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Methyl‑CpG‑binding protein 2 
mediates overlapping mechanisms 
across brain disorders
Snow Bach1,2, Niamh M. Ryan2, Paolo Guasoni1,3, Aiden P. Corvin2, Rania A. El‑Nemr4, 
Danyal Khan4, Albert Sanfeliu2 & Daniela Tropea2,5,6*

MECP2 and its product, Methyl-CpG binding protein 2 (MeCP2), are mostly known for their association 
to Rett Syndrome (RTT), a rare neurodevelopmental disorder. Additional evidence suggests that 
MECP2 may underlie other neuropsychiatric and neurological conditions, and perhaps modulate 
common presentations and pathophysiology across disorders. To clarify the mechanisms of these 
interactions, we develop a method that uses the binding properties of MeCP2 to identify its targets, 
and in particular, the genes recognized by MeCP2 and associated to several neurological and 
neuropsychiatric disorders. Analysing mechanisms and pathways modulated by these genes, we 
find that they are involved in three main processes: neuronal transmission, immuno-reactivity, and 
development. Also, while the nervous system is the most relevant in the pathophysiology of the 
disorders, additional systems may contribute to MeCP2 action through its target genes. We tested our 
results with transcriptome analysis on Mecp2-null models and cells derived from a patient with RTT, 
confirming that the genes identified by our procedure are directly modulated by MeCP2. Thus, MeCP2 
may modulate similar mechanisms in different pathologies, suggesting that treatments for one 
condition may be effective for related disorders.

MeCP2 is a protein that controls gene expression levels through direct and indirect mechanisms. Generally, it 
acts as repressor by binding methylated CpG dinucleotides to modify chromatin. However, it may also work as 
an activator by interacting with specific co-factors such as CREB1. One of the MeCP2′s target is Brain-derived 
Neurotrophic Factor (BDNF), a neurotrophin involved in brain development and function1. BDNF-related 
mechanisms are dysregulated as a result of MECP2 mutations, and altered BDNF expression has been detected 
in several disorders, including neurodevelopmental disorders, depression, and anxiety2,3.

Initially identified as an oncogene, the MECP2 gene is now mostly associated with Rett Syndrome (RTT): 
a progressive X-linked neurological disorder that primarily affects females. However, RTT-similar phenotypes 
have been identified across different syndromes4–8, and MECP2 is involved in several other neuropsychiatric and 
neurological conditions9, with its dysregulation having functional consequences10.

In this study, we develop a procedure to identify potential MeCP2 binding sites over false positives, and we 
apply this procedure to selected gene-sets derived from several genetic studies on neuropathologies: autism11, 
attention deficit hyperactivity disorder (ADHD)12, major depressive disorder (MDD)13, bipolar disorder (BIP)14 
,anorexia15, epilepsy16, Alzheimer’s disease (AD)17, Parkinson’s Disease (PD)18, Huntington’s disease (HTT)19, 
amyotrophic lateral sclerosis (ALS)20, multiple sclerosis (MS)21, and schizophrenia (SCZ)22.

Using this approach, we show that MeCP2 binds the promoters of genes associated with brain disorders more 
often than expected by chance. Additional single nucleotide polymorphism (SNP) analysis confirms that muta-
tions in MECP2 are present in several of the investigated conditions, suggesting that some biological mechanisms 
operating in different brain disorders are modulated by MeCP2.

In order to identify these mechanisms, we use the candidate MeCP2 target genes from our analysis, to inves-
tigate tissue expression profiles and carry out enrichment and network analysis controlling for false positives. 
Transcriptome analysis in mouse mutants of Mecp2 and in induced pluripotent stem cells (iPSC) derived from 
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a patient with RTT confirms that the majority of genes identified with our methods are differentially expressed 
compared to controls.

Our results propose unexpected connections between MeCP2 and different brain pathologies, and suggest 
that common molecular mechanisms active across several brain disorders are modulated by MeCP2.

Methods
Establishing MeCP2 binding sites.  We established a procedure to quantify MeCP2 binding in silico 
using the combination of a position weight matrix (PWM) and DNA sequence GC content (Fig. 1).

We established a position frequency matrix (PFM) for MeCP2 from the Cistrome database (http://cistr​ome.
org)23. We used the Biostrings package in RStudio version 1.1.463, to convert the MeCP2 PFM into a PWM used 
to identify the MeCP2 binding motif along a sequence of DNA. We used the preferred sequences for MeCP2 
binding through methyl-SELEX23 and validated with genes known to be bound by MeCP2, Bdnf and Dlx6 in 
the promoter and core gene regions.

We retrieved MeCP2 target genes from ChIP-Seq data Cistrome Data Browser (http://cistr​ome.org/db/), and 
we used two sets of ChIP-Seq data from a study by Maunakea and colleagues (Cistrome ID 34,392 & 34,399)24. 
MeCP2′s target genes on Cistrome are already scored by the BETA package indicating the regulatory potential 
as a putative target25.

For positive controls, we generated sequence datasets for the top 100, 200 and 300 genes bound by MeCP2 
from the IMR-90 and HCT-116 ChIP-Seq data, ranked by Cistrome BETA scoring. For negative controls, we 
randomly selected and size-matched genes from the same ChIP-Seq data with a score of 0. We define the pro-
moter sequences as being 1000 bp upstream of the transcription start site and retrieved these promoters in 
RStudio from the UCSC Genome Browser (https​://genom​e.ucsc.edu/) using the GRCh37/hg19 human reference 
genome. We tested each sequence for the presence of the MeCP2 PWM. For every PWM match, a score is given 
from 1–100%. This score represents how similar the motif of the PWM is on the selected sequences, compared 
to a random sequence.

Since Guanine-Cytosine nucleotide content (GC%) was previously established to be important in MeCP2 
binding in vivo26, for every PWM match, we generated a sequence to include the 15 bp PWM match sequence 
and 100 bp flanking sequences, and we calculate the GC% for these 215 bp sequences.

Receiver operating characteristics curve.  In order to determine the ideal PWM threshold for MeCP2 
motif binding, we graph a receiver operating characteristics (ROC) curve for all datasets. We set the minimum 
PWM score at 5% and stratified results based on PWM scores at increasing increments of 5%. We generated 10 

Figure 1.   Overview of Matrix-GC procedure to detect MeCP2 binding sites in silico. The Matrix-GC procedure 
aims at identifying genes that are bound by MeCP2, through a combination of MeCP2 position weight matrix 
and DNA sequence GC%. We validate this procedure through positive and negative controls using ChIP-seq 
data (Maunakea et al., 2013) and evaluate its performance through Receiver Operating Characteristic curves. 
We apply Matrix-GC to the promoters of candidate genes across neurological and neuropsychiatric disorders to 
generate a list of putative genes bound by MeCP2 from each disorder.

http://cistrome.org
http://cistrome.org
http://cistrome.org/db/
https://genome.ucsc.edu/
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random bootstrapped samples of 100, 200 and 300 negative control genes. Taking the average values, we plot-
ted the ROC curve alongside the positive controls. Additionally, we evaluated ROC curves at various sequence 
GC%.

As additional validity controls, we consider the binding of the CDKL4 gene as a negative control27 and S100A9 
as a positive control28,29. Our Matrix-GC procedure captures the same findings in mouse Cdkl4 and human 
CDKL4 orthologue and S100A9.

Dataset collection.  For the analysis of MeCP2 interaction in different disorders, we used neuropsychiatric 
and neurological disorders data gathered from multiple studies (Supplementary Table S1). For the ASD- SFARI 
dataset30 Gene Scoring—which assesses the strength of evidence presented for candidate ASD genes—we con-
sidered categories S (syndromic), 1 (high confidence genes) and 2 (strong candidate genes).

For SCZ associated genes, we used genes identified by GWAS studies22. Rare variants are also implicated in 
SCZ aetiology, however at the moment, few candidate rare variants in SCZ have been confirmed with sequenc-
ing. Neurexin 1 is a well-known CNV in SCZ and is also largely associated with ASD31. To date, SETD1A is the 
only genome-wide significant rare variant discovered by whole exome sequencing32. The identification of rare 
variants in SCZ is controversial, so to avoid introducing false positive results in our study, we do not consider 
SCZ CNVs in our analysis.

To control for MeCP2 target genes involved in synaptic and immune function, we use genes as categorised by 
Lips and colleague33 and genes from the ImmPort data repository (https​://www.immpo​rt.org/home), respectively.

Enrichment and network analyses.  We employed Gene Ontology using GORilla34, Reactome overrep-
resentation using ReactomePA R package35 and network analysis, to define functional aspects of the brain disor-
der gene datasets, and identify terms or pathways that are significantly enriched in these gene-sets. To validate 
our results, we use permutation analysis on control datasets randomly generated and size-matched, from hg19 
human reference genome and exome subset. These datasets varied in size: 10, 20, 50, 100, 200, 500 and 750 genes. 
The terms and pathways significantly enriched from the analysis of the control datasets were excluded from the 
results of the genes associated with brain disorders in case of overlapping. For protein interaction analysis, we 
used Cytoscape and the stringApp plugin. We used randomly generated control datasets matching in gene num-
bers with the datasets from the brain disorders to identify the average degree of network connectivity related 
to the size of the datasets and to generate a range of values network connectivity associated to the size of the 
datasets. For each dataset size we run the Cytoscape analysis 20 times and we select the maximum and minimum 
degree of connectivity for each gene sets size across all the random analyses. This information was used to iden-
tify the brain disorders associated gene sets with a level of network connectivity different from what expected by 
chance. We considered protein hubs those with a degree of connection superior of at least 1 with respect to the 
average level of connectivity of the corresponding gene sets size. Only the hubs from the significant network are 
reported in this study.

Tissue expression analysis.  We look at the expression levels of each gene from our brain disorder gene-
sets using NCBI.

Gene (https​://www.ncbi.nlm.nih.gov/gene/). We select “HPA RNA-seq for normal tissues” for analysing 
protein-coding genes and “RNA sequencing of total RNA from 20 human tissues” for retrieving expression data 
of non-coding genes. Expression data is represented as reads per kilo base per million mapped reads.

In each tissue we considered a gene to be expressed if its expression level is greater than 0. This convention 
allows to obtain, for each disorder-tissue combination, a two-by-two contingency table of the number of genes 
that are (i) MeCP2-bound and expressed (MeCP2-bound genes are the genes selected by the MATRIX-GC 
procedure), (ii) MeCP2-bound and not expressed, (iii) not MeCP2-bound and expressed, and (iv) not MeCP2-
bound and not expressed. From such a contingency table, Fisher’s exact test calculates from the hypergeometric 
distribution of the odds ratio the exact (i.e., finite sample rather than asymptotic) statistical significance of the 
hypothesis that the proportion of expressed genes in the MeCP2-bound group is the same as the proportion of 
expressed genes36 in the not MeCP2-bound group .

Single nucleotide polymorphism in different brain disorders.  To identify the presence of MECP2 
SNPs in the brain disorders considered, we downloaded human SNP data from NCBI dbSNP (https​://www.ncbi.
nlm.nih.gov/snp/). We compared MECP2 SNPs to SNP from our brain disorder datasets of interest using data 
from NCBI ClinVar (https​://www.ncbi.nlm.nih.gov/clinv​ar/). We also look at Matrix-GC-derived genes and 
investigated if SNPs were present (Supplementary Table S4). Sex information of patients with reported MECP2 
SNPs was derived from RettBASE: RettSyndrome.org Variation Database (mecp2.chw.edu.au).

Functional validation using Transcriptomic data.  To validate our results, we used transcriptomic 
analyses in Mecp2-null mice and RTT iPSCs. We used data from Mecp2- null mice compared to matched WT 
controls28 considering expression analysis in blood and cerebellum tissues, and data from iPSCs from a patient 
with Rett Syndrome37. Data was retrieved from the Gene Expression Omnibus under entries GSE129387 and 
GSE123753.

For the gene set identified by the Matrix-GC procedure, we calculated the percentage of significant DEGs 
(p ≤ 0.05) The DEGs were identified with EdgeR package (v3.14.0). Genes were not considered where all samples 
showed no counts.

We evaluated the statistical significance of these sets through a Monte Carlo method, by comparing their 
statistics to the percentage of DEGs (p ≤ 0.05) in 1000 randomly selected sets of genes with equal size. These 

https://www.immport.org/home
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/clinvar/
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Monte Carlo samples were selected from the set of Mus musculus orthologue genes for the animal studies, and 
from the brain tissue genes in the human studies.

Results
Establishing a high affinity MeCP2 binding procedure.  To identify candidate target genes for MeCP2, 
we consider both nucleotide sequences, and the content of GC in promoters. Our procedure implements a PWM 
used to identify MeCP2 preferred sequences23 (Figs. 1, 2a), combined with GC content percentage of the pro-
moter sequence to the optimal range of the selected variables.

To verify that our PWM + GC% filter is effective in identifying genes bound by MeCP2, we apply the model to 
the top scored genes in the MeCP2 ChIP-Seq IMR-90 data24. We generate ROC curves from datasets of 100, 200 
and 300 genes to determine if there is a preferential threshold at different ranking levels (Fig. 2b,c). We identify 
the ideal threshold score to be 65% for MeCP2 binding across gene-sets. Since MeCP2 has a higher binding 
potential for regions containing GC dinucleotide occurrence of ≥ 60%26, we tested whether the threshold score 
of 0.65 changed with different percentages of GC content. We combine the PWM filter with an additional GC 
content filter, varying the GC percentage threshold from 60%, to 50% and without filtering for GC content (PWM 
only). We determine that 60% GC content offers a reduction in false positive rate by nearly half (50%: 0.657 vs. 
60%: 0362 false positive rate). We observe similar results when using HCT-116 ChIP-Seq data and we confirm 
that a GC content of 60% is appropriate and in line with Rube and colleagues’ report26. For further analyses we 
use a PWM score of 65% and GC content of 60% (Matrix-GC). To confirm the validity of our procedure, we also 
test MeCP2 binding for a negative control (CDKL4,27) and positive control gene ( S100A929).

Figure 2.   Construction of MeCP2 position weight matrix (PWM) threshold and GC%: Matrix-GC Procedure 
using MeCP2 ChIP-Seq data on IMR-90 cells. (a) Sequence logo for the conservation sequence for MeCP2. (b) 
ROC curves for 100, 200 and 300 genes establishing a preferential PWM score threshold. The area under the 
curve (AUC) is 0.725, 0.7685, 0.7419, for 100, 200 and 300 genes respectively. (c) ROC curves for 300 genes 
evaluating the effects of DNA sequence GC content percentage. The AUC values are 0.7301, 0.7692 and 0.6351 
for GC content percentages of 50%, 60%, and PWM only, respectively. The random classifier is represented by 
x = y and has an AUC of 0.50.
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We then examine MeCP2 binding potential according to Matrix-GC on gene-sets associated with neuropsy-
chiatric and neurological disorders (Supplementary Table S1). All neuropsychiatric datasets have at least 50% 
of genes putatively bound by MeCP2 through the Matrix-GC procedure. Neurological datasets show an overall 
lower average percentage of MeCP2-bound genes (55.95%) compared to neuropsychiatric disorders (67.58%). 
These results suggest a higher involvement of MeCP2 in neuropsychiatric pathologies, although they can be 
attributed to the lower number of genes present the neurological datasets. We also consider the genome and 
applied Matrix-GC to all genes in the GRCh37/hg19 human reference genome, and we report an average of 
39.56% genes bound by MeCP2 in silico across the genome (Supplementary Figure S1). We also investigate 
binding to synaptic and immune genes using our procedure and find that MeCP2 binds to 73.51% of synaptic 
genes and 44.87% of immune genes.

Tissue expression of brain disorder‑associated genes before and after matrix‑GC.  Using the 
NCBI Gene database, we investigate the expression of brain disorder-associated genes in different tissues before 
and after the Matrix-GC procedure (Fig. 3, Supplementary Table S2). There is a statistically significant difference 
in expression of brain disorders-associated genes in skin (epilepsy, p = 0.009), reproductive (BIP, p = 0.02), the 
brain (MDD, p = 0.0006), and immune (MDD, p = 0.01; SFARI, p = 0.02) tissues. SCZ shows a significant differ-
ence in genes bound by Matrix-GC and genes not bound by Matrix-GC in all tissue (Supplementary Table SS3).

ADHD genes show the largest increases in percentage after MatrixGC in brain (15%), fat (20%), and urinary 
tissues (10%). Expression in immune tissue for epilepsy genes increases by 10% after applying Matrix-GC. We also 
note differences after Matrix-GC, in lung (12%), heart (17%), and skin (26%), tissues for epilepsy-related genes.

Figure 3.   Genes associated to each disorder and tissue (horizontal axis) have a different RNA expression 
distribution (vertical, in percent) before and after Matrix-GC. Distribution of RNA expression, by tissue, for 
genes associated to brain disorders before and after Matrix-GC. The vertical axis reports the difference between 
the percentage of genes expressed in the different systems before and after Matrix-GC. Disorders included 
are Autism database (SFARI, Yellow), schizophrenia (SCZ, Orange), Parkinson’s disease (PD, Grey), multiple 
sclerosis (MS, Black), major depressive disorder (MDD, Pink), epilepsy (Red), autism (ASD, Dark Green), 
Alzheimer’s disease (AD, Blue), attention deficit hyperactivity disorder (ADHD, Light Blue) and bipolar 
disorder (BIP, Light Green). For immune, digestive, urinary and reproductive systems we considered data from 
different organs. Immune tissues include data from: lymph node, bone marrow, spleen, adrenal, thyroid and 
appendix data. Digestive includes data from: colon, duodenum, oesophagus, gall bladder, pancreas, liver, small 
intestine, salivary gland and stomach data. Reproductive tissues include data from: ovary, testis, endometrium, 
prostate and placenta. Urinary System urinary bladder and kidney data. Numbers in parentheses represent the 
total number of genes for which expression data was retrieved. The Fisher’s exact test was used for statistical 
calculations. *represents p value ≤ 0.05 and ** represents p value ≤ 0.01.
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We also consider distribution and expression of non-coding RNAs (ncRNAs) in our gene-sets (Supplementary 
Table S2). PVT1 is the only ncRNA bound by MeCP2 in silico in MS. 5 ncRNAs are found in the ADHD dataset: 
TMEM161B-AS1, LINC01572, LINC00461, KDM4A-AS1, LINC02060, of which only the first 3 are positive by 
our Matrix-GC procedure. 28 out of 64 ncRNAs in the SCZ dataset are identified by Matrix-GC. There is no 
statistically significant difference between the number of genes expressed before or after Matrix-GC. However, we 
do report that there is an increase in percentage of expressed genes after Matrix-GC in the cerebellum (24.11%) 
and whole brain (22.32%). The role of these ncRNAs is unknown apart from association to disorders in GWAS 
studies. One limit of this analysis is the poor availability of data and the unknown developmental stage at the 
time of tissue collection for the analysis of the expression levels38.

MECP2 mutations are present in brain disorders.  Using NCBI dbSNP, we find 13,100 SNPs in MECP2 
and few of them are present in four of our selected disorders: ADHD (2 SNPs), ASD (87 SNPs), epilepsy (25 
SNPs) and SCZ (12 SNPs) (Supplementary Table S4). The presence of MECP2 SNPs in SCZ and ASD is expected 
given MECP2 is involved and well-studied in these disorders.

In epilepsy, the presence of MECP2 SNPs in some patients is not surprising, considering the presence of epi-
lepsy in 75% of the cases of RTT, although the effect of MECP2 mutations in epilepsy are not well understood. 
The correlation between MECP2 mutations and epileptic phenotype in RTT has proved a challenge to describe, 
due to the complex nature and presentation of the disorder39.

The possible involvement of MeCP2 in ADHD has not been properly established, despite the known relation-
ship between ADHD and ASD (and by extension, MeCP2). However, the presence of MECP2 SNPs in ADHD 
patients, suggests the involvement of MeCP2 in the pathology. This hypothesis is confirmed by immunofluores-
cence studies where MECP2 expression is reduced in ADHD cerebral cortices40, and a more recent study looking 
at epigenetic biomarkers to predict ADHD diagnoses in children shows correlation between predictability and 
decreased MECP2 mRNA levels41.

Protein–protein interaction network analysis through cytoscape.  To identify protein–protein 
interactions and central proteins or nodes that are highly connected in each disorder, we use Cytoscape and the 
stringApp, and input the MeCP2-bound genes filtered with the Matrix-GC procedure (Table 1, Supplementary 
Table S5).

We generated control gene sets to identify the average degree of network connectivity depending on the 
number of genes, and we use this information to identify the Matrix-GC gene sets with a significant degree of 
connectivity (Supplementary Fig. S2, Tables S6). We show that AD, ADHD, MS, and SFARI datasets before and 
after applying Matrix-GC show statistically significant connected networks. From our protein–protein interac-
tion (PPI) network, we identify hub proteins from the Matrix-GC datasets with a significant connectivity. After 
Matrix-GC, ADHD hub proteins are associated with neurotransmission processes and different neurotransmit-
ter systems such as DRD1, DRD4, DRD5 dopamine receptors, and GRM5, GRIN2B glutamate receptors. MS-
designated hub proteins are involved in eliciting an inflammatory response such as TYK2, STAT3, CD40. Hub 
proteins in AD are generally associated with cell communication while in SFARI, the most connected proteins 
are involved in DNA processes, namely transcription. Notably, EP300 is a hub protein with the highest degree 
out of all disorders. EP300 is a histone acetylase regulated indirectly by MeCP2 likely via MEF2C42.

Overall, the results of the PPI analysis highlight proteins involved in inflammatory responses, transcription 
regulation and neurotransmission.

Enrichment analysis reveals unexpected MeCP2 influence in neuropsychiatric and neurologi-
cal disorders.  We then carry out GO and pathway enrichment analysis before and after the application of 
Matrix-GC, and in three of the selected datasets (ADHD, AD and ASD-SFARI), we find significant GO Biologi-
cal Process terms before and after the binding procedure. To control for false positives, we carried out permuta-
tion analysis with control datasets randomly selected from the genome and exome. SCZ GO terms are significant 
after Matrix-GC only while for epilepsy, MDD, MS, and PD-related genes there are significant terms prior to 
Matrix-GC only (Fig. 4, Supplementary Tables S7-S19). Over-representation analysis shows that terms related 
to neuronal growth, differentiation and nervous system development are significantly enriched in both ADHD 
and SCZ datasets. Additionally, ADHD-related genes show significant enrichment in behaviour and learning, 
cell–cell communication, and catecholamine neurotransmission and metabolism. AD-related genes detected by 
the Matrix-GC procedure show significantly enriched terms related to amyloid protein regulation, metabolism, 
protein filaments and endocytosis. The ASD-SFARI dataset has the highest number of enriched terms before and 
after the Matrix-GC procedure, and the most significant terms relate to nucleic acid processes. However, enrich-
ment and network analysis based on common variants does not identify terms or pathways in the ASD-GWAS 
gene-set. It is possible that MeCP2 plays a role in ASD by coordinating functional connectivity and controlling 
neurotransmitter balance and cell growth as seen in other neuropsychiatric disorders10.

For the analysis of pathways, we use Reactome (Fig. 5, Supplementary Tables S7-S19). Only MDD, ano-
rexia and epilepsy gene-sets display enriched pathways solely before our Matrix-GC procedure, while SCZ and 
ASD-GWAS gene-sets have no enriched pathways either before or after the Matrix-GC procedure. Conversely, 
PD pathways are significant after Matrix-GC only, and ASD-SFARI, AD, ADHD, ALS, BIP, HTT and MS have 
enriched pathways both before and after the procedure.

The most significantly enriched pathway across all investigated disorders is amine ligand-binding receptors 
in ADHD (adjusted p value = 8.12 × 10–8). Glutamate and CREB related pathways are also enriched in ADHD-
related genes, while the ASD-SFARI dataset has the highest number of overrepresented pathways associated with 
chromatin organisation, growth and neurotransmitter processes. AD and MS datasets are significantly enriched 
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for interleukin signalling pathways before and after Matrix-GC procedure. ALS-related genes are enriched for 
Toll-like receptor processes before and after Matrix-GC, while PD-related genes are significantly associated to 
NMDA-related pathways and BIP genes are enriched for neuronal development and functional pathways.

For Gene Ontology and pathway analysis, we use Monte Carlo permutation tests on randomly-generated 
control datasets to identify potential false positives. We report for both genome and exome datasets, that no 
pathways or terms are significant after 1000 trials, confirming our results.

Overall, we find the ADHD, AD and ASD-SFARI derived genes to be highly enriched for multiple GO terms 
and Reactome pathways, suggesting that several mechanisms controlled by MeCP2 are relevant in these disorders.

Functional validation of MeCP2 modulation of candidate genes.  To prove that the candidate genes 
identified through our procedure are indeed target of MeCP2, we evaluate their expression levels in a mouse 
mutant for Mecp2 (Mecp2tm1.1Bird data from Cerebellum and Blood (GSE129387), and in cells derived from a 
patient with RTT (GSE123753). The male mice of this strain are Mecp2 knockouts, hence the effects of MeCP2 
binding on the Matrix-GC genes can be more clearly evaluated. We reasoned that the expression of the genes 
directly affected by MeCP2 should be altered in the mutant mice compared to the matched control and we evalu-
ated the expression of the candidate genes in blood and brain. We considered the expression levels in mutant 
mice and matched controls, and in particular, we looked at the percentage of significant DEGs (p value ≤ 0.05). 
We considered all the Matrix-GC genes across the disorder datasets. Of the total 1018 genes bound by our pro-
cedure, 380 genes are from cerebellum, 446 genes are from blood and 301 from the cortex when cross-referenced 
with GTEx portal single-tissue eQTL data.

Table 1.   Top 30 hub proteins, ranked by node degree, from protein–protein interaction analysis. Degrees 
obtained from Cytoscape and stringApp plugin. The Hub proteins shown are from ADHD and Autism SFARI 
datasets. (Such datasets have a statistically significant network connectivity compared to controls.) A node is 
designated as hub if its degree is greater than one plus the average degree of the corresponding control group. 
The entire list of hub proteins is in the Supplementary Information Files.

Protein Degree Name Condition

EP300 45 Protein propionyltransferase p300 SFARI

CHD8 44 Chromodomain helicase DNA binding protein 8 SFARI

MECP2 31 Methyl CpG binding protein 2 SFARI

PTEN 30 Mutated in multiple advanced cancers 1 SFARI

KMT2C 28 Myeloid/lymphoid or mixed-lineage leukemia protein 3 SFARI

SIN3A 27 SIN3 transcription regulator family member A SFARI

KDM6A 26 Ubiquitously-transcribed X chromosome tetratricopeptide repeat protein SFARI

GRIN2B 26 Glutamate receptor, ionotropic, N-methyl D-aspartate 2B SFARI

UBE3A 23 Human papillomavirus E6-associated protein SFARI

SETD1B 23 Histone-lysine N-methyltransferase SETD1B SFARI

NF1 23 Neurofibromatosis-related protein NF-1 SFARI

SLC6A3 22 Solute carrier family 6 (neurotransmitter transporter), member 3 ADHD

YY1 22 Transcriptional repressor protein YY1 SFARI

SMARCA2 22 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 
2 SFARI

HDAC4 22 Histone deacetylase 4 SFARI

GRM5 21 Glutamate receptor, metabotropic 5 ADHD

KAT2B 21 Histone acetyltransferase KAT2B SFARI

DNMT3A 21 DNA (cytosine-5-)-methyltransferase 3 alpha SFARI

MTOR 20 FK506-binding protein 12-rapamycin complex-associated protein 1 SFARI

KMT2A 20 Myeloid/lymphoid or mixed-lineage leukemia protein 1 SFARI

FMR1 20 Fragile X mental retardation protein 1 SFARI

GRIN2B 19 Glutamate receptor, ionotropic, N-methyl D-aspartate 2B ADHD

SHANK2 19 SH3 and multiple ankyrin repeat domains protein 2 SFARI

CNTNAP2 19 Contactin associated protein-like 2 SFARI

ASH1L 19 Ash1 (absent, small, or homeotic)-like (Drosophila) SFARI

SYNGAP1 18 Ras/Rap GTPase-activating protein SynGAP SFARI

SMARCC2 18 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 
2 SFARI

PPP2CA 18 Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform SFARI

POGZ 18 Pogo transposable element with ZNF domain SFARI

PAX6 18 Aniridia type II protein; SFARI
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The percentage of significant genes expressed in the mouse brain and blood was 0.049% and 0.017% respec-
tively. Monte Carlo analysis did not show any significant results in the blood, but rather in the cerebellum 
(p value < 0.01) suggesting that the role of MeCP2 is more important in the brain than in the blood. For the 
validation in RTT iPSCs, we considered the study in a RTT patient with a mutation comparable to the one in 
the mouse and used a transcriptomic study in iPSCs cells from a patient with a deletion in exons 3 and 4 in the 
MECP2 gene37. The percentage of genes expressed with a p value ≤ 0.05 in neural progenitor cells and neurons 
was 14.69% and 13.54% respectively. The statistical analysis revealed significant results both in neural progenitor 
cells and in differentiated neurons (Fig. 6).

For each study we controlled for the specificity of our results using controls from corresponding tissues and 
species: using permutation analysis we generated 1000 random control datasets of the same size of the total 
candidate list, and we considered the distribution of the percentage of genes whose expression was significantly 
different between mutants and controls (p value ≤ 0.05). By looking at the distribution of the data in controls 
datasets, we confirmed that the expression change of our MeCP2-candidate target genes was in the 1% of the 
distribution, supporting the validity of our method to select genes directly modulated by MeCP2 (Fig. 6).

Discussion
Our work proposes that MeCP2 binds many genes associated with brain disorders and is involved in overlapping 
molecular mechanisms between conditions. These findings invite us to revisit the molecular aetiology of brain 
disorders and suggest that therapies that affect MeCP2 function may be effective not only for Rett Syndrome, 
but also for other pathologies.

MECP2 mutations have been associated to several pathologies, especially neuropsychiatric disorders, but 
to date there is no direct proof of MeCP2 modulation of genes associated to brain disorders. Our results sug-
gest that MeCP2 takes part in mechanisms associated with several brain disorders, not only through its action 
on synapses,43 but also by binding genes mediating other functions, including inflammation. The value of our 
Matrix-GC procedure for identifying MeCP2 target genes is reinforced by the functional validation in transcrip-
tomics studies in Mecp2 mutant mice and on iPSCs derived from a patient with RTT.

Among the disorders considered, we find that SNPs in MECP2 are present in SCZ, epilepsy, ASD-GWAS 
and ADHD, although the downstream enrichment analysis indicates that MeCP2 is also involved mechanisms 
in other disorders. Several correlations between MECP2 expression and brain disorder mechanisms have been 
reported in the literature. This can occur directly through MECP2 mutations44–46 or indirectly via MeCP2 regu-
lating BDNF2,3, and ncRNA action47–49.

Although the majority of results are associated to neuropsychiatric disorders, our enrichment analysis suggests 
an interaction between MeCP2 and neurological conditions such as Alzheimer disease, multiple sclerosis and 

Figure 4.   Gene Ontology enrichment analysis of neuropsychiatric and neurological disorders using GOrilla 
Enrichment. Bar plot of the 5 most significant results from Gene Ontology enrichment analysis of each 
neuropsychiatric and neurological datasets after the Matrix-GC. The following disorders are represented: 
attention deficit hyperactivity disorder (ADHD, Orange), schizophrenia (SCZ, Blue), Alzheimer’s disease (AD, 
Grey), Autism database (ASD-SFARI, Yellow). Full statistical results from GOrilla Enrichment can be found in 
the Supplementary Information files. Control permutation analysis was carried out on randomly generated and 
size-matched, from hg19 human reference genome and exome subset. 
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epilepsy. Our enrichment analysis suggests that such interaction is mediated by neuroinflammation. Inflamma-
tion is already implicated in AD and its progression50 and is also critical in MS pathology. Similar to MS, RTT 
displays features that are hallmarks of autoimmune disorders suggesting potential common therapeutics51–53. 
We observe an effect of MeCP2 on immune-related genes, and in particular to S100A9, a gene already identified 
in transcriptomic studies on blood and brain of Mecp2-null mice29. The levels of S100A8 and S100A9 proteins 
are related to inflammation, and are elevated in MS and AD.

Overall our analysis proposes three main mechanisms mediated by MeCP2 in different disorders: neuronal 
transmission, immune-related pathways and processes for growth and development.

The Reactome and GO outputs include dopaminergic and glutamatergic related terms and pathways in 
ADHD, SFARI, and PD gene-sets, and this result is reinforced by hub proteins in the PPI network analysis 
related to DA and glutamate receptors in ADHD and SFARI. Dopaminergic dysregulation in RTT patients has 
been observed through reductions in DA or its metabolite, homovanillic acid54,55. This dysregulation leads to 
dyskinesia, hand stereotypies and rigidity: symptoms found also in RTT. Alteration in dopamine transmission 
is a feature of several neurological disorders, notably PD, but also in AD, ADHD, SCZ, MS and HTT56–59.

Increased levels of glutamate60 are observed in patients with RTT and animal models60,61 and, glutamatergic 
synapses are regulated by MeCP262. NMDA receptor-related Reactome pathways are enriched in ADHD and PD 

Figure 5.   Pathway enrichment analysis of neuropsychiatric and neurological disorders using ReactomePA. 
Bar plot of the 5 most significant results from pathway enrichment analysis of each neuropsychiatric and 
neurological datasets after Matrix-GC. The following disorders are represented: attention deficit hyperactivity 
disorder (ADHD, Orange), bipolar disorder (BIP, Brown), Alzheimer’s disease (AD, Grey), multiple sclerosis 
(MS, Dark Blue), Parkinson’s disease (PD, Light Blue) Huntington’s disease (HD, Green) and amyotrophic lateral 
sclerosis (ALS, Purple), autism database (ASD-SFARI, Yellow). Full statistical results from ReactomePA can 
be found in the Supplementary Information files. Control permutation analysis was carried out on randomly 
generated and size-matched, from hg19 human reference genome and exome subset.
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gene-sets. Additionally, several MeCP2-target hub proteins in PPI analysis are present in SCZ-associated dataset, 
and relate to DA and glutamate receptors63. These results suggest that MeCP2′s influence in dopaminergic and 
glutamatergic systems has functional and behavioural consequences in several brain disorders.

MeCP2 action on several systems is suggested by our tissue expression analysis, which reports that genes 
modulated by MeCP2 are expressed not only in the nervous system, but in other systems such as the immune 
system, and AD, ALS and MS gene-sets are enriched for interleukin and Toll-like receptor signalling pathways. 
Tissue gene expression analysis of AD genes show an increase in immune tissues after Matrix-GC, confirming 
pathway enrichment results, and MeCP2 is reported to alter T-lymphocyte gene expression profile64. Altered 
immunity has also been reported in neuropsychiatric disorders such as SCZ, depression and ASD65,66. Interest-
ingly, we observe one immune GO term (GO:0,002,292, T-cell differentiation involved in immune response) in 
the ASD-SFARI dataset.

Growth and developmental processes appear across different datasets in enrichment analysis with terms 
and pathways related to cell cycle and proliferation. This association is not surprising, given that MeCP2 is an 
epigenetic modifier in cancer67. In our analysis, two antisense RNAs EP300-AS1 and MEF2C-AS1 in SCZ are 
correlated to MeCP2, and MEF2C-AS1 has the highest expression in the cerebellum. EP300 is also a hub pro-
tein detected in our PPI network analysis: a histone acetylase regulated indirectly by MeCP2 likely via MEF2C, 
which is a transcription factor that binds to the MeCP2 promoter and controls MeCP2 expression42. MEF2C 
mutations affect MeCP2 function and this has been observed in epilepsy and ADHD’s studies68. Taken together, 
these results suggest that MeCP2 exerts influence in early development in SCZ and ASD. Similarly, the ADHD 
dataset is enriched for pathways related to neurotrophic factor signalling which mediates neuronal proliferation 
and maturation69.

Overall, our results propose a direct and indirect contribution of MeCP2 to mechanisms linked to several 
brain disorders. Additional experimental evidence would reinforce this hypothesis and may suggest common 
therapeutic targets across different conditions.

Data availability
All the data supporting the results of this study are available within this article and in the Supplementary Infor-
mation files. The detailed procedure and R scripts used in the analysis supporting the findings of this study are 
available from the corresponding author upon reasonable request.
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Figure 6.   Validation of Matrix-GC selected genes in transcriptomic studies in Mecp2-null mice and RTT 
iPSCs. Distribution of significant genes (vertical axis, in percent) against experimental groups (horizontal): 
blood in Mecp2tm1.1Bird mice (Red), cerebellum in Mecp2tm1.1Bird mice (Yellow), iPSCs-derived neurons from 
RTT patient (Blue, MECP2 Del ex 3–4 mutation), iPSCs-derived Neural Progenitor Cells from RTT patient 
(Green, MECP2 Del ex 3–4 mutation). Monte Carlo permutation analysis yields the percentage of significant 
genes (p value ≤ 0.5) on 1000 randomly generated and sized-matched control gene-sets. The line within the box 
represents the median of the distribution. The top and bottom edges of the box represent the 3rd quartile (Q3) 
and 1st quartile (Q1) respectively. The upper and bottom whiskers represent Q3 + 1.5 times interquartile range, 
and Q1 – 1.5 times the interquartile range. Empty circles represent the outlier observations in each group, solid 
circles the percentage of Matrix-GC filtered genes in each group. p values are reported above groups where 
Matrix-GC filtered genes are significant among controls.
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