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Measuring the Impact of COVID-19 Restrictions on
Mobility: A Real Case Study from Italy

Claudia Cavallaro, Armir Bujari, Luca Foschini, Giuseppe Di Modica, and Paolo Bellavista

Abstract—When COVID-19 first struck the provinces of North-
ern Italy in early 2020 (especially in Lombardy and in Emilia-
Romagna), the conditions there made it a perfect storm. The
virus outbreak spread with an unusual violence (in the period
from late February to April 2020), with a catastrophic toll in
terms of human deaths. Taken by surprise, Italy mandated a
complete nation-wide lockdown, successively resorting to minis-
terial decrees alleviating and postponing the restrictions.

Now more than ever, there is an increased awareness on
ICT used to combat the pandemic. In this article, we present
a quantitative analysis evidencing the impact of restrictions on
mobility. To this end, we rely on a vehicular mobility dataset
confined in the downtown area of Bologna, Italy. Pursuing
the objective, we propose a modified version of a state-of-the-
art data mining algorithm, allowing us to efficiently identify
and quantify mobility flows. The proposal, if combined with
additional data sources, could allow for a fine-grained and timely
decision making, combating the pandemic.

Index Terms—Big data, COVID-19, pattern mining, vehicular
mobility.

I. INTRODUCTION

LOBALLY, as of June 2021, there have been around

175 million confirmed cases of COVID-19 and more
than 3.8 million deaths [1]. Up until the time of this writing,
Italy has 4.25 million confirmed COVID-19 cases, while the
death count amounts to 127 thousand. At the time of the
so-called first pandemic wave (March 2020), in order to
face the uncontrollable infection rate, the Italian government
implemented a three-month nation-wide lockdown that, on a
progressive basis, imposed stay-at-home orders (24/7), travel
restrictions among provinces, social distancing, suspension of
all business activities not connected with food and drugs.
Because of the relaxation of restrictions enacted by the gov-
ernment in May 2020, since the end of summer 2020, the
infection rate has dramatically increased (second pandemic
wave) and hit a serious mark, forcing the authorities to enforce
new restrictive measures. To face potential new waves and
local outbreaks, the national government did not opt for a
new strict nation-wide lockdown, rather, it resorted to prime
minister decrees (DPCM) that from time to time, and region
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by region, exacerbated or released the restrictions according
to the seriousness of the situation. A more precise timeline
of the issued decrees is depicted and discussed later on in
Section IV.

Because of the ascertained dangers of the COVID-19 virus
to transmit by means of respiratory droplets, imposing restric-
tion on people’s mobility is one of the main actions gov-
ernments are undertaking to limit the virus spread. Tracking
population mobility, on the one hand, is paramount to assess
the efficacy and effectiveness of governments’ measures; on
the other one, it provides useful information to study and
model the cause-effect dynamics that are triggered each time
new restrictive measures are taken. Mobile phone records
collected and owned by telecommunication providers (carriers)
provide exactly the right kind and volume of information
necessary to track human movements [2], assess presences
and population density [3], devise mobility patterns [4] and
eventually forecast future movements. On this hot topic, sev-
eral collaborations are ongoing among carriers, governments
and research communities [5], [6].

In this article, we present a quantitative measurement study,
analyzing the impact of restrictions enacted by the Italian gov-
ernment during the first half of 2020. To this aim, we rely on
a vehicular mobility dataset confined to the downtown area of
the metropolitan city of Bologna, Italy, evidencing the impact
that restrictions had on mobility flows. In specific, we start by
providing a preliminary analysis quantifying the overall trend
of vehicular mobility, characterizing the employed dataset. We
then present and discuss a modified version of a state-of-the-art
data mining algorithm, Apriori [26], later on used to quantify
and assess vehicular flow patterns in a fast and reliable manner.
The timely identification and measurement of vehicular flows
becomes relevant and would allow governmental organizations
to apply fine-grained and timely policies in an informed way.
This approach, if combined with additional data sources, could
provide invaluable insights to organizations.

The article is organized as follows: Section II discusses
state-of-the-art techniques on trajectory mining, concluding
with a high level overview of the proposed algorithmic ap-
proach. Next, Section III presents and characterizes the dataset,
while providing a preliminary quantitative analysis, evidencing
a first, high level overview, on the impact of restrictions
on mobility during the lockdown period in Bologna, Italy.
Section IV presents and discusses the algorithmic approach
used to quantify vehicular flow evolution in time. Following, in
Section V the results of the analysis are discussed according to
the timeline of decrees as mandated by the Italian government.
Finally, in Section VI the conclusions are drawn.
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II. BACKGROUND

In the past twenty years, the widespread of sensing-enabled
mobile devices, along with the advancement of technologies
for location acquisition, has fuelled a strong interest of the
research community around the study of movements of both
individuals and vehicles. From the analysis of the trajecto-
ries followed by people during their daily activities, useful
information may be derived for a number of applications
requiring real-time responses or timely decision making such
as road traffic and tourism planning, to name a few [7]. In
this paper, we apply trajectory mining techniques to a large
data set containing traces of vehicle movements in order to
derive trajectories followed by vehicles during the first wave of
COVID-19 pandemic, and assess whether and how restrictions
impacted on the overall vehicle mobility.

The huge, diverse and sometimes uncertain data provided
by location-acquisition technologies calls for effective and
efficient mining technique to build precise trajectories out
of sequences of points characterized with spatio-temporal
information. In his systematic survey, Zheng [8] identifies
the main stages characterizing the pipeline of activities on
which the paradigm of trajectory data mining is grounded.
Relevant stages identified in the surveys are: (i) Trajectory pre-
processing, where procedures are enforced to polish/structure
the data in preparation for next stages; (ii) trajectory index and
retrieval, devoted to indexing of data in support of efficient
querying operations; (iii) trajectory pattern mining, tasked
with the identification of the category of patterns that can be
discovered from a single trajectory or a group of trajectories;
(iv) trajectory classification, that aims to differentiate among
trajectories (or its segments) according to different status
(e.g., motions, transportation modes, human activities). Herein,
we are interested in algorithms devoted to trajectory pattern
mining and, more specifically, to sequential patterns detection
from mobility data.

In this context, clustering and frequent sequential patterns
are two of the main trajectory pattern mining techniques.
Trajectory clustering aims at grouping similar trajectories
into clusters. Similarity among trajectories is denoted by the
“distance” between their respective feature vectors. Several
distances and similarity measures can be found in the lit-
erature. Notable examples of proposed metrics and distance
definitions are dynamic time warping (DTW) [9], longest
common subsequence (LCSS) [10], Fréchet distance [11] and
Haversine distance [12]. In [13], Wang et al. address the prob-
lem of robustness of some common measures of trajectories
similarity. Mining frequent sequential patterns mainly consists
in analyzing multiple trajectories in the aim of finding a certain
number of moving objects that travel a common sequence of
locations in a similar time interval.

In the following, we discuss state-of-the art techniques rele-
vant to our study along with a critical review of the proposals.
Concluding, is a high level overview of the proposed approach
and of its merits with respect to the state-of-the-art.
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A. Related Work

In [14], Zygouras and Gunopulos propose a technique
to detect frequent traffic patterns, referred to as corridors,
that could be used in transportation, and more broadly, by
municipalities for city-wide planning purposes. In this work,
GPS trajectories are discretized using a grid-based approach,
applying the latent Dirichlet allocation (LDA) model [15] to
extract frequent corridors. Successively, a hierarchical cluster-
ing algorithm is applied to each frequent set using a DTW-
based approach to compute the distance between two patterns.
Finally, the resulting corridor is selected from the candidate
one’s by minimizing the principle of minimum description
length (MDL). The approach is validated on real datasets
collected from taxi trips in the city of Porto and by bus in
Dublin.

Bicocchi et al. [16] analyze cellular data records to explore
urban mobility patterns in Milan and Turin (Italy) metropolitan
areas. They detect similar paths in order to propose frequent
rides. Common mobility routines are identified through an
extension of the LDA model, performed to develop a travel
recommendation system for multiple users.

In [17], Crociani et al. address the problem of automatic
lane detection in heterogeneous pedestrian flows, adopting
an unsupervised clustering method. Based on the DBSCAN
algorithm, they use a more precise distance function thanks
to the angular distance between the vectors and the pedestrian
speed considered. Khan e al. [18] develop different crowd
analysis techniques and segmentation approaches based on the
K-means algorithm used to cluster all similar flow vectors.
In [19], the authors propose a novel hierarchical clustering
technique to detect common trajectories, in which the sim-
ilarity among tracks is measured by the longest common
subsequence (LCSS).

Novel parallel versions of the LCSS algorithm are developed
in [20], with a tool on distributed and shared memory for data
analytics in bioinformatics. A parallel implementation of flow
detection is also presented in [21], in which the Haversine
distance is used for comparison, with the aim of extracting
meaningful information from large datasets and suggesting
places of interest in real time.

Buchin et al. [22] consider the problem of detecting com-
muting patterns by grouping the sub-routes of certain neigh-
boring trajectories using the Fréchet distance. The Fréchet dis-
tance is among the most appropriate measures for the distance
between continuous curves, in particular in its approximation
for polygonal curves called discrete Fréchet distance (DFD).
Devogele et al. [23] describe a faster variant of DFD, which
includes filtering and pruning processes. They also improve
DFD accuracy, balancing precision and CPU time reduction.

Rolim et al. [24] identify frequent movement patterns of
trajectories in Santa Catarina - Brazil. The trajectories are
segmented using the MDL principle and then clustering them,
using the Fréchet distance. In [25], the authors focus on
the problem of corridor detection form large GPS trajectory
datasets. By discretizing the dataset, they build three different
strategies through the Apriori algorithm and refine the obtained
result via Radius Neighbors Graph.
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B. A Novel Approach

From a thorough analysis of the state-of-the-art, it emerges
that most authoritative works rely on well-known and con-
solidated spatial data mining techniques to devise sequen-
tial pattern detection strategies. Some proposals resort to a
discretization of the geographical space which allows them
to apply methods like trajectory transformation on matrices
or on graphs [14], [25]. These class of techniques require
a careful study on the discretization step to be adopted,
which if not properly set, could result in useful information
getting lost, having a negative impact on the precision of
the final output. Furthermore, clustering methods adopted
in [14], [17], [18], [24] revolve around the manual setting
of the problem input parameters (e.g., a distance threshold
or a pre-determined number of static clusters) which may
strongly affect the goodness of the final outcome. Finally,
proposals that rely on the calculus of the distance between
pairs of points to assess the similarity of trajectories [22]-[24]
are computationally heavy. Should the dataset grow in size -
for instance, in the case that a larger geographical area needs
to be investigated or a higher precision is requested - these
approaches are impractical.

In this article, we propose a different approach that manages
to achieve good results, in a fast and efficient way, without
having to face the above mentioned issues. In order to identify
common frequent trajectories out of a dataset of GPS points,
we make use of Apriori, a data mining algorithm proposed
by Agrawal et al. [26]. Apriori was initially proposed in the
marketing context, used to determine which set of products
(itemsets) are most often bought together by customers. In our
work, we borrow the Apriori approach and exploit the similari-
ties of shopping basket-vehicle and item-road to quickly detect
which roads have been crossed more frequently than others,
by different vehicles, in a considered time slot. Specifically,
we developed a bottom-up approach to determine which paths
(corridors) are close to each other or overlap in the same road
section, with no need to apply a comparison between pairs of
trajectories or compute the distances between points.

In addition, quasi-unified sampling strategies are often re-
quired to calculate similarity between trajectories, thus in-
troducing errors and information loss. Our approach extracts
reliable statistical data, as it iS not sensitive to either noise
or to the sampling frequency (in particular, it is sufficient
that the vehicle registers at least one point for each different
road traveled), allowing us to quickly and easily quantify the
patterns of travel over the road network. More details on
the algorithmic approach and its adoption are discussed in
Section IV.

III. VEHICULAR MOBILITY DATASET

The vehicular mobility dataset employed in this study is
provided by an Italian nation-wide car insurance company
under the project IPPODAMO [27] where the authors are
involved as scientific advisors. The dataset used herein is
geographically scoped to a part of the metropolitan area of
Bologna, Italy, depicted in Fig. 1. In the following, we provide
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Fig. 1. The gray area denotes the area of interest comprising the city center
of the metropolitan area of Bologna, Italy.

a brief overview of the dataset along with a preliminary
quantitative evaluation of the vehicular data.

A. Description

The source data extraction and filtering process provides an
entire vehicle trip whenever a vehicles’ position is found to
be inside the area of interest shown in Fig. 1. If this event is
verified the trip is reconstructed from a temporal buffer and
provided to us in textual format. Note that although the area
of interest comprises only parts of Bologna, Italy, it is quite
representative as it comprises the downtown of Bologna, a
major and vibrant city in Italy, along with an arterial road
such as the A14 freeway which is the second largest freeway
in Italy.

The historical dataset covers a period from January 2020 to
June 2020, including the first lockdown phase announced in
Italy (March 2020) and successive ones. Vehicles are equipped
with a blackbox, a multi-purpose and autonomous on-board
devices with sensing and communication capability, generating
data when pre-determined events occur e.g., vehicles engine
turned on/off. Monthly datasets comprise daily trips, delimited
by a start and stop latitude/longitude along with some addi-
tional attributes used to uniquely identify the trip. Below is
provided a list with relevant attributes qualifying a trip:

e Trip id: Numerical identifier of the particular trip;

o Device id: Numerical identifier of the on-board blackbox,
which changes periodically, each month;

o Start date/time: Time ans date when this trip initiated i.e.,
vehicle engine is turned on;

o End date/time: Time and date when this trip terminated
i.e., vehicle engine is turned off;

o Start latitude/longitude: GPS coordinates denoting the
place when this trip initiated;

o End latitude/longitude: GPS coordinates denoting the
place when this trip terminated;

o Average velocity: Average speed in km/h of the trip;

e Vehicle characteristics: A formatted string containing
information (if present) regarding the vehicle type and
model.

Along with the daily trip header dataset, an additional
monthly dataset is provided which contains intermediary trip
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Fig. 2. Daily number of trips evolution in time. The chosen intervals denote
common daily rush hours.

samples. An intermediary trip sample is generated whenever a
vehicle instantly (de)accelerates, and more generally whenever
one of the following conditions is satisfied: either vehicles
traverses 1 km or 60 s have gone by since the last position
was announced. In specific, a trip detail contains the following
information:

e Trip id: Numerical identifier of the particular trip;

o Device id: Numerical identifier used to denote the on-
board blackbox. The identifier is changed periodically, each
month, for privacy concerns;

o Date/time: Time and date when this sample was taken;

« Latitude/longitude: GPS coordinates denoting the place
the sample was generated;

o Type of street: Whether the road is freeway, urban street
etc.

As a final note, it is possible to reconstruct the entire vehicle
trip information thanks to the trip identifier attribute contained
in both traces.

B. A Preliminary View

Fig. 2 quantifies the number of trips evolution in time.
To compute this information, we rely on the trip identifier
available in the monthly datasets and prior to counting, we
exclude the weekend days in order to eliminate any transitory
effects due to movements from and to the city. Instead, Fig. 3
shows the normalized number of trips with respect to the busy
month of January when the pandemic had not yet invaded
the daily lives of the western world. Another complementary
view is provided in Fig. 4 showing the empirical cumulative
distribution function (ECDF) of the trip frequency distribution
for the different months present in the dataset. In particular,
to compute this data, we rely on the terminal identifier value
which does not vary inside a month timeframe.

In both Fig. 2 and Fig. 3 one can immediately observe the
sudden decrease in the volume of traffic starting from March,
when the first decree announcing the lockdown measure took
effect, reaching its lowest peak in the month of April. The
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Fig. 4. Empirical cumulative distribution function of trip frequencies per
vehicle present in the dataset.

decrease in traffic volumes is noticeable even in typical rush
hours (Fig. 2) coinciding with activities such as going to
or returning from work/school. From this point onwards,
the volume steadily increases, until new and more relaxed
measurements come into effect. A similar trend is shown in
the trip frequency distribution (Fig. 4) evidencing an impact
in normal activity reduction i.e. frequent trips in the interval
[0, 50] with April and May having the lowest values, reaching
proportionally comparable values in the higher frequencies.

In the following, we propose a new type of analysis, allow-
ing us to efficiently analyze and quantify vehicular mobility
patterns over a road network.

IV. MINING VEHICULAR FREQUENT PATTERNS

In this section, we discuss an efficient, modified version of
Apriori used to extract information on vehicular flow distribu-
tion. Following, we present a precise timeline of restrictive
measures taken into effect in Italy in the period between
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Algorithm: Modified Apriori
Input

: D: trajectory database
man_sup: minimum vehicular density

threshold

Output: Set F containing most frequent corridors

/* compute level-1 information <road,
# of vehicles> */

Ly = level_1_roads_in(D)

/+ iterate until no transaction
available */

fork=2; Li_; #0;k=k+ Ido

/+ compute candidate subsets

filtered by topological order

and minimum support */

Cr = {c C subset(Li—_;, D) | |c| =k A filter(c)}

foreach vehicleld t € D do
Cy = subset(Cy, t)
/+ get the subsets of t that are
candidates */
foreach candidate c € C; do
| c.cont++
end
end
Ly ={c € Cy |c.cont > min_sup}

end
return £ = J L,
k

March-July 2020, later on used to discuss the effects they had
on mobility.

A. Modified Apriori

In our context, a vehicular trajectory consists of a sequence
of ordered GPS points through which it is possible to recon-
struct a path, as a sequence of traversed roads, on an actual
road network. To build this synthesized trajectory database,
a pre-processing step is involved aimed at reconstructing the
reverse geo-coding information from single latitude/longitude
samples, which are then grouped to produce the actual path
traversed by a vehicle. At first, the grouping is limited to the
single road elements.

To obtain the reverse geo-coding information, we exploit
the k-nearest neighbor (KNN) algorithm already available in
Apache Sedona, a cluster computing framework for spatial
data processing [28]. The algorithm relies on the Bologna road
network and on the Haversine distance metric to compute the
nearest road the sample belongs to. For each road element,
referred to as an item in the original version of Apriori, it is
therefore possible to compute the number of vehicles travers-
ing it in a considered time interval. In Apriori terminology,
this number is referred to as support.

The modified Apriori takes as input the above synthesized
trajectory dataset which consists of a multiset data structure
with entries containing information on: (i) Vehicle trip identi-
fier, (ii) list of roads it traversed during a trip and (iii) a list of

70 vehicles

50 vehicles

60 vehicles

(a)

e e

50 vehicles 70 vehicles 80 vehicles 60 vehicles
(b)
50 vehicles 50 vehicles

50 vehicles
d

Fig. 5. A minimal running example. Vehicles of different colors represents
vehicular flows and their size which might extend to the whole or parts of the
road network: (a) Example road topology along with vehicles at time interval
t, (b) Level 1 output containing roads satisfying minimum support, (c) Level 2
output containing roads satisfying minimum support, and (d) [Level 3 output
containing roads satisfying minimum support.

timestamps, denoting the time lapse of the samples belonging
to it. Another important piece of input data is the minimum
vehicular density threshold (min_sup), denoting the minimum
number of vehicle occurrences that candidate vehicular paths
(corridors) must support.

The output consists of a multiset containing ordered se-
quences of roads or corridors satisfying a minimum support
criterion. It is noteworthy to point out, that the time dimension
could be omitted from the problem formulation by filtering the
input accordingly, simplifying the procedure.

The algorithm (Modified Apriori) performs a depth first
search of potential frequent subsets of size k, one level at
a time, until no further extensions are possible, meaning no
corridors of size k£ 4+ 1 with sufficient support (min_sup)
can be found. To provide meaningful results, and fruitful
next level candidates, the generated subsets C}, at level k are
filtered also by considering a topological map order. Indeed,
without this criterion the algorithm could due to e.g., errors
in the source data, naively combine roads which are far
away, qualifying them as corridors. Once suitable candidates
have been identified, they are assessed whether the minimum
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support condition is satisfied and depending on the outcome
are included or excluded from the current level (L) identified
corridors.

The algorithm is based on the principle of anti-monotonicity,
that is, if a set of entities is frequent, then all its subsets are
also frequent, but if an itemset is not frequent, then the sets
containing it are not frequent either. Through a bottom-up
approach we obtain a sequence of frequent roads according
to a minimum support criterion.

In Fig. 5 is shown a minimal running example explaining the
algorithm’s modus operandi. In particular, Fig. 5(a) presents
a simplified road network along with some vehicular flows
depicted by the colored vehicles. From an algorithmic view-
point, starting at level 1 with a min_support of 50 vehicles,
all frequent patterns of size 1 with a minimum density of 50
are computed (Fig. 5(b)). At level 2 (Fig. 5(c)) the algorithm
discovers all viable pairs of frequent roads (set of candidate
corridors of size 2). Among the candidates, those satisfying the
min_sup criterion are selected and become viable corridors
for the next iteration. Note that, at this step, the algorithm
pruned the candidate subsets comprising the corridor with the
green car. For simplicity, we assume all the shown subsets are
viable ones, satisfying the topological order criteria. Similarly,
at level 3, all viable subsets of size 3 (corridor of size 3)
are built starting from subsets of size 2. A join procedure is
applied, generating all the level 3 entries satisfying the criteria.

Since no further candidates are left to assess, the algorithm
terminates and returns all identified corridors of size 1 to 3.

B. Restrictions Timeline

In Italy, the epidemiological situation due to Coronavirus
disease 2019 exploded in March 2020, although the state of
emergency had already been announced on January 31st, 2020,
with the occurrence of some COVID-19 outbreaks in specific
areas of northern Italy (Codogno in Lombardy region, Vo’
Euganeo in Veneto region) in February.

March 9, 2020 is the date of the first national DPCM
which transformed Italy into a restricted area, by imposing
a temporary suspension of a number of business and public
activities which could favor the spread of the COVID-19,
such as swimming pools, gyms, school and university classes,
museums, cinemas, and recreational centers.

On March 22nd, a new decree was issued jointly by the
Minister of Health and the Minister of the Interior which
prohibited individuals from moving or travelling by public or
private means of transport, except for proven work or health
needs, or absolute urgent matters. On April 1st, a new DPCM
was adopted which extended the effectiveness of the previous
provisions to April 13rd.

With the April 10th DPCM, the suspension of teaching
activities was extended up to May 3rd. Shops remained closed,
except for groceries, pharmacies, tobacconists, newsagents,
and petrol stations.

After almost two months of lockdown, the DPCM of
April 27th announces the first relaxation of restrictions for
construction companies, manufacturing, mining, automotive,
textile, wood, glass and wholesale industries. Among the
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provided authorizations, the decree also allowed travels to
meet relatives, provided that the prohibition of gathering and
distancing is respected, and respiratory protection is used.

On May 18th, Italy restarts. The new decree allowed most
business activities to open. Citizens could move within their
own region and frequent public places, provided that at least
one-meter social distancing is kept, and protective masks are
worn.

V. TRAFFIC FLOW ANALYSIS

Herein, we present the results of the quantitative analysis
performed exploiting the modified version of the Apriori
algorithm presented in the prior section.

In Fig. 6, it is shown the vehicular traffic flow evolution
over time. In this instance, the data are partitioned and studied
in specific time intervals identifying common rush hours e.g.,
people travelling from/to work. On the x-axis, we report the
timeline of restrictions implemented by the Italian government,
while the y-axis reports the frequent patterns with a vehicular
density greater than or equal to 10. The frequent pattern values
denote the number of corridors with a minimum support of 10
as identified by the algorithm.

Up until March 2020 the vehicular flows are subject to
periodic fluctuations. A rapid decrease is observed in March 9,
2020, when the lockdown was announced and enacted. Even
though the state of emergency was declared in January 31,
2020, i.e., when the first localized outbreaks of Codogno and
Vo’ Euganeo were discovered, in our dataset no impact on the
mobility patterns is noticeable.

A change in traffic patterns, along with a rapid decrease
of the traffic flows, is noticeable in the beginning of March
2020, when a nation-wide lockdown was imposed. In this time
span, up until May 2020, traffic flows are subject to some
fluctuations reaching a minimum after the April 10th decree,
which announced the prolongation of the national lockdown to
May 4th, 2020. Note that during the entire lockdown period,
citizens were not allowed to leave their home, except for strict
necessities such as work and health reasons.

On May 4th, restrictions were relaxed and a steady increase
of traffic flows can be observed, although its density did not
reach the level observed prior to the lockdown. Though people
were allowed to move, a large part of the population started
working at home (smart working).

In Fig. 7 a map-based comparison of frequent roads before
and after the lockdown took effect is shown. Herein, we
consider the level 1 output of the algorithm covering an entire
day. It is evident that the mobility index drastically changed,
with little to no activity in the downtown area of the city,
and traffic is mostly concentrated in the freeway and city
surroundings.

Fig. 8 provides an in-depth analysis on the traffic flow
distribution along the restrictions’ timeline. To this end, differ-
ent minimum supports have been adopted, varying the traffic
density in the ranges shown in the bottom-left part of the table.
The chart groups frequent roads based on density, with darker
colors representing the busiest roads.
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The density pattern attribute was discretized into 7 classes
according to the number of vehicles crossing the same road
on the same date.

At first glance, one can observe the evident change: a
decrease of traffic density and a slow (yet steady) increase
prior, during and after the lockdown period respectively.
Overall, roads subject to higher traffic volumes seem to be
less impacted over time. This is reasonable as activity in
these roads, although restrictions are in place, can be related
to goods transportation from/in Bologna and other essential
services.

Low-to-mid frequencies, e.g., roads with traffic levels from
1-100, seem to be the most impacted, reaching their lowest
values during the lockdown period followed by a steady
increase up to June 2020, where a quasi return to normal is
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g. 7. Comparison of traffic flows between January 31st, 2020 (left) and March 23rd, 2020 (right) for the metropolitan city of Bologna.

observed. These roads can be typically associated with urban
traffic and everyday movements of people.

For completeness, Table I reports some of the most frequent
roads identified by the prior analysis and their traffic evolution
along the restriction timeline. The numbers in blue denote the
inflection points, i.e., a positive change in the amount of traffic
sustained therein.

From what we have shown, it is evident that the pandemic
has deeply impacted mobility patterns in the downtown area of
Bologna. While now things seem to be returning to a degree
of normality, the new coronavirus is still amongst us. This
fast has raised the population awareness in understanding the
importance of ICT tools for combating the virus in intelligent
ways. The timely identification and measurement of vehic-
ular flows becomes relevant and would allow governmental
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Fig. 8. Distribution of the detected corridor densities. In tabular form are reported the number of roads subject to a particular traffic density on that specific

date.

organizations to apply fine-grained and timely policies in an
informed way.

VI. CONCLUSION

The pandemic has heavily conditioned our life. More than
a year after COVID-19, the world is still struggling and
trying to keep the pace. While the first pandemic wave caught
most governments by surprise, resorting to desperate initial
measures, ICT use plays a crucial role, allowing for a timely
and fine-grained decision making.

In this paper, we presented a study measuring the impact
restrictions had on the mobility of the metropolitan area of
the city of Bologna, Italy. Specifically, the proposed analysis
focuses on the evolution of the traffic patterns and density
along the restriction timeline. As a further paper contribution,
a modified version of the Apriori algorithm was presented and
discussed. The algorithm helped us quantify and reliably assess
vehicular flow patterns.

Currently, we are working on extending this study, by
implementing an online, distributed MapReduce-like approach
to Apriori, which could help improve the flow analysis time.
The idea is to distribute the computation, relying on spatial
partitioning techniques, among cluster nodes, merging individ-
ual outputs to form a coherent global view at e.g., street level.
Different levels of aggregations and processing pipelines might
be provisioned, depending also on the scope of the analysis.
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