for higher-order Bayesian programming can be seen as Plotkin’s PCF
endowed with real numbers, measurable functions, sampling from the uniform distribution on
R[0,1], and soft conditioning.We define types A, B, . . . values V, W, . . . and terms M, N, . . . as follows:

A, B ::= Unit | Real | A → B,

V, W ::= skip | x | λxA. M | ra | fixA,B(f, x, M),

M, N ::= V | V W | let x be M in N | ifz(V, M, N) | F(V1, . . . , V|F|) | sample | score(V).

Here, x varies over a countably infinite set of variable symbols and a varies over the set R of all
real numbers. Each function identifier F is supposed to have an arity |F| and is associated with an
|F|-ary measurable function F from R

|F| to R. For terms M and N, we write M{N/x} for the capture-
avoiding substitution of x in M by N. The recursively defined function fixA,B(f, x, M) is a value as
in the standard call-by-value PCF.

Terms in PCFSS are restricted to be A-normal forms in order to make some of the argu-
ments about our semantics simpler. This restriction is harmless to the language expressive power,
thanks to the presence of let-bindings. For example, term application M N can be defined to be
let x be M in (let y be N in (x y)).

The term constructor score and the constant sample enable probabilistic programming in
PCFSS. Evaluation of score(ra) has the effect of multiplying the weight of the current probabilis-
tic branch by |a|, this way enabling a form of soft conditioning. The constant sample generates
a real number randomly drawn from the uniform distribution on R[0,1]. Only one sampling

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

6 U. Dal Lago and N. Hoshino

x : A ∈ �

� � x : A
a ∈R

� � ra : Real
� � V1 : Real . . . � � V|F| : Real

� � F(V1, . . . , V|F|) : Real

� � V : A → B � � W : A
� � V W : B

� � M : B �, x : B � N : A
� � let x be M in N : A

�, x : A � M : B
� � λxA. M : A → B

�, f : A → B, x : A � M : B
� � fixA,B(f, x, M) : A → B

� � V : Real � � M : A � � N : A
� � ifz(V, M, N) : A

� � skip : Unit � � sample : Real
� � V : Real

� � score(V) : Unit

Figure 1. Typing rules.

mechanism is sufficient, because we can model sampling from other standard distributions by
composing sample with measurable functions (Wand et al. 2018).

Terms can be typed in a natural way. A type environment � is a finite sequence consisting of
pairs of a variable and a type such that every variable appears in � at most once. A type judgement
is a triple � � M : A consisting of a type environment �, a term M and a type A. We say that a type
judgement � � M : A is derivable when we can derive � � M : A from the typing rules in Figure 1.
Here, the type of sample is Real, and the type of score(V) is Unit because sample randomly
returns a real number, and what matters about scoring is its side effect. In the sequel, we only
consider derivable type judgements and typable closed terms, that is, closed terms M such that
� M : A is derivable for some type A.

3.2 Distribution-based operational semantics
We define distribution-based operational semantics for PCFSS following Borgström et al. (2016)
where, however, a σ -algebra on the set of terms is necessary so as to define evaluation results
of terms to be distributions (i.e., measures) over values. In this paper, we only consider evalua-
tion of terms of type Real and avoid introducing σ -algebras on sets of closed terms, thus greatly
simplifying the overall development.

Distribution-based operational semantics sends a closed term M : Real to a measure μ on R.
Because of the presence of score, the measureμmay not be a probabilistic measure, that is,μ(R)
may be larger than 1, but the idea of distribution-based operational semantics is precisely that of
associating each closed term of type Real with a probabilistic measure over R.

As common in call-by-value programming languages, evaluation is defined by way of evalua-
tion contexts:

E[−] ::= [−] | let x be E[−] in M.

The distribution-based operational semantics of PCFSS is a family of binary relations {⇒n}n∈N
between closed terms of type Real and measures on R inductively defined by the evaluation
rules in Figure 3, where the evaluation rule for score is inspired from the one in Staton (2017).
The binary relation red−→ in the precondition of the third rule in Figure 3 is called deterministic
reduction and is defined in Figure 2.

The last evaluation rule in Figure 3 makes sense because k in the precondition is a kernel from
R[0,1] to R as the following lemma shows.

Lemma 1. For any n ∈N and for any term:

x1 : Real, . . . , xm : Real � M : Real,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 7

(λxA. M) V red−→ M{V/x}
let x be V in M red−→ M{V/x}
fixA,B(f, x, M) V red−→ M{fixA,B(f, x, M)/f, V/x}

ifz(ra, M, N)
red−→

{
M, if a= 0
N, if a �= 0

F(ra, . . . rb)
red−→ rF(a,...,b)

Figure 2. Deterministic reduction.

M ⇒0 ∅R

n> 0
ra ⇒n δa

M red−→ N E[N]⇒n μ

E[M]⇒n+1 μ

E[skip]⇒n μ

E[score(ra)]⇒n+1 |a| μ
E[ra]⇒n k(a,−) for all a ∈R[0,1]

E[sample]⇒n+1
∫
R[0,1]

k(a,−) da

Figure 3. Evaluation rules of distribution-based operational semantics.

there is a unique finite kernel k from R
m to R such that for any (a1, . . . , am) ∈R

m,
M{ra1/x1, . . . , ram/xm} ⇒n k((a1, . . . , am),−).

Proof. The statement can be checked by induction on n.

Lemma 1 implies that the step-indexed distribution-based operational semantics ⇒n can be
seen as inducing an N-indexed family of functions from the set of closed terms of type Real
to the set of finite measures on R, approximating the evaluation of closed terms by restricting
the number of reduction steps. Thus, the limit of the step-indexed distribution-based operational
semantics represents the ‘true’ result of evaluating the underlying term:

Definition 2. For a closed term � M : Real and a measure μ on R, we write M ⇒∞ μ when there
is a family of measures {μn}n∈N on R such that M ⇒n μn and for all A ∈ �R,

μ(A)= sup
n∈N

μn(A).

The binary relation ⇒∞ is a function from the set of closed terms of type Real to the set of
measures onR. This follows from Lemma 1 and from the easy observation that the family of mea-
sures {μn}n∈N on R such that M ⇒n μn forms an ascending chain μ0 ≤ μ1 ≤ · · · with respect to
the pointwise order. Moreover, it can be proved that for any x1 : Real, . . . , xm : Real � M : Real,
there is an s-finite kernel k given by M{ra1/x1, . . . , ram/xm} ⇒∞ k((a1, . . . , am),−).

3.3 Sampling-based operational semantics
PCFSS can be endowed with another form of operational semantics, closer in spirit to the way
inference algorithms see probabilistic programs, called the sampling-based operational semantics.
The way we formulate it is deeply inspired from the one in Borgström et al. (2016).

The idea behind sampling-based operational semantics is to give the evaluation result of each
probabilistic branch somehow independently.We specify each probabilistic branch by two param-
eters: one is a sequence of random draws, which will be consumed by sample, and the other is a
likelihood measure called weight, which will be modified by score.

Definition 3. A configuration is a triple (M, a, u) consisting of a closed term M : Real, a real number
a≥ 0 called the configuration’s weight and a finite sequence u of real numbers in R[0,1], called its
trace.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

8 U. Dal Lago and N. Hoshino

M red−→ N
(M, b, u)→ (N, b, u)

(E[score(ra)], b, u)→ (E[skip], |a| b, u) (E[sample], a, b :: u)→ (E[rb], a, u)

Figure 4. Evaluation rules of sampling-based operational semantics.

Below, we write ε for the empty sequence. For a real number a and a finite sequence u consist-
ing of real numbers, we write a :: u for the finite sequence obtained by putting a on the head
of u. In Figure 4, we give the evaluation rules of sampling-based operational semantics that
is a binary relation between configurations. In the definition, red−→ is the deterministic reduc-
tion relation introduced in Figure 2. We denote the reflective transitive closure of → by →∗.
Intuitively, (M, 1, u)→∗ (ra, b, ε) means that by evaluating M, we get the real number awith weight
b consuming all the random draws in u.

4. Towards Mealy Machine Semantics
In this section, we give some intuitions about our GoI model based on partial measurable func-
tions, which we also call Mealy machine semantics. Schematically, Mealy machine semantics for
PCFSS translates terms in PCFSS into Mealy machines in the following way:

PCFSS
Moggi’s translation��

Moggi’s meta-language+sample + score
Girard translation��

the linear λ-calculus+sample + score
��

proof structures+sample + score
GoI��

Mealy machines

In Section 4.1, we explain the first three steps. The last step deserves to be explained in more
detail, which we do in Section 4.2. For the sake of simplicity, we ignore the translation of condi-
tional branching and the fixed point operator. A more technical presentation of the GoI model is
deferred to Section 5.

4.1 From PCFSS to proof structures
4.1.1 Moggi’s translation
In the first step, we translate PCFSS into an extension of the Moggi’s meta-language by Moggi’s
translation (Moggi 1991), whose only type constructor is the function type. Here, in order to
translate scoring and sampling in PCFSS, we equip Moggi’s meta-language with base types Unit
and Real and the following term constructors:

a ∈R

� � ra : Real,
� � M : Real

� � score(M) : T Unit, � � sample : T Real

where T is the monad of Moggi’s meta-language. Any type A of PCFSS is translated into the type
A� defined as follows:

Unit� = Unit, Real� = Real, (A → B)� = A� → T B�.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 9

Terms score(−) and sample in PCFSS are translated into the eponymous score(−) and
sample in Moggi’s meta-language, respectively. See Moggi (1991) for more detail about Moggi’s
translation.

4.1.2 Girard translation
We next translate the extended Moggi’s meta-language into an extension of the linear λ-calculus,
by way of the so-called Girard translation (Girard 1987). Types are given by:

A, B ::= Unit | Real | State | A⊥ | A ⊗ B | A�B | !A
where Unit, Real and State are base types, and terms are generated by the standard term
constructors of the linear λ-calculus, plus the following rules:

a ∈R

� ra : Real,
� � M : Real

� � score(M) : State� State⊗!Unit, � sample : State� State⊗!Real.
(As customary in linear logic, A� B is an abbreviation of A⊥�B.) These typing rules are derived
from the following translation (−)	 of types of the extended Moggi’s meta-language into types of
the extended linear λ-calculus:

Unit	 = Unit, Real	 = Real, (A → B)	 =!A	� B	, (T A)	 = State� State⊗!A	.
The definition of (T A)	, which lift the monad T to a state passing construct, is motivated by the
following categorical observation: let L be the syntactic category of the extended linear λ-calculus,
which is a symmetric monoidal closed category endowed with a comonad ! : L→ L with certain
conditions (see e.g., Hyland and Schalk (2003)), and let L! be the coKleisli category of the comonad
!. Then, by composing the adjunction between L and L! with a state monad State� State ⊗
(−) on L, we obtain a monad on L!:

L
��

�State�State⊗(−)
��

L!�� ,

which sends an object A ∈ L! to State� State⊗!A. This use of the state monad is motivated by
sampling-based operational semantics: we can regard PCFSS as a call-by-value λ-calculus with
global states consisting of pairs of a non-negative real number and a finite sequence of real num-
bers, and we can regard score and sample as effectful operations interacting with those states.
Following this line, we model call-by-value evaluation by the state monad encoded in the linear
type system.

4.1.3 The third step
We translate terms in the extended linear λ-calculus into (an extension of) proof structures
(Lafont 1995), which are graphical presentations of type derivation trees of linear λ-terms.We can
also understand proof structures as string diagrams for compact closed categories (Selinger 2011).
Operators of the pure linear λ-calculus can be translated as usual (Lafont 1995). For example, type
derivation trees:

x : A � x : A,
x : A � x : A

� λxA. x : A� A,

 � M : A � � N : B

,� � M ⊗ N : A ⊗ B

are translated into proof structures:

A

,
�

A

A⊥

A� A

, M

N
⊗

A

B
A ⊗ B

�

respectively. Terms of the form ra, score(M) and sample require new kinds of nodes:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

10 U. Dal Lago and N. Hoshino

ra Real

,
sc State⊥

!Unit

State

Real

,
sa

State

!Real

State⊥

.

This does not directly reflect typing rules for score and sample in the linear λ-calculus, but the
correspondence can be recovered by way of multiplicative nodes ⊗ and �.

4.2 From proof structures to Mealy machines
The series of translations from PCFSS to proof structures is agnostic as for the computational
meaning of score and sample in PCFSS, because score and sample introduced in these trans-
lations are just constant symbols. In other words, the translation from PCFSS to the extended
proof structures is not sound with respect to either form of operational semantics for PCFSS.
In the last translation step, we assign proof structures a computational meaning, respecting the
operational semantics of the underlying PCFSS term.

We do this by associating proof structures with Mealy machines. A Mealy machine is an
input/output machine whose evolution may depend on its current state. In this paper, for the
sake of supporting intuition and of enabling graphical reasoning, we depict a Mealy machineM as
a node with some wires:

M .

Inputs to this Mealy machine are given through one of its wires, and to each input, the Mealy
machine gives an output through one of its wires. We indicate how the Mealy machine handles
inputs by thick arrows like

M x
y

s �→ t

, Mz w

s′ �→ t′

.

For example, for the case of the left diagram, the thick arrow indicates that if the current state is s
and the given input is x, then the Mealy machine outputs y and changes its state to t.

For the standard proof structures, we can follow Laurent (2001) where Mealy machines asso-
ciated with proof structures are built up from Mealy machines associated with each nodes. For
example, the ⊗-node and the �-node:

⊗
,

�

are both associated with a one-state Mealy machine that behaves in the following manner:

a
(•, a)

,

b
(◦, b)

, a
(•, a)

,

b
(◦, b)

.

Namely, the Mealy machine forwards each input from the left-hand side to the right-hand side
endowing it with a tag that tells where the input came from. The Mealy machine handles inputs
from the right-hand side in the reverse way.

Soundness of Mealy machine semantics states that if two (pure) linear λ-terms are β-
equivalent, then the behaviours of the Mealy machines associated with these terms are the same.
As an example, let us consider a β-reduction step (λx. x) y → y. The proof structure associated
with (λx. x) y is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 11

�

⊗
,

and the following thick arrow illustrates a trace of a run of this Mealy machine for an input a from
the right wire:

�

⊗
a

a

.

In general, this Mealy machine forwards any input from the right-hand side to the left-hand side
as indicated by the thick arrow, and it also forwards any input from the left-hand side to the
right-hand side. Hence, the behaviour of this Mealy machine is equivalent to the behaviour of the
following trivial Mealy machine:

aa , aa

which is the interpretation of y. This is in fact a symptom of a general phenomenon: Mealy
machine semantics for the linear λ-calculus captures β-reduction.

But how can we extend this Mealy machine semantics to score and sample? Here, we borrow
an idea from Game semantics (Abramsky and McCusker 1996), which models computation in
terms of interaction between programs and environments. For scoring and sampling, we can infer
how they interact with the environment from sampling-based operational semantics. For scoring,
we associate score with a Mealy machine that has the following transitions:

(1) sc

init �→ (a, u)
State⊥

State

!Unit

Real

(a, u)

? (2) sc

(a, u) �→ (a, u)
State⊥

State

!Unit

Real
b (|b| a, u)

where u is a finite sequence of real numbers inR[0,1] and a and b are real numbers such that a≥ 0.
We can read these transitions as follows: (1) in the initial state init, for each ‘configuration’ (a, u),
the Mealy machine sends a query ? to environment in order to know the value of its argument and
memorises the configuration (a, u) by changing its state from init to (a, u); (2) if the environment
answers that the value is b, that is, if the Mealy machine receives b, then it outputs (|b| a, u). This
process corresponds to the evaluation rule (score(rb), a, u)→ (skip, |b| a, u).

The following diagrams explain our idea of modelling sample:

(1) sa

!Real

State⊥

State

init �→ b

(a, b :: u)
(a, u) (2) sa

State⊥

!Real

State

b �→ b ?
b

where b :: u is a finite sequence of real numbers in R[0,1] and a is a non-negative real number. (To
be precise, this is slightly different from how we model sample. See Section 3.3.) The first tran-
sition (1) means that in the initial state init, given a ‘configuration’ (a, b :: u), the Mealy machine

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

12 U. Dal Lago and N. Hoshino

pops b and memorises the value b by changing its state from init to b. In the second transition (2),
for any query ? asking the result of sampling, it answers the value memorised in the first transition.
For example, the execution:

(let x be sample in score(x), a, b :: u)→∗ (score(rb), a, u)→∗ (skip, |b| a, u)
is modelled as the following sequential process:

(1) sa
scinit �→ b

init �→ init

(a, u)

(a, b :: u)

(2) sa
scb �→ b

init �→ (a, u)

(a, u)

?

(3) sa
scb �→ b

(a, u) �→ (a, u)

?
b

(4) sa
scb �→ b

(a, u) �→ (a, u)
b (|b| a, u)

.

Here, the boxes next to sa tells how sa changes its state, and the boxes next to sc tells how sc
changes its state. This is why we have two ‘initial states’ in the first stage. The above sequential
process can be explained as follows: (1) given a ‘configuration’ (a, b :: u), the node sa memorises
the value b and forwards the rest (a, u) to sc. (2) Then sc requests the value of its argument, and
(3) sa returns b to the request. (4) Finally, sc returns (|b| a, u) to environment. (Formally, this
Mealy machine is slightly different from the Mealy machine given by our denotational semantics.
But the difference is just a matter of bureaucracy.) In this interaction process, the memoisation
mechanism of the sa-node is necessary, otherwise the sa-node can not tell the sc-node that the
sampling result is b.

Remark 4. Two notions of state (the one coming from sc and the other coming from sa) are
used for different purpose here: the first notion is needed to model the call-by-value evaluation
strategy where we need to store intermediate effects that are invoked during the evaluation. The
second notion of state is needed to model history-dependent computation. More concretely, for
the case of sampling, the Mealy machine sa needs to remember the already sampled values in the
current probabilistic branch.

5. Mealy Machines and their Compositions
After having describedMealy machine semantics briefly and informally, it is now time to get more
precise. In this section, we introduce the notion of a Mealy machine and some constructions on
Mealy machines. We also introduce a way of diagrammatically presenting Mealy machines which
is behaviourally sound.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 13

5.1 Mealy machines, formally
In this paper, we call a pair of measurable spaces an Int-object. We use sans-serif capital letters
X, Y, Z, . . . to denote Int-objects, and we denote the positive/negative part of an Int-object by
the same italic letter superscripted by +/−. For example, X denotes an Int-object (X+, X−) con-
sisting of two measurable spaces X+ and X−. The name ‘Int-object’ comes from the so-called
Int-construction (Joyal et al. 1996).

Definition 5. For Int-objects X and Y, aMealy machine M from X to Y consists of

• a measurable space SM called the state space of M;
• an element initM ∈ SM called the initial state of M;
• a partial measurable function:

τM : (X+ + Y−)× SM → (X− + Y+)× SM
called the transition function of M.

If M is a Mealy machine from X to Y, we write M : X� Y.

The transition function τM of a Mealy machine M : X� Y describes a mapping between inputs
and outputs which can also alter the underlying state. For an input x ∈ X+ + Y− and a state s ∈ SM,
a transition τM(x, s)= (y, t) means that when the current state ofM is s, given an input x, there is an
output y and the next state is t. Note that we have X− in the target and Y− in the source of τM. In
short, this is because we are interested in Mealy machines that handle bidirectional computation.
The diagrammatic presentation of Mealy machines clarifies the meaning of ‘bidirectional’. Let
M : X� Y be a Mealy machine. In this paper, we depict M as follows:

M YX .

In the GoI jargon, data travelling along wires of proof structures are often called tokens. Intuitively,
each label on a wire indicates the type of tokens travelling along the wire. Namely, on the X-wire
(on the Y-wire), tokens in X+ (in Y+) go from left to right, and tokens in X− (in Y−) go from
right to left. For example, we depict the following transitions:

τM((◦, y), s0)= ((•, x), s1), τM((◦, y′), s0)= ((◦, y′′), s2)
for some y, y′ ∈ Y−, x ∈ X−, y′′ ∈ Y+ and s0, s1, s2 ∈ SM as the following thick arrows:

M

s0 �→ s1
YX

yx , M

s0 �→ s2
YX

y′y
′′

.

(Recall that the tag •/◦ indicates the left/right part of the disjoint sum.) The expressions s0 �→ s1
and s0 �→ s2 on the Mealy machine M stand for transitions of states. We omit states transitions
when they can be inferred from the context.

We will give some Mealy machines whose state spaces are trivial, namely 1. We call such a
Mealy machine token machine. Our usage of the term token machine is along the lines of that
in other papers on GoI such as Mackie (1995) and Laurent (2001). In order to specify a token
machine, it is enough to give a partial measurable function of the following form:

X+ + Y− ∼= (X+ + Y−)× 1−→ (X− + Y+)× 1∼= X− + Y+.
Therefore, in the sequel, we define a tokenmachineM : X� Y by giving a partial measurable func-
tion from X+ + Y− to Y+ + X−, and we also call this partial measurable function the transition
function of M. Abusing notation, we write τM for this transition function.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

14 U. Dal Lago and N. Hoshino

5.2 Constructions onmealy machines
It is now time to give some constructions which are the basic building blocks of ourMealymachine
semantics. This section consists of three parts. The first part (from Sections 5.2.1 to 5.2.5) is related
to the linear λ-calculus and serves to model the purely functional features of PCFSS. In the second
part (from Sections 5.2.6 to 5.2.8), we give Mealy machines modelling real numbers, measurable
functions and conditional branching. In the last part (Sections 5.2.9 and 5.2.10), we introduce
Mealy machines modelling score and sample.

5.2.1 Composition
Let X, Y and Z be Int-objects, and let M : X� Y, N : Y� Z be Mealy machines. We can now
define their composition N ◦M : X� Z. Before giving a precise definition, some intuitive expla-
nation about N ◦M is in order. The main idea is to define N ◦M as a Mealy machine obtained by
connecting N and M in the following manner:

M NX Y Z .

The series of thick arrows in the following diagram:

M N
y0
y1
y2
y3

z
z′

illustrates an execution of the obtained Mealy machine. Given an input from a wire, M and N
engage in some interactive communication, and at some point, some output is produced. Because
N ◦M performs ‘parallel composition plus connecting’, the state space of N ◦M should be SN × SM,
and the initial state should be (initN, initM). The transition function of N ◦M should be given by
the collection of all possible interaction paths between M and N.

Let us give a precise definition. For Mealy machines M : X� Y and N : Y� Z, we define the
state space and the initial states of N ◦M by:

SN◦M = SN × SM, initN◦M = (initN, initM)

and we define the transition function τN◦M by:

τN◦M = fX+,Z−,X−,Z+ ∨
∨
n∈N

fY+,Y−,X−,Z+ ◦ f nY+,Y−,Y+,Y− ◦ fX+,Z−,Y+,Y−

where the measurable functions fA,B,C,D : (A+ B)× SN◦M → (C +D)× SN◦M are restrictions of
the following partial measurable function:

(X+ + Z− + Y+ + Y−)× SN◦M
∼=��

(X+ + Y−)× SM × SN + (Y+ + Z−)× SN × SM
τM×SN+τN×SM��

(X− + Y+)× SM × SN + (Y− + Z+)× SN × SM
∼=��

(X− + Z+ + Y+ + Y−)× SN◦M ,

and the join in the definition of τN◦M is with respect to the inclusion order between graph relations.
It is tedious but doable to check that the above join defines a partial measurable function.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 15

5.2.2 Monoidal products
Monoidal Products of Int-objects We introduce monoidal products of Int-objects and their
diagrammatic presentation. For Int-objects X and Y, we define an Int-object X⊗ Y by:

X⊗ Y= (X+ + Y+, X− + Y−).
We define an Int-object I to be (∅, ∅).Wewrite X⊗ Y⊗ Z⊗ · · · for (· · · ((X⊗ Y)⊗ Z)⊗ · · ·). For
a finite family of Int-objects {Xi}1≤i≤n, we write

⊗
1≤i≤n Xi for X1 ⊗ X2 ⊗ · · · ⊗ Xn. When n= 0,

we define
⊗

1≤i≤n Xi to be I.
Let X1, . . . , Xn, Y1, . . . , Ym be Int-objects. We depict a Mealy machine M from X1 ⊗ · · · ⊗ Xn to

Y1 ⊗ · · · ⊗ Ym as a node with wires labelled by X1, . . . , Xn on the left-hand side and wires labelled
by Y1, . . . , Ym on the right-hand side, and we sometimes omit wires on the left-/right-hand side
when the domain/codomain of M is I:

M

Ym
... Y1

Xn
...X1

M

Ym
... Y1

M

Xn
...X1, , .

The diagrammatic presentation of monoidal products allows for intuitive description of transition
functions:

M

s �→ t

x

y

,
M

s′ �→ t′

x0

x1 ,
M

s′′ �→ t′′

y′x′

.

For example, the first transition corresponds to τM((•, (•, x)), s)= ((◦, (◦, y)), t). We note that
there are several ways to present a Mealy machine M : X1 ⊗ · · · ⊗ Xn� Y1 ⊗ · · · ⊗ Ym such as

M

Ym
... Y1

Xn
...X1 ,

M

Ym
... Y1

Xn

X1 ⊗ · · · ⊗ Xn−1 ,
M

Y1 ⊗ · · · ⊗ Ym

Xn
...X1 · · · .

Monoidal Product of Mealy Machines We give monoidal products of Mealy machines. Intuitively,
the monoidal product M⊗ N : X⊗ Y� Z⊗W of Mealy machines M : X� Z and N : Y�W is
given by parallel composition:

M

N

ZX

WY

consisting of two sub-machines M and N working independently. For example, if we have

M
ZX

s0 �→ s1

z
z′ N WY

t0 �→ t1

wy,

then M⊗ N has the following transitions for any t ∈ SN and any s ∈ SM:

M

N
ZX

WY

s0 �→ s1

t �→ t

z
z′ M

N
ZX

WY
t0 �→ t1

s �→ s

wy

, .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

16 U. Dal Lago and N. Hoshino

Formally, we define M⊗ N : X⊗ Y� Z⊗W by:
SM⊗N = SM × SN, initM⊗N = (initM, initN)

and

τM⊗N =

((X+ + Y+)+ (Z− +W−))× SM⊗N
∼=��

(X+ + Z−)× SM × SN + (Y+ +W−)× SN × SM
τM×SN+τN×SM��

(X− + Z+)× SM × SN + (Y− +W+)× SN × SM
∼=��

((X− + Y−)+ (Z+ +W+))× SM⊗N .

Below, for brevity, we sometimes identity Int-objects X⊗ (Y⊗ Z) with (X⊗ Y)⊗ Z by the canon-
ical isomorphism A+ (B+ C)∼= (A+ B)+ C and identify I⊗ X and X⊗ I with X by the unit laws
A+ ∅ ∼=A and ∅ +A∼=A.

5.2.3 Identity, axiom link and cut link
For an Int-object X, let an Int-object X⊥ be (X−, X+). We define token machines idX : X� X,
axX : I� X⊗ X⊥ and cutX : X⊥ ⊗ X� I by:

τidX(•, x)= (◦, x), τaxX(◦, (•, x))= (◦, (◦, x)), τcutX(•, (•, x))= (•, (◦, x)),
τidX(◦, x)= (•, x), τaxX(◦, (◦, x))= (◦, (•, x)), τcutX(•, (◦, x))= (•, (•, x)).

Note that τaxX and τcutX are partial measurable functions from ∅ + (X+ + X−) to ∅ + (X− + X+)
and from (X− + X+)+ ∅ to (X+ + X−)+ ∅, respectively. We depict these Mealy machines by
single wires:

X
X

X⊥

X⊥
X

, , .

This is compatible with behaviour of theseMealymachines. As the following thick arrows indicate,
all tokens travel along wires:

X
x x

X
x

X⊥
x

X⊥
x
x X

, , .

5.2.4 Symmetry
Let X and Y be Int-objects. We define a token machine symX,Y : X⊗ Y� Y⊗ X by letting its transi-
tion function be the canonical isomorphism between (X+ + Y+)+ (Y− + X−) and (X− + Y−)+
(Y+ + X+). We depict symX,Y by a crossing:

XY

.

As the diagram indicates, given an input token from an wire in the one side, symX,Y outputs the
same value to the corresponding wire on the other side:

x

X xy Y

y .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 17

5.2.5 A resource modality
We give a constructor on Mealy machines that corresponds to the resource modality in linear
logic. The purpose of the resource modality is to enable discarding and duplicating resources.
Here, resources are Int-objects.

For an Int-object X, we define an Int-object !X by:
!X= (N× X+,N× X−)

where N is equipped with the discrete σ -algebra. Informally, we can regard !X as a countable
monoidal product X⊗ X⊗ · · · ≈ (X+ + X+ + · · · , X− + X− + · · ·). Following this intuition, we
extend the action of !(−) to Mealy machines. Let M : ⊗1≤i≤n Xi� Y be a Mealy machine. We
define !nM : ⊗1≤i≤n!Xi�!Y to be a Mealy machine consisting of

S!nM = SNM, init!nM = (initM, initM, . . .)
and

τ!nM :
⎛
⎝ ∑

1≤i≤n
N× X+

i +N× Y−
⎞
⎠× SNM →

⎛
⎝ ∑

1≤i≤n
N× X−

i +N× Y+
⎞
⎠× SNM

given by

τ!nM(j@z, (s1, s2 . . .))=
{
(j@w, (s1, . . . , sj−1, t, sj+1, . . .)), if τM(z, sj)= (w, t),
undefined, if τM(z, sj) is undefined.

Here, for j ∈N and a ∈A+ · · · + B, we write j@a for the element in N×A+ · · · +N× B
obtained by the canonical isomorphism between N×A+ · · · +N× B and N× (A+ · · · + B).

As for diagrammatic presentation, we follow the way of proof-nets. Given a Mealy machine
M : X1 ⊗ · · · ⊗ Xn� Y (a Mealy machine N : I� Y), we depict !nM : !X1 ⊗ · · · ⊗!Xn�!Y (depict
!0M : I�!Y) by surrounding M by a thick line box:

M !Y
!Xn

... !X1
N !Y

, .

The Mealy machine !nM behaves as a parallel composition of countably infinite copies of M. For
example, if M has a transition (1) below, then !nM has a transition (2) below for all n ∈N and
s1, s2, . . . ∈ SM:

(1) M Y

Xn
... X1

x
y

s �→ t

(2) M !Y
!Xn

... !X1
(n, x)

(n, y)

(s1, . . . , sn−1, s, sn+1, . . .) �→ (s1, . . . , sn−1, t, sn+1, . . .)

In other words, given an input whose first entry is n, then the nth copy ofM handles the input, and
there is no side effect to the other copies of M. In the sequel, we omit the subscript of !nM when
n= 1.

Dereliction, Digging, Contraction and Weakening For natural numbers n,m ∈N, we write 〈n,m〉
for the Cantor pairingm+ (n+m)(n+m+ 1)/2. For Int-objects X and Y, we define dX : !X� X,
gX : !X�!!X, cX : !X�!X⊗!X and wX : X� I to be token machines whose transition functions:

τdX : N× X+ + X− →N× X− + X+,

τgX : N× X+ +N×N× X− →N× X− +N×N× X+,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

18 U. Dal Lago and N. Hoshino

τcX : N× X+ + (N× X− +N× X−)→N× X− + (N× X+ +N× X+),

τwX : X+ + ∅ → X− + ∅
are given by:

τdX(•, (n, x))= (◦, x), τdX(◦, x)= (•, (0, x)),
τgX(•, (〈n,m〉, x))= (◦, (n,m, x)), τgX(◦, (n,m, x))= (•, (〈n,m〉, x)),
τcX(•, (2n, x))= (◦, (•, (n, x))), τcX(◦, (•, (n, x)))= (•, (2n, x)),
τcX(•, (2n+ 1, x))= (◦, (◦, (n, x))), τcX(◦, (◦, (n, x)))= (•, (2n+ 1, x)),

τwX = the empty partial measurable function.
These token machines dX, gX and cX behave as follows:

d X!X
x(0, x)

g !!X!X
(n,m, x)(〈n,m〉, x) c

!X
!X

!X
(2n+ 1, x)

(n, x)

(2n, x)
(n, x), , .

The token machine wX never interacts with outside. As we did here, we often omit subscripts of
dX, gX, cX and wX in diagrams.

5.2.6 Real numbers
We define an Int-object R to be (R, {?}). For a ∈R, we define a token machine ra : I� R by:

τra(◦, ?)= (◦, a).
Note that the transition function τra is from ∅ + {?} to ∅ +R. The transition function of ra means
that given a query ? from environment, ra answers its value a:

ra
R

?
a
.

5.2.7 Measurable functions
We associate a measurable function f : Rn →R with a Mealy machine fnf : R⊗n� R. For sim-
plicity, we suppose n= 2. The state space Sfnf is defined to be R, and the initial state initfnf is 0.
The transition function τfnf : ((R+R)+ {?})× Sfnf → (({?} + {?})+R)× Sfnf is given by:

τfnf ((•, (•, a)), s)= ((•, (◦, ?)), a),
τfnf ((•, (◦, a)), s)= ((◦, f (s, a)), s),

τfnf ((◦, ?), s)= ((•, (•, ?)), s).
For real numbers a, b ∈R, the Mealy machine fnf ◦ (ra ⊗ rb) behaves as follows:

fnf

initfnf �→ a

ra

rb

R

R

R
?
a

?
b

?
f (a, b)

.

Namely, given a query ? from the right R-wire, fnf first sends a query ? to the lower R-wire in
order to obtain the value of its first argument. The Mealy machine fnf memorises the return value

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 19

a from ra, and another query ? is sent to the upper R-wire. Then rb returns b. Now, fnf sees that
its first argument is a and its second argument is b. Finally, fnf outputs f (a, b). We note that fnf
is always used in this way in our denotational semantics, and therefore, the definition of initfnf is
not essential to simulate the measurable function f .

5.2.8 Conditional branching
For an Int-object X, we define

cdX : R⊗ X⊗ X→ X

to be a Mealy machine consisting of
ScdX = {∗} ∪ X−, initcdX = ∗

and
τcdX : (((R+ X+)+ X+)+ X−)× ScdX → ((({?} + X−)+ X−)+ X+)× ScdX

given by:

τcdX((•, (•, (•, a))), s)=

⎧⎪⎪⎨
⎪⎪⎩
((•, (•, (◦, s))), s), if a= 0 and s ∈ X−,
((•, (◦, s)), s), if a �= 0 and s ∈ X−,
undefined, otherwise,

τcdX((•, (•, (◦, x))), s)= ((◦, x), s),
τcdX((•, (◦, x)), s)= ((◦, x), s),

τcdX((◦, x), s)= ((•, (•, (•, ?))), x).
Here, �ScdX is the σ -algebra generated by {{∗}} ∪ �X− .

For a real number a ∈R and Mealy machinesM, N : I� X, the Mealy machine cdX ◦ (ra ⊗M⊗
N) behaves as follows:

cd

initcdX �→ x

r0

M

N

R

X

X

X

?
0

x
y

x
y(a= 0) cd

initcdX �→ x

r1

M

N

R

X

X

X

?
1

x
y

x
y(a= 1)

, .

Namely, given an input x ∈ X−, then cdX memorises x and throws a query to the R-wire. There are
two cases: (i) if a is 0 (the left diagram), then r0 returns 0, and cdX sends the memorised value x to
the middle X-wire and (ii) if a is not 0, say 1 (the right diagram), then r1 returns 1, and cdX sends x
to the upper X-wire. In both cases, any output fromM (or N) is sent to the X-wire in the right-hand
side. In this way, cdX ◦ (ra ⊗M⊗ N) simulates M when a= 0 and simulates N when a �= 0.

5.2.9 Scoring
Let R∗

[0,1] be the measurable space of finite sequences of real numbers in the unit interval [0, 1]
endowed with the following σ -algebra:

A ∈ �R
∗
[0,1]

⇐⇒ A∩R
n
[0,1] ∈ �Rn for all n ∈N.

We define S to be an Int-object given by (∅,R≥0 ×R
∗
[0,1]). Below, we identify S⊗ S⊥ with an Int-

object (R≥0 ×R
∗
[0,1],R≥0 ×R

∗
[0,1]) by the obvious manner. Then we define sc : R� S⊗ S⊥⊗!I to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

20 U. Dal Lago and N. Hoshino

be a Mealy machine consisting of

Ssc =R≥0 ×R
∗
[0,1], initsc = (0, ε)

and τsc : (R+ (R≥0 ×R
∗
[0,1] + ∅))× Ssc → ({?} + (R≥0 ×R

∗
[0,1] + ∅))× Ssc given by

τsc((•, a), (b, v))= ((◦, (•, (|a| b, v))), (b, v)),
τsc((◦, (•, (a, u))), (b, v))= ((•, ?), (a, u)).

The Mealy machine simulates scoring (score(ra), b, u)→ (skip, |a| b, u) in the following way:

ra sc

initsc �→ (b, u)
R

S⊥

!I

S

?
a

(b, u)

(|a|b, u)

.

Namely, in the first transition, sc memorises the ‘configuration’ (b, u), which is used to give the
‘configuration’ (|a| b, u) in the final transition. We note that sc is always used in this way in our
denotational semantics, and therefore, the definition of initsc is not essential to simulate scoring.

5.2.10 Sampling
We define sa : I� S⊗ S⊥⊗!R to be a Mealy machine consisting of

Ssa =R[0,1], initsa = 0

and

τsa : (∅ + (R≥0 ×R
∗
[0,1] +N× {?}))× Ssa → (∅ + (R≥0 ×R

∗
[0,1] +N×R))× Ssa

given by:

τsa((◦, (•, (a, u))), s)=
{
((◦, (•, (a, v))), b), if u= b :: v,
undefined, if u= ε,

τsa((◦, (◦, (n, ?))), s)= ((◦, (◦, (n, s))), s).
The Mealy machine sa simulates sampling (sample, a, b :: u)→ (b, a, u):

(1) sa

!R
S⊥

S

initsa �→ b

(a, b :: u)
(a, u) (2) sa

S⊥

!R

S

b �→ b (n, ?)
(n, b)

, .

Namely, (1) sa pops b and memorises the value b; (2) whenever the sampling result is required,
sa returns the memorised value. We note that sa is always used in this way in our denotational
semantics, and therefore, the definition of initsa is not essential to simulate sampling.

5.3 Behavioural equivalence and diagrammatic reasoning
We now give a brief remark on diagrammatic presentation of Mealy machines. The diagrammatic
presentation of a Mealy machine is not only for intuitive explanation, but also for rigorous rea-
soning about behavioural equivalence, which identifies Mealy machines behaving the same way.
Identifying Mealy machines in terms of their behaviour is important to reason about composition
of Mealy machines in the coming sections. Here, we are inspired by behavioural equivalence from
coalgebraic theory of modelling transition systems (Jacobs 2016).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 21

Let M and N be Mealy machines from X to Y. For a measurable function f : SM → SN, we write
f �M� N when we have f (initM)= initN and

(X+ + Y−)× SM
id×f

��

τM
��

(X+ + Y−)× SN
τN
��

(Y+ + X−)× SM
id×f

�� (Y+ + X−)× SN ,

and we write M� N when there is a measurable function f : SM → SN such that f �M� N. The
definition means that if we have M� N, then no observer can distinguish between M and N from
their input/output behaviour, although their internal structure can be quite different. We define
an equivalence relation � to be the reflective, symmetric and transitive closure of �. For Mealy
machines M, N : X� Y, we say that M is behaviourally equivalent to N when M� N. Below, we list
some important behavioural equivalences in terms of diagrams.

• If two Mealy machines have the same diagrammatic presentation modulo some rear-
rangement of wires and nodes, then they are behaviourally equivalent. This is because
rearrangement of wires and nodes has nothing to do with how tokens flow along wires. For
example, for all Mealy machines M : X⊗ Y� Z⊗W and N : W� Y, we have

M

NWY

ZX
� M

N Y W

X Z .

• For any Mealy machine M : I� X, we have the following behavioural equivalences:

dX◦!0M�M M d!X X � M X

w!X◦!0M� idI M w!X �

The second behavioural equivalence means that we can always remove wX◦!0M from
diagrams without changing their behaviour.

• For any Mealy machine M : X� Y, we have the following behavioural equivalences:

cY◦!M� (!M⊗!M) ◦ cX M c!Y!X
!Y

!Y
� c

M

M

!X

!X
!X

!Y

!Y

gY◦!M� (!!M) ◦ gX M g!Y!X !!Y � g M!!X!X !!Y

• We can always remove a thick box surrounding a single wire:

!idX � id!X !X � !X

• For any Mealy machine M : ⊗1≤i≤n Xi� Y, and for any Mealy machine N : I� Xi,
we have!nM ◦ (id!X1 ⊗ · · · ⊗ id!Xi−1⊗!0N⊗ id!Xi+1 ⊗ · · · ⊗ id!Xn)

�!n−1(M ◦ (idX1 ⊗ · · · ⊗ idXi−1 ⊗ N⊗ idXi+1 ⊗ · · · ⊗ idXn)).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

22 U. Dal Lago and N. Hoshino

M !Y

!Xi−1

!X1

!Xi+1

!Xn

N
!Xi

...

...

...

...

� M !Y

!Xi−1

!X1

!Xi+1

!Xn
...

...

...

...

N
Xi

• For all Mealy machines M, N : I� X, we have cdX ◦ (r0 ⊗M⊗ N)�M and cdX ◦ (ra ⊗M⊗
N)� N for all real numbers a �= 0:

cd

r0

M

N

R

X

X

X � M X cd

ra

M

N

R

X

X

X � N X

Furthermore, we can compositionally apply these behavioural equivalences, that is, we can replace
a subdiagram of a diagram with another behaviourally equivalent diagram. This is because the
composition, the monoidal product and the resource modality ! are compatible with behavioural
equivalence.

• For all Mealy machines M�M′ : X� Y and N� N′ : Y� Z, we have N ◦M� N′ ◦M′.
• For all Mealy machines M�M′ : X� Y and N� N′ : Z�W, we have N⊗M� N′ ⊗M′.
• For all Mealy machines M�M′ : ⊗1≤i≤n Xi� Y, we have !nM�!nM′.

6. Mealy Machine Semantics and Adequacy Theorems
6.1 Mealy machine semantics
We describe our denotational semantics for PCFSS based onMealy machines. We interpret a type
A as the Int-object �A� given by:

�Unit� = I, �Real� = R, �A → B� = S⊗ S⊥⊗!�B�⊗!�A�⊥,
and we interpret terms x : A, . . . , y : B � M : C and values x : A, . . . , y : B � V : C by Mealy
machines:

�x : A, . . . , y : B � M : C� : !�A� ⊗ · · · ⊗!�B�� S⊗ S⊥⊗!�C�,

�x : A, . . . , y : B � V : C�v : !�A� ⊗ · · · ⊗!�B�� �C�

inductively defined by diagrams in Figure 5. In these definitions, we simply write �M� and �V�v
for �� � M : A� and �� � V : A�v, respectively, and we suppose that � is of the form (x : A) for
some variable x and some type A. In general, when � = (x : A, . . . , y : B), we need to replace
!��� in Figure 5 with !�A� ⊗ · · · ⊗!�B� and appropriately duplicate g, c and w. For example,
interpretations �x : A, y : B � sample : Real� and �x : A, y : B � V W : C� are defined to be

sa
w

w
!�A�

!�B� !R
S⊥

S ,
c

c

�V�v

g

g
�W�v

!�A�

!�B�

!�A�

!�B�

!!�A�

!!�B�

!�A�

!�B� !�D� !�C�

S⊥

S

respectively. We note that �� M : A� and �� V : A�v are defined to be Mealy machines from I.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 23

���V:A�

g �V�v
!��� !!��� !�A�

S

S⊥

��,x:A�x:A�v

w

d
!���

!�A� �A�

���ra:Real�v

w ra
!��� R

���F(V):Real�

�V�v fnFg !!���!��� R !R

S

S⊥

���V W:B�

c �V�v
g �W�v

!!���!���

!���

!���

!�A� !�B�

S⊥

S

���let x be M in N:A�

c

�M� �N�
!���

!���

!�B�

!��� S

S⊥
!�A�

S⊥

���λxA. M:A→B�v

�M�!���

!�A�⊥

S

!�B�

S⊥

���fixA,B(f,x,M):A→B�v

c
g

g

M c

M!���

!��� !��� !!���

!!�C�

!�C�

!�C�

!�C�!�C�

�C�

(C=A→B and M=�λxA. M�v : !���⊗!�C���C�)

���ifz(V,M,N):A�

�M�

�N�

�V�vg

�V�v

cd

cd

c

c

c

!���

!���

!���

!���

!���

!��� !!���
!���

!�A�

S⊗ S⊥

!�A�

!�A�

!RS⊗ S⊥

S⊗ S⊥

R

���skip:Unit�v

w
!��� I

���sample:Real�

saw
!���

!R
S⊥

S

���score(V):Unit�

�V�v sc
!��� R

!I
S⊥
S

Figure 5. Interpretation of terms and values.

6.2 Two adequacy theorems
For a Mealy machine M : I� S⊗ S⊥⊗!R, we define measurable functions weightM : R≥0 ×
R

∗
[0,1] →R≥0 and valueM : R≥0 ×R

∗
[0,1] →R as follows.

• For (a, u) ∈R≥0 ×R
∗
[0,1], if there are s, s

′ ∈ SM, a′ ∈R≥0 and b ∈R such that

τM((◦, (•, (a, u))), initM)= ((◦, (•, (a′, ε))), s), (1)
τM((◦, (◦, (0, ?))), s)= (◦, (◦, (0, b)), s′), (2)

that is, if we have the following transitions:

(1) M

!R
S⊥

S

initM �→ s

(a, u)
(a′, ε) (2) M

S⊥

!R

S

s �→ s′ (0, ?)
(0, b)

then we define weightM(a, u) and valueM(a, u) by:
weightM(a, u)= a′, valueM(a, u)= b.

• Otherwise, both weightM(a, u) and valueM(a, u) are undefined.

Abusing notation, for a closed term � M : Real, we write weightM and valueM for weight�M� and
value�M�, respectively.

We give some intuitions about the measurable functions weight and value.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

24 U. Dal Lago and N. Hoshino

• The measurable function weightM(a, u) has two purposes: one is to determine sampling
results of sas in M using u and the other is to collect scoring results by multiplying a with
weights given by scs in M.

• The purpose of valueM(a, u) is to calculate ‘execution result’ of M following the sampling
results determined by weightM(a, u).

Theorem 6. (Adequacy). For any configuration (M, a, u) and for any a′ ∈R≥0 and b ∈R,

(weightM(a, u)= a′ & valueM(a, u)= b) ⇐⇒ (M, a, u)→∗ (rb, a′, ε).

Proof. The left-to-right implication follows fromProposition 18. For the other direction, it follows
from Lemma 20 that (M, �M�) ∈ RReal. Let E be a Mealy machine given by axS ⊗ id!R, which is
depicted as follows:

!R

S

S⊥

.

Because ([−], E) is an element of R�
Real, we see that (M, E �M�)= (M, �M�) is an element of �. By

the definition of �, we obtain the implication from left to right.

For a Mealy machine M : I� S⊗ S⊥⊗!R and a ∈R≥0, we define a measure μM,a on R by:

μM,a(A)=
∑
n∈N

∫
Rn
weightM(a, u) [valueM(a, u) ∈A] du

where weightM and valueM are measurable functions from R≥0 ×R
∗
[0,1] to R given by:

weightM(a, u)=
{
weightM(a, u), if weightM(a, u) is defined,
0, otherwise,

valueM(a, u)=
{
valueM(a, u), if valueM(a, u) is defined,
0, otherwise.

We note that the value of valueM(a, u) in the otherwise case has nothing to do with the value of
μM,a(A). Abusing notation, for a closed term � M : Real and for a ∈R, we write μM,a for μ�M�,a.

Theorem 7. (Adequacy). For any closed term � M : Real, we have M ⇒∞ μM,1.

Proof. Let μ be the unique measure such that M ⇒∞ μ. It follows from Proposition 21 that μ ≤
μM,1. This is because μ is the sup of the family of measures {μn}n∈N given by M ⇒n μn. It remains
to check μM,1 ≤ μ. It follows from Lemma 23 that (M, �M�) ∈QReal. Let E be the Mealy machine
given in the proof of Theorem 6. Because ([−], E) is an element ofQ�

Real, we see that (M, E �M�)=
(M, �M�) is an element of �. By the definition of �, we obtain the claim.

It follows from Theorems 6 and 7 that sampling-based operational semantics is coherent
with distribution-based operational semantics. In fact, the latter can be derived from the for-
mer. An analogous result has already been proved by way of a purely operational (and quite
laborious) argument in an untyped setting in which, however, score is not available in its full
generality (Borgström et al. 2016). Here, it is just an easy corollary of our adequacy theorems.

The rest of this section is devoted to proving the above two theorems, which constitute the
main result of this paper, together with Theorem 25.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 25

6.3 On interpretation of the fixed point operator
We give some observations on the interpretation of the fixed point operator fixA,B(−,−,−),
which will be used in Section 6.4 and Section 6.5. Let M : !X� X be a Mealy machine. We show
that a Mealy machine M† : I� X given by:

M† = (M⊗ cut!X⊥) ◦ ((cX◦!M ◦ gX)⊗ id!X⊥) ◦ ax!X = g M c
M

!!X !X

!X X

!X !X

is a ‘least’ fixed point of M. This construction is used in the interpretation of the fixed point
operator. In fact, for a term f : A → B, x : A � M : B, we have �fixA,B(f, x, M)� = �λxA. M�†.

Parametrised Resource Modality and Parametrised Loop Operator. To see that M† is a ‘least fixed
point’ of M, we introduce parametrisation of the resource modality ! and the loop operator (−)†.
For a subset α ⊆N, and for a Mealy machine M : X� Y, we define !αM : !X�!Y to be a Mealy
machine consisting of

S!αM = S!M = SNM, init!αM = init!M = (initM, initM, . . .)

and τ!αM : (N× X+ +N× Y−)× SNM → (N× X− +N× Y+)× SNM given by:

τ!αM(n@z, (si)i∈N)=
{
(n@w, (s0, . . . , sn−1, t, sn+1, . . .)), if τM(z, sn)= (w, t) and n ∈ α,
undefined, otherwise.

Recall that for n ∈N and a ∈A+ B, we write n@a for the element in N×A+N× B obtained by
the canonical isomorphism between N×A+N× B and N× (A+ B). Then for a Mealy machine
M : !X� X, we define a Mealy machine M†,α : I�!X by:

M†,α = (M⊗ cut!X⊥) ◦ ((cX◦!αM ◦ gX)⊗ id!X⊥) ◦ ax!X.
We note that we have !NM=!M and M†,N =M†.

Let αn, βn ⊆N be subsets of N given by:

α0 = ∅, βn = {〈i, j〉 | i ∈ αn and j ∈N}, αn+1 = {2i | i ∈N} ∪ {2i+ 1 | i ∈ βn}.
(Recall that 〈n,m〉 =m+ (n+m)(n+m+ 1)/2.) The definitions of αn and βn are motivated by
the following lemma.

Lemma 8. For any n ∈N and for any Mealy machine M : X� Y, we have

(1× SNM ∼= SNM
f−→ SNM × SNM ∼= SNM × SNM × 1)� cY◦!αn+1M� (!M⊗!βnM) ◦ cX,

(1× SNM ∼= SNM
g−→ (SNM)

N ∼= (SNM)
N × 1)� gY◦!βnM�!αn !M ◦ gX

where f (sn)n∈N = ((s2n)n∈N, (s2n+1)n∈N) and g(sn)n∈N = ((s〈i,j〉)j∈N)i∈N.

Proof. By the definition of αn and βn.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

26 U. Dal Lago and N. Hoshino

Figure 6. A diagrammatic proof of Lemma 10.

Lemma 9. Let X be a measurable space, and let uX : XN → XN × (XN)N be a measurable
isomorphism given by:

uX(xn)n∈N = ((x2n)n∈N, ((x2〈m,l〉+1)m∈N)l∈N).

Then there is a family of measurable functions {φX : (XN)N → (XN)N}X:measurable space such that

uNX ◦ φX = (XN)N
uXN−−→ (XN)N × ((XN)N)N

(XN)N×φXN−−−−−−−→ (XN)N × ((XN)N)N
∼=−→ (XN × (XN)N)N

where the last isomorphism is given by (((xi,j)i)j, (((yi,k,j)i)k)j) �→ ((xi,j)i, ((yi,k,j)i)k)j.

Proof. For sets I, J, . . . ,K, we regard elements in (((XI)J) · · ·)K as functions from I × J × · · · ×K
to X. For x ∈ (XN)N and (a, b) ∈N, we define (φX(x))(a, b) by induction on a:

(φX(x))(a, b)=
{
x(a′, 2b), if a= 2a′,
(φXN(x′))(a0, a1, b), if a= 2〈a0, a1〉 + 1

where x′ ∈ ((XN)N)N is given by:

x′(n,m, l)= x(n, 2〈m, l〉 + 1).

Here, φXN(x′) takes three arguments because φXN(x′) is an element of ((XN)N)N. We note
that the inductive definition of φX makes sense because a= 2〈a0, a1〉 + 1 implies a1 < a. It is
straightforward to check that the family φX satisfies the condition.

Lemma 10. For any n ∈N, and for any Mealy machine M : !X� X, we have

u′
M �M†,αn+1 �M ◦ (!M)†,αn

where u′
M is a measurable function given by:

SM†,αn+1
∼= SM × SNM

idSM×uSM−−−−−→ SM × SNM × (SNM)
N ∼= SM◦(!M)†,αn .

Here, u(−) is the isomorphism given in Lemma 9 and the first and the last isomorphisms are obtained
by applying canonical isomorphisms 1× (−)∼= (−) and (−)× 1∼= (−).

Proof. See Figure 6. By tracking how states in those Mealy machines are related, we obtain u′
M �

M†,αn+1 �M ◦ (!M)†,αn .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 27

Lemma 11. For any n ∈N, and for any Mealy machine M : !X� X, we have

φ′
M � (!M)†,αn �!0(M†,αn)

where φ′
M is a measurable function given by:

S(!M)†,αn ∼= SNM × (SNM)N
idSNM

×φSM
�� SNM × (SNM)N

v
�� (SM × SNM)N ∼= S!0(M†,αn).

Here, φ(−) is the measurable function given in Lemma 9, and v is a measurable function given
by v((si)i, ((tj,i)j)i)= (si, (tj,i)j)i, and the first and the last isomorphisms are obtained by applying
canonical isomorphisms 1× (−)∼= (−) and (−)× 1∼= (−).

Proof. We prove the statement by induction on n. (Base case)

(!M)†,α0 = (!M⊗ cut!!X⊥) ◦ ((c!X◦!α0 !M ◦ g!X)⊗ id!!X⊥) ◦ ax!!X
�!M◦! ((id!X ⊗ cut!X⊥) ◦ ((cX◦!α0M ◦ gX)⊗ id!X⊥) ◦ ax!X

)�!0(M†,α0).

(Induction step)

(!M)†,αn+1
Lemma 10� !M ◦ (!!M)†,αn

Induction
hypothesis� !M◦!0(!M)†,αn �!0(M ◦ (!M)†,αn) Lemma 10� !0(M†,αn+1).

By tracking how states are related in these behavioural equivalences, we obtain φ′
M � (!M)†,αn �

!0(M†,αn). For the induction step, we can use Lemma 9.

For n ∈N, and for a Mealy machine M : !X� X, we inductively define itern(M) : I� X by:

iter0(M)= ⊥X, itern+1(M)=M◦!0(itern(M)).

Proposition 12. For all n ∈N, we have

M†,αn � itern+1(M), τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · ·
and

SM† = SM†,αn , initM† = initM†,αn , τM† =
∨
n≥0

τM†,αn .

Proof. For all n ∈N, by the definition of M†,αn , we have SM† = SM†,αn , initM† = initM†,αn and

τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · · , τM† =
∨
n≥0

τM†,αn .

By induction on n ∈N, we check M†,αn � itern+1(M). For the base case, we have M†,∅ � iter1(M)
because (id!X ⊗ cut!X⊥) ◦ ((cX◦!α0M ◦ gX)⊗ id!X) ◦ ax!X is behaviourally equivalent to !0⊥X. The
induction step follows from Lemmas 10 and 11.

Proposition 13. For any Mealy machine M : !X� X,

M◦!0M† �M†.

Proof. By Lemmas 10 and 11, there is a measurable function h from SM† to SM◦!0M† that preserves
the initial states and makes the following diagram commute for all n ∈N:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

28 U. Dal Lago and N. Hoshino

(∅ + X−)× SM†
(∅+X−)×h

��

τ
M†,αn+1

��

(∅ + X−)× SM◦!0M†

τM◦!0M†,αn
��

(∅ + X+)× SM†
(∅+X+)×h

�� (∅ + X+)× SM◦!0M† .

Because τM† =∨
n∈N τM†,αn+1 and τM◦!0M† =∨

n∈N τM◦!0M†,αn , we obtain M◦!0M† �M†.

6.4 Proof of Theorem 6
Lemma 14. (Substitution Lemma). Let x1 : A1, . . . , xn : An � M : B be term, and let x1 : A1, . . . , xn :
An � V : B be a value. For any closed value � U : Ai,

�M� ◦ (id!�A1� ⊗ · · · ⊗ id!�Ai−1�⊗!0�U�v ⊗ id!�Ai+1� ⊗ · · · ⊗ id!�An�)� �M{U/xi}�,
�V�v ◦ (id!�A1� ⊗ · · · ⊗ id!�Ai−1�⊗!0�U�v ⊗ id!�Ai+1� ⊗ · · · ⊗ id!�An�)� �V{U/xi}�v.

Proof. By induction on M and V. Induction steps can be checked by diagrammatic reasoning.

Lemma 15. For Mealy machines M�N : X� Y, we have weightM =weightN and valueM =
valueN.

Proof. By the definition of behavioural equivalence, if M� N, then we have weightM =weightN
and valueM = valueN. Because � is the symmetric transitive closure of �, we obtain the
statement.

Lemma 16. Let � M : Real be a closed term of the form E[score(ra)] for some evaluation context
E[−] and a ∈R. Then for any (b, u) ∈R≥0 ×R

∗
[0,1],

• both weightM(a, u) and valueM(a, u) are defined if and only if both weightE[skip](|b| a, u) and
valueE[skip](|b| a, u) are defined; and

• if both weightM(a, u) and valueM(a, u) are defined, then weightM(a, u)=
weightE[skip](|b| a, u) and valueM(a, u)= valueE[skip](|b| a, u).

Proof. By induction on E with some diagrammatic reasoning, we can show that there is a Mealy
machine E : I� S⊗ S⊥⊗!R such that �E[skip]� and �M� are behaviourally equivalent to

EI
!R
S⊥

S

E
scrc

!R
S⊥

S⊥

!I

S
R

,

respectively. (Note that !I is equal to I.) By tracking how tokens travel, we obtain the statement.

Lemma 17. Let � M : Real be a closed term of the form E[sample] for some evaluation context
E[−].

• For any a ∈R≥0, both weightM(a, ε) and valueM(a, ε) are undefined.
• For any a ∈R≥0 and for any b :: v ∈R

∗
[0,1], both weightM(a, b :: v) and valueM(a, b :: v) are

defined if and only if both weightE[rb](a, v) and valueE[rb](a, v) are defined, and if all of them
are defined, then weightM(a, b :: v)=weightE[rb](a, v) and valueM(a, b :: v)= valueE[rb](a, v).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 29

Proof. By induction on E with some diagrammatic reasoning, we can show that there is a Mealy
machine E : !R� S⊗ S⊥⊗!R such that �E[rc]� and �M� are behaviourally equivalent to

Erc !R
!R
S⊥

S

E
sa

!R
S⊥

S⊥

S

!R

,

respectively. By tracking how tokens travel, we obtain the statement.

We first prove soundness.

Proposition 18. (Soundness). For any configuration (M, a, u) and for any a′ ∈R≥0 and b ∈R, if
(M, a, u)→∗ (rb, a′, ε), then weightM(a, u)= a′ and valueM(a, u)= b.

Proof. By induction on the length of →∗. (Base case) Easy. (Induction step) By case analysis of
the first evaluation step of (M, a, u)→∗ (rb, a′, ε).

• If the first evaluation step is of the form (E[N], a, u)→ (E[L], a, u) for some N red−→ L, then
by Lemma 14 and by Proposition 13 with some diagrammatic reasoning, we can check
�E[N]� � �E[L]�. Because (E[L], a, u)→∗ (rb, a′, ε), it follows from induction hypothesis and
Lemma 15 that weightE[N](a, u)= a′ and valueE[N](a, u)= b.

• If the first evaluation step is of the form (E[score(rc)], a, u)→ (E[skip], |c| a, u), then by
induction hypothesis, we have weightE[skip](|c| a, u)= a′ and valueE[skip](|c| a, u)= b. By
Lemma 16, we obtain weightM(a, u)= a′ and valueM(a, u)= b.

• If the first evaluation step is of the form (E[sample], a, c :: u)→ (E[rc], a, u), then by induc-
tion hypothesis, weightE[rc](a, u)= a′ and valueE[rc](a, u)= b. By Lemma 17, we obtain
weightM(a, c :: u)= a′ and valueM(a, c :: u)= b.

We next show that if weightM(a, u)= a′ and valueM(a, u)= b, then (M, a, u)→∗ (rb, a′, ε). To
prove this, we use logical relations. We define a binary relation � between closed terms of type
Real and Mealy machines from I to S⊗ S⊥⊗!R by:

(M,M) ∈ � ⇐⇒ for all (a, u) ∈R≥0 ×R
∗
[0,1] and for all a′ ∈R≥0 and b ∈R,

if weightM(a, u)= a′ and valueM(a, u)= b, then (M, a, u)→∗ (rb, a′, ε).

We then inductively define binary relations:

RA ⊆ {closed values of type A} × {Mealy machines from I to �A�}
R�

A ⊆ {evaluation contexts x : A � E[x] : Real} × {Mealy machines from !�A� to S⊗ S⊥⊗!R}
RA ⊆ {closed terms of type A} × {Mealy machines from I to S⊗ S⊥⊗!�A�}

by:

RReal = {(ra, ra) | a ∈R},
RUnit = {(skip, idI)},
RA→B = {(V,M) | ∀(W,N) ∈ RA, (V W,M • N) ∈ RB}

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

30 U. Dal Lago and N. Hoshino

and

R�
A = {(E[−], E) | ∀(V,M) ∈ RA, (E[V], E◦!0M) ∈ �},
RA = {(M,M) | ∀(E[−], E) ∈ R�

A , (E[M], E M) ∈ �}
where Mealy machines M • N : I� S⊗ S⊥⊗!�B� and E M : I� S⊗ S⊥⊗!R are given by:

MN
!�A� !�B�

S⊥

S
M

E
!�A�

S⊥

S

S⊥
!R

, .

Lemma 19. Let A be a type.

(1) If (V,M) ∈ RA, then (V, axS⊗!0M) ∈ RA.
(2) If M red−→ N, then (M,M) ∈ RA if and only if (N,M) ∈ RA.
(3) If (M,M) ∈ RA and M�N, then (M, N) ∈ RA.
(4) For any closed term M : A, (M,⊥S⊗S⊥⊗!�A�) ∈ RA where⊥X : I� X is the token machine whose

transition function is the empty partial measurable function.
(5) For any closed value V : A → B, (V,⊥�A→B�) ∈ RA→B.
(6) If (M,Mi) ∈ RA for Mealy machines (Mi)i∈N such that SM1 = SM2 = · · · and initM1 = initM2 =

· · · and τM1 ≤ τM2 ≤ · · · , then (M,N) ∈ RA where N is given by SN = SM1 , initN = initM1 and
τN =∨

n∈N τMn . Here, the lub is the union of graph relations.

Proof. (1) and (2) follow from the definition of RA. (3) follows from Lemma 15. (4) holds because
weightE⊥S⊗S⊥⊗!�A�

is the empty partial measurable function for any E : !�A�� S⊗ S⊥⊗!R. (5)
follows from (4) and ⊥�A→B� • N� ⊥S⊗S⊥⊗!�B� for any Mealy machine N : I� �A�. (6) follows
from the definition of weight(−) and value(−).

Lemma 20. (Basic Lemma). Let � = (x : A1, . . . , xn : An) be a type environment.

• For any term � � M : A and for any (Vi, Ni) ∈ RAi for i= 1, 2, . . . , n, we have(
M{V1/x1, . . . , Vn/xn}, �M� ◦ (!0N1 ⊗ · · · ⊗!0Nn)

) ∈ RA.

• For any value � � V : A and for any (Vi, Ni) ∈ RAi for i= 1, 2, . . . , n, we have(
V{V1/x1, . . . , Vn/xn}, �V�v ◦ (!0N1 ⊗ · · · ⊗!0Nn)

) ∈ RA.

Proof. By induction on M and V. Most cases follow from Lemma 19 with some diagrammatic
reasoning. Here, we only check a few induction steps.

• When M = score(V), it is enough to check (score(rc), sc ◦ rc) ∈ RUnit for all c ∈R. Let (E, E)
be a pair in R�

Unit. If weightE(sc◦rc)(a, u)= a′ and valueE(sc◦rc)(a, u)= b, then by the def-
inition of sc, we see that E satisfies weightE◦!0idI(|c| a, u)= a′ and valueE◦!0idI(|c| a, u)= b.
Because (E, E) ∈ R�

Unit, we obtain (E[score(rc)], a, u)→ (E[skip], |c| a, u)→∗ (rb, a′, ε).
• When M = sample, we show that (sample, sa) is an element of RReal. For any (E, E) in
R�

Real, if weightEsa(a, u)= a′ and valueEsa(a, u)= b, then by the definition of sa, we see
that u must be c :: v for some c ∈R[0,1] and v ∈R

∗
[0,1] such that weightE◦!0rc(a, v)= a′ and

valueE◦!0rc(a, v)= b. Because (E, E) ∈ R�
Real, we obtain (E[sample], a, u)→ (E[rc], a, v)→∗

(rb, a′, ε).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 31

• When V = fixA,B(f, x, N), for simplicity, we suppose that V is a closed value. By induction
hypothesis and (2) in Lemma 19, we can check that for all k ∈N,

(V, �λxA. N� ◦
k︷ ︸︸ ︷

!0(�λxA. N� ◦ · · · ◦!0(�λxA. N� ◦!0⊥�A→B�) · · ·)) ∈ RA→B.

By Proposition 12 and by (6) in Lemma 19, we obtain (V, �V�v) ∈ RA→B.

6.5 Proof of Theorem 7
We first prove soundness. The following proposition means that μM,1 takes all terminating
probabilistic branches into account.

Proposition 21. (Soundness). For all � M : Real and all n ∈N, if M ⇒n μ for a measure μ on R,
then aμ ≤ μM,a for any a ∈R≥0.

Proof. By induction on n. (Base case) Easy. (Induction step) By case analysis.

• If M = E[N]⇒n+1 μ and N red−→ L for some term L, then we can check �E[N]� � �E[L]� by
Lemma 14 and by Proposition 13 with some diagrammatic reasoning. Because E[L]⇒n μ,
it follows from induction hypothesis and Lemma 15 that aμ ≤ μM,a.

• If M = rb, then μM,a = a δb.
• If M = E[score(rb)] and E[skip]⇒n μ, then by Lemma 16 and induction hypothesis, we
obtain μM,a ≥ |b| aμ.

• If M = E[sample], then

μM,a(A)=
∑
n∈N

∫
R
n
[0,1]

weightM(a, u) [valueM(a, u) ∈A] du

Lem 17=
∑
n∈N

∫
R
n+1
[0,1]

weightE[rb]
(a, v)[valueE[rb](a, v) ∈A] d(b, v)

=
∫
R[0,1]

(∑
n∈N

∫
R
n
[0,1]

weightE[rb]
(a, v)[valueE[rb](a, v)] dv

)
db.

Let k : R�R be a finite kernel such that E[rb]⇒n k(b,−) for any b ∈R. Then by induction
hypothesis, μM,a(A)≥ a

∫
R[0,1]

k(b,−) db.

We next show that M ⇒∞ μ impliesμM,a ≤ aμ bymeans of logical relations.We define a binary
relation � between closed terms of type Real and Mealy machines from I to S⊗ S⊥⊗!R by:

(M,M) ∈ � ⇐⇒ if M ⇒∞ μ, then μM,a ≤ aμ for any a ∈R≥0.

We then inductively define binary relations:

QA ⊆ {closed values of type A} × {Mealy machines from I to �A�}
Q�

A ⊆ {evaluation contexts x : A � E[x] : Real} × {Mealy machines from !�A� to S⊗ S⊥⊗!R}
QA ⊆ {closed terms of type A} × {Mealy machines from I to S⊗ S⊥⊗!�A�}

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

32 U. Dal Lago and N. Hoshino

by:
QReal = {(ra, ra) | a ∈R},
QUnit = {(skip, idI)},
QA→B = {(V,M) | ∀(W,N) ∈QA, (V W,M • N) ∈QB}

and
Q�

A = {(E[−], E) | ∀(V,M) ∈QA, (E[V], E◦!0M) ∈ �},
QA = {(M,M) | ∀(E[−], E) ∈Q�

A , (E[M], E M) ∈ �}.

Lemma 22. Let A be a type.

(1) If (V,M) ∈QA, then (V, axS⊗!0M) ∈QA.
(2) If M red−→ N, then (M,M) ∈QA if and only if (N,M) ∈QA.
(3) If (M,M) ∈QA and M� N, then (M,N) ∈QA.
(4) For any closed value V : A → B, (V,⊥�A→B�) ∈QA→B.
(5) If (M,Mi) ∈QA for Mealy machines (Mi)i∈N such that SM1 = SM2 = · · · and initM1 = initM2 =

· · · and τM1 ≤ τM2 ≤ · · · , then (M, N) ∈QA where N is given by SN = SM1 , initN = initM1 and
τN =∨

n∈N τMn . Here, the lub is the union of graph relations.

Proof. Similar to the proof of Lemma 19.

Lemma 23. (Basic Lemma). Let � = (x : A1, . . . , xn : An) be a type environment.

• For any term � � M : A and for any (Vi, Ni) ∈QAi for i= 1, 2, . . . , n, we have(
M{V1/x1, . . . , Vn/xn}, �M� ◦ (!0N1 ⊗ · · · ⊗!0Nn)

) ∈QA.
• For any value � � V : A and for any (Vi, Ni) ∈QAi for i= 1, 2, . . . , n, we have(

V{V1/x1, . . . , Vn/xn}, �V�v ◦ (!0N1 ⊗ · · · ⊗!0Nn)
) ∈QA.

Proof. By induction on M and V. Most cases follow from Lemma 22 with some diagrammatic
reasoning. Here, we only check a few induction steps.

• When M = score(V), it is enough to show that (score(ra), sc ◦ ra) is an element ofQUnit for
any a ∈R. Let (E, E) be a pair in Q�

Unit, and let μ be the measure such that E[skip]⇒∞ μ.
By the definition of sc and induction hypothesis, for any b ∈R≥0, we obtain μE(sc◦ra),b =
μE◦!0idI,|a| b ≥ |a| bμ.

• When M = sample, we show that (sample, sa) is an element of QReal. Let k : R�R be an
s-finite kernel such that E[ra]⇒∞ k(a,−). Then for any (E, E) ∈Q�

Real, and for any a ∈R≥0,

μEsa,a(A)=
∑
n∈N

∫
R
n
[0,1]

weightEsa(a, u) [valueEsa(a, u) ∈A] du

=
∑
n∈N

∫
R
n+1
[0,1]

weightE◦!0rb(a, v)[valueE◦!0rb(a, v) ∈A] d(b, v)

=
∫
R[0,1]

(∑
n∈N

∫
R
n
[0,1]

weightE◦!0rb(a, v)[valueE◦!0rb(a, v) ∈A] dv

)
db.

Hence, by induction hypothesis, we obtain μEsa,a(A)≤ a
∫
R[0,1]

k(b,A).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 33

• When V = fixA,B(f, x, N), for simplicity, we suppose that V is a closed term. By induction
hypothesis and (4) in Lemma 22, we can check that for all k ∈N,

(V, �λxA. N� ◦
k︷ ︸︸ ︷

!0(�λxA. N� ◦ · · · ◦!0(�λxA. N� ◦!0⊥�A→B�) · · ·)) ∈QA→B.
By Proposition 12 and by (5) in Lemma 22, we obtain (V, �V�v) ∈QA→B.

7. How About S-Finite Kernels?
The reader experienced with the semantics of probabilistic programming languages have probably
already wondered whether a GoI model for PCFSS could be given out of s-finite kernels instead
of measurable functions, following Staton’s work on the semantics of a first-order probabilistic
programming language (Staton 2017).

The answer is indeed positive: the kind of construction we have presented in Section 5 can in
fact be adapted to the category of measurable spaces and s-finite kernels. The latter, being traced
monoidal, has all the necessary structure one needs (Abramsky et al. 2002). What one obtains pro-
ceeding this way is indeed a GoI model, but adequate only for the distribution-based operational
semantics.

The interpretation of any program in this alternative GoI can be seen as structurally identical
to the one from Section 5 once the sample and score operators are interpreted as usual, namely as
those s-finite kernels which actually perform sampling and scoring internally. Below, we introduce
probabilistic Mealy machines whose transitions are described in terms of an s-finite kernel, and
we give some basic probabilistic Mealy machines. Finally, we give an adequate GoI model for the
distribution-based operational semantics, and we apply the GoI model to prove commutativity of
let-bindings.

Being adequate for the distribution-based semantics directly (and not by way of integration
as in Theorem 7) has the pleasant consequence of validating a number of useful program trans-
formations, and in particular commutation of sampling and scoring effects, see Borgström et al.
(2016) for a thorough discussion about this topic, and about how s-finite kernels are a particularly
nice way of achieving commutativity in presence of scoring.

7.1 Probabilistic Mealy machine
A probabilisticMealy machine is aMealy machine whose transition function is given by an s-finite
kernel. Let X and Y be Int-objects.

Definition 24. A probabilistic Mealy machine M from X to Y consists of

• a measurable space SM called the state space of M;
• an element initM ∈ SM called the initial state of M;
• an s-finite kernel τM : (X+ + Y−)× SM� (X− + Y+)× SM called the transition kernel of M.

When M is a probabilistic Mealy machine from X to Y, we write M : X� Y.

We can regard a Mealy machine M : X� Y (as we defined in Section 5.1) as a probabilistic
Mealy machine from X to Y by identifying the transition function τM with the corresponding s-
finite kernel τ #M. We write M# for this probabilistic Mealy machine. Just like Mealy machines, we
depict a probabilistic Mealy machine M : ⊗1≤i≤n Xi � ⊗1≤i≤mYi as a node with labelled wires:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

34 U. Dal Lago and N. Hoshino

M

Ym
... Y1

Xn
...X1 .

In order to informally explain behaviour of probabilistic Mealy machines, we sometimes use thick
arrows to present how tokens are handled.

7.2 Construction of probabilistic Mealy machines
We introduce probabilisticMealymachines and their constructions that are building blocks of our
denotational semantics based on s-finite kernels. Most of them are adaptations of Mealy machines
in Section 5.2, and we just give their formal definitions.

7.2.1 Composition
For probabilistic Mealy machines M : X� Y and N : Y� Z, we define a probabilistic Mealy
machine N ◦M : X� Z by:

SN◦M = SN × SM, initN◦M = (initN, initM)

and

τN◦M = kX+,Z−,X−,Z+ +
∑
n∈N

kY+,Y−,X−,Z+ ◦ knY+,Y−,Y+,Y− ◦ kX−,Z+,Y+,Y−

where kA,B,C,D : (A+ B)× SN◦M� (C +D)× SN◦M are the restrictions of an s-finite kernel:

h=

(X+ + Z− + Y+ + Y−)× SN◦M

(X+ + Y−)× SM × SN + (Y+ + Z−)× SN × SM

(X− + Y+)× SM × SN + (Y− + Z+)× SN × SM

(X− + Z+ + Y+ + Y−)× SN◦M

(τM ⊗ id#SN)⊕ (τN ⊗ id#SM)

.

The first arrow and the last arrow in the definition of h are induced by canonical measurable
isomorphisms. For example, kX+,Z−,X−,Z+ : (X+ + Z−)× SN◦M� (X− + Z+)× SN◦M is given by:

kX+,Z−,X−,Z+((w, s, t),A)= h((u(w), s, t), (v× idSN◦M)(A))

where u : X+ + Z− → X+ + Z− + Y+ + Y− and v : X− + Z+ → X− + Z+ + Y+ + Y− are the
canonical injections.

7.2.2 Monoidal products
For probabilistic Mealy machines M : X� Z and N : Y�W, we define a probabilistic Mealy
machine M⊗ N : X⊗ Y� Z⊗W by:

SM⊗N = SM × SN, initM⊗N = (initM, initN)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 35

and

τM⊗N =

((X+ + Y+)+ (Z− +W−))× SM⊗N

(X+ + Z−)× SM × SN + (Y+ +W−)× SN × SM

(X− + Z+)× SM × SN + (Y− +W+)× SN × SM

((X− + Y−)+ (Z+ +W+))× SM⊗N

(τM ⊗ id#SN)⊕ (τN ⊗ id#SM)

where the first and the last arrows are induced by canonical measurable isomorphisms.

7.2.3 A resource modality
Let M : ⊗1≤i≤n Xi � Y be a probabilistic Mealy machine. We define !nM : ⊗1≤i≤n!Xi �!Y to be a
probabilistic Mealy machine consisting of:

S!nM = SNM, init!nM = (initM, initM, . . .)
and

τ!nM =

(
∑

1≤i≤n N× X+
i +N× Y−)× SNM

N× (
∑

1≤i≤n X
+
i + Y−)× SM × SNM

N× (
∑

1≤i≤n X
−
i + Y+)× SM × SNM

(
∑

1≤i≤n N× X−
i +N× Y+)× SNM

g#

⊕
n∈N τM ⊗ id#SNM

(h−1)#

where g is a measurable isomorphism given by:
g(j@z, (s1, s2, . . .))= (j, z, sj, (s1, s2, . . . , sj−1, sj+1, sj+2, . . .))

for j ∈N, z ∈∑1≤i≤n N× X+
i +N× Y− and (s1, s2, . . .) ∈ SNM; and h is a measurable isomor-

phism given in the same way. (The operator (−)@(−) is given in Section 5.2.5.) Below, we omit
the subscript of !nM when n= 1.

7.2.4 Diagrammatic presentation
We adopt the same diagrammatic presentation: we depict the composition, the monoidal
products, sym#

X,Y, ax#X, cut#X, and the resource modality !n(−) as follows:

M NX Y Z

M

N

ZX

WY

X

Y

X

X⊥

X⊥
X

M !Y
!Xn

... !X1
N !Y

7.2.5 Scoring
We define an Int-object J by (∅, 1), and we often identify J⊗ J⊥ with (1, 1). We use J as the
‘state’ object in the denotational semantics based on s-finite kernels. Here, we use J= (1, ∅) rather

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

36 U. Dal Lago and N. Hoshino

than S= (R≥0 ×R
∗
[0,1], ∅) as in the denotational semantics based on partial measurable functions

because s-finite kernels can manage these informations internally.
We define Sc : R� J⊗ J⊥⊗!I to be a probabilistic Mealy machine consisting of

SSc = 1, initSc = ∗
and τSc : (R+ (1+ ∅))× SSc� ({?} + (1+ ∅))× SSc given by:

τSc(((•, a), initSc),A)= |a| [((◦, (•, ∗)), initSc) ∈A],

τSc(((◦, (•, ∗)), initSc),A)= [((•, ?), initSc) ∈A].
The probabilistic Mealy machine simulates scoring score(ra) as follows:

r#a Sc
R

J⊥ |a|

J?
a

∗

∗

,

that is, Sc first throws a query to its argument, and to each answer a from its argument, Sc outputs
∗ with ‘likelihood’ |a|.

7.2.6 Sampling
We define Sa : I� J⊗ J⊥⊗!R to be a probabilistic Mealy machine consisting of

SSa =R[0,1], initSa = 0

and

τSa : (∅ + (1+N× {?}))× SSa� (∅ + (1+N×R))× SSa
given by:

τSa(((◦, (•, ∗)), s),A)= μBorel({a ∈R[0,1] | ((◦, (•, ∗)), a) ∈A}),
τSa(((◦, (◦, (n, ?))), s),A)= [((◦, (◦, (n, s))), s) ∈A].

The probabilistic Mealy machine behaves as follows:

(1) Sa

!R
J⊥

J

initSa �→ a

∗
∗ (2) Sa

J⊥

!R

J

a �→ a (n, ?)
(n, b)

1. In the initial state initSa, given ∗ from the J-wire, Sa draws a real number from the Borel
measure and memorises the real number. For example, the probability of the state being a real
number in [0.1, 0.3] after this transition is 0.2.

2. If Sa drew a in (1), then for every ‘query’ (n, ?), Sa answers (n, a).
We note that we always use Sa in this way in our denotational semantics, and therefore, the
definition of initSa is not essential.

7.3 Diagrammatic reasoning on probabilistic Mealy machines
We extend the notion of behavioural equivalence to probabilisticMealymachines. LetM, N : X� Y
be probabilisticMealymachines.WewriteM� Nwhen there is a measurable function f : SM → SN
such that f (initM)= initN and the following diagram commutes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 37

(X− + Y+)× SM (X− + Y+)× SN.

(X+ + Y−)× SM (X+ + Y−)× SN

(X− + Y+)⊗ f #

(X+ + Y−)⊗ f #

τM τN

We define an equivalence relation � to be the symmetric transitive closure of � and say that
probabilistic Mealy machines M, N : X� Y are behaviourally equivalent when we have M� N.

Behavioural equivalences given in Section 5.3 are valid for probabilistic Mealy machines. This
is the reason why we adopt the same diagrammatic presentation.

• If two probabilistic Mealy machines have the same diagrammatic presentation modulo some
rearrangement of wires and nodes, then they are behaviourally equivalent.

• For any probabilistic Mealy machine M : I� X, the following behavioural equivalences hold

d#X◦!0M�M M d#!X X � M X

w#
!X◦!0M� idI M w#!X �

• For any probabilistic Mealy machine M : X� Y, the following behavioural equivalences hold

c#Y◦!M� (!M⊗!M) ◦ c#X M c#!Y!X
!Y

!Y � c#
M

M

!X

!X
!X

!Y

!Y

g#Y◦!M�!!M ◦ g#X M g#!Y!X !!Y � g# M!!X!X !!Y

• We can always remove a thick box surrounding a single wire:

!idX � id!X !X � !X

• For any probabilistic Mealy machine M : ⊗1≤i≤n Xi � Y, and for any probabilistic Mealy
machine N : I� Xi, we have

!nM ◦ (id#!X1 ⊗ · · · ⊗ id#!Xi−1
⊗!0N⊗ id#!Xi+1

⊗ · · · ⊗ id#!Xn)
�!n−1(M ◦ (id#X1 ⊗ · · · ⊗ id#Xi−1 ⊗ N⊗ id#Xi+1 ⊗ · · · ⊗ id#Xn)).

M !Y

!Xi−1

!X1

!Xi+1

!Xn

N
!Xi

...

...

...

...

� M !Y

!Xi−1

!X1

!Xi+1

!Xn
...

...

...

...

N
Xi

• For all probabilistic Mealy machines M, N : I� X, we have cd#X ◦ (r#0 ⊗M⊗ N)�M and cd#X ◦
(r#a ⊗M⊗ N)�N for all real numbers a �= 0.

cd#

r#0

M

N

R

X

X

X � M X
cd#

r#a

M

N

R

X

X

X � N X

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

38 U. Dal Lago and N. Hoshino

Figure 7. Interpretation of terms and values.

• For all probabilistic Mealy machines M�M′ : X� Y and N� N′ : Y� Z, we have N ◦M�
N′ ◦M′.

• For all probabilistic Mealy machines M�M′ : X� Y and N� N′ : Z�W, we have N⊗M�
N′ ⊗M′.

• For all probabilistic Mealy machines M�M′ : ⊗1≤i≤n Xi � Y, we have !nM�!nM′.

8. Probabilistic Mealy Machine Semantics and Adequacy Theorem
8.1 Probabilistic Mealy machine semantics
We interpret a type A as the Int-object �A� given by:

�Unit� = I, �Real� = R, �A → B� = J⊗ J⊥⊗!�B�⊗!�A�⊥,
and we interpret terms x1 : A1, . . . , xn : An � M : B and values x1 : A1, . . . , xn : An � V : B by proba-
bilistic Mealy machines:

�x1 : A1, . . . , xn : An � M : B� : !�A1� ⊗ · · · ⊗!�An� � J⊗ J⊥⊗!�B�,
�x1 : A1, . . . , xn : An � V : B�v : !�A1� ⊗ · · · ⊗!�An� � �B�

that are inductively defined by diagrams in Figure 7. Here, as we did in Figure 5, we suppose that
� is of the form (x : A) for some variable x and some type A.

8.2 Adequacy for distribution-based operational semantics
Let M : I� J⊗ J⊥⊗!R be a probabilistic Mealy machine. We define s-finite kernels tM0 : 1� SM
and tM1 : SM�R by:

tM0 (∗,A)= τM(((◦, (•, ∗)), initM), {((◦, (•, ∗)), s) | s ∈A}),
tM1 (s,A)= τM(((◦, (◦, (0, ?))), s), {((◦, (◦, (0, a))), s′) | a ∈A and s′ ∈ SM}).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 39

Then we define a measure obsM on R to be tM1 ◦ tM0 (∗,−). Intuitively, for a measurable set
A ∈ �R, the value obsM(A) is the probability of getting a ∈A as the result of the following
process:

(1) M

!R
J⊥

J

initM �→ s

∗
∗ (2) M

J⊥

!R

J

s �→ s′ (0, ?)
(0, a)

Namely,

(1) we first input ∗ to the J-wire;
(2) afterM outputs ∗ to the J-wire, we input (0, ?) to the !R-wire. Outputs (0, a) for some a ∈R

from the !R-wire are regarded as outputs of this whole process.

Abusing notation, for a closed term M : Real, we write obsM for obs�M�.
The intuition behind the definition of obsM is almost the same as that of weightM and valueM

in Section 6.2. First, in the run (1), the token ∗ traverses M and fires sampling and scoring in
an appropriate order. Information provided by sampling and scoring is internally collected by
the s-finite kernel tM0 . Then the run (2) gives the execution result of M associated with the sam-
pling results obtained in the first stage. Finally, the composition obsM = tM1 ◦ tM0 (∗,−) integrates
sampling and scoring results in the first stage with associated execution results in the second stage.

Theorem 25. (Adequacy). For any closed term � M : Real, if M ⇒∞ μ, then obsM = μ.

Proof. Let μ be the measure such that M ⇒∞ μ. It follows from Proposition 30 that μ ≤ obsM.
This is because μ is the sup of the family of measures {μn}n∈N given by M ⇒n μn. It remains
to check obsM ≤ μ. It follows from Lemma 32 that (M, �M�) ∈ PReal. Let E be the Mealy machine
given in the proof of Theorem 6. Because ([−], E) is an element of P�

Real, we see that (M, E

�M�)= (M, �M�) is an element of �d. By the definition of �d, we obtain the implication from right
to left.

In Section 8.3, we prepare two propositions that are used in the proof of Proposition 30 and
Lemma 32, which are proved in Section 8.4.

8.3 On interpretation of the fixed point operator
LetM : !X� X be a probabilisticMealy machine. In this section, we show that a probabilisticMealy
machine M† : I→ X given by:

M† = (M⊗ cut#!X⊥) ◦ ((c#X◦!M ◦ g#X)⊗ id#!X) ◦ ax#!X = g# M c#

M

!!X !X

!X X

!X !X

is a ‘least’ fixed point of M. The argument in this section is essentially equivalent to the argument
in Section 6.3, and we only give definitions and statements.

Parametrised Modal Operator and Parametrised Loop Operator. For a subset α ⊆N, and for a
Mealy machine M : X� Y, we define !αM : !X�!Y to be a Mealy machine consisting of

S!αM = S!M = SNM, init!αM = init!M

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

40 U. Dal Lago and N. Hoshino

and

τ!αM =

(N× X+ +N× Y−)× SNM

N× (X+ + Y−)× SM × SNM

N× (X− + Y+)× SM × SNM

(N× X− +N× Y+)× SNM

g#

⊕
n∈N kn ⊗ id#SNM

(h−1)#

where g# and (h−1)# are measurable functions given in Section 7.2.3, and kn : (X+ + Y−)× SM�
(X− + Y+)× SM is an s-finite kernel given by:

kn =
{

τM, if n ∈ α,
∅, if n /∈ α.

Then for a probabilistic Mealy machine M : !X� X, we define a probabilistic Mealy machine
M†,α : I�!X by:

M†,α = (M⊗ cut#!X⊥) ◦ ((c#X◦!αM ◦ g#X)⊗ id#!X) ◦ ax#!X.
For a probabilistic Mealy machine M : !X� X, we inductively define itern(M) : I� X by:

iter0(M)= ⊥#
X, itern+1(M)=M◦!0(itern(M)).

Proposition 26. For all n ∈N, we have

M†,αn � itern+1(M), τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · · , τM† =
∨
n≥0

τM†,αn

where αn are subsets of N given in Section 6.3.

Proposition 27. For any Mealy machine M : !X� X,
M◦!0M† �M†.

8.4 Proof of Theorem 25
Lemma 28. (Substitution Lemma). Let M be a term x1 : A1, . . . , xn : An � M : B, and let V be a value
x1 : A1, . . . , xn : An � V : B. For any closed value � U : Ai,

�M� ◦ (id#!�A1� ⊗ · · · ⊗ id#!�Ai−1�
⊗!0�U�v ⊗ id#!�Ai+1�

⊗ · · · ⊗ id#!�An�)� �M{U/xi}�,
�V�v ◦ (id#!�A1� ⊗ · · · ⊗ id#!�Ai−1�

⊗!0�U�v ⊗ id#!�Ai+1�
⊗ · · · ⊗ id#!�An�)� �V{U/xi}�v.

Proof. By induction on M and V. Induction steps can be checked by diagrammatic reasoning.

Lemma 29. For probabilistic Mealy machines M� N : X� Y, we have obsM = obsN.

Proof. By the definition of behavioural equivalence, ifM� N, then we have obsM = obsN. Because
� is the symmetric transitive closure of �, we obtain the statement.

We first prove soundness.

Proposition 30. (Soundness). For any closed term M : Real and for any n ∈N, if M ⇒n μ for a
measure μ on R, then μ ≤ obsM.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 41

Proof. By induction on n. (Base case) Easy. (Induction step) By case analysis.

• If M = E[N]⇒n+1 μ and N red−→ L for some term L, then we can check �E[N]� � �E[L]� by using
Lemma 28, Proposition 27 and diagrammatic reasoning. Because E[L]⇒n μ, it follows from
induction hypothesis and Lemma 29 that μ ≤ obsE[N].

• If M = ra, then obsM = δa.
• If M = E[score(ra)] and E[skip]⇒n μ, then by induction hypothesis, we have μ ≤
obsE[skip]. By induction on E with some diagrammatic reasoning, we can show that
there is a probabilistic Mealy machine E : I� J⊗ J⊥⊗!R such that �E[skip]� and �M� are
behaviourally equivalent to Mealy machines:

N= EI
!R
J⊥

J
L=

E
Scr#a

!R
J⊥

J⊥

!I

J
R

,

respectively. (Note that !I is equal to I.) Let us identify SL and SN in the obvious way.
Then tL0(∗,A) is equal to |a| tN0 (∗,A), and tL1 is equal to tN1 . Hence, obsM = obsL = |a| obsN =
|a| obsE[skip] ≥ |a| μ.

• If M = E[sample] and E[ra]⇒n k(a,−) for some finite kernel k, then by induction on E, we
can show that there is a probabilistic Mealy machine E : !R� J⊗ J⊥⊗!R such that �E[ra]�
and �M� are behaviourally equivalent to Mealy machines:

L=
E

Sa

!R
J⊥

J⊥

J

!R
Na = Er#a

!R
!R
J⊥

J ,

respectively. There is an s-finite kernel h : R[0,1]� SE × SSa such that

tL0 = 1 R[0,1] SE × SSa(∗,A) �→ μBorel(A) h

and h(a,A)= tNa0 (∗, {s ∈ SE | (s, a) ∈A}) for all a ∈R and A ∈ �SE×SSa . (Here, we identified
SNa with SE and identified SL with SE × SSa in the obvious way.) We also have

tL1((s, a),A)= tNa1 (s,A)

for all s ∈ SE, a ∈R[0,1] and A ∈ �R. Hence, we obtain

obsM(A)= obsL(A)= (tL1 ◦ tL0)(∗,A)=
∫
R[0,1]

(tL1 ◦ h)(a,A) da

=
∫
R[0,1]

(tNa1 ◦ tNa0)(∗,A) da=
∫
R[0,1]

obsNa(∗,A) da=
∫
R[0,1]

obsE[ra](∗,A) da.

By induction hypothesis, obsM(A)≥
∫
R[0,1]

k(a,A) da.

We prove adequacy by means of logical relations. We define a binary relation �d between
closed terms of type Real and probabilistic Mealy machines from I to J⊗ J⊥⊗!R by:

(M,M) ∈ �d ⇐⇒ if M ⇒∞ μ then obsM ≤ μ.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

42 U. Dal Lago and N. Hoshino

We then inductively define binary relations:

PA ⊆ {closed values of type A} × {probabilistic Mealy machines from I to �A�}
P�

A ⊆ {evaluation contexts x : A � E[x] : Real} ×
{probabilistic Mealy machines from !�A� to J⊗ J⊥⊗!R}

PA ⊆ {closed terms of type A} × {probabilistic Mealy machines from I to J⊗ J⊥⊗!�A�}
by:

PReal = {(ra, r#a) | a ∈R},
PUnit = {(skip, id#I)},
PA→B = {(V,M) | ∀(W,N) ∈ PA, (V W,M • N) ∈ PB}

and

P�
A = {(E[−], E) | ∀(V,M) ∈ PA, (E[V], E◦!0M) ∈ �d},
PA = {(M,M) | ∀(E[−], E) ∈ P�

A , (E[M], E M) ∈ �d}
where Mealy machines M • N : I� J⊗ J⊥⊗!�B� and E M : I� J⊗ J⊥⊗!R are given by:

MN
!�A� !�B�

J⊥

J
M

E
!�A�

J⊥

J

J⊥
!R

,

respectively.

Lemma 31. Let A be a type.

(1) If (V,M) ∈ PA, then (V, ax#J⊗!0M) ∈ PA.
(2) If N red−→ M, then (M,M) ∈ PA if and only if (N,M) ∈ PA.
(3) If (M,M) ∈ PA and M�N, then (M, N) ∈ PA.
(4) For any closed value V : A → B, (V,⊥#

�A→B�
) ∈ PA→B.

(5) If (M,Mi) ∈ PA for probabilistic Mealy machines (Mi)i∈N such that SM1 = SM2 = · · · and
initM1 = initM2 = · · · and τM1 ≤ τM2 ≤ · · · , then (M, N) ∈ PA where the probabilistic Mealy
machine N is given by SN = SM1 , initN = initM1 and τN =∨

n∈N τMn . Here, the order between
s-finite kernels is given by the pointwise manner.

Proof. Similar to the proof of Lemma 19.

Lemma 32. (Basic Lemma). Let � = (x : A1, . . . , xn : An) be a type environment.

• For any term � � M : A and for any (Vi, Ni) ∈ PAi for i= 1, 2, . . . , n, we have(
M{V1/x1, . . . , Vn/xn}, �M� ◦ (!0N1 ⊗ · · · ⊗!0Nn)

) ∈ PA.

• For any value � � V : A and for any (Vi, Ni) ∈ PAi for i= 1, 2, . . . , n, we have(
V{V1/x1, . . . , Vn/xn}, �V�v ◦ (!0N1 ⊗ · · · ⊗!0Nn)

) ∈ PA.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 43

Proof. By induction on M and V. Most cases follow from Lemma 31 with some diagrammatic
reasoning. Here, we check the statement for M = score(V), M = sample and V = fixA,B(f, x, N).

• When M = score(V), it is enough to show that (score(ra), Sc ◦ r#a) is an element of
PUnit for any a ∈R. To see this, we show that E[skip]⇒∞ μ implies obsE(Sc◦r#a) ≤
|a| μ for each (E, E) in P�

Unit. Below, we identify SE(Sc◦r#a) with SE◦!0id#I in the obvious

way. Because tE(Sc◦r
#
a)

0 (∗,A)= |a| tE◦!0id#I
0 (∗,A) and tE(Sc◦r#a)1 = tE◦!0id#I

1 , we have obsE(Sc◦r#a) =|a| obsE◦!0id#I . Hence, by induction hypothesis, obsE(Sc◦r#a) = |a| obsE◦!0id#I ≤ |a| μ.
• When M = sample, we show that (sample, Sa) is an element of PReal. Let (E, E) be a pair in
P�

Real. Then there is an s-finite kernel h : R[0,1]� SE × SSa such that

tESa0 = 1 R[0,1] SE × SSa ,(∗,A) �→ μBorel(A) h h(a,A)= tE◦!0r#a
0 (∗, {s ∈ SE | (s, a) ∈A})

for all a ∈R and A ∈ �SE×SSa . (Here, we identified SE◦!0r#a with SE and identified SESa with
SE × SSa in the obvious way.) We also have

tESa1 ((s, a),A)= tE◦!0r#a
1 (s,A)

for all s ∈ SE, a ∈R[0,1] and A ∈ �R. Hence,

obsESa(A)= (tESa1 ◦ tESa0)(∗,A)=
∫
R[0,1]

(tESa1 ◦ h)(a,A) da

=
∫
R[0,1]

(tE◦!0r#a
1 ◦ tE◦!0r#a

0)(∗,A) da

=
∫
R[0,1]

obsE◦!0r#a(A) da≤
∫
R[0,1]

k(a,A) da

where k : R[0,1]�R is the s-finite kernel such that E[r#a]⇒∞ k(a,−).
• When V = fixA,B(f, x, N), for simplicity, we suppose that V is a closed term. By induction
hypothesis and (2) in Lemma 31, we can check

(V, �λxA. N�v ◦
n︷ ︸︸ ︷

!0(�λxA. N�v ◦ · · · ◦!0(�λxA. N�v ◦!0⊥#
�A→B�) · · ·)) ∈ PA→B

by induction on n. By Lemma 31 and by Proposition 26, we obtain (V, �V�v) ∈ PA→B.

8.5 Commutativity modulo observational equivalence
Finally, as an application of our GoI semantics, we show commutativity of let-bindings modulo
observational equivalence. For type environments� and�′, and for types A and B, when a context
C[−] satisfies � � C[M] : A for any term �′ � M : B, we write C : (�′, B)→ (�, A).

Definition 33. For terms � � M, N : A, we say that M is observationally equivalent to N when for
any measure μ on R and for any context C[−] : (�, A)→ (∅, Real), we have C[M]⇒∞ μ if and
only if C[N]⇒∞ μ. We write M �obs N when M is observationally equivalent to N.

Formally, our goal is to prove that for all terms � � M : A, � � N : B and �, x : A, y : B � L : C, we
have

let x be M in (let y be N in L)�obs let y be N in (let x be M in L).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

44 U. Dal Lago and N. Hoshino

Below, we first show commutativity of let-bindings in our GoI semantics based on probabilistic
Mealy machines, and then, we deduce the above observational equivalence using adequacy.

Lemma 34. For any term x : A1, . . . y : An � M : B, there are s-finite kernels:
k : (N× �A1�+ + · · · +N× �An�+ + 1)× S�M�� (N× �A1�− + · · · +N× �An�− + 1)× S�M�

�n : (N× �A1�+ + · · · +N× �An�+ + �B�−)× S�M�

� (N× �A1�− + · · · +N× �An�− + �B�+)× S�M� (n ∈N)
and bijections r, s : N→N, which are necessarily measurable isomorphisms, such that the transition
kernel �M� is equal to

((N× �A1�+ + · · · +N× �An�+)+ (1+N× �B�−))× S�M�

((N× �A1�+ + · · · +N× �An�+)+ (1+N× �B�−))× S�M�

(N× �A1�+ + · · · +N× �An�+ + 1)× S�M� +N× (N× �A1�+ + · · · +N× �An�+ + �B�−)× S�M�

(N× �A1�− + · · · +N× �An�− + 1)× S�M� +N× (N× �A1�− + · · · +N× �An�− + �B�+)× S�M�

(N× �A1�− + · · · +N× �An�−)+ (1+N× �B�+))× S�M�

((N× �A1�− + · · · +N× �An�−)+ (1+N× �B�+))× S�M�

(((r × id�A1�+ + · · · + r × id�An�+)+ (id1 + s× id�B�−))× idS�M�
)#

(g−1)#

k⊕⊕
n∈N �n

h#

(((r−1 × id�A1�− + · · · + r−1 × id�An�−)+ (id1 + s−1 × id�B�+))× idS�M�
)#

where g is a measurable isomorphism given by:
g(•, ((•, i@a), s))= ((•, (2i)@a), s), g(•, ((◦, ∗), s))= ((◦, (•, ∗)), s),

g(◦, (i, (•, j@a), s))= ((•, (2〈i, j〉 + 1)@a), s), g(◦, (i, (◦, b), s))= ((◦, (◦, (i, b))), s)
for i, j ∈N, a ∈ �A1�+ + · · · + �An�+ and b ∈ �B�−; h is a measurable isomorphism given in the same
way.

Proof. By induction on M. Here, we only sketch the proof of the statement for M = V W. The state-
ment for other cases can be derived from induction hypothesis and the definition of �M�. When
M = V W, we need case analysis: (1) V = x for some variable x, (2) V = λxA. N, (3) V = fixC,C′(f, x, N).
For the case (1), the statement follows from some diagrammatic reasoning. For the case (2), the
statement follows from induction hypothesis. For the case (3), for simplicity, we suppose that
n= 1 and write A for A1. Then the statement for this case follows from induction hypothesis and
that for any Int-object X and for any probabilisticMealymachine L : !�A�⊗!X� X, there are s-finite
kernels:

�n : (N× �A�+ + X−)× SM� (N× �A�− + X+)× SM (n ∈N)
and measurable isomorphisms r : N→N×N and s : N→N such that the transition kernel of

g#

g#

L c#

!�A� !!�A�

!!X
!X

!X

!X!X

is equal to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 45

(N× �A�+ +N× X−)× SL

(N×N× �A�+ +N× X−)× SL

N× (N× �A�+ + X−)× SL

N× (N× �A�− + X+)× SL

(N×N× �A�− +N× X+)× SL

(N× �A�− +N× X+)× SL

(r × id�A�+ + s× idX−)#

(1)

⊕
n∈N �n

(2)

(r−1 × id�A�+ + s−1 × idX−)#

where the arrows (1) and (2) are s-finite kernels induced by distributivityN× (Y + Z)∼=N× Y +
N× Z. This decomposition of the transition kernel can be checked by direct calculation.

Intuitively, it follows from Lemma 34 that for any term x : A � M : B, the probabilistic Mealy
machine �M� handles tokens along the following thick arrows:

�M�
!�A�

J

!�B�

J⊥
�M�

!�A�

J

!�B�

J⊥
�M�

!�A�

J

!�B�

J⊥
�M�

!�A�

J

!�B�

J⊥

�M�
!�A�

J

!�B�

J⊥ �M�
!�A�

J

!�B�

J⊥ �M�
!�A�

J

!�B�

J⊥

and �M� never handles tokens as follows:

�M�
!�A�

J

!�B�

J⊥
�M�

!�A�

J

!�B�

J⊥

.

From this observation, we can show commutativity of let-bindings in the GoI semantics based on
probabilistic Mealy machines.

Proposition 35. For all terms � M : A, � N : B and x : A, y : B � L : C, we have �K� � �K′� where
K = let x be M in let y be N in L, K′ = let y be N in let x be M in L.

Proof. We only give an informal proof. Let us describe how the probabilistic Mealy machines �K�
and �K′� behave. First, �K� and �K′� are diagrammatically presented as follows:

�M�

�N�

�L�

J

J⊥

J⊥

J
!�A�

!�B�

J

J⊥
!�C�

�N�

�M�

�L�

J

J⊥

J⊥

J

!�B�

!�A�

J

J⊥
!�C�

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

46 U. Dal Lago and N. Hoshino

As for input tokens from the !�C�-wire, it follows from Lemma 34 that tokens run back and forth
along the following thick wires until they go out from the !�C�-wire:

�M�

�N�

�L�

J

J⊥

J⊥

J
!�A�

!�B�

J

J⊥
!�C�

,
�N�

�M�

�L�

J

J⊥

J⊥

J

!�B�

!�A�

J

J⊥
!�C�

.

Therefore, there is no behavioural difference between �K� and �K′� for any input token from the
!�C�-wire. It remains to check that there is no behavioural difference between �K� and �K′� for any
input token from the J-wire. As for input tokens from the J-wire, it follows from Lemma 34 that
tokens first run along the following thick arrows:

�M�

�N�

�L�

J

J⊥

J⊥

J
!�A�

!�B�

J

J⊥
!�C�

,
�N�

�M�

�L�

J

J⊥

J⊥

J

!�B�

!�A�

J

J⊥
!�C�

and after these transitions, tokens run back and forth along the following thick arrows until they
go out from the J⊥-wire:

�M�

�N�

�L�

J

J⊥

J⊥

J
!�A�

!�B�

J

J⊥
!�C�

,
�N�

�M�

�L�

J

J⊥

J⊥

J

!�B�

!�A�

J

J⊥
!�C�

.

Hence, the difference between �K� and �K′� is the first two transitions for input tokens from the
J-wire. There are s-finite kernels k : SM� SM and h : SN� SN such that

1× SM × SN 1× SM × SN 1× SM × SN
id#1 ⊗ k⊗ id#SN id#1 ⊗ id#SM ⊗ h

describes the first two transitions in �K�, and

1× SM × SN 1× SM × SN 1× SM × SN
id#1 ⊗ id#SM ⊗ h id#1 ⊗ k⊗ id#SN

describes the first two transitions in �K′�. It follows from commutativity of the tensor product of
s-finite kernels that they are the same.

Lemma 36. Let � be (x1 : A1, . . . , xn : An), and let �′ be (x′
1 : A′

1, . . . , x
′
m : A′

m). Let B and B′ be
types, and let C[−] : (�, B)→ (�′, B′) be a context. For terms � � M : B and � � N : B, if for all
{(Vi, Li) ∈ PAi}1≤i≤n, we have

(M{V1/x1, . . . , Vn/xn}, �N� ◦ (!0L1 ⊗ · · · ⊗!0Ln)) ∈ PB,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 47

then for all {(V′
i, L′

i) ∈ PAi}1≤i≤m, we have

(C[M]{V′
1/x′

1, . . . , V
′
m/x′

m}, �C[N]� ◦ (!0L′
1 ⊗ · · · ⊗!0L′

m)) ∈ PB′ .

Proof. By induction on C[−]. To check induction steps, we can use Theorem 25 and
Proposition 26 and some diagrammatic reasoning.

Proposition 37. For all terms � � M : A1, � � N : A2 and �, x : A1, y : A2 � L : B, we have
let x be M in let y be N in L �obs let y be N in let x be M in L.

Proof. For simplicity, we suppose that � = (z : D). Let C[−] : (�, B)→ ((), Real) be a con-
text, and let μ and μ′ be the measures such that C[let x be M in let y be N in L]⇒∞ μ and
C[let y be N in let x be M in L]⇒∞ μ′, respectively. We show that μ = μ′. By Lemma 32, for
any (V, N) ∈QD:

(let x be M{V/z} in let y be N{V/z} in L{V/z}, �let x be M in let y be N in L�◦!0N) ∈ PB.

For any measure ν on R, and for any evaluation context E, it follows from Proposition 37,
Theorem 25 and compositionality of our denotational semantics that

E[let x be M{V/z} in let y be N{V/z} in L{V/z}]⇒∞ ν ⇐⇒
E[let y be N{V/z} in let x be M{V/z} in L{V/z}]⇒∞ ν.

Hence, by the definition of PB, we obtain

(let y be N{V/z} in let x be M{V/z} in L{V/z}, �let x be M in let y be N in L�◦!0N) ∈ PB.

Then by Lemma 36,

(C[let y be N in let x be M in L], �C[let x be M in let y be N in L]�) ∈ PReal.

Hence, by Theorem 25, μ ≤ μ′. We can similarly check μ′ ≤ μ.

9. Conclusion
We introduced a denotational semantics for PCFSS, a higher-order functional language with sam-
pling from a uniform continuous distribution and scoring. Following Borgström et al. (2016), we
considered two operational semantics, namely a distribution-based operational semantics, which
associates terms with distributions over real numbers, and a sampling-based operational seman-
tics, which associates each term with a weight along every probabilistic branch. Our main results
are adequacy theorems for both kinds of operational semantics. From these theorems, it fol-
lows that sampling-based operational semantics is essentially equivalent to distribution-based
operational semantics. Another consequence of adequacy theorems is the possibility of reason-
ing for observational equivalence of programs diagrammatically. It follows from the observation
in Section 5.3 and the adequacy theorems that diagrammatic equivalence implies observational
equivalence. It would be interesting to explore possible connections between our work and other
works on diagrammatic reasoning for probabilistic computation, such as Cho and Jacobs (2017);
Jacobs et al. (2018).

At this point, our language does not support any normalisation mechanism as a first-class
operator. However, capturing inference algorithms such as the Metropolis–Hastings algorithm
(Hastings 1970; Metropolis et al. 1953), which is structured around a number of interactions
between programs and their environment, seems plausible. Exploring the relationships between
‘idealised’ normalisation mechanisms and such ‘approximating’ normalisation mechanisms from
the point of view of GoI is an interesting topic for future work.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

48 U. Dal Lago and N. Hoshino

Acknowledgements. The authors are partially supported by the INRIA/JSPS project ‘CRECOGI’ and would like to thank
Michele Pagani for many fruitful discussions about an earlier version of this work. Ugo Dal Lago is supported by the ERC
CoG DIAPASoN (Grant Agreement No. 818616). Naohiko Hoshino is supported by JST ERATO HASUOMetamathematics
for Systems Design Project (No. JPMJER1603).

References
Abramsky, S., Haghverdi, E. and Scott, P. (2002). Geometry of interaction and linear combinatory algebras. Mathematical.

Structures in Compter Science 12 (5) 625–665.
Abramsky, S., Jagadeesan, R. and Malacaria, P. (2000). Full abstraction for PCF. Information and Computation 163 (2)

409–470.
Abramsky, S. and McCusker, G. (1996). Linearity, sharing and state: a fully abstract game semantics for idealized algol with

active expressions: Extended abstract. Electronic Notes in Theoretical Computer Science 3 2–14.
Agrawal, M., Kayal, N. and Saxena, N. (2002). PRIMES is in P. Annals of Mathematics 2 781–793.
Billingsley, P. (1986). Probability and Measure, second edition. John Wiley and Sons.
Borgström, J., Dal Lago, U., Gordon, A. D. and Szymczak, M. (2016). A lambda-calculus foundation for universal

probabilistic programming. In: Proceedings of ICFP 2016, 33–46.
Breuvart, F. and Dal Lago, U. (2018). On intersection types and probabilistic lambda calculi. In: Proceedings of PPDP 2018,

8:1–8:13.
Castellan, S., Clairambault, P., Paquet, H. and Winskel, G. (2018). The concurrent game semantics of probabilistic PCF. In:

Proceedings of LICS 2018, 215–224.
Cho, K. and Jacobs, B. (2017). Disintegration and bayesian inversion, both abstractly and concretely. to appear in

Mathematical Structures in Computer Science.
Clairambault, P. and Paquet, H. (2018). Fully abstract models of the probabilistic lambda-calculus. In: Proceedings of CSL

2018, 16:1–16:17.
Crubillé, R. and Dal Lago, U. (2014). On probabilistic applicative bisimulation and call-by-value λ-calculi. In: Proceedings of

ESOP 2014, 209–228.
Dal Lago, U., Faggian, C., Valiron, B. and Yoshimizu, A. (2017). The geometry of parallelism: classical, probabilistic, and

quantum effects. In: Proceedings of POPL 2017, 833–845.
Dal Lago, U. and Grellois, C. (2017). Probabilistic termination by monadic affine sized typing. In: Proceedings of ESOP 2017,

393–419.
Dal Lago, U. and Hoshino, N. (2019a). The geometry of Bayesian programming. CoRR, abs/1904.07425.
Dal Lago, U. and Hoshino, N. (2019b). The geometry of Bayesian programming. In: 2019 34th Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS), 1–13.
Dal Lago, U., Sangiorgi, D. and Alberti, M. (2014). On coinductive equivalences for higher-order probabilistic functional

programs. In: Proceedings of POPL 2014, 297–308.
Danos, V. and Ehrhard, T. (2011). Probabilistic coherence spaces as a model of higher-order probabilistic computation.

Information and Computation 209 (6) 966–991.
Danos, V. and Harmer, R. (2002). Probabilistic game semantics. ACM Transactions on Computational Logic 3 (3), 359–382.
Ehrhard, T., Pagani, M. and Tasson, C. (2018a). Full abstraction for probabilistic PCF. Journal of the ACM 65 (4) 23:1–23:44.
Ehrhard, T., Pagani, M. and Tasson, C. (2018b). Measurable cones and stable, measurable functions: a model for probabilistic

higher-order programming. PACMPL 2(POPL) 59:1–59:28.
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50 (1) 1–101.
Girard, J.-Y. (1989). Geometry of interaction 1: Interpretation of system F. In: Ferro, R., Bonotto, C., Valentini, S. and

Zanardo, A. (eds.), Logic Colloquium 1988, vol. 127. Studies in Logic and the Foundations of Mathematics. Elsevier, 221–
260.

Goodman, N. D., Mansinghka, V. K., Roy, D. M., Bonawitz, K. and Tenenbaum, J. B. (2008). Church: A language for
generative models. In: Proceedings of UAI 2008, 220–229.

Hastings,W. K. (1970). Monte carlo samplingmethods usingmarkov chains and their applications. Biometrika 57 (1) 97–109.
Heunen, C., Kammar, O., Staton, S. and Yang, H. (2017). A convenient category for higher-order probability theory. In:

Proceedings of LICS 2017. IEEE Computer Society, 1–12.
Hoshino, N., Muroya, K. and Hasuo, I. (2014). Memoryful geometry of interaction: From coalgebraic components to

algebraic effects. In: Proceedings of CSL-LICS 2014.
Hyland, J. M. E. and Ong, C. L. (2000). On full abstraction for PCF: i, ii, and III. Information and Computation 163 (2)

285–408.
Hyland, M. and Schalk, A. (2003). Glueing and orthogonality for models of linear logic. Theoretical Computer Science 294

(1) 183–231. Category Theory and Computer Science.
Jacobs, B. (2016). Introduction to Coalgebra: TowardsMathematics of States and Observation. Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

Mathematical Structures in Computer Science 49

Jacobs, B., Zanasi, F. and Kissinger, A. (2018). Causal inference by string diagram surgery. arXiv:1811.08338 [cs.LO].
Jones, C. (1990). Probabilistic Non-Determinism. PhD thesis, University of Edinburgh.
Joyal, A., Street, R. and Verity, D. (1996). Traced monoidal categories. Mathematical Proceedings of the Cambridge

Philosophical Society 119 (3) 447–468.
Jung, A. and Tix, R. (1998). The troublesome probabilistic powerdomain. Electronic Notes in Theoretical Computer Science

13 70–91.
Lafont, Y. (1995). From Proof Nets to Interaction Nets. London Mathematical Society Lecture Note Series. Cambridge

University Press, 225–248.
Laurent, O. (2001). A token machine for full geometry of interaction. In: Proceedings of TLCA 2001, 283–297.
Mackie, I. (1995). The geometry of interaction machine. In: Proceedings of POPL 1995, 198–208.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by

fast computing machines. The Journal of Chemical Physics 21 (6) 1087–1092.
Miller, G. L. (1976). Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences 13 (3) 300–317.
Moggi, E. (1991). Notions of computation and monads. Information and Computation 93 (1) 55–92. Selections from 1989

IEEE Symposium on Logic in Computer Science.
Muroya, K., Hoshino, N. and Hasuo, I. (2016). Memoryful geometry of interaction ii: Recursion and adequacy. In:

Proceedings of POPL 2016, 748–760.
Paquet, H. and Winskel, G. (2018). Continuous probability distributions in concurrent games. Electronic Notes in Theoretical

Computer Science 341 321–344.
Rabin, M. O. (1980). Probabilistic algorithm for testing primality. Journal of Number Theory 12 (1) 128–138.
Sato, T., Aguirre, A., Barthe, G., Gaboardi, M., Garg, D. and Hsu, J. (2019). Formal verification of higher-order probabilistic

programs: Reasoning about approximation, convergence, Bayesian inference, and optimization. PACMPL 3 38:1–38:30.
Selinger, P. (2011). A Survey of Graphical Languages for Monoidal Categories. Springer Berlin Heidelberg, Berlin, Heidelberg,

289–355.
Staton, S. (2017). Commutative semantics for probabilistic programming. In: Proceedings of ESOP 2017, 855–879.
Vákár, M., Kammar, O. and Staton, S. (2019). A domain theory for statistical probabilistic programming. Proceedings of the

ACM on Programming Languages 3 (POPL) 36:1–36:29.
Wand,M., Culpepper, R., Giannakopoulos, T. and Cobb, A. (2018). Contextual equivalence for a probabilistic language with

continuous random variables and recursion. Proceedings of the ACM on Programming Languages 2 (ICFP) 87:1–87:30.
Wood, F. D., van de Meent, J. and Mansinghka, V. (2014). A new approach to probabilistic programming inference. In:

Proceedings of AISTATS 2014, 1024–1032.

Cite this article: Dal Lago U and Hoshino N. (2021). The geometry of Bayesian programming. Mathematical Structures in
Computer Science. https://doi.org/10.1017/S0960129521000396

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000396
Downloaded from https://www.cambridge.org/core. Università di Bologna, on 15 Dec 2021 at 17:23:47, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000396
https://www.cambridge.org/core

	The geometry of Bayesian programming
	Introduction
	Measure-Theoretic Preliminaries
	Syntax and Operational Semantics
	Syntax and type system
	Distribution-based operational semantics
	Sampling-based operational semantics

	Towards Mealy Machine Semantics
	From PCFSS to proof structures
	Moggi's translation
	Girard translation
	The third step

	From proof structures to Mealy machines

	Mealy Machines and their Compositions
	Mealy machines, formally
	Constructions on mealy machines
	Composition
	Monoidal products
	Identity, axiom link and cut link
	Symmetry
	A resource modality
	Real numbers
	Measurable functions
	Conditional branching
	Scoring
	Sampling

	Behavioural equivalence and diagrammatic reasoning

	Mealy Machine Semantics and Adequacy Theorems
	Mealy machine semantics
	Two adequacy theorems
	On interpretation of the fixed point operator
	Proof of Theorem 6
	Proof of Theorem 7

	How About S-Finite Kernels?
	Probabilistic Mealy machine
	Construction of probabilistic Mealy machines
	Composition
	Monoidal products
	A resource modality
	Diagrammatic presentation
	Scoring
	Sampling

	Diagrammatic reasoning on probabilistic Mealy machines

	Probabilistic Mealy Machine Semantics and Adequacy Theorem
	Probabilistic Mealy machine semantics
	Adequacy for distribution-based operational semantics
	On interpretation of the fixed point operator
	Proof of Theorem 25
	Commutativity modulo observational equivalence

	Conclusion

