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Abstract

We prove that the entanglement entropy of any pure initial state of a bipartite bosonic
quantum system grows linearly in time with respect to the dynamics induced by any un-
stable quadratic Hamiltonian. The growth rate does not depend on the initial state and
is equal to the sum of certain Lyapunov exponents of the corresponding classical dynam-
ics. This paper generalizes the findings of [Bianchi et al., JHEP 2018, 25 (2018)], which
proves the same result in the special case of Gaussian initial states. Our proof is based
on a recent generalization of the strong subadditivity of the von Neumann entropy for
bosonic quantum systems [De Palma et al., arXiv:2105.05627]. This technique allows
us to extend our result to generic mixed initial states, with the squashed entanglement
providing the right generalization of the entanglement entropy. We discuss several ap-
plications of our results to physical systems with (weakly) interacting Hamiltonians and
periodically driven quantum systems, including certain quantum field theory models.
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1 Introduction

Entanglement is a cornerstone of quantum theory and its dynamics has been extensively stud-
ied in a wide range of different systems [1–5]. It also provides an important link between
classical chaos and quantum chaos in the context of Lyapunov instabilities [6]. The most
prominent entanglement measure for pure states (i.e., rank-one projectors) is the entangle-
ment entropy [7, 8]. The entanglement entropy of the pure state ρ of the bipartite quantum
system AB1 is defined as

S(A)(ρ) = −Tr [ρA lnρA] , (1)

where S denotes the von Neumann entropy [9–11]. Saturation of the entanglement entropy
is considered as signature of thermalization or equilibration. The transition from an initially
linear growth to such an eventual saturation has been also studied in the context of quenches
of both integrable and non-integrable systems [12, 13]. More recently, out-of-time-order cor-
relators have been used as valuable tool to describe thermodynamic processes and to define
quantum Lyapunov exponents [14,15].

To our knowledge, the connection between linear growth of the entanglement entropy
and classical Lyapunov exponents was first observed by Asplund and Berenstein in [16] for
a stroboscobic Hamiltonian coupling two bosonic modes. They found that the entanglement
entropy grew as the sum over the positive Lyapunov exponents and already conjectured how
this finding should apply more generally. This conjecture was proven for the case of time-
dependent quadratic Hamiltonians with Gaussian initial states in [17, 18]. In particular, this
lead to an algorithm [18] for determining which Lyapunov exponents need to be summed
for any chosen subsystem and it showed under what conditions the growth rate agreed with
the famous classical Kolmogorov–Sinai entropy rate. More recently, Modak, Rigol, Bianchi and
one of the present authors gave numerical evidence [19] that the same growth rates also apply
to non-Gaussian initial states and identified a subleading logarithmic correction for a certain
class of “meta-stable” Hamiltonians. Linear growth was also observed in a toy model for time
evolving QFT with controllable chaos [20].

On a technical level, the main proof [18] for linear growth for Gaussian initial states was
based on relating the asymptotic growth of the entanglement entropy

S(A)(t)∼ ln VolVA(t) (2)

to the volume of a time-dependent parallelepiped VA(t) in the dual phase space. The resulting
asymptotics applies to arbitrary pure Gaussian states and also serves as an upper bound for
arbitrary initial states with finite covariance matrix, as Gaussian states have maximal entropy
among all states with given covariance matrix. Proving that the respective growth rate applies

1A quantum system A is given by a Hilbert space HA. A quantum state of A is a positive semidefinite linear
operator with unit trace acting on HA. Given two quantum systems A and B with Hilbert spaces HA and HB ,
respectively, their union is the bipartite quantum system AB with Hilbert space HAB =HA⊗HB . Given a quantum
state ρ of AB, its marginal state on A is ρA = TrBρ, where TrB denotes the partial trace over HB .
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to arbitrary (non-Gaussian) initial states requires us to bound the entanglement entropy from
below, which is in general a very difficult problem. A recent work [21] by Trevisan and one of
the present authors introduced a novel relation between the mutual information of Gaussian
and non-Gaussian states. More precisely, let AB be a bipartite bosonic quantum system, let M
be a symplectic transformation2 and let UM be the unitary operator that implements M in the
Hilbert space of AB, i.e., UM implements the linear transformation of the quadratures given by
M . Then, for any (generically mixed) state ρ of AB with finite covariance matrix, we have

I(A; B)(ρ) + I(A; B)(UM (ρ))≥ inf
σGaussian

(I(A; B)(σ) + I(A; B)(UM (ρ))) , (3)

where
I(A; B)(ρ) = S(A)(ρ) + S(B)(ρ)− S(AB)(ρ) (4)

is the mutual information of ρ across the subsystems A and B [9–11] and UM is the quantum
channel associated to UM , i.e.,

UM (ρ) = UM ρ U†
M . (5)

The left-hand side of (3) is bounded from below by a minimization over (generally mixed)
Gaussian states σ. To use this result for bounding the growth of the entanglement entropy,
we need to consider a time-dependent symplectic transformation M(t) describing the classical
evolution induced by a quadratic Hamiltonian and determine the growth of the right-hand side
in (3). While it is easy to show that the right-hand side will generally grow linearly in time for
a fixed Gaussian state σ, it turns out to be non-trivial to show that taking the time asymptotics
for fixed σ commutes with taking the infimum over σ for fixed time t. In [21], this was
only done for the special class of time-independent Hamiltonians giving rise positive-definite
symplectic transformations M(t), for which a linear growth with undetermined coefficient was
found.

The present paper combines these recent findings of [21]with the insights about the entan-
glement entropy growth for Gaussian states of [18]. This allows us to treat the most general
case of an arbitrary time-dependent quadratic Hamiltonian Ĥ(t) (with well-defined Lyapunov
exponents) and an arbitrary pure initial state ρ of a bipartite bosonic quantum system AB, for
which we prove that the entanglement entropy grows as

S(A)(t) = ΛA t + o(t) as t →∞ , (6)

where ΛA =
∑2NA

j=1λii is the subsystem coefficient associated to A computed as a sum over 2NA

Lyapunov exponents λi according to algorithm from [18], and NA is the number of modes of
A.

We also extend this result to mixed states, where the entanglement entropy is replaced by
the squashed entanglement, also called CMI entanglement [22–31]. Let ρ be a state of the
bipartite quantum system AB such that both S(A)(ρ) and S(B)(ρ) are finite. The squashed
entanglement of ρ is defined as the following infimum over all the possible extensions ρ̃ of
ρ on a tripartite quantum system ABR, where R is an arbitrary finite-dimensional quantum
system3:

Esq(ρ) =
1
2

inf {I(A; B|R)(ρ̃) : TrRρ̃ = ρ, dimHR <∞} . (7)

Here
I(A; B|R) = S(A|R) + S(B|R)− S(AB|R) (8)

2A bosonic system with N modes is classically described by a phase space V ' R2N equipped with an anti-
symmetric, nondegenerate bilinear form Ω : V ∗ × V ∗ → R, known as symplectic form. A linear transformation
M : V → V is called symplectic when it preserves Ω, i.e., MΩMᵀ = Ω.

3The minimization in (7) should include also auxiliary quantum systems R with infinite dimension. However,
[31, Lemma 7] proves that we can restrict to finite-dimensional R whenever I(A; B)(ρ) is finite.
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is the quantum conditional mutual information, and

S(A|R) = S(AR)− S(R) (9)

is the conditional von Neumann entropy. The squashed entanglement is a faithful entangle-
ment measure, i.e., it is zero iff the state is separable4, and it does not increase under any
composition of local operations performed on the subsystems A and B with the possible help
of unlimited classical communication between A and B. Moreover, the squashed entanglement
of any pure state coincides with the entanglement entropy. The squashed entanglement is one
of the two main entanglement measures in quantum communication theory: it provides one
of the best known upper bound to the length of a shared secret key that can be generated
by two parties holding many copies of the quantum state [28,32–34] and has applications in
recoverability theory [35,36] and multiparty information theory [37–39].

Let us emphasize that while our rigorous results describe the long-time asymptotics t →∞
of quadratic Hamiltonians, we will discuss their physical significance and applications in the
context of interacting and periodically driven systems, where this asymptotics describes an
intermediate phase before the entanglement entropy eventually saturates.

This manuscript is structured as follows: In section 2, we first review the results of [18]
and [21] in order to prove the required propositions for our main results, i.e., the linear growth
of the entanglement entropy for arbitrary pure initial states, and its extension to squashed
entanglement of mixed initial states. In section 3, we use a simple toy model to demonstrate
that the inequality (3) will not suffice to prove that the logarithmic growth for meta-stable
Hamiltonians found in [19] also applies to arbitrary non-Gaussian states. In section 4, we
discuss physical applications and in which sense our long-time asymptotics actually describes
an intermediate phase before the entanglement entropy saturates. Finally, we summarize our
findings and provide an outlook in section 5.

2 Linear growth

In this section, we prove the main result of this manuscript, after we review its two main ingre-
dients: the linear growth for Gaussian initial state proven in [18] and the recently discovered
generalized strong subadditivity of the von Neumann entropy proven in [21].

2.1 Bosonic quantum systems

We consider a bosonic quantum system A with N modes and classical phase space V ' R2N

equipped with an anti-symmetric, non-degerate bilinear form Ω : V ∗× V ∗→ R defined on the
dual phase space. Classical linear observables are elements of the dual phase space w1, w2 ∈ V ∗

with canonical Poisson brackets {w1, w2} = Ω(w1, w2). Under quantization, these observ-
ables are promoted to operators5 ŵ1 and ŵ2 with canonical commutation relations given by
[ŵ1, ŵ2] = iΩ(w1, w2).

We can choose a so-called Darboux basis of N canonically conjugate pairs (q̂i , p̂i) of quadra-
ture operators

ξ̂a ≡ (q̂1, p̂1, . . . , q̂N , p̂N ) , (10)

such that the following canonical commutation relations are satisfied:

�

ξ̂a, ξ̂b
�

= iΩab
2N with Ω2N ≡

N
⊕

i=1

�

0 1
−1 0

�

. (11)

4This is guaranteed when S(AB)(ρ), S(A)(ρ) and S(B)(ρ) are not all infinite [31, Proposition 8].
5We will use hats on observables, such as ŵ, ξ̂a and Ĥ, but not on density operators ρ and unitaries U .
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Table 1: Conventions and notation. We list the most common symbols and how they
are used in this manuscript.

Symbol Meaning

V classical phase space
V ∗ dual phase space (linear observables)
Ω symplectic form on V ∗

Ω2N 2N -by-2N matrix representation of Ω
ξ̂a quadrature basis ξ̂a = (q̂1, p̂1, . . . , q̂N , p̂N ) of V ∗

M symplectic transformation M : V → V , such that MΩMᵀ = Ω
UM unitary transformation implementing M
UM quantum channel UM , see (5)
ρ general density operator ρ : H→H
σ Gaussian density operator

σG,z Gaussian density operator with
covariance matrix G and displacement z

za displacement vector z ∈ V of Gaussian state σG,z
Gab covariance matrix of Gaussian state σG,z
J a

b complex structure J = GΩ−1 of Gaussian state σG,z
tr, Tr trace tr on classical phasespace and trace Tr on Hilbert space

S(A)(t) entanglement entropy of subsystem A at time t
(of pure state evolved with quadratic Hamiltonian)

I(A; B)(ρ) mutual information of state ρ with respect to subsystems A and B
S2(A)(ρ) Rényi entropy (of order 2) of state ρ and subsystem A

Esq(ρ) squashed entanglement of state ρ, see (7)
Ĥ(t) time-dependent Hamiltonian at time t

L(M) limiting matrix of time-dependent symplectic transformation M , see (23)
λ` Lyapunov exponent for time-dependent M and dual vector ` ∈ V ∗, see (26)
ΛA subsystem exponent for subsystem A, see (27)

Sas(C)(α) asymptotic von Neumann entropy of system C , see (17)

A (potentially mixed) Gaussian state σG,z is fully characterized by its covariance matrix G
and displacement vector z given by

za = Tr
�

σG,z ξ̂
a
�

and Gab = Tr
�

ξ̂aσG,z ξ̂
b + ξ̂bσG,z ξ̂

a
�

− 2zazb , (12)

where z can be an arbitrary phase-space vector z ∈ V , while G is a positive-definite symmetric
bilinear form such that J = GΩ−1 has the property that all the eigenvalues of −J2 are larger
than one. In particular, the Gaussian state σG,z is a pure state if and only if J2 = −1, in which
case (Ω, G, J) form a so-called Kähler structure [40–42]. For the sake of a simpler notation,
we omit the displacement vector when it is zero, i.e., we define σG = σG,0

All the quantum states with finite average energy6, which include all the quantum states
that can be generated in physical experiments, have a well-defined covariance matrix. How-
ever, one could formally construct states for which certain entries of G diverge7.

The von Neumann entropy and the Rényi entropy of order 2 of a Gaussian state take par-

6One requires that the expectation value 〈ψ|Ĥ|ψ〉 is finite for a quadratic Hamiltonian Ĥ = 1
2

∑

a,b habξ̂
aξ̂b with

symmetric, positive definite bilinear form hab > 0. If this condition is satisfied for one choice of hab, it is satisfied
for all and equivalent to requiring that all entries of the covariance matrix Gab are finite.

7A simple example is the pure state |ψ〉 =
p

6
π

∑∞
n=1

1
n |n〉 of a single bosonic degree of freedom writ-

ten in the number operator basis of a harmonic oscillator, for which the harmonic oscillator energy of
Ĥ = E0

2 (q̂
2 + p̂2) = E0(n̂+

1
2 ) diverges due to 〈ψ|Ĥ|ψ〉= 6E0

π2

∑∞
n=1

2n+1
2n2 =∞.
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S2(A)0

S(A)

NA ln e
2

corrid
or for S(A

)(σG
)

S2(A
)(σG
)

S as(A
)(G
) =

S2(A
)(σG
) +

NA
ln

e
2

Figure 1: Bounding corridor for von Neumann entropy of Gaussian states. We show
how the von Neumann entropy S(A)(ρ) of a Gaussian state σG in a system A is
bounded from below by the Rényi entropy S2(A) and from above by the asymptotic
entropy Sas(A)(G).

ticularly simple forms when written in terms of J , namely

S(A)(σG,z) = tr

�

1+ iJ
2

ln

�

�

�

�

1+ iJ
2

�

�

�

�

�

,

S2(A)(σG,z) =
1
2

lndet(iJ) , (13)

where the Rényi entropy of order 2 of a generic state ρ of A is

S2(A)(ρ) = − ln Trρ2 , (14)

and provides a lower bound to the von Neumann entropy, i.e., for any state ρ of A,

S2(A)(ρ)≤ S(A)(ρ) . (15)

For Gaussian states, the difference between the von Neumann entropy and the Rényi en-
tropy of order 2 is upper bounded by the number of modes:

Proposition 1. The von Neumann entropy and the Rényi entropy of order 2 of any mixed Gaussian
state σ of the bosonic quantum system A with N modes satisfy the bounds

S2(A)(σ)≤ S(A)(σ)≤ S2(A)(σ) + N ln
e
2

. (16)

Proof. This result is well-known and appeared in various forms in the literature. Among other
places, it is shown in [18, Section 6.1].

Proposition 1 allows to replace the von Neumann entropy by the Rényi entropy of order 2
by only making a finite error independent of the quantum state (though increasing for larger
systems). We therefore define the asymptotic von Neumann entropy

Sas(A)(G) = S2(A)(σG) + NA ln
e
2

, (17)

which gives for each covariance matrix G the corresponding upper bound from Proposition 1.
This bound becomes exact when all symplectic eigenvalues of G are large [21, Lemma 9].

Using the previous result, we will often replace the von Neumann entropy of a Gaussian
state by its Rényi entropy of order 2, whose asymptotic growth can be more easily analyzed
by the following geometric interpretation:

6
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subsystem

phase space

VA

symplectic volume VolΩ(VA) = 1

metric volume VolG(VA)≥ 1

Rényi entropy S2(A) = lnVolG(VA)

Figure 2: Geometric interpretation of Rényi entropy. We can interpret the Rényi en-
tropy (of order 2) as the logarithm of the metric volume of a parallelepiped on the
subspace A∗ ⊂ V ∗, whose symplectic volume is equal to 1. The metric volume is cal-
culate by restrcting the covariance matrix G of the given state to the subspace A that
contains VA.

Proposition 2. The Rényi entropy of order 2 of the Gaussian state σG,z of A is equal to the
logarithm of the metric volume with respect to G of any region V ⊂ V ∗ with unit symplectic
volume, i.e.,

S2(A)(σ) = lnVolG(V) . (18)

Proof. The simple proof can be found in [18, Section 6.2] and gives the Rényi entropy of order
2 a concrete geometric interpretation. We recall that the Rényi entropy of order 2 can be
written as determinant [17]

S2(σ) =
1
2

lndet |iJ | , (19)

where J = −GΩ−1. We can always choose a basis (v1, . . . , v2N ) of V ∗ where Ω has the standard
form (11), such that detΩ = 1. Note that this implies that the parallelepiped spanned by the
chosen basis vectors has unit volume with respect to the symplectic volume form. The matrix
entries Gi j = G(vi , v j) can be understood as the inner products 〈vi , v j〉G defined by G, which is
also known as Gram matrix. It is well-known that the determinant of a Gram matrix

det G = det





〈v1, v1〉G · · · 〈v1, v2N 〉G
...

. . .
...

〈v2N , v1〉G · · · 〈v2N , v2N 〉G



= (VolG(V))2 (20)

equals the square of the geometric volume of the respective parallelepiped (spanned by the
chosen basis, measured with respect to the inner product G). Therefore, the prefactor of 1

2
will cancel the square and we arrive at (18).

After this review of Gaussian states and their entropies, we will now turn to the dynamics
under quadratic Hamiltonians. Given such a Hamiltonian

Ĥ(t) =
1
2

N
∑

a,b=1

hab(t)ξ̂
aξ̂b +

N
∑

a=1

fa(t)ξ̂
b , (21)

we define the symplectic generator K(t) = Ωh(t) that gives rise to the time-dependent sym-
plectic group element M(t) written as time-ordered exponential

M(t) = T exp

∫ t

0

K(t ′) d t ′ . (22)
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For every time-dependent symplectic transformation M(t), we define the limiting matrix8

L(M) = lim
t→∞

ln
�

M(t)M(t)ᵀ
�

2t
, (23)

provided this limit exists. The eigenvectors ` of L(M) are elements of the dual phase space V ∗

and we can always choose an orthonormal eigenbasis

D = (`1, . . . ,`2N ) , (24)

whose elements we sort such that the associated eigenvalues λi satisfy λ1 ≥ · · · ≥ λ2N . The
eigenvalues λi are also called Lyapunov exponents of the respective basis vector `i (see [18,
Appendix A.2]).

The basis D gives rise to the sequence of subspaces

V ∗2N ⊂ V ∗2N−1 ⊂ · · · ⊂ V ∗2 ⊂ V ∗1 = V ∗ , (25)

with V ∗k = span(`1, . . .`k), which characterizes the long-time behavior of elements on. For any
` ∈ V ∗, we define its Lyapunov exponents as

λ` = lim
t→∞

ln‖M(t)ᵀ`‖= λk for ` ∈ V ∗k \ V ∗k+1 . (26)

There is the notion of a regular Hamiltonian system (see [18, Appendix A.3]), which is char-
acterized by the property that the symplectic flow M(t) has well-defined Lyapunov exponents
that appear in conjugate pairs, such that λk = −λ2N+1−k. This is a rather natural assump-
tion, as most examples violating these assumptions are rather unphysical (e.g., due to above-
exponential growth) and in particular, any time-independent quadratic Hamiltonian is regular.

A crucial question will be how the metric volume (with respect to a positive-definite, bilinar
form G) of a parallelepiped V ⊂ V ∗ behaves when we evolve it with the symplectic transfor-
mation M(t), i.e., what is lnVolG(M(t)

ᵀV)? As it turns out, its leading order depends only on
the subspace of V ∗ spanned by V , and is independent of G and of the shape of V .

2.2 Entanglement growth for Gaussian states

Let A and B be bosonic quantum systems with NA, NB modes, phase spaces VA, VB, symplectic
forms ΩA, ΩB and Hilbert spaces HA, HB, respectively. Their union is the bipartite bosonic
quantum system AB with N = NA + NB modes, phase space V = VA ⊕ VB, symplectic form
Ω = ΩA ⊕ ΩB and Hilbert space H = HA ⊗HB. We say that A and B are subsystems of AB.
Given a Gaussian state σG,z of AB, its marginal state on A is the Gaussian state σGA,zA

, where
GA is the restriction of G to V ∗A and zA is the projection of z onto VA.

For a given time-dependent symplectic transformation M(t), we associate to the subsystem
A the exponent

ΛA = lim
t→∞

lnVolG(M(t)
ᵀV)

t
, (27)

where V ⊂ V ∗A is any parallelepiped whose span is equal to V ∗A and G is any positive-definite
bilinear form on V ∗. The subsystem exponent does not depend on G and can be computed
explicitly from the Lyapunov basis D and the Lyapunov exponents λk, as follows.

8At this point, we perform all computations in a fixed basis, so that we can represent M(t) as matrix. Otherwise,
the limiting matrix will explicitly depend on an auxiliary inner product G, which we chose to be the identity in our
basis.
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subsystem

phase space

eλi1 t

eλi2 t

=⇒
Time evolution

V

M(t)ᵀV
M
(t)
ᵀ `

i 1

M(t) ᵀ` i2

ΛA = lim
t→∞

logVolG(M(t)
ᵀV) =

2NB
∑

k=1

λik

Figure 3: Subsystem exponent due to phase space stretching. The subsystem expo-
nent (27) describes the exponential volume growth of an initial parallelepiped V
whose span is equal to V ∗B under the symplectic time evolution M(t)ᵀ. This figure is
based on the respective figure in [18].

Proposition 3. Given a bipartite bosonic quantum system AB and a regular Hamiltonian system
characterized by M(t) with Lyapunov spectrum (λ1, . . . ,λ2N ) and Lyapunov basis
D = (`1, . . . ,`2N ), the subsystem exponent ΛA of A can be computed as follows:

1. Choose a Darboux basis DA = (θ1, . . . ,θ2NA) of V ∗A , i.e., the restricted symplectic form ΩA
takes the form of (11).

2. Compute the unique transformation matrix F that expresses DA in terms of the Lyapunov
basis D = (`1, . . . ,`2N ):





θ1

...
θ2NA



=







F1
1 · · · F1

2N
...

. . .
...

F2NA
1
︸︷︷︸

~F1

· · · F2NA
2N
︸︷︷︸

~F2N











`1

...
`2N





.

,

. (28)

We refer to the 2N columns of F as ~Fi .

3. Find the first 2NA linearly independent 9 columns ~t i of T which we can label by ~t ik with k
ranging from 1 to 2NA. The result is a map k 7→ ik ∈ (1, . . . , 2N) with ik+1 > ik.

The subsystem exponent is then given by the sum ΛA =
∑2NA

k=1λik over the 2NA Lyapunov exponents
λik , where the index ik is defined above.

Remark. For almost all subsystems (except a measure zero set), the subsystem exponent is
given by the sum of the largest 2NA Lyapunov exponents, i.e., ΛA =

∑2NA
i=1 λi .

Proof. This result was proven in the context of entanglement growth as [18, Theorem 3 (Sub-
system exponent)]. The key idea is that M(t) will stretch any 2NA-dimensional volume region
(including any parallelepiped) dominantly into those 2NA directions with the largest Lyapunov
exponents, provided that there are directions in the subspace V ∗A that are linearly dependent

9Here, we mean that ~Fi cannot be expressed as a linear combination of the vectors (~F1, . . . , ~Fi−1) standing to the
left in the matrix F .
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on those stretching directions. Unsurprisingly, the generic situation (i.e., applicable to all sub-
systems except for a subset of measure zero) the subspace V ∗A will have overlap with all stretch-
ing directions, so that the 2NA largest ones dominate and we get ΛA =

∑2NA
i=1 λi , as explained

in [18, Theorem 4 (Subsystem exponent – generic subsystem)].

The main result of [18] was then derived by combining the reviewed propositions and
theorems to understand the large time asymptotics of the entanglement entropy for arbitrary
bosonic Gaussian states.

Proposition 4. Given a quadratic time-dependent Hamiltonian Ĥ(t) and a subsystem A with
subsystem exponent ΛA, the long-time behavior of the entanglement entropy of the subsystem is

S(A)(t) = ΛA t + o(t) , (29)

for all initial Gaussian states. Moreover, this asymptotics also provides an upper bound for non-
Gaussian initial states with finite covariance matrix.

Proof. This result follows by combining Proposition 1, Proposition 2 and Proposition 3 and
was proven in [18, Theorem 1]. The proof follows three steps:

1. Proposition 1 states that the entanglement entropy S(A)(t) is bounded according to
S2(A)(t) ≤ S(A)(t) ≤ S2(A)(t) + NA ln e

2 . Provided that we can show that
S2(A)(t) = ΛAt + o(t) as t →∞, the same asymptotics will also apply to S(A)(t).

2. Proposition 2 provides a geometric interpretation of the Rényi entropy of order 2 in
terms of the geometric volume of a parallelepiped V with unit symplectic volume. The
covariance matrix of the initial state will evolve with time as G(t) = M(t)G(0)M(t)ᵀ.
This allows us to rewrite the Rényi entropy of order 2 as

S2(A)(t) = log VolG(t)(V) = log VolG(0)(M(t)
ᵀV) , (30)

where we notice that it is the same to measure the volume of the initial parallelepiped
V with respect to the time-dependent inner product G(t) or to measure the volume
of the time-dependent parallelepiped V(t) = M(t)ᵀV with respect to the initial inner
product G(0). We then recognize the resulting growth rate as the subsystem exponent
ΛA from (27).

3. Proposition 3 then shows how this subsystem exponent is calculated in practice and that
it actually turns out to be independent of the initial covariance matrix G(0).

This result already provides an upper bound on the entanglement growth for arbitrary pure
initial states with finite covariance matrix (see also [18, Section 2.3]). This is due to the
fact that the time evolution under a quadratic Hamiltonian changes the covariance matrix
according to G(t) = M(t)G(0)M(t)ᵀ, i.e., just as if the state were Gaussian. Moreover, it
is well-known that among all the mixed states of the subsystem A with covariance matrix
[G(t)]A, the Gaussian state has the maximal von Neumann entropy. As our proof shows that
the associated entropy of Gaussian states grows at most with the rate ΛA, this serves as an
upper bound on the entanglement growth for all states.

In summary, following [18] we showed that the entanglement entropy grows linearly with
rate ΛA, which also serves as an upper bound for any non-Gaussian state with finite covariance
matrix.
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2.3 Generalized strong subadditivity

The main ingredient of the lower bound for the time scaling of the entanglement entropy is
the generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems
proved in [21]. Let C be a bosonic quantum system with N modes. For each i = 1, . . . , k, let
Fi ∈ R2Ni×2N be a linear map10 that preserves the symplectic form, i.e., such that

Fi Ω2N Fᵀi = Ω2Ni
. (31)

Each Fi identifies the subsystem Ci of C with Ni modes with dual phase space V ∗Ci
= Im Fᵀi . Ci

is associated to the quadratures

¨ 2Ni
∑

b=1

(Fi)
a

b ξ̂
b : a = 1, . . . , 2Ni

«

, (32)

which thanks to the condition (31) satisfy the canonical commutation relations. Let p ∈ Rk
≥0

satisfy the scaling condition

N =
k
∑

i=1

pi Ni . (33)

Ref. [21] considers the following maximization problem:

f (p) = sup
ρ

¨

S(C)(ρ)−
k
∑

i=1

pi S(Ci)(ρ)

«

, (34)

where the supremum is performed over all the states ρ of C with finite covariance matrix, and
proves that such infinitely dimensional optimization can be reduced to the following finite-
dimensional optimization over 2N × 2N positive definite matrices:

f (p) = sup
G∈R2N×2N

>0

�

Sas(C)(G)−
k
∑

i=1

pi Sas(Ci)(G)

�

, (35)

where the asymptotic von Neumann entropy of C and of each subsystem Ci associated to
G ∈ R2N×2N

>0 are

Sas(C)(G) =
1
2

ln det
e G
2

, Sas(Ci)(G) =
1
2

ln det
� e

2
Fi G Fᵀi

�

. (36)

Remark. If G is a valid covariance matrix of a quantum state, the asymptotic von Neumann
entropy of G is equal to the Rényi entropy of order 2 of σG up to a constant:

Sas(C)(G) = S2(C)(σG) + N ln
e
2

. (37)

The main idea of the proof of (35) is perturbing the state with the quantum heat semi-
group. The same idea has been crucial in the proofs of several quantum versions of the Entropy
Power Inequality [43–54], of which (35) can be considered a generalization. Let Ḡ achieve
the maximum in (35) (if the maximum is not achieved, the result can be obtained with a lim-
iting argument). Ref. [21] considers a generic state ρ of C with finite covariance matrix, and
evolves it with the time evolution induced by the quantum heat semigroup that adds classical
Gaussian noise with covariance matrix proportional to Ḡ. For any t ≥ 0, let ρt be the state at

10For the sake of a simpler notation, in the reminder of this section we always choose a basis such that the
symplectic form has the canonical form (11) and consider all linear and bilinear forms as matrices in such basis.
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time t. On the one hand, Ref. [21] proves that the quantity to be maximized increases with
time:

d
d t

�

S(C)(ρt)−
k
∑

i=1

pi S(Ci)(ρt)

�

≥ 0 , (38)

such that

S(C)(ρ)−
k
∑

i=1

pi S(Ci)(ρ)≤ lim
t→∞

�

S(C)(ρt)−
k
∑

i=1

pi S(Ci)(ρt)

�

. (39)

On the other hand, Ref. [21] proves that in the limit of infinite time, the maximum postulated
in (35) is always achieved, i.e., for any initial state ρ,

lim
t→∞

�

S(C)(ρt)−
k
∑

i=1

pi S(Ci)(ρt)

�

= Sas(C)(Ḡ)−
k
∑

i=1

pi Sas(Ci)(Ḡ) , (40)

and the claim follows. In particular, the proof can be applied when ρ is Gaussian. Since
the quantum heat semigroup preserves the set of the Gaussian states, the supremum in (34)
can always be achieved by a sequence of Gaussian states, and can therefore be restricted to
Gaussian states:

f (p) = sup
σGaussian

¨

S(C)(σ)−
k
∑

i=1

pi S(Ci)(σ)

«

. (41)

Let us now provide an intuition of where the expression (35) comes from. The quantum heat
semigroup described above acts on a Gaussian state σ by adding t Ḡ to the covariance matrix.
If G is a valid covariance matrix for a quantum state, Sas(G) approximates the entropy of the
Gaussian state σG when all ther symplectic eigenvlaues of G are large. Indeed, if ν2

min ≥ 1 is

the minumum eigenvalue of −
�

GΩ−1
�2

, we have [21, Lemma 9]

Sas(C)(G)−
N
ν2

min

ln
e
2
≤ S(C)(σG)≤ Sas(C)(G) . (42)

Since Ḡ is positive definite, in the limit of infinite time the covariance matrix of σt can be
approximated with t Ḡ, and the entropy of σt is approximately

S(C)(σt)' Sas(t Ḡ) = Sas(Ḡ) + N ln t . (43)

Similarly, for any i = 1, . . . , k, the covariance matrix of the marginal of σt over Ci can be
approximated with t Fi Ḡ Fᵀi , and

S(Ci)(σt)' Sas(Ci)(t Ḡ) = Sas(Ci)(Ḡ) + Ni ln t . (44)

Thanks to the scaling condition (33), the terms proportional to ln t cancel each other and we
get as wanted

S(C)(σt)−
k
∑

i=1

pi S(Ci)(σt)' Sas(C)(Ḡ)−
k
∑

i=1

pi Sas(Ci)(Ḡ) . (45)

In this paper, we consider the setup with k = 4 subsystems. Let N = NA+ NB, let

FA =
�

12NA
02NA×2NB

�

(46)

select the first 2NA components, and let

FB =
�

02NB×2NA
12NB

�

(47)
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select the last 2NB components, such that A and B are complementary subsystems of C , i.e.,
C = AB. Let M ∈ Sp(2N ,R) be a symplectic matrix and let FA′ = FA M and FB′ = FB M , such
that the subsystems A′ and B′ correspond to the subsystems A and B after the application of
the transformation M . Then, setting

pA = pB = pA′ = pB′ =
1
2

(48)

in (35) and (41), we get

Proposition 5. Let AB be a bipartite bosonic quantum system with N = NA+NB modes, where A
and B have NA and NB modes, respectively. Then, for any symplectic transformation
M ∈ Sp(2N ,R), the mutual information I(A; B) of any quantum state ρ of AB with finite co-
variance matrix satisfies

I(A; B)(ρ) + I(A; B)(UM (ρ))≥ inf
σGaussian

(I(A; B)(σ) + I(A; B)(UM (σ)))

= inf
G∈R2N×2N

>0

(Ias(A; B)(G) + Ias(A; B)(M G Mᵀ)) , (49)

where we have defined for any G ∈ R2N×2N
>0

Ias(A; B)(G) = Sas(A)(G) + Sas(B)(G)− Sas(AB)(G) . (50)

The supremum in (41) is always achieved in the limit of infinite covariance matrix, and is
therefore never achieved by a Gaussian state with finite covariance matrix. On the contrary,
Ref. [21] proves that the supremum in (35) is achieved iff there exists Ḡ ∈ R2N×2N

>0 satisfying

Ḡ−1 =
k
∑

i=1

pi Fᵀi
�

Fi Ḡ Fᵀi
�−1

Fi . (51)

Moreover, if such Ḡ exists, the supremum in (35) is achieved by G = Ḡ. In general, an analyti-
cal solution of (51) cannot be found. However, in the setup of Proposition 5, if the symplectic
matrix M is also positive definite, such solution is given by Ḡ = M−1. We then get

Proposition 6. In the setup of Proposition 5, if the symplectic transformation M is also positive
definite, the mutual information I(A; B) of any quantum state ρ of AB with finite covariance
matrix satisfies

I(A; B)(ρ) + I(A; B)(UM (ρ))≥ 2 Ias(A; B)(M) . (52)

Proof. From [21, Proposition 19] we get

I(A; B)(ρ) + I(A; B)(UM (ρ))≥ Ias(A; B)(M−1) + Ias(A; B)(M) . (53)

Since M is both symplectic and symmetric, we have

M−1 = Ω−1
2N M Ω2N = Ω

ᵀ
2N M Ω2N , (54)

andΩ2N is symplectic and block-diagonal with respect to the decompositionR2N = R2NA⊕R2NB .
Therefore, we have

Ias(A; B)(M−1) = Sas(A)(M
−1) + Sas(B)(M

−1)− Sas(AB)(M−1)

= Sas(A)(M) + Sas(B)(M)− Sas(AB)(M) = Ias(A; B)(M) . (55)

The claim follows.
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All the results of Ref. [21] are actually proved in the more general setup where all the
entropies are conditioned on an arbitrary quantum system R with separable Hilbert space.
The generalized version of the maximization problem (34) is

f (p) = sup
ρ

¨

S(C |R)(ρ)−
k
∑

i=1

pi S(Ci|R)(ρ)

«

, (56)

where the supremum is performed over all the states ρ of the joint quantum system CR such
that ρC has finite covariance matrix and ρR has finite entropy. Ref. [21] proves that the supre-
mum in (56) coincides with the supremum in (34), and is therefore given by (35). Therefore,
Proposition 6 can be generalized as follows:

Proposition 7. Let AB be a bipartite bosonic quantum system with N = NA+ NB modes, where
A and B have NA and NB modes, respectively, and let R be an arbitrary quantum system with
separable Hilbert space. Let M ∈ Sp(2N ,R) be a symplectic matrix that is also positive definite.
Then, the conditional mutual information I(A; B|R) of any quantum state ρ of ABR such that ρAB
has finite covariance matrix and ρR has finite entropy satisfies

I(A; B|R)(ρ) + I(A; B|R)(UM (ρ))≥ 2 Ias(A; B)(M) . (57)

2.4 Entropy growth for pure states

We now consider again a bipartite bosonic quantum system AB with N = NA+ NB modes and
a quadratic Hamiltonian Ĥ(t) as in (21) giving rise to a symplectic transformation M(t), but
this time we only assume that the initial state is pure and has a finte covariance matrix. We
decompose M(t) as

M(t) = T (t)u(t) with T (t) =
Æ

M(t)M(t)ᵀ and u(t) = M(t) T (t)−1 , (58)

such that T (t) is both symplectic and positive definite, and u(t) is both symplectic and orthog-
onal. We will now be able to relate the limiting matrices of M(t) and T (t).

Proposition 8. Given a one-parameter family of symplectic transformations M(t) and its positive
symmetric part T (t) as defined in (58), both M(t) and T (t) have the same Lyapunov spectrum
and Lyapunov basis, i.e., L(M) = L(T ). Moreover, L

�p
T
�

= L(T )/2, i.e.,
p

T (t) has the same
Lyapunov basis as M(t) and T (t), and its Lyapunov exponents are half of the Lyapunov exponents
of M(t) and T (t).

Proof. The first claim follows straightforward from the fact that both Lyapunov spectrum and
Lyapunov basis are defined with respect to the dual transformations M(t)ᵀ and T (t)ᵀ acting
on the dual phase space V ∗. The second claim follows since

L
�p

T
�

= lim
t→∞

ln T (t)
2t

=
L(T )

2
, (59)

where we use that T (t) is positive definite.

Corollary 1. Let ΛA be the exponent of the subsystem A with respect to the time evolution induced
by M(t). Then, the subsystem exponent of A with respect to T (t) is equal to ΛA, and the exponent
with respect to

p

T (t) is equal to ΛA/2.

Combining Proposition 6 with the decomposition (58), we can get a lower bound to the
entanglement entropy generated by a generic symplectic transformation:
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Proposition 9. Let T be a symplectic and positive definite matrix, let u be a symplectic and
orthogonal matrix, and let M = T u. Then, for any pure quantum state ρ of AB with finite
covariance matrix G we have

S(A)(UM (ρ))≥ Sas(A)(T ) + Sas(B)(T )− N ln
e
2
− NA ln

e ‖G‖∞
2

. (60)

Proof. We have

S(A)(UM (ρ)) = S(A)(UT (Uu(ρ))) + S(A)(Uu(ρ))− S(A)(Uu(ρ))
(a)
≥

1
2

I(A; B)(UT (Uu(ρ))) +
1
2

I(A; B)(Uu(ρ))− S(A)(σuGuᵀ)

(b)
≥ Ias(A; B)(T )− S(A)(σ‖G‖∞12N

)
(c)
≥ Sas(A)(T ) + Sas(B)(T )− N ln

e
2
− Sas(A)(σ‖G‖∞12N

)

≥ Sas(A)(T ) + Sas(B)(T )− N ln
e
2
− NA ln

e ‖G‖∞
2

. (61)

(a) follows observing that both UT (Uu(ρ)) and Uu(ρ) are pure states and that Gaussian states
maximize the entropy among all the states with the same covariance matrix. (b) follows from
Proposition 6 and observing that the entropy of a Gaussian state is an increasing function of
the covariance matrix. (c) follows since det T = 1. The claim follows.

This is leads us to the main result of the present paper for pure states.

Theorem 1 (Linear growth of entanglement entropy). For any initial pure state ρ with finite
covariance matrix and for any time-dependent quadratic Hamiltonian Ĥ(t) inducing a symplectic
evolution M(t) such that the limiting matrix (23) exists, the entanglement entropy with respect
to the bipartition AB grows asymptotically as

S(A)(ρ(t)) = ΛA t + o(t) as t →∞ , (62)

where the subsystem exponent ΛA is independent of the initial state ρ and can be computed ac-
cording to Proposition 3.

Proof. On the one hand, Proposition 4 implies

S(A)(ρ(t))≤ ΛA t + o(t) . (63)

On the other hand, let σ1 be the vacuum state of AB. We have from Proposition 9 and Corol-
lary 1

S(A)(ρ(t))≥ Sas(A)(T (t)) + Sas(B)(T (t)) +O(1)

= S2(A)
�

UpT (t)(σ1)
�

+ S2(B)
�

UpT (t)(σ1)
�

+O(1) = ΛA t + o(t) , (64)

and the claim follows.

2.5 Squashed entanglement growth for mixed states

Combining Proposition 7 with the decomposition (58), we can get both an upper and a lower
bound to the squashed entanglement generated by a generic symplectic transformation:
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Proposition 10. Let T be a symplectic and positive definite matrix, let u be a symplectic and
orthogonal matrix, and let M = T u. Then, for any (generally mixed) quantum state ρ of A with
finite covariance matrix G we have

Esq(UM (ρ))≤
1
2

Sas(A)(T
2) +

1
2

Sas(B)(T
2) +

N
2

ln‖G‖∞ ,

Esq(UM (ρ))≥ Sas(A)(T ) + Sas(B)(T )− 2N ln
e
2
− N ln‖G‖∞ . (65)

Proof. The proof proceeds along the same lines as the proof of Proposition 9.
Upper bound: We have from the subadditivity of the entropy

Esq(UM (ρ))≤
1
2

I(A; B)(UM (ρ))≤
S(A)(UM (ρ)) + S(B)(UM (ρ))

2
. (66)

Since Gaussian states maximize the entropy among all the states with the same covariance
matrix, we have

S(A)(UM (ρ))≤ S(A)(σMGMᵀ)≤ Sas(A) (M G Mᵀ)≤ Sas(A) (‖G‖∞M Mᵀ)

= Sas(A)(T
2) + NA ln‖G‖∞ , (67)

and the claim follows.
Lower bound: Let R be an arbitrary finite-dimensional quantum system, and let ρ̃ be a

quantum state of the joint quantum system AR such that TrRρ̃ = ρ. We notice that UM (ρ̃)
is an extension of UM (ρ), i.e., TrRUM (ρ̃) = UM (ρ). We have from the subadditivity of the
entropy

I(A; B|R)(Uu(ρ̃)) = S(A|R)(Uu(ρ̃))− S(A|BR)(Uu(ρ̃))≤ 2 S(A)(Uu(ρ̃))

= 2 S(A)(Uu(ρ))≤ 2 S(A)(σuGuᵀ)≤ 2 S(A)(σ‖G‖∞12N
)

≤ 2 Sas(A)(‖G‖∞ 12N ) = 2NA ln
e ‖G‖∞

2
. (68)

Repeating the same procedure of (68) by switching the subsystems A and B and taking the
average with (68) we get

I(A; B|R)(Uu(ρ̃))≤ N ln
e ‖G‖∞

2
. (69)

We have from Proposition 7

1
2

I(A; B|R)(UM (ρ̃)) =
1
2

I(A; B|R)(UT (Uu(ρ̃)))

≥ Ias(A; B)(T )−
1
2

I(A; B|R)(Uu(ρ̃))

≥ Sas(A)(T ) + Sas(B)(T )− 2N ln
e
2
− N ln‖G‖∞ . (70)

The claim follows by taking the infimum of (70) over ρ̃.

Theorem 2 (Linear growth of squashed entanglement). For any (generally mixed) initial state
ρ with finite covariance matrix and for any time-dependent quadratic Hamiltonian Ĥ(t) inducing
a symplectic evolution M(t) such that the limiting matrix L(M) exists, the squashed entanglement
(or CMI entanglement) with respect to the bipartition AB grows asymptotically as

Esq(ρ(t)) = ΛA t + o(t) as t →∞ , (71)

where the subsystem exponent ΛA is independent of the initial state ρ and can be computed ac-
cording to Proposition 3.
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Proof. Let σ1 be the vacuum state of AB. On the one hand, we have from Proposition 10 and
Corollary 1

Esq(ρ(t))≤
1
2

Sas(A)(T (t)
2) +

1
2

Sas(B)(T (t)
2) +O(1)

=
1
2

S2(A)(UT (t)(σ1)) +
1
2

S2(B)(UT (t)(σ1)) +O(1) = ΛA t + o(t) . (72)

On the other hand, we still have from Proposition 10 and Corollary 1

Esq(ρ(t))≥ Sas(A)(T ) + Sas(B)(T ) +O(1)

= S2(A)
�

UpT (t)(σ1)
�

+ S2(B)
�

UpT (t)(σ1)
�

+O(1) = ΛA t + o(t) . (73)

The claim follows.

3 Logarithmic growth

Apart from the linear scaling, it was also shown in [19] that for certain quadratic Hamiltonians,
known as metastable, there is also logarithmic contribution to the growth of the entanglement
entropy. This result was proven rigorously for Gaussian initial states and time-independent
Hamiltonians containing such metastable part, but numerical evidence led to the conjecture
that also this behavior is generic for arbitrary and potentially non-Gaussian initial states.

It is therefore a natural question whether we can use the same techniques that allowed us
to prove the linear growth for arbitrary initial states to also prove that the logarithmic growth
is more general. Unfortunately, the answer is negative. We will show this by providing two
counterexamples, where taking the large time-limit and performing the minimization of the
right-hand side of (3) do not commute. This does not imply that the conjecture is false, but
only that we cannot prove it using the techniques based on the inequality (3).

3.1 Classical counterexample

We start with a counterexample in classical probability, which has all the ingredients of the
quantum counterexample and is easier to understand. We remind that the Shannon differential
entropy [55] of a random variable Z taking values in RN is

S(Z) = −
∫

RN

p(z) ln p(z) dN z , (74)

where p is the probability density of Z .
The classical counterpart of a state of a bosonic quantum system is a probability distribution

on its phase space. The symplectic form does not play any role in the classical counterexample.
Therefore, instead of a bipartite quantum system AB we consider two (generically correlated)
random variables X and Y with real values, finite average energy and smooth joint probability
density. The counterpart of the time-dependent symplectic transformation M(t) is a time-
dependent linear redefinition of X and Y . We choose

X (t) = X + t Y , Y (t) = Y . (75)

Since in the classical setting there cannot be entanglement, we consider the asymptotic scaling
of the mutual information between X (t) and Y (t). On the one hand, for any fixed joint prob-
ability distribution of X Y , such mutual information grows logarithmically with time. Indeed,
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we have for t →∞

I(X + t Y ; Y ) = S(X + t Y )− S(X + t Y |Y ) = S(X + t Y )− S(X |Y )
= S(X/t + Y ) + ln t − S(X |Y ) = ln t + S(Y )− S(X |Y ) + o(1) , (76)

where we have used that
lim

t→∞
S(X/t + Y ) = S(Y ) . (77)

On the other hand, we have for any fixed t ∈ R

inf
X Y
(I(X (t); Y (t)) + I(X ; Y )) = 0 , (78)

where the infimum is performed over all the joint probability distribution for X Y with finite
average energy and smooth joint probability density. Indeed, let X and Y be independent
Gaussian random variables with variances 1 and ε2, respectively. Then,

I(X + t Y ; Y ) + I(X ; Y ) = I(X + t Y ; Y ) = S(X + t Y )− S(X |Y )

= S(X + t Y )− S(X ) =
1
2

ln
�

1+ t2ε2
�

, (79)

which tends to 0 for ε→ 0. Then, performing the infimum over the joint probability distribu-
tion of X Y before the limit t →∞ changes the asymptotic scaling of the mutual information.

3.2 Quantum counterexample

For our quantum counterexample, we consider a system with two bosonic degrees of freedom
and basis ξ̂ = (ξ̂A, ξ̂B) ≡ (q̂1, p̂1, q̂2, p̂2) describing the respective subsystems A and B. We
further consider the quadratic Hamiltonian

Ĥ =
1
2

habξ̂
aξ̂b =

1
2
(p̂1q̂2 + q̂2 p̂1) . (80)

It is easy to check that this Hamiltonian is metastable (as defined in [19]), as the symplectic
generator given by

F = Ωh≡







1
−1

1
−1













1
1






=







1

−1






(81)

is clearly nilpotent with F2 = 0. The resulting time-dependent symplectic transformation

M(t) = et F ≡







1 t
1

1
−t 1






(82)

will stretch a generic two-dimensional parallelepiped, such that its volume grows linearly in
time leading to a logarithmic growth of the entanglement entropy (due to the logarithm in (2)).
This is exactly the setup where the conjecture of [19] applies, so we may want to consider the
right-hand side of (3) for this choice of M(t). Using the same line of arguments as in the proof
of Theorem 1, we can bound the right-hand side of (3) as

RHS≤ inf
σGaussian

lndet[M(t)GσM(t)ᵀ]A+ lndet[M(t)GσM(t)ᵀ]B − lndet Gσ
2

+ 2 ln
e
2

≤ inf
a,b,c,d

ln

√

√(bc + ad t2)(ab+ cd t2)
ab2c

+ 2 ln
e
2
≤ 2 ln

e
2

,

(83)
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where we bounded the infimum over all Gaussian state covariance matrices by restricting to
diagonal covariance matrices Gσ ≡ diag(ab, a/b, cd, c/d) with a ≥ 1, c ≥ 1 b > 0 and d > 0,
so that the mutual information I(A; B)(σ) vanishes. The argument of the logarithm approaches
1 as we take the limit b→∞. The remaining constant 2 ln e

2 results from bounding the mutual
information by Rényi entropies, i.e.,

I(A; B)(σ) = S(A)(σ) + S(B)(σ)− S(AB)(σ)

≤ S2(A)(σ) + ln e
2 + S2(B)(σ) + ln e

2 − S2(AB)(σ) ,
(84)

based on Proposition 1 with NA = NB = 1.
In summary, we find that we can bound the right-hand side of (3) to be smaller than the

constant N ln e
2 , which is independent of t. We also saw explicitly how the order of limits

mattered, i.e., if we could first choose Gσ and then take the limit t →∞, we would find a log-
arithmic behavior. Unfortunately, the limits do not commute and finding the infimum at fixed
t shows that the right-hand side of (3) does not grow logarithmically in time. Consequently,
we do not see a straightforward extension of our general proof of linear growth that would
also cover a logarithmic contribution. Let us emphasize again that this does not imply that the
conjecture of [19] is false, but only that the inequality (3) alone is not sufficient to prove it.

4 Applications

In the same way that Gaussian states are an approximation to general semi-classical states,
quadratic Hamiltonians are an approximation of weakly interacting Hamiltonians. While our
result completely lifts the requirement of the state to be Gaussian (compared to previous
proofs), it heavily relies on the Hamiltonian to be quadratic, so that the time evolution can
be encoded in the symplectic transformation M(t) of the classical phase space. We will now
discuss how our results apply to physical systems with (weakly) interacting Hamiltonians and
periodically driven quantum systems, including certain quantum field theory models.

4.1 Physical systems with unstable Hamiltonians

The linear growth of the entanglement entropy studied in this manuscript is always due to an
exponential squeezing, i.e., due to certain entries of the covariance matrix growing as eλt . This
also implies an exponential growth of the energy, which certainly will not be sustainable for
sufficiently large t, as the system will either experience back reactions or higher order terms
of the approximate quadratic Hamiltonian will kick in. Either way, the phase of linear growth
must always be understood as an intermediate phenomena, which will typically transition to
a phase of saturation due to thermalization or equilibration, once the physical model of a
quadratic model breaks down.

By approximating time-evolution as linear dynamics under quadratic Hamiltonians, we
were therefore able to remove the the phase of saturation and thereby enabled a rigorous
treatment of the linear growth phase in the t →∞ limit. In practice, we will only see this
phase if there is separation of scales, i.e., if the time-scale of saturation is larger than the time-
scale on which the phase of linear growth happens. While one can always fine-tune the initial
state to avoid this separation of scale, there are numerous systems where the phase of linear
growth will be relevant.

The simplest application of our result are generic quadratic Hamiltonians
Ĥ = 1

2habξ̂
aξ̂b + faξ̂

a without any explicit time-dependence. Note, however, that only un-
stable Hamiltonians will give a non-zero production rate ΛA, which is equivalent to requiring
that the symplectic generator Ka

b =
∑

c Ω
achcb has some real eigenvalues. The prime example
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initial transient

intermediate phase

V (q̂)

q̂

stable non-quadratic
saturation

V (q̂)

q̂

unstable quadratic
unbounded growth

Figure 4: Illustration: physical Hamiltonians vs. their quadratic approximation. While
an unstable quadratic Hamiltonian leading to unbounded linear growth of the entan-
glement entropy (in blue) is unphysical, we can still use the predicted linear growth
the for intermediate growth phase of a stable non-quadratic Hamiltonian (in orange).
We schematically indicate the respective potential V (q̂) of a single bosonic mode with
Hamiltonian Ĥ = 1

2 p̂2 + V (q̂).

of such an unstable quadratic Hamiltonian is the inverted harmonic oscillator Ĥ = 1
2 p̂2+V (q̂)

with V (q̂) = −1
2 q̂2, which classically corresponds to rolling down an inverted quadratic po-

tential. Such a Hamiltonian is not bounded from below and is therefore typically rendered as
unphysical. However, such a quadratic potential can arise as quadratic expansion of a higher
order potential, such as V̂ (q̂) = −q̂2 + εq̂4 with ε > 0, that is bounded from below. In order
to observe entanglement growth, we require several modes (split into a subsystem A and its
complement B), which are coupled through at least one unstable mode. As illustrated in Fig-
ure 4 and also studied numerically in [19], the asymptotically computed linear growth rate
ΛA based on Theorem 1 for the (unphysical) quadratic Hamiltonian can still provide a good
prediction for the intermediate phase of linear growth for a physical non-quadratic Hamilto-
nian. The same to the squashed entanglement Esq based on the results of Theorem 2. More
generally, the same reasoning applies to a general bosonic Hamiltonian Ĥ = Ĥ0 + εĤI , where
Ĥ0 is at most quadratic (in ξ̂a), while ĤI is of higher order, as long as ε is sufficiently small.

Unstable quadratic Hamiltonians may also arise as stroboscobic description of time-
dependent quadratic Hamiltonians in the context of periodically driven quantum systems.
Given a time-dependent quadratic Hamiltonian Ĥ(t) with periodicity condition
Ĥ(t +τ) = Ĥ(t), the unitary time evolution operator

U(t) = T exp

�

−i

∫ t

0

Ĥ(t ′) d t ′
�

(85)

satisfies the periodicity condition U(nτ+ t) = U(t)U(τ)n for t ∈ [0,τ]. The long-time asymp-
totics of the entanglement entropy at times t = nτ will therefore be governed by the time-
independent quadratic Hamiltonian Ĥstrob =

1
τ log U(τ), which is also called the stroboscopic

Hamiltonian (as it describes the evolution at discrete snapshots of the system). In this case,
Ĥ(t) can be a perfectly normal physical Hamiltonian that is bounded from below, but the
resulting stroboscobic Hamiltonian Ĥstrob may turn out to be unstable due to Ĥ(t) pumping
energy into the system. Again, we expect the unstable quadratic approximation to break down
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eventually, e.g., when the system starts to back-react or the environment runs out of energy
that can be injected into the periodically driven system. Again, the illustration of Figure 4 ap-
plies, where we use the long-time asymptotics of the quadratic approximation to understand
the intermediate phase of linear growth of a physical model.

The dynamical instability due to a periodic driving of a classical or quantum system is also
known as parametric resonance [56,57]. The classical evolution can be efficiently described by
Floquet theory, where the eigenvalues of the time-dependent symplectic evolution M(t) are
approximately eµi t . The exponents µi are generally complex and known as Floquet exponents,
while their real parts correspond to the Lyapunov exponents discussed in section 2, i.e., we
have λi = Re(µi). Examples of such systems include periodically driven Bose-Einstein conden-
sates [58], the dynamical Casimir effect [59,60] and several cosmological models [61–68].

4.2 Quantum field theory subsystems

Strictly speaking, our main theorems do not directly apply to quantum field theories, as we
assume a finite number of bosonic degrees of freedom. While the Hilbert space is already
infinite-dimensional for a single bosonic mode (just like the quantum harmonic oscillator),
we assumed that the phase space has finite dimension. On the contrary, the phase space of
a quantum field theory has infinite dimension, and we must therefore ask ourselves whether
our analysis still applies.

The key question is what type of subsystems one considers: If one studies local regions of
spacetime (such as causal diamonds), the phase space of the associated subsystem will have
infinite dimension. Even worse, it is well-known that even free quantum field theories are
constructed on a tensor product decomposition over individual modes in momentum space,
which cannot directly transformed into a tensor product of local modes. This is captured by
the Reeh-Schlieder theorem [69] and also leads to the divergent entanglement entropy found
in holographic calculations [70,71]. Our results will not apply to subsystems consisting of all
degrees of freedom in a local region, as the number of the associated bosonic modes will be
infinite.

However, there are still physically interesting subsystems studied in quantum field theory
and cosmology that only capture a finite number of bosonic modes. The simplest example are
coupled pairs of momentum modes

�

~k,−~k
�

in a spacetime with translational invariance. Such
an example was already studied in [18] in the context of inflation and our results on non-
Gaussian initial states apply directly, as each pair of modes can be described independently as
two bosonic modes becoming entangled.

The other important example where our results can apply is a subsystem of finitely many
modes embedded in the field theory. Such a subsystem could represent a detector that couples
locally to a certain number (but not all!) of field modes [72, 73]. Given a scalar field ϕ(x)
with conjugate momentum π(x), we can construct a finite number of local modes

q̂i =

∫

R3

Q i(x) ϕ̂(x) d
3 x , p̂ j =

∫

R3

Pj(x) π̂(x) d
3 x , (86)

where the smearing functions Q i , Pj : R3→ R must be chosen such that [q̂i , p̂ j] = iδi j . Here,
we assumed that we have chosen a fixed foliation of our spacetime with spatial slices equal to
R3, but the results can be generalized to other cases. Moreover, we can even choose Pi(x) and
Q i(x) to be compactly supported on the spatial slice, so that the subsystem A with phase space
spanned by ξ̂a

A ≡ (q̂1, p̂1, . . . , q̂NA
, p̂NA
) is local. While the classical time evolution M(t) will act

on the infinite dimensional classical phase space, the subsystem itself will be described by a
finite-dimensional phase space, such that the number of modes NA appearing in Theorem 1
and Theorem 2 will be finite. Such subsystems were studied numerically for Gaussian initial
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states in [18] leading to excellent agreement with theoretical predictions and we expect the
same for the entanglement entropy and squashed entanglement of non-Gaussian initial states,
as described in the present manuscript.

5 Summary

The main result of this manuscript is a rigorous proof of the large time asymptotics of the
entanglement entropy when a bosonic system is evolved by a quadratic Hamiltonian with in-
stabilities (in the sense of non-vanishing classical Lyapunov exponents). The present work is
built upon and heavily relies on a number of previous results, numerical studies and conjec-
tures [16–21] that paved the way for a general proof. Consequently, the result itself does not
come as a surprise, but rather concludes the effort of making something rigorous that is quite
intuitive: quadratic quantum Hamiltonians are the closest to classical evolution that one can
get (as already known by Ehrenfest [74]) and even when one evolves a highly non-classical
state, the leading order behavior of the entanglement entropy should be determined by the
classical Lyapunov exponents and agree with the Kolmogorov–Sinai entropy rate. Our proof
thereby combines classical techniques of characterizing instabilities of Hamiltonian flows and
recently discovered properties of the von Neumann entropy. In particular, we demonstrate
that the same tools can also be used to prove an analogous result for mixed states.

Our work therefore settles the original conjecture formulated in [16], which was further
refined in [17–19]. While it is a natural question if the same tools can also be used to prove
that the entanglement entropy grows logarithmically for meta-stable quadratic Hamiltonians
and non-Gaussian initial states, as was conjectured in [19], we show that this cannot be easily
achieved.

Acknowledgments

LH thanks Eugenio Bianchi, Ranjan Modak, Marcos Rigol and Nelson Yokomizo for inspiring
discussions on the topic during previous collaborations. LH acknowledges support by the
Alexander von Humboldt Foundation.

References

[1] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A:
Math. Theor. 42, 504005 (2009), doi:10.1088/1751-8113/42/50/504005.

[2] H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable
system, Phys. Rev. Lett. 111, 127205 (2013), doi:10.1103/physrevlett.111.127205.

[3] D. A. Roberts, D. Stanford and L. Susskind, Localized shocks, J. High Energy Phys. 051
(2015), doi:10.1007/jhep03(2015)051.

[4] J. S. Cotler, M. P. Hertzberg, M. Mezei and M. T. Mueller, Entanglement growth af-
ter a global quench in free scalar field theory, J. High Energy Phys. 166 (2016),
doi:10.1007/jhep11(2016)166.

[5] M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, J. High Energy
Phys. 065 (2017), doi:10.1007/jhep05(2017)065.

22

https://scipost.org
https://scipost.org/SciPostPhys.12.1.021
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/physrevlett.111.127205
https://doi.org/10.1007/jhep03(2015)051
https://doi.org/10.1007/jhep11(2016)166
https://doi.org/10.1007/jhep05(2017)065


SciPost Phys. 12, 021 (2022)

[6] W. H. Zurek and J. P. Paz, Decoherence, chaos, and the second law, Phys. Rev. Lett. 72,
2508 (1994), doi:10.1103/physrevlett.72.2508.

[7] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993),
doi:10.1103/physrevlett.71.666.

[8] J. Eisert, M. Cramer and M. B. Plenio, Colloquium: Area laws for the entanglement entropy,
Rev. Mod. Phys. 82, 277 (2010), doi:10.1103/revmodphys.82.277.

[9] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum informa-
tion, Cambridge University Press, Cambridge, UK, ISBN 9780511976667 (2009),
doi:10.1017/CBO9780511976667.

[10] M. M. Wilde, Quantum information theory, Cambridge University Press, Cambridge, UK,
ISBN 9781139525343 (2009), doi:10.1017/CBO9781139525343.

[11] A. S. Holevo, Quantum systems, channels, information: A mathematical introduction, De
Gruyter, ISBN 9783110642490 (2019), doi:10.1515/9783110642490.

[12] V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum
quench in integrable systems, Proc. Natl. Acad. Sci. USA 114, 7947 (2017),
doi:10.1073/pnas.1703516114.

[13] V. Alba and P. Calabrese, Entanglement dynamics after quantum quenches in generic inte-
grable systems, SciPost Phys. 4, 017 (2018), doi:10.21468/scipostphys.4.3.017.

[14] S. H. Shenker and D. Stanford, Black holes and the butterfly effect, J. High Energy Phys.
067 (2014), doi:10.1007/jhep03(2014)067.

[15] J. Maldacena, S. H. Shenker and D. Stanford, A bound on chaos, J. High Energy Phys. 08,
106 (2016), doi:10.1007/jhep08(2016)106.

[16] C. T. Asplund and D. Berenstein, Entanglement entropy converges to classical entropy
around periodic orbits, Ann. Phys. 366, 113 (2016), doi:10.1016/j.aop.2015.12.012.

[17] E. Bianchi, L. Hackl and N. Yokomizo, Entanglement entropy of squeezed vacua on a lattice,
Phys. Rev. D 92, 085045 (2015), doi:10.1103/physrevd.92.085045.

[18] E. Bianchi, L. Hackl and N. Yokomizo, Linear growth of the entanglement entropy and the
Kolmogorov-Sinai rate, J. High Energy Phys. 025 (2018), doi:10.1007/jhep03(2018)025.

[19] L. Hackl, E. Bianchi, R. Modak and M. Rigol, Entanglement production in
bosonic systems: Linear and logarithmic growth, Phys. Rev. A 97, 032321 (2018),
doi:10.1103/physreva.97.032321.

[20] D. Berenstein, A toy model for time evolving QFT on a lattice with controllable chaos,
arXiv:1803.02396.

[21] G. De Palma and D. Trevisan, The generalized strong subadditivity of the von Neumann
entropy for bosonic quantum Gaussian systems, arXiv:2105.05627.

[22] R. R. Tucci, Quantum entanglement and conditional information transmission,
arXiv:quant-ph/9909041.

[23] R. R. Tucci, Separability of density matrices and conditional information transmission,
arXiv:quant-ph/0005119.

23

https://scipost.org
https://scipost.org/SciPostPhys.12.1.021
https://doi.org/10.1103/physrevlett.72.2508
https://doi.org/10.1103/physrevlett.71.666
https://doi.org/10.1103/revmodphys.82.277
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9781139525343
https://doi.org/10.1515/9783110642490
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.21468/scipostphys.4.3.017
https://doi.org/10.1007/jhep03(2014)067
https://doi.org/10.1007/jhep08(2016)106
https://doi.org/10.1016/j.aop.2015.12.012
https://doi.org/10.1103/physrevd.92.085045
https://doi.org/10.1007/jhep03(2018)025
https://doi.org/10.1103/physreva.97.032321
https://arxiv.org/abs/1803.02396
https://arxiv.org/abs/2105.05627
https://arxiv.org/abs/quant-ph/9909041
https://arxiv.org/abs/quant-ph/0005119


SciPost Phys. 12, 021 (2022)

[24] R. R. Tucci, Entanglement of formation and conditional information transmission,
arXiv:quant-ph/0010041.

[25] R. R. Tucci, Relaxation method for calculating quantum entanglement, arXiv:quant-
ph/0101123.

[26] R. R. Tucci, Entanglement of Bell mixtures of two qubits, arXiv:quant-ph/0103040.

[27] R. R. Tucci, Entanglement of distillation and conditional mutual information, arXiv:quant-
ph/0202144.

[28] M. Christandl and A. Winter, “Squashed entanglement”: An additive entanglement mea-
sure, J. Math. Phys. 45, 829 (2004), doi:10.1063/1.1643788.

[29] F. G. S. L. Brandão, M. Christandl and J. Yard, Faithful squashed entanglement, Commun.
Math. Phys. 306, 805 (2011), doi:10.1007/s00220-011-1302-1.

[30] K. P. Seshadreesan, M. Berta and M. M. Wilde, Rényi squashed entanglement, dis-
cord, and relative entropy differences, J. Phys. A: Math. Theor. 48, 395303 (2015),
doi:10.1088/1751-8113/48/39/395303.

[31] M. E. Shirokov, Squashed entanglement in infinite dimensions, J. Math. Phys. 57, 032203
(2016), doi:10.1063/1.4943598.

[32] M. Christandl, A. Ekert, M. Horodecki, P. Horodecki, J. Oppenheim and R. Renner, Unify-
ing classical and quantum key distillation, in Theory of Cryptography, Springer Berlin Hei-
delberg, ISBN 978-3-540-70935-0, 456 (2007), doi:10.1007/978-3-540-70936-7_25.

[33] K. Li and A. Winter, Relative entropy and squashed entanglement, Commun. Math. Phys.
326, 63 (2014), doi:10.1007/s00220-013-1871-2.

[34] M. M. Wilde, Squashed entanglement and approximate private states, Quantum Inf. Pro-
cess. 15, 4563 (2016), doi:10.1007/s11128-016-1432-7.

[35] K. P. Seshadreesan and M. M. Wilde, Fidelity of recovery, squashed entan-
glement, and measurement recoverability, Phys. Rev. A 92, 042321 (2015),
doi:10.1103/PhysRevA.92.042321.

[36] K. Li and A. Winter, Squashed entanglement, k-extendibility, quantum Markov chains, and
recovery maps, Found. Phys. 48, 910 (2018), doi:10.1007/s10701-018-0143-6.

[37] G. Adesso, M. Ericsson and F. Illuminati, Coexistence of unlimited bipartite
and genuine multipartite entanglement: Promiscuous quantum correlations arising
from discrete to continuous-variable systems, Phys. Rev. A 76, 022315 (2007),
doi:10.1103/PhysRevA.76.022315.

[38] D. Avis, P. Hayden and I. Savov, Distributed compression and multiparty squashed
entanglement, J. Phys. A: Math. Theor. 41, 115301 (2008), doi:10.1088/1751-
8113/41/11/115301.

[39] D. Yang, K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim and W. Song, Squashed
entanglement for multipartite states and entanglement measures based on the mixed convex
roof, IEEE Trans. Inform. Theory 55, 3375 (2009), doi:10.1109/TIT.2009.2021373.

[40] L. F. Hackl, Aspects of Gaussian states entanglement, squeezing and complexity, Ph.D. thesis,
The Pennsylvania State University (2018).

24

https://scipost.org
https://scipost.org/SciPostPhys.12.1.021
https://arxiv.org/abs/quant-ph/0010041
https://arxiv.org/abs/quant-ph/0101123
https://arxiv.org/abs/quant-ph/0101123
https://arxiv.org/abs/quant-ph/0103040
https://arxiv.org/abs/quant-ph/0202144
https://arxiv.org/abs/quant-ph/0202144
https://doi.org/10.1063/1.1643788
https://doi.org/10.1007/s00220-011-1302-1
https://doi.org/10.1088/1751-8113/48/39/395303
https://doi.org/10.1063/1.4943598
https://doi.org/10.1007/978-3-540-70936-7_25
https://doi.org/10.1007/s00220-013-1871-2
https://doi.org/10.1007/s11128-016-1432-7
https://doi.org/10.1103/PhysRevA.92.042321
https://doi.org/10.1007/s10701-018-0143-6
https://doi.org/10.1103/PhysRevA.76.022315
https://doi.org/10.1088/1751-8113/41/11/115301
https://doi.org/10.1088/1751-8113/41/11/115301
https://doi.org/10.1109/TIT.2009.2021373


SciPost Phys. 12, 021 (2022)

[41] L. Hackl, T. Guaita, T. Shi, J. Haegeman, E. Demler and I. Cirac, Geometry of vari-
ational methods: dynamics of closed quantum systems, SciPost Phys. 9, 048 (2020),
doi:10.21468/scipostphys.9.4.048.

[42] L. Hackl and E. Bianchi, Bosonic and fermionic Gaussian states from Kähler structures,
SciPost Phys. Core 4, 025 (2021), doi:10.21468/scipostphyscore.4.3.025.

[43] R. König and G. Smith, The entropy power inequality for quantum systems, IEEE Trans.
Inform. Theory 60, 1536 (2014), doi:10.1109/TIT.2014.2298436.

[44] R. König and G. Smith, Corrections to “The entropy power inequality for quan-
tum systems” [Mar 14 1536-1548], IEEE Trans. Inform. Theory 62, 4358 (2016),
doi:10.1109/TIT.2016.2563438.

[45] G. De Palma, A. Mari and V. Giovannetti, A generalization of the entropy
power inequality to bosonic quantum systems, Nature Photon. 8, 958 (2014),
doi:10.1038/nphoton.2014.252.

[46] G. De Palma, A. Mari, S. Lloyd and V. Giovannetti, Multimode quantum entropy power
inequality, Phys. Rev. A 91, 032320 (2015), doi:10.1103/PhysRevA.91.032320.

[47] R. König, The conditional entropy power inequality for Gaussian quantum states, J. Math.
Phys. 56, 022201 (2015), doi:10.1063/1.4906925.

[48] G. De Palma, Gaussian optimizers and other topics in quantum information,
arXiv:1710.09395.

[49] S. Huber, R. König and A. Vershynina, Geometric inequalities from phase space translations,
J. Math. Phys. 58, 012206 (2017), doi:10.1063/1.4974224.

[50] G. De Palma and D. Trevisan, The conditional entropy power inequality for bosonic quan-
tum systems, Commun. Math. Phys. 360, 639 (2018), doi:10.1007/s00220-017-3082-8.

[51] G. De Palma, D. Trevisan, V. Giovannetti and L. Ambrosio, Gaussian optimizers for
entropic inequalities in quantum information, J. Math. Phys. 59, 081101 (2018),
doi:10.1063/1.5038665.

[52] G. De Palma and S. Huber, The conditional entropy power inequality for quantum additive
noise channels, J. Math. Phys. 59, 122201 (2018), doi:10.1063/1.5027495.

[53] G. De Palma, The entropy power inequality with quantum conditioning, J. Phys. A: Math.
Theor. 52, 08LT03 (2019), doi:10.1088/1751-8121/aafff4.

[54] G. De Palma, New lower bounds to the output entropy of multi-mode quantum Gaussian
channels, IEEE Trans. Inform. Theory 65, 5959 (2019), doi:10.1109/TIT.2019.2914434.

[55] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley, ISBN
9780471241959 (2005), doi:10.1002/047174882X.

[56] E. Calzetta and B. L. Hu, Nonequilibrium quantum fields: Closed-time-path effective
action, Wigner function, and Boltzmann equation, Phys. Rev. D 37, 2878 (1988),
doi:10.1103/physrevd.37.2878.

[57] J. Berges and J. Serreau, Parametric resonance in quantum field theory, Phys. Rev. Lett.
91, 111601 (2003), doi:10.1103/physrevlett.91.111601.

25

https://scipost.org
https://scipost.org/SciPostPhys.12.1.021
https://doi.org/10.21468/scipostphys.9.4.048
https://doi.org/10.21468/scipostphyscore.4.3.025
https://doi.org/10.1109/TIT.2014.2298436
https://doi.org/10.1109/TIT.2016.2563438
https://doi.org/10.1038/nphoton.2014.252
https://doi.org/10.1103/PhysRevA.91.032320
https://doi.org/10.1063/1.4906925
https://arxiv.org/abs/1710.09395
https://doi.org/10.1063/1.4974224
https://doi.org/10.1007/s00220-017-3082-8
https://doi.org/10.1063/1.5038665
https://doi.org/10.1063/1.5027495
https://doi.org/10.1088/1751-8121/aafff4
https://doi.org/10.1109/TIT.2019.2914434
https://doi.org/10.1002/047174882X
https://doi.org/10.1103/physrevd.37.2878
https://doi.org/10.1103/physrevlett.91.111601


SciPost Phys. 12, 021 (2022)

[58] X. Busch, R. Parentani and S. Robertson, Quantum entanglement due to
a modulated dynamical Casimir effect, Phys. Rev. A 89, 063606 (2014),
doi:10.1103/physreva.89.063606.

[59] V. V. Dodonov, Current status of the dynamical Casimir effect, Phys. Scr. 82, 038105 (2010),
doi:10.1088/0031-8949/82/03/038105.

[60] I. Romualdo, L. Hackl and N. Yokomizo, Entanglement production in the dynam-
ical Casimir effect at parametric resonance, Phys. Rev. D 100, 065022 (2019),
doi:10.1103/physrevd.100.065022.

[61] J. H. Traschen and R. H. Brandenberger, Particle production during out-of-equilibrium
phase transitions, Phys. Rev. D 42, 2491 (1990), doi:10.1103/physrevd.42.2491.

[62] L. Kofman, A. Linde and A. A. Starobinsky, Towards the theory of reheating after inflation,
Phys. Rev. D 56, 3258 (1997), doi:10.1103/physrevd.56.3258.

[63] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in infla-
tionary cosmology: Theory and applications, Annu. Rev. Nucl. Part. Sci. 60, 27 (2010),
doi:10.1146/annurev.nucl.012809.104511.

[64] M. A. Amin, M. P. Hertzberg, D. I. Kaiser and J. Karouby, Nonperturbative dynam-
ics of reheating after inflation: A review, Int. J. Mod. Phys. D 24, 1530003 (2014),
doi:10.1142/S0218271815300037.
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