
https://doi.org/10.1007/s00170-021-08035-w

ORIGINAL ARTICLE

Amachine learning approach for predictive warehouse design

Alessandro Tufano1 · Riccardo Accorsi1 · Riccardo Manzini1

Received: 15 February 2021 / Accepted: 9 September 2021
© The Author(s) 2021

Abstract
Warehouse management systems (WMS) track warehousing and picking operations, generating a huge volumes of data
quantified in millions to billions of records. Logistic operators incur significant costs to maintain these IT systems, without
actively mining the collected data to monitor their business processes, smooth the warehousing flows, and support the
strategic decisions. This study explores the impact of tracing data beyond the simple traceability purpose. We aim at
supporting the strategic design of a warehousing system by training classifiers that can predict the storage technology
(ST), the material handling system (MHS), the storage allocation strategy (SAS), and the picking policy (PP) of a storage
system. We introduce the definition of a learning table, whose attributes are benchmarking metrics applicable to any storage
system. Then, we investigate how the availability of data in the warehouse management system (i.e. varying the number of
attributes of the learning table) affects the accuracy of the predictions. To validate the approach, we illustrate a generalisable
case study which collects data from sixteen different real companies belonging to different industrial sectors (automotive,
manufacturing, food and beverage, cosmetics and publishing) and different players (distribution centres and third-party
logistic providers). The benchmarking metrics are applied and used to generate learning tables with varying number of
attributes. A bunch of classifiers is used to identify the crucial input data attributes in the prediction of ST, MHS, SAS,
and PP. The managerial relevance of the data-driven methodology for warehouse design is showcased for 3PL providers
experiencing a fast rotation of the SKUs stored in their storage systems.

Keywords Warehouse design · Machine learning · Benchmarking · Data-driven · Predictive logistics · Industry 4.0

1 Introduction

Warehouse system design pertains the strategic decisions
like choosing the storage and handling equipment/tech-
nology, the storage layout and space allocation, and the
picking policies to adopt [1, 2]. The performance of a stor-
age system is generally measured using key performance
indicators (KPIs) regarding the putaway (inbound) or pick-
ing (outbound) activities [3]. In the majority of storage
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systems, the design of the outbound processes deeply affects
global performance [4, 5].

The selection of the storage systems and material
handling systems is generally linked to the characteristics of
the stock-keeping units (SKUs) and the processes connected
to the SKUs [6, 7]. Benchmarking can be used to compare
the measures of performance of a warehouse with a target
efficiency [8, 9]. This selection is generally critical for
3PL operators acquiring the goods of a new client within
their existing warehouse. 3PL operators are hardly able to
identify the most adequate warehouse configuration to serve
the new client efficiently without transforming their existing
organisation [10].

This paper approaches the design of a storage system
based on the benchmarking of existing warehouses. The
measurement of the performance of known warehouses pro-
vides the training set to train machine learning algorithms
[11–13] intended for predicting:

1. an adequate storage system technology (ST), i.e.
the suitable system to store the goods, varying the
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level of automation and the accessibility of the racks
(e.g. automated storage & retrieval system AS/RS,
block stacking, cantilever racks, miniload, pallet rack,
shelves);

2. an adequate material handling system (MHS), i.e. the
set of resources to perform material handling (e.g. cart,
forklift, operator, order picker);

3. an adequate storage allocation strategy (SAS), i.e.
evaluating the duplication of the storage locations of
a single SKU to expedite the picking operations (i.e.
reserve & forward policy), or simple storage without
duplication (i.e. reserve policy);

4. an adequate picking policy (PP), i.e. how picking mis-
sions are organised (e.g. single-order or multi-order).

This study explores the following unmet research
questions (RQ1 and RQ2) by using a novel data-driven
methodology based on descriptive and predictive analytics:

RQ1: how can a data-driven methodology be developed
to design a storage system based on existing benchmarks?

RQ2: how can a data-driven methodology support 3PL
providers in the configuration and management of a storage
system?

The remainder of this paper is organised as follows.
Section 2 reviews the relevant literature in the field of ST,
MHS, SAS, and PP selection. Section 3 introduces the
proposed methodology to classify a storage system and to pre-
dict adequate ST, MHS, SAS, and PP, given a set of SKUs.
Section 4 applies the methodology to a vast number of ware-
houses by describing the storage systems, benchmarking
their performances, training machine learning algorithms
targeting ST, MHS, SAS, and PP, and interpreting the
results. Section 5 discusses the results and the managerial
implications of this study. Section 6 concludes the paper.

2 Literature review

Scientific contributions in the field of warehousing science
have deeply explored many aspects of the warehousing
processes, entities, actors and decisions. In this manuscript,
we are interested in analysing how these methods evolve
in the last three decades and explore machine learning
algorithms as the natural enabler of this evolution.

We need to introduce a comprehensive scientific
framework that classifies the methodologies used by
humans to generate knowledge. According to [14], there are
four different paradigms to generate knowledge:

1. Experimental science (pre-renaissance period), empiri-
cism and the description of natural phenomena have
a key role in the creation of new knowledge (e.g.
Newton’s apple);

2. Theoretical science (pre-computers period), mathemati-
cal modelling and generalisation of the theory allows to
generate new knowledge (e.g. the Theory of Relativity);

3. Computational science (pre-Big Data), the simulation
of complex or chaotic phenomena leads to the creation
of new knowledge (e.g. the Finite Elements method);

4. Exploratory science (nowadays), the research of pat-
terns in the available data generates new knowledge
(e.g. data mining).

We review the literature, with particular reference to the
selection of ST, MHS, SAS and PP and investigating the
evolution of these four paradigms in the field of warehouse
design.

2.1 Experimental paradigm

Interviews are methods used to collect the knowledge of
experts and to analyse it statistically. This method has been
used both to benchmark the performance of different STs
[15], and to evaluate the improvement of PPs by using
different traceability technologies [16].

Data envelopment analysis (DEA) is a method to
measure the efficiency of decision-making units, i.e. the
effect of multiple decisions (e.g. ST, MHS, SAS or PP) on
multiple outputs (e.g. the level of service or the handling
cost) [17]. DEA has been used to select ST and PP [18, 19].

2.2 Theoretical paradigm

Frameworks provide the theoretical reference to select
design alternatives. Frameworks are provided to select an
MHS [20], while [21] identifies a procedure for SAS design.
The design and comparison of different STs and PPs have
been performed using theoretical frameworks or kinematic
models defined in the continuous domain [22–26].

2.3 Computational paradigm

Knowledge-based systems are IT systems fed with a
knowledge base on a physical system, used to solve
a complex problem. Knowledge-based systems describe
the pattern for selecting the MHS [27–29]. Similar
methodologies based on optimisation provides solutions to
SAS design [30–33]. PP design has been performed by
using a knowledge-based system, as well, to improve the
picking times [34, 35].

Expert systems are algorithms programmed using sym-
bolic reasoning that mimics the process of human experts
and produces decisions associated with an explanation of
the decision process [36]. In the field of warehousing, expert
systems have been used to select ST by interacting with
the user to evaluate the effect of different decisions on the
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expected performance of the ST [37]. Similar systems allow
selecting the MHS by evaluating the impact of different
vehicles on the warehouse layout [38–40]. Integrations of
expert systems with interfaces and decision-making frame-
works improve the effectiveness of these decisions [41,
42].

Discrete event simulation (DES) is widely used to
support the design and assess the behaviour of complex
processes by considering the discrete evolution in time of
a process whose parameters are probabilistically defined
[43–45]. DES has been used to select STs and MHSs by
virtualising their behaviour [46, 47].

2.4 Exploratory paradigm

Benchmarking is a method largely used in the field of
engineering. Benchmarks provide a quantitative reference
of how a system should perform [48]. In general bench-
marking allows checking the performance of any aspect of
a storage system [49]. A crucial aspect is the definition
of the benchmarking metrics used for comparison in the
benchmarking procedure [50]. Benchmarking has been used
to identify the performance of a process and identify an
adequate PP [51, 52] or an adequate MHS [53].

Data-driven algorithms are based on the extraction of
knowledge from datasets [54]. In warehousing systems,
these algorithms are used to extract similarities between
SKUs and solve SAS design using a correlation approach,
i.e. locating an SKU close to other SKUs with a high
correlation coefficient [55]. Similar approaches can be
used to infer the properties of SKUs based on hidden
data patterns [56]. Data-driven predictive models are used
to forecast the picking workload, and to organise the
warehouse zones coherently [57, 58]. The analysis of
variance based on picking data is used to design the PP of a
storage system [59].

Table 1 classifies the literature contributions identifying
the methodology used, the scientific paradigm, and the
focus on the design entities (ST, MHS, SAS, PP). Table 1
identifies a direction that goes towards exploratory science
over the time (and except for the interviews methodology,
that is recently used by the referenced studies to investigate
specific managerial qualitative variables). This study aims
at moving towards this direction. We built upon the existing
KPIs and benchmarking metrics to propose an original
data-driven predictive approach of the design variables of
a storage system (i.e. ST, MHS, SAS and PP). To the
knowledge of the authors, such an approach is novel and
missing in the existing literature body.

In this paper, we follow the literature trend identified
above, moving a step forward in benchmarking, and
data-driven approaches. We aim at providing general
benchmarking metrics that can be used as input datasets

for the data-driven design of ST, MHS, SAS, and PP.
Our methodology focuses on the benchmarking metrics
and the definition of an original workflow to use the
benchmarking metrics to make predictions of suitable and
feasible warehouse configurations.

3Methodology

The methodology of this study is composed of two steps.
The first step applies benchmarking, to characterise the
behaviour of a storage system analysing it from four dif-
ferent perspectives (i.e. SKU profiling, Inventory pro-
filing, Workload profiling and Layout profiling). Bench-
marking metrics are defined based on well-known KPIs
from the warehousing science literature, and original novel
indicators introduced in this paper. Benchmarking metrics
aim at evaluating the performance of any storage system.
Section 3.1 illustrates benchmarking metrics used in the
study to compare different storage systems. The second step
(see Section 3.2) introduces machine learning models and
evaluation metrics to predict the value of ST, MHS, SAS
and PP. The benchmarking metrics identified at the previous
stage are used to define the learning tables. Two scenar-
ios are considered; a learning table X1 where all needed
data are available from the warehouse management system,
and a learning table X2 where only an incomplete subset of
data is available. Learning tables are used to feed classifica-
tion models that fit the data while optimising the precision
metric. The results are compared between the two scenar-
ios by evaluating the precision of the fitted models in the
prediction of ST, MHS, SAS and PP.

Figure 1 summarises the described novel methodology
with a block diagram, illustrating the relevant inputs, data
flows and outputs.

3.1 Storage system benchmarking

The definition of benchmarks involves the design of
metrics and thresholds to set a target performance of an
industrial entity (e.g. the number of lines an operator
should process within his/her working shift). We introduce
a warehouse-specific dashboard whose metrics link to these
target performances. These metrics are mostly based on
the literature and warehousing science [60, 61], and are
designed to efficiently compare the behaviour of different
storage systems (e.g. belonging to different industrial
sectors or handling different SKUs). We organise these
metrics into four macroareas:

1. SKU profiling;
2. inventory profiling;
3. workload profiling;
4. layout profiling.
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Fig. 1 Block diagram of the methodology proposed in this paper

Table 2 introduces, the parameters and the notation, used
to define all the benchmarking metrics.

The benchmarking metrics belonging to SKU profiling
aims at classifying the behaviour of each single SKU. This
set of metrics includes largely studied indicators in the field
of warehousing science: storage assignment coefficients
(1) (i.e. Popularity, Turn, Cube-per-order index, Order
completion index) [62]; storage allocation coefficients (2)
(equal space (EQS), equal time (EQT) and optimal (OPT)
coefficients) [60]; coefficients for spare parts classification

(3), ADI , and CV 2, used to classify the demand patterns of
the SKUs [63]. Table 3 summarises all the aforementioned
benchmarking metrics.

Inventory profiling aims at describing the behaviour
of the saturation of the space of a storage system.
Table 4 illustrates the adopted benchmarking metrics of this
macroarea. The space saturation should be expressed using
a volume unit of measure (e.g. dm3 or m3), or the number of
unit loads when the volume is unknown. The definition of
the inventory function Ii (t) of the storage system requires

Table 2 Notation used to define the benchmarking metrics

Parameter Description

i = 1, . . . , n ∈ S Set of SKUs

τ Number of days considered in the dataset

k = 1, . . . ,∈ V Set of storage locations

ck = (xk, yk, zk) Cartesian coordinates of storage location k

G (V, A) Graph of the storage system including the vertices V and the arcs A mapping the aisles connecting the storage locations.

γ
(t0,t1)
a Number of times arc a is travelled within time horizon [t0, t1]

̂Ii (t) Estimated inventory level of SKU i at time t (dm3), where the estimation is based on the number of parts

Ii (t) Inventory level of SKU i at time t (dm3)

I
(t0,t1)

i Average inventory level (dm3) within the time horizon [t0, t1]
Î

(t0,t1)

i Average inventory level (Number of parts) within the time horizon [t0, t1]
Mout

i Set of outbound movements (i.e. picks) of SKU i

Min
i Set of inbound movements (i.e. putaways) of SKU i

Mout
k Set of outbound movements (i.e. picks) from storage location k

Min
i Set of inbound movements (i.e. picks) to storage location k

qj Quantity (Number of parts) picked in movement j

vj Volume (dm3) picked in movement j

wj Weight (kg) picked in movement j

μ
qout

i Mean value of the picking quantities (outbound) of SKU i

σ
qout

i Standard deviation of the picking quantities (outbound) of SKU i

oj Order id of movement j

da,j Distance travelled on arc a to perform movement j

τ+
j Number of days passed from the timestamp of movement j to the timestamp of the last inbound movement

α Storage assignment policy (e.g. ranking of the SKUs based on descending Popularity)
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Table 3 SKU profiling
benchmarking metrics Formula Description

Popout
i = card(Mout

i )

τ
Popularity (OUT)

Popin
i = card(Min

i )

τ
Popularity (IN)

T urni =
∑

j∈Mout
i

qj

Î
(t0,t1)

i

Turn

Coiout
i = Popout

i

I
(0,τ )
i

Cube-per-order index (OUT)

Coiini = Popin
i

I
(0,τ )
i

Cube-per-order index (IN)

OCi = ∑

j∈Mout
i

1
card(k∈{Mout

h ,...,Mout
l ;h,...,j∈S\{i}}| oj =ok)

Order completion (OC)

EQSi = 1
card(S)

EQS coefficient

EQTi =
∑

j∈Mout
i

qj
∑

i∈S

∑

j∈Mout
i

qj
EQT coefficient

OPTi =
√

∑

j∈Mout
i

qj

∑

i∈S

√
∑

j∈Mout
i

qj

OPT coefficient

ADIi = card(Mout
i )

τ
ADI

CV 2 =
(

σ
qout
i

μ
qout
i

)2

CV 2

recording the volume vi for each single SKU i. When
the volumes of the SKUs are not available, we estimate
the trend of the inventory function by using a normalised
function Îi (t), based on the number of parts involved in
each movement. The frequency analysis of Ii (t), or Îi (t)

provides the probability function fIi
(x) (or f

Îi
(x)) based

on all the observations of the inventory function (e.g. one
observation per day). The cumulative function of fIS

(x) (or
f

ÎS
(x)) is used to identify the risk of stockout associated

with a specific amount of space devoted to the SKUs
of a subset S. The inventory covering time distribution
identifies, for each SKU, the covering time, i.e. the time
before the inventory is consumed by the market demand (i.e.
the average time for the consumption of an incoming lot of
an SKU).

Workload profiling aims at identifying where and how
the workload is distributed. The workload of a storage
system can be linked to an entity of the warehouse (e.g.
an operator, a handling vehicle or a storage location). The
knowledge of the coordinates of the storage locations and
the movements associated with them allow calculating the
intensity of the workload in terms of the number of lines

(i.e. popularity) of the putaway or picking activities. When
the volumes vi and weights wi associated with the SKUs
are available, it is possible to map an ergonomic workload
by representing the cumulative volume or weight associated
with the workload of a storage location j . Table 5 illustrates
the benchmarking metrics of this macroarea.

Layout profiling aims at identifying how the workload
is organised on the plant layout (i.e. how resources are
placed within the storage system). Layout profiling allows
assessing if there is room for improving the current
organisation of the work and space. For this reason,
layout profiling involves three graphical KPIs. A graph
G(V, A) is defined, with respect to the warehouse layout,
considering the connections between aisles and the routing
policy within the aisles. All the benchmarking metrics
are defined accordingly on the graph G. A traffic graph
is a set of weights associated with each arc a ∈ A,
depending on the number of times vehicles travel that
arc. A popularity bubble graph represents the amount of
workload associated with a storage location j , given a
storage assignment policy α. By changing the given storage
assignment policy (e.g. using an optimal assignment based

Table 4 Inventory profiling
benchmarking metrics Formula Description

IS (t) = ∑

i∈S Ii (t) Inventory function

fτ+
i

(x) Inventory covering time distribution

fIS
(x) Inventory probability function

FI S (x) = 1 − prob
{

fIS
≤ x

}

Inventory stockout risk function

ÎS (t) = ∑

i∈S

̂Ii (t)

max ̂Ii (t)
Normalised inventory function

f
ÎS

(x) Normalised inventory probability function

F
ÎS

(x) = 1 − prob
{

f
ÎS

≤ x
}

Normalised inventory stockout risk function
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Table 5 Workload profiling
benchmarking metrics Formula Description

Pop
out,2D
k = ∑

k′∈V :xk=xk′ ,yk=yk′ card(Mout
k′ ) Popularity productivity OUT (2-dimensions)

Pop
out, 3D
k = card(Mout

k ) Popularity productivity (OUT) (3-dimensions)

Pop
in,2D
k = ∑

k′∈V :xk=xk′ ,yk=yk′ card(Min
k′ ) Popularity productivity IN (2-dimensions)

Pop
in, 3D
k = card(Min

k ) Popularity productivity IN (3-dimensions)

v
out,2D
k = ∑

j∈Mout
k′ ,k′∈V :xk=xk′ ,yk=yk′ vj Volume productivity OUT (2-dimensions)

v
out, 3D
k = ∑

j∈Mout
k

vj Volume productivity OUT (3-dimensions)

v
in,2D
k = ∑

j∈Min
k′ ,k′∈V :xk=xk′ ,yk=yk′ vj Volume productivity IN (2-dimensions)

v
in, 3D
k = ∑

j∈Min
k

vj Volume productivity IN (3-dimensions)

w
out,2D
k = ∑

j∈Mout
k′ ,k′∈V :xk=xk′ ,yk=yk′ wj Weight productivity OUT (2-dimensions)

w
out, 3D
k = ∑

j∈Mout
k

wj Weight productivity OUT (3-dimensions)

w
in,2D
k = ∑

j∈Min
k′ ,k′∈V :xk=xk′ ,yk=yk′ wj Weight productivity IN (2-dimensions)

w
in, 3D
k = ∑

j∈Min
k

wj Weight productivity IN (3-dimensions)

on a benchmark metric identified in the SKUs profiling) we
evaluate an expected behaviour. Similarly, the popularity-
distance bubble graph considers the workload associated
with each storage location, and its distance from the input-
output point [64]. Table 6 illustrates the benchmarking
metrics of this macroarea.

It might occur that the data needed for benchmarking is
not tracked by the Warehouse Management System (WMS)
of a company. This often happens due to limits of the hard-
ware or the database or lack of interests in precise data collec-
tion. Figure 2 introduces an original warehouse framework
that matches the set of benchmarking metrics with the input
data needed to calculate them. The framework reveals the data
attributes (from a generic relational model of a warehouse
management system) necessary to calculate the value of
the benchmarking metrics. By following the connections of
Fig. 2, we understand which input data attribute, generally
recorded by a WMS, feeds a specific benchmarking metric.
Such connections can help to understand the readiness of a
storage system (and its warehouse management system) for
the implementation of the data-driven design introduced in
the following subsection.

3.2 Data-driven storage system design

The benchmarking metrics permit exploring the perfor-
mance of a storage system from different perspectives and
to compare the behaviour of different warehouses by using

the same benchmarking metrics. The definition of common
parameters (i.e. the benchmarking metrics) to evaluate the
different occurrence of a phenomenon (i.e. the SKUs of
a warehouse), recommend implementing machine learning
models.

We aim at considering a subset of the benchmarking
metrics identified above, referring to the single SKUs,
to train classification algorithms able to predict the
categorical labels corresponding to the design choices on
ST, MHS, SAS, and PP. The input dataset (i.e. the learning
table) contains observations of SKUs stored within a storage
area with a given label of ST, MHS, SAS, and PP. The
benchmarking metrics are used to define a learning table
where each row corresponds to a specific SKU and the
columns to a benchmarking metric.

The heterogeneity of the input makes quantifying some
of the benchmarking metrics challenging. In general, the
lack of data results from lacking data collection protocols,
poor management of the warehouse management system,
recording errors of the operators, and errors or negligence
of the operators while using barcode scanners. All these
reasons can significantly limit full exploitation of the data-
driven approach. We then apply our methodology using two
different scenarios, varying the number of attributes (i.e. the
columns) of the learning table:

1. scenario 1, where the learning table X1 is composed of
all the attributes illustrated in Table 7;

Table 6 Layout profiling benchmarking metrics

Formula Description

γG = γ
(0,τ )
a , a ∈ A Traffic graph

Popα
G =

{

∑

k∈V

(

Pop
out,2D
k + Pop

in,2D
k

)

| α
}

Popularity bubble graph

Pop
dist,α
G =

{

(
∑

k∈V

(

Pop
out,2D
k + Pop

in,2D
k

)

;∑

k∈V (
∑

j∈Mout
k

da,j + ∑

j∈Min
k

da,j ))| α
}

Popularity – distance bubble graph
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Fig. 2 Connections between benchmarking metrics (in orange), and input data (in grey)

2. scenario 2, where the learning table X2 is composed of
a small subset of attributes focused on the outbound (i.e.
ADI , CV 2, C1

i , 1/C1
i , all the inventory parameters,

OCi , Popout
i , and T urni).

This way, we obtain the learning table X1 of scenario 1,
with more attributes (i.e. columns), and a smaller number of
observations (i.e. rows), and X2 in scenario 2, with fewer
attributes, and a higher number of observations. In practice,
it is simpler to define the learning table X2, having a smaller
number of attributes requiring fewer input data and less pre-
processing effort. Consequently, it is possible to investigate
if an approach with less data (i.e. Scenario 2) can lead to
meaningful results as the one with more data (i.e. Scenario
1). Table 7 identifies the attributes (i.e. the columns) of the
learning tables X1, and X2.

The learning tables contain the SKU profiling bench-
marking metric, and a number of parameters obtained from
the normalised inventory function ÎS (t). These metrics are
not affected by the observation time horizon, making it pos-
sible to compare and merge information of different storage
systems within the same learning table. The productivity
and layout profiling metrics are meaningful to benchmark
the operations of the storage system; nevertheless, they can-
not be referred to the single SKUs (i.e. the rows of the

learning table). For this reason, productivity and layout
profiling are not considered in the definition of the learn-
ing tables. Consequently, X is built on parameters entirely
defined by the features of an SKU i.

The learning tables come with four additional attributes,
which identify the design target labels, and how the strategic
decisions have been addressed in the observed data:

1. ST, e.g. automated storage & retrieval system (AS/RS),
automated vertical warehouse, block stacking, can-
tilever racks, miniload, pallet rack, shelves;

2. MHS, e.g. cart, forklift, operator, order picker.
3. SAS, e.g. reserve & forward, only reserve;
4. PP, e.g. multi-order with batching, multi-order with

zoning and sorting, single-order.

We train some different classifiers (linear, non-linear, and
ensemble classifier) to select the one that outperforms the
others. Some of these classifiers are interpretable, i.e. they
produce output coefficients allowing to evaluate the relative
importance of the input features. While increasing the
complexity of the model, it becomes harder to interpret the
choices made during the model training. Table 8 illustrates
the selected classification models, the type of method they
belong to, and (eventually) the output parameters used
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Table 7 Attributes of the learning tables X1 and X2 for the data-driven warehouse design

Attribute Description Attribute Scenario 1 Scenario 2

Volume vi (kg) • ◦
Weight wi (kg) • ◦
EQS coefficient EQSi • ◦
EQT coefficient EQTi • ◦
OPT coefficient OPT i • ◦
ADI ADIi • •
CV 2 CV 2

i • •
Popularity (IN) Popin

i • ◦
Popularity (OUT) Popout

i • •
Cube-per-order index (IN) COIin

i • ◦
Cube-per-order index (OUT) COIout

i • ◦
Order completion OCi • •
Turn T urni • •
Normalised inventory minimum min ÎS (t) • •
Normalised inventory maximum max ÎS (t) • •
Normalised inventory average ÎS (t) =

∑

δ∈ÎS (t)
δ

cardÎS (t)
• •

Normalised inventory standard deviation σ
ÎS (t)

=
√

∑

δ∈ÎS (t)
(δ−ÎS (t))

cardÎS (t)
• •

First of the Fourier coefficients of the normalised inventory function C1
i = 1

τ

∫

τ
ÎS (t) e− 2π

τ
t • •

Timespan in weeks corresponding to the frequency identified by the first Fourier coefficient 1/C1
i • •

Mean of the inventory covering time μτ+
i

=
∑

j∈Min
i

:τ+
j

=0
τ+
j−1

card(j∈Min
i :τ+

j =0)
• •

Standard deviation of the inventory covering time στ+
i

• •

to interpret the results. A subset of these models uses
randomisation or deep learning techniques that make it
difficult to interpret the relative importance of the input
features. The mathematical definitions of these models and
a discussion of their interpretability can be found in [65].
Table 8 summarises these details. In the case study section,
all these models are trained, but the interpretation of the
relative importance of the input feature can be performed
only on interpretable models.

The choice between the identified classifiers is done
based on a performance metric. The classification per-
formance metrics are generally calculated considering the
number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). These indicators
are tailored on a binary classification problem (i.e. a classifi-
cation problem with only two target labels: ‘true’ or ‘false’).
However, they are easily generalisable by considering the
confusion matrix, i.e. a matrix of the observations classified
correctly or misclassified, for each target label. There are
four main classification metrics:

1. accuracy, measured as T P+T N
T P+T N+FP+FN

, indicates the
probability that an observation is correctly classified.

When using accuracy, it is assumed that the distribution
of the labels in the learning table is not skewed and that
the misclassification of false positives (FP) and false
negatives (FN) have a similar cost;

2. precision, measured as T P
T P+FP

, indicates the proba-
bility that an observation labelled as “positive” was
truly “positive” in the reality (ignoring all the observa-
tions labelled as “negative”). When using precision, it
is assumed that the cost of a false positive (FP) is higher
than the cost of a false negative (FN);

3. recall, measured as T P
T P+FN

, indicates the probability
that an observation, that is “positive” in the reality, is
correctly labelled by the algorithm as “positive”. When
using recall, it is assumed that the cost of a false nega-
tive (FN) is higher than the cost of a false positive (FP);

4. F1, measured as 2(recall×precision)
(recall+precision)

, considers both the
perspectives of precision and recall. While using recall,
it is assumed that the distribution of the labels in the
learning table is skewed and that the misclassification
of false positives (FP) and false negatives (FN) have a
similar cost.

In this study, we decided to focus on the precision
metric (2.) because it preserves the feasibility of the
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Table 8 Classification model and coefficients of relative importance

Classification model Type of method Interpretation parameter

Linear discriminant analysis Linear classifier Vector weight: identifies the weight of an attribute to predict a
target label. The higher the vector weight, the higher the relative
importance of an attribute to predict a class

Logistic regression Linear classifier Vector weight: identifies the weight of an attribute to predict a
target label. The higher the vector weight, the higher the relative
importance of an attribute to predict a class

Quadratic discriminant analysis Non-linear classifier Class means and variance: identify the mean value, and the variance
for each target label and attribute. The higher the value of the class
mean and variance, the higher the relative importance of an attribute
to predict a class

Naive Bayes Non-linear classifier θ and σ : identify the mean value (θ), and the standard deviation
(σ ) for each target label and attribute. The higher the value of the θ

and σ , the higher the relative importance of an attribute to predict
a class

Decision tree Non-linear classifier Gini coefficient: identifies the relative importance of each feature,
based on the Gini importance. The higher the Gini coefficient of an
attribute, the higher the relative importance of an attribute.

Single layer perceptron Non-linear classifier Not interpretable

Support vector machine Non-linear classifier Not interpretable

Random forest Ensemble classifier Not interpretable

Adaboost Ensemble classifier Not interpretable

Gradient boosting Ensemble classifier Not interpretable

Bagging tree Ensemble classifier Not interpretable

output more than all the other metrics. Precision focuses
only on the “positive” responses of the classification
algorithm, assuming the cost of a false positive (FP) being
high, compared to the other misclassification costs. The
feasibility of the design configuration proposed by the
algorithm is mandatory. For example, storing a full-pallet
SKU into a miniload is not acceptable.

Since this methodology is data-driven, we test a large
amount of real data belonging to different warehouses. The
following section implements the benchmarking methods
and the prediction procedure to evaluate the impact of the
methodology on a real environment, with real data collected
on-field.

4 Case study

4.1 Instances description

In this section, the benchmarking and data-driven design
methodologies are applied considering 16 warehouses
with real operational data provided by 16 companies (6
from distribution centres and 10 from third-party logistics
companies), accounting for almost 15 million database

records. These traceability data come from different
information systems and are inherently heterogeneous.
We aim at proving that our benchmarking metrics are
generalisable and applicable to any storage system where
the relevant data (i.e. the data fields identified with boxes
in grey colour in Fig. 2) are recorded. We are interested
in interpreting which data attributes are necessary to fit
machine learning models predicting the selection of ST,
MHS, SAS, and PP. The implementation of this case study
is programmed using Python and the scikit-learn library, and
developed in Spyder IDE.

Table 9 maps the 16 datasets involved in this study
identifying the type of warehouse, the industrial sector and
the number of SKUs stored. Table 9 reports a reference year
for each dataset, the number of recorded days, the number of
movements recorded and the presence or absence of relevant
data attributes as:

1. the inbound data (i.e. putaways);
2. the outbound data (i.e. pickings);
3. the layout data (i.e. the ordinal number of rack, bay and

level for each storage location);
4. the layout coordinates (i.e. the (x, y, z) Cartesian

coordinates for each storage location);
5. the volume data for each SKU;
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6. the picking list data (i.e. a common id for all the
movements processed within the same putaway or
picking route).

In addition, Table 9 analyses the role of the warehouse
in the supply chain it belongs. Warehouses act as a buffer
of the supply chain; to identify the responsiveness of
the storage system to the supply chain, we calculate the
percentage of SKUs for each demand pattern based on
the ADI , and CV 2 classification in [63]. It comes out
that 3PL operators experience, on average, more lumpiness
(i.e. unpredictability of both the demand quantity and time
interval of their SKUs) than distribution centres do.

Table 9 indicates the number of sub-areas for each of
the 16 warehouses considered. A sub-area is a zone of the
storage system, equipped with a specific technology, and
identified by a combination of ST, MHS, SAS and PP. For
the warehouse ids dc auto 1 and tp manu 1, there is no
number of sub-areas in Table 9, due to the fact that the
available data do not map the ST, MHS, SAS and PP of
these storage systems. For this reason, the dataset of these
two instances are used for benchmarking, but not for storage
system design. Table 10 identifies the details for each of the
26 sub-areas of the selected warehouses.

As an example, the warehouse id dc auto 2 is equipped
with four different sub-areas. Each sub-area has a different
ST (i.e. AS/RS, automated vertical warehouse, pallet rack
and shelves) served by two types of MHS (i.e. operator or
forklift), and all areas use a forward/reserve SAS, and a
multi-order with zoning and sorting PP.

4.2 Instances benchmarking

The benchmarking metrics identified in Section 3.1 are
applied to the 16 datasets of the considered warehouses.
Since benchmarks are defined graphically on an aggre-
gated basis, this section discusses the insights from the
benchmarking of the 16 warehouses, while the graphical
representations are found in the Appendixes at the end of
the paper.

Appendix 1 represents the SKU profile of each ware-
house, mapping the Pareto charts1 of the Popularity, COI,
Turn and OC indexes. When inbound data are not recorded,
Popularity and COI indexes are limited to the outbound
data. Similarly, the COI is not calculated when the SKU
master file does not contain the volume for each SKU.
The Popout index has a similar pattern for the automotive
distribution centres, having very few items producing the

1The Pareto Chart (or Pareto curve) represents the cumulative curve of
the values in descending order (from the highest value to the lowest
value) of a given series of values.

majority of pickings. Different behaviour is found in food,
beverage, and biomedical warehouses. In these warehouses,
a wider number of SKUs determines the majority of the
outbound activities. Specific patterns are determined in the
popularity of publishing warehouses. There is a strong influ-
ence on the seasonality of the academic year, which leads to
a high turn index for some SKUs, and complete immobility
for others. The OC index is connected to the length of the
orders in each warehouse. The automotive, beverage, and
manufacturing warehouses have many SKUs ordered alone
or ordered frequently. The cardinality of the orders (i.e. the
number of lines of an order) tends to be more uniform in
food and biomedical warehouses. T urn indexes are differ-
ent, depending on the operations. High T urn indexes are
encountered in distribution centres (that usually have cross-
docking areas where SKUs transit fast). A different pattern
is found in the 3PL warehouses, depending on the tasks that
the operators are required to perform.

Appendix 2 identifies the inventory profile of the 16
warehouses. The inventory profile cannot be identified
when the input data lack inbound records. Besides, when
the volumes are not recorded, only the normalised inventory
function ÎS (t) is calculated. The ÎS (t) can be useful to
identify the warehouse saturation trend when the volumes
recorded in the SKU master file are not reliable. This is the
case of a 3PL provider receiving from its clients bad quality
data on the volume of the SKUs (e.g. tp manu 2).

The inventory profile is highly market-oriented and
difficult to generalise. For example, distribution centres
have the role to absorb the variability of the market demand
by varying their inventory levels. Differently, 3PL providers
frequently encounter inventory variability due to changes
in the contracts with their customers. The profiles of the
distribution centres identify positive or negative trends,
while 3PL providers experience a rapid growth (when
the client is acquired) followed by an almost stationary
profile with stable partners (e.g. tp manu 2, tp manu 3, and
tp bio 2), or a rapid decrease with strong seasonality (e.g.
tp pub 2) or e-commerce services (tp cos).

Appendix 3 identifies the workload profile of the
analysed warehouses. The plots represent the workload
projected on the plant of the warehouse system or in
the space, by considering the coordinates of the storage
locations. The graphs are incomplete when the coordinates
of the storage locations are omitted. The graphs identify
how the workload is distributed in the different areas of
the storage system. In distribution centres, a few areas host
the majority of the workload, and these areas are mostly
placed in the lowest levels, nearby the input/output points.
On the contrary, the 3PL providers have fewer locations
and a randomly distributed workload, reaching higher levels
when picking activities are performed by order pickers.
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Appendix 4 illustrates the benchmarking metrics of
the layout of the warehouses. The warehouses without
layout data are omitted. The popularity bubble graphs and
the popularity-distance bubble graphs compare the actual
storage assignment policy (asis) with an assignment policy
identified by the ranking on the SKUs based on their
popularity (tobe). The tobe assignment policy ranks the
locations based on their distance from the input and output
points. The smaller the distance of a storage location, the
higher the popularity of an SKU to be placed there. The
traffic graphs identify intense traffic on the front and back
corridors when warehouses have picking missions with few
stops (i.e. a small number of lines) and the majority of the
distance is travelled horizontally to move from the input or
output points to the aisles. Differently, the vertical distances
result from handling and picking operations performed at
the high-levels of the storage system (e.g. dc furn and
tp manu 3). The popularity bubble graphs identify how the
workload should be transferred by passing from an asis to a
tobe assignment, given by the popularity ranking.

We see that the workload tends to be organised vertically
when the input is placed on the opposite side of the
plant, compared to the output; otherwise the workload
is concentrated around the same side of the plant. The
popularity-distance bubble graphs confirm the change from
a distributed workload to an optimised workload where the
SKUs with higher popularity are placed in a location with a
lower distance.

4.3 Model training for the storage system design

The datasets of the industrial warehouses are used to
build the learning tables X1, and X2 in the two scenarios
identified by the proposed methodology. Table 11 identifies
the number of observations (i.e. the rows) for both the
learning tables and the number of observations associated
with each label.

Table 11 reports an important piece of information. The
input datasets in both the scenarios are skewed, i.e. the
labels are not uniformly distributed among the observations,
but some labels have more observations than others. This
fact may lead to an imbalance of the model and overfitting.
For this reason, we resample the dataset before training the
machine learning model to work with a similar number of
observations for each of the target label. The predictions
of each design entity (i.e. ST, MHS, SAS, and PP) are
made on a learning table having a number ρ of observations
randomly extracted from the learning table X1 or X2, where
ρ equals the minimum number of observations having the
same label (e.g. 183 in ST predictions within scenario 1, or
6,359 in MHS predictions within scenario 1).

The obtained dataset is split into a training and testing
set using 66.7% of the observations to train the models
(identified in Table 8), and the remaining 33.3% to
test the performance of the trained classification models.
Hyperparameter tuning is done using a grid search with 3-
fold cross-validation for each model. When predicting ST,
MHS and PP, there are more than two classes to predict.
For this reason, the problem is multi-class, and the global
precision of the algorithm is calculated as the average of
the precision of each class. While predicting SAS, there
are only two classes in the considered instances (binary
classification), then the precision is calculated using the
formula in Section 3.2. Table 12 reports the precision of
the predictions measured on the test set, for each class of
models, identified by the grid search.

Ensemble and non-linear models outperform, on average
the linear classifiers. The learning table of scenario 2
(having more observations, but fewer attributes) leads to
a higher precision score in 27 out of 44 (i.e. the 59%)
of the models identified by our empirical tests. In the
remaining, the precision score is comparable to the one
obtained in scenario 1. This result indicates that a limited
amount of data (e.g. without inbound information and the
volume information) is enough to support the design of a
storage system using a data-driven approach. The models
predicting the PP and the SAS have better performances
than the ones predicting ST and MHS. This is due to the fact
that an SKU characterised by the same parameters can be
stored or handled differently, depending on the practices of
a company.

It is hard to understand which input feature is considered
more or less important when models are not interpretable
(e.g. ensemble and deep learning models, see Table 8).
For this reason, additional details on the relevance of
the input data attributes come from the interpretation of
the results and parameters of the interpretable models. In
almost all design entities and scenarios, the best performing
interpretable model is the decision tree. A decision tree
mimics the engineering design approach by defining
thresholds on the parameters, and if-then-else statements
based on these thresholds.

When predicting the value of the ST, the decision tree
in scenario 1 attributes higher importance to the volume vi ,
the weight wi , and the standard deviation of the inventory
function σ

ÎS(t)
. When working with the data of scenario 2,

the decision tree mostly considers C1
i , 1/C1

i , and Popout
i .

This behaviour is similar to the classical engineering
approach where volumes and weights of the SKUs are the
first information to select feasible storage racks. When these
data are not available, the ST is predicted based on its
dynamic behaviour, i.e. its productivity (measured using the
Popout

i , or the C1
i )
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To predict the MHS, the decision tree focuses almost
uniquely on the volume vi in scenario 1; while it considers

C1
i , 1/C1

i , the average inventory ÎS
¯(t), and the ADIi in

scenario 2. This behaviour is similar to the prediction of the
ST since the volume of a SKU is a discriminant to select
a feasible MHS association (e.g. a forklift cannot enter the
aisle of a manual shelf hosting small spare parts). When
volumes are not available, the inventory profile and the
ADIi are mainly used for prediction. This fact suggests that
a correlation may exist between the volume of an SKU, and
its inventory profile.

Regarding the SAS, the decision tree identifies as
the most important features V oli , and 1/C1

i in scenario
1. In scenario 2, where the volume is not considered
by the learning table, 1/C1

i remains the most relevant
feature, slightly assisted by Popout

i . Similarly to the
engineering methods for storage allocation, the volume and
the dynamics of the demand of an SKU (estimated as 1/C1

i )
are the main drivers to target the SAS.

The decision tree identifies Popin
i as the most important

feature to predict the PP in scenario 1. When dealing
with a limited amount of data, the decision tree gives

more importance to C1
i , the average inventory ÎS

¯(t), and
the Popout

i . Differently from the previous predictions, the
selection of the PP is entirely based on the dynamics of the
market demand of an SKU focusing on a selection of the
picking organisation based on the value of the popularity.

These results suggest that the physical details of the
SKUs (i.e. volume) and the dynamics of the demand (i.e.
the popularity and 1/C1

i ) are key information to implement
a data-driven selection of ST, MHS, SAS and PP.

5 Discussion andmanagerial implications

The case study results reveal an emerging role of the
data-driven approach in the field of warehouse design.
We train models to lead complex decision-making through
empirical observations. Similarities with the model-driven
engineering methods have been found, when interpreting
the predictions of the decision trees trained with the data of
16 warehouses.

By considering these pieces of evidence, we are answer-
ing research question RQ1, identifying the warehouse
benchmarking metrics as the columns of a learning table,
able to make predictions of the warehouse configuration to
assign to each SKU.

We remark an important limitation of this approach.
The predictive models do not point to the optimal decision
since they are not trained with optimal assignments. The
labels attached to the learning tables indicate the strategic
design decisions. These decisions are based on previous
observation, i.e. they identify the industrial practices.
Industrial practice can be far from optimality but generally
requires a high degree of feasibility and flexibility.

Table 11 Number of observations for each classification label for the learning table scenarios X1, and X2

Design entity Label Scenario 1 Scenario 2

ST pallet rack 25,742 43,035

ST automated vertical wh 9,347 13,403

ST shelves 3,105 25,612

ST AS/RS 4,974 7,112

ST block stacking 183 923

MHS operator 10,767 37,070

MHS forklift 26,225 42,153

MHS order picker 6,359 8,408

MHS cart 0 2,511

SAS forward/reserve 11,489 44,252

SAS reserve 31,862 45,890

PP multi-order with zoning and sorting 4,714 19,412

PP single-order 38,637 46,237

PP multi-order with batching 0 24,493

Tot n. of observations 43,351 90,142
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We use these models not to predict the optimal
storage systems given some estimated parameters (i.e. the
traditional model-driven engineering approach), but instead
to provide a feasible solution to complex strategic decisions
given the current circumstances.

This approach has profound managerial implications
for 3PL providers. Generally, 3PL providers experience a
rotation of the SKUs due to the expiration of the contracts
with their clients. However, in practice, their storage
technology cannot easily change together with their client
portfolio due to significant investments in technologies

that are hard to pay back in the short term. They could
benefit from a data-driven approach when they are able to
get the data of incoming customers [66]. 3PL providers
continuously need forecasts to deal with the unpredictability
of their customers’ demand [67]. Literature contributions
evidence the impact of prediction models to deal with the
operation and allocation of the orders of a 3PL provider [68,
69].

We address research question RQ2 by considering the
relevance of our methodology to a set of warehouses of
the same 3PL company, in case a 3PL company wants

Fig. 3 Structure of the neural networks with the prediction performance of the other models on the X2
3PL learning table
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to deploy the models in its real environment. This
analysis does not require interpreting the relevance of
the features’ dataset. Therefore, we only focus on the
precision value to select the most performing model,
and we use a neural network to boost the prediction
performances. While the case study explores the relevance
of the data-driven approach on a multitude of datasets
from different players and from a research perspective, this
application showcases the managerial implication for a 3PL
provider.

A learning table X2
3PL is defined and limited to a number

of the datasets involved in the case study regarding the same
3PL provider (i.e. tp bio 1, tp bio 2, tp cos, tp manu 1,
tp manu 2, tp pub 1, tp pub 2). The learning table uses the
features of scenario 2, having fewer attributes. Disregarding
the interpretability of the model, we are interested in
implementing a predictive tool able to suggest to the 3PL
a ST, MHS, SAS and PP for an incoming SKU (e.g.
provided by a new customer of the 3PL provider). This
selection is done by considering the ST, MHS, SAS and PP
observed in the learning table, i.e. the storage technologies
currently adopted by the 3PL provider. We train the models
identified in Table 8 and a deep neural network (NN)
whose structure is identified differently for each model in
Fig. 3.

The performance of the predictions is evaluated by using
the precision metric. Multi-class classification problems are
solved as introduced in Section 4.3. The NN predictions
significantly outperform the ones of other models while
predicting the SS. When dealing with other entities, the
predictions of the other models are similar or better than
the ones of the NN. The 3PL provider could then provide
tailored services to customers even in the presence of
a variable inventory mix. Furthermore, the results aid
identifying affordable customers to serve, estimating a
service level and an operational organisation just looking at
the customer’s historical data, before the physical transfer
of the SKUs.

6 Conclusions and further research

This paper deals with the design of a storage system from
a data-driven perspective. Four design areas are identified:
storage system technology (ST), material handling system
(MHS), storage allocation strategy (SAS), and picking
policy (PP). The literature has been reviewed identifying a
lack of data-driven applications in the field of warehouse
design.

A novel methodology is proposed and illustrates how to
implement machine learning models to predict ST, MHS,
SAS and PP, based on a set of benchmarking metrics of the
storage systems.

A case study involving a large number of warehouse
datasets is used to train the machine learning models
predicting ST, MHS, SAS, and PP. The decision tree
classifier is used to interpret the relative importance of the
input variables. The results of the case study evidence that
the features of the SKUs (i.e. the volume and weight),
and the dynamics of the market demand of the SKUs
(i.e. popularity, and the seasonality) are crucial pieces of
information to make accurate predictions.

The role of the predictive warehouse design is discussed
for the case of 3PL providers who can benefit from
predictions to select ST, MHS, SAS and PP for the
organisation of the SKUs of a new client, given the
existent infrastructure. The empirical tests show that, when
the crucial data are available, machine learning models
accurately predict the outcome of strategic decisions, by
assigning SKUs to a proper ST, MHS, SAS, and PP.
This discovery can help to improve the resilience and the
organisation of 3PL providers who need to assign incoming
SKUs (e.g. of a new customer) to their existing storage
systems.

Further researches should focus on the development
of learning tables to support the predictive design of
warehousing systems. Learning table using different
attributes from the warehouse management system should
be tested (e.g. with a focus on the storage locations, or
the orders, rather than the SKUs considered in this paper).
In addition, other design aspects (e.g. the lane depth of a
rack) can be predicted. Finally, the predictive design could
be adapted to the strategic design decisions of other supply
chain systems (e.g. the design of the layout of a production
system or the selection of the fleet vehicles of a distribution
network).

Appendix 1

Figure 4 illustrates the graphical benchmarks of the SKU
profile of the 16 storage system instances presented in
Section 4. Each box of the figure identifies the cumulative
Pareto function of the benchmarking metrics identified on
the columns (i.e. inbound and outbound Popularity, inbound
and outbound COI, Order closing and Turn Index). As
detailed in Section 4, the availability of data is partial for
some instances; for this reason, some boxes are blank.
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Fig. 4 SKUs profile of the warehouses

Appendix 2

Figure 5 illustrates the graphical benchmarks of the inven-
tory profile of the 16 storage system instances presented in
Section 4. Each box of the figure identifies an inventory
metric (i.e. the inventory function, the inventory probability
distribution, and the inventory stockout distribution). These

metrics are only available when the SKU’s volumes are
mapped. Otherwise only the normalised counterpart func-
tions are displayed. Estimating these functions requires both
the input (i.e. putaway), and output (i.e. picking) move-
ments need to be recorded by the WMS; As a consequence,
only the subset of instances meeting these requirements is
presented in Fig. 5.
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Fig. 5 Inventory profile of the warehouses
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Appendix 3

Figure 6 illustrates the graphical benchmarks of the
workload profile of the 16 storage system instances
presented in Section 4. Each box of the figure identifies a
workload metric. The workload metrics offer 2-dimensional
and 3-dimensional views of the warehouse systems. They
reflect the workload based on Popularity, volume, or weight
of the putaway or picking operations. The presence of
volume or weight is necessary to build the corresponding
KPIs; for this reason, some boxes are blank. In addition,
we define all these metrics only for the subset of instances
where the Cartesian coordinates (x, y, z) of the storage
locations are known.

Appendix 4

Figure 7 illustrates the graphical benchmarks of the layout
profile of the 16 storage system instances presented in
Section 4. Each box of the figure identifies a layout
metric. These metrics are available when the layout
coordinates (or, at least, the progressive number of racks,
bays and levels) are known for each storage location. The
graphical KPIs shows the layout graph and the traffic
on the edges of the warehouse graph (corresponding
to the aisles of the warehouse), and the bubble charts
identifying the potential margin that can be obtained with
a reassignment of the SKUs to the storage locations
[64].

Fig. 6 Workload profile of the warehouses
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Fig. 7 Layout profile of the warehouses
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