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Abstract—The π-calculus is used as a model for programming
languages. Its contexts exhibit arbitrary concurrency, making
them very discriminating. This may prevent validating desirable
behavioural equivalences in cases when more disciplined contexts
are expected.

In this paper we focus on two such common disciplines:
sequentiality, meaning that at any time there is a single thread of
computation, and well-bracketing, meaning that calls to external
services obey a stack-like discipline. We formalise the disciplines
by means of type systems. The main focus of the paper is
on studying the consequence of the disciplines on behavioural
equivalence. We define and study labelled bisimilarities for
sequentiality and well-bracketing. These relations are coarser
than ordinary bisimilarity. We prove that they are sound for
the respective (contextual) barbed equivalence, and also complete
under a certain technical condition.

We show the usefulness of our techniques on a number of
examples, that have mainly to do with the representation of
functions and store.

I. INTRODUCTION

The π-calculus has been advocated as a model to give
semantics to, and reason about, various forms of program-
ming languages, including those with higher-order features.
Strengths of the π-calculus are its rich algebraic theory and
its wide spectrum of proof techniques. Concurrency is at the
heart of the π-calculus: computation is interaction between
concurrent processes. The operators of the calculus are simple
(parallelism, input, output, restriction being the main ones) and
unconstrained. This yields an amazing expressive power —
the calculus can model a variety of programming idioms [1].
However, this also makes the contexts of the calculus very
discriminating; as a consequence, behavioural equivalences,
which are supposed to be preserved by all the contexts of the
calculus, are rather demanding relations.

Higher-level languages may be syntactically quite different
from a language for pure concurrency such as the π-calculus.
For instance, the paradigmatic higher-order programming lan-
guage, the λ-calculus, is a pure calculus of functions and, in
both its call-by-name and call-by-value variants, is sequen-
tial — it is even deterministic. A variety of extensions of
it have been considered; examples of additional features are
references, control operators, non-determinism, (constrained)
forms of concurrency. The specific set of syntactic features
chosen for the language determines the ways in which the con-
texts of the language may interact with the terms. In any case,
the patterns of interaction are usually more disciplined than

those that arise in π-calculus representations of those terms.
Thus there are λ-terms that are indistinguishable within the
(pure) λ-calculus whose π-calculus images can be separated
by appropriate π-contexts.

A well-known way of imposing a discipline to the π-
calculus is to equip it with a type system. Such systems
are intended to capture communication patterns that occur
frequently when programming in the π-calculus. A number
of type systems have been considered: e.g., capability types
(formalising the intended I/O usage of names that are ex-
changed among processes), linearity (formalising the property
that certain names may be used at most once), session types
(formalising the communication protocols in the dialogues be-
tween two or more processes), and so on [2], [3], [4], [5]. Type
systems have also been designed to capture specific properties
of processes, such as termination, deadlock-freedom, lock-
freedom [6], [7], [8], [9], [10]. Types impose constraints on the
set of legal contexts in which well-typed terms are supposed
to be used; this can make behavioural equivalences usefully
coarser.

A further step is then to tune the proof techniques of the
π-calculus to such type systems, so to be able to actually
prove the behavioural equalities that only hold in presence of
types. Typically this is investigated in the coinductive setting
of bisimilarity, and achieved by refining and/or modifying the
standard bisimilarity clauses so to take the usage of types
into account. The resulting bisimilarity should be sound with
respect to contextually-defined forms of bisimilarity such as
barbed equivalence (or congruence); ideally, it should also be
complete.

In barbed equivalence, the bisimulation game is played only
on internal actions, and certain success signals, the barbs,
are used to monitor the computation. In the standard barbed
equivalence, an arbitrary context may be added, once (at the
beginning), on top of the tested processes. In reduction-closed
barbed equivalence [11], [1], the context may be dynamically
updated, by adding further components during the compu-
tation. Reduction-closed barbed equivalence usually allows
simpler proofs of completeness, and does not require any
hypothesis of image-finiteness on the state space of the tested
processes. In contrast, standard barbed equivalence is more
robust — reduction-closed barbed equivalence may sometimes
be over-discriminating [12].

In this paper we focus on the π-calculus representation of
sequentiality and well-bracketing. ‘Sequentiality’ intuitively978-1-6654-4895-6/21/$31.00 ©2021 IEEE



indicates the existence of a single thread of computation.
’Well-bracketing’ is a terminology borrowed from game se-
mantics, and used to refer to a language without control
operators, in which the call-return interaction behaviour be-
tween a term and its context follows a stack discipline.
Our main objectives are to define bisimilarity-based proof
techniques for type systems in the π-calculus that formalise the
sequentiality and well-bracketing notions. We actually work
with the asynchronous π-calculus, Aπ, as this is the calculus
that is usually adopted in the literature for modelling higher-
order languages.

In Aπ, sequentiality is the property that, at any time, at
most one process is active, or carries the thread; that is, the
process has the control on the computation and decides what
the next computation step can be. In other words, we never
find two sub-components of a system both of which contain an
interaction redex (a pair of an input and an output processes
at the same name).

In the (standard) encodings of the λ-calculus [13], [14], a
process is active, i.e., it carries the thread, when it contains
an unguarded output particle. Indeed, the π-calculus terms
obtained from the encodings give rise to computations in
which, syntactically, at any time there is at most one unguarded
output particle. An input process that consumes that output
will in turn become active.

Our type system is more general, in that we allow also
input processes to carry the thread. The type system specifies
whether a name may carry the thread in output or in input;
we call these names output-controlled and input-controlled.
While the output-controlled are the most important ones (for
instance, they play a central role in the modelling of functions),
input-controlled names may be useful too, for instance, in
the representation of references or locks. A reference ` that
contains the value n is represented in Aπ by an output
particle `〈n〉; and a process accessing the reference will do
so by performing an input at `. Thus an input at ` indicates
ownership of the current computation thread.

As remarked above, sequentiality implies absence of parallel
computation threads. Sequentiality however does not exclude
non-determinism. An output particle a〈b〉 that owns the thread
may have the possibility of interacting with different input
processes at a (and symmetrically for input processes owning
the thread). Indeed we also admit internal non-determinism
(i.e, processes such as τ .P + τ .Q that may chose to reduce
either to P or to Q without interactions with the environment),
both in active and in inactive processes.

The type system for well-bracketing is a refinement of that
for sequentiality, in which a stack of continuation names keeps
track of the structure of calls and returns among the processes.
These stacks are similar to those used in the implementation of
compilers for languages (or fragments of languages) adopting
well-bracketing, or used in well-bracketed forms of game
semantics.

Finding proof techniques to reason about sequentiality and
well-bracketing presents a number of caveats, that have mainly
to do with the soundness and completeness of the resulting

bisimilarity with respect to barbed equivalence. We briefly
discuss below a couple of issues concerning completeness.

In the proof of completeness one has to show that the
contexts of the language are at least as discriminating as the
labelled bisimilarity. In standard proofs, one defines special
contexts that interact with the tested processes and, at the
same time, emit certain signals to the outside so to provide
information on the kind of interactions that have occurred
with the processes. Such behaviour of the testing contexts is
however inherently concurrent — the context has to interact
with the tested processes and, at the same time, emit signals
to the outside — and is therefore liable to break the typing
discipline for sequentiality (and hence also well-bracketing).

Further problems arise in proofs about reduction-closed
barbed equivalence. The reason why completeness proofs for
reduction-closed barbed equivalence may be simpler than with
standard barbed equivalence is that the testing context may
be incrementally adjusted, after every interaction step with
the tested processes. This however requires the existence of
special components in the contexts to handle the fresh names
generated by the tested processes. Specifically, the task of
these components is to ensure that new pieces of contexts,
added later, will be able to access such fresh names. Again,
these components represent parallel threads, and break the
sequentiality and well-bracketing disciplines. For this reason
in the paper we cannot appeal to reduction-closed forms of
barbed equivalence, remaining within the standard notions and
therefore requiring an image-finiteness condition.

In the case of well-bracketing the problems above are
enhanced by the presence of continuation names. These names
are linear [3] (they may only be used once), input receptive
[15] (the input-end of the name should always be available),
and output-controlled. This places further constraints on the
use of such names within contexts that test the processes.

For the above reasons, the completeness proofs for se-
quentiality and well-bracketing present significant technical
differences, both between them and from completeness proofs
in the literature.

In the paper we propose labelled bisimilarities that allow
us to reason about processes following the sequentiality or
well-bracketing disciplines. We prove that the bisimilarities are
sound with respect to barbed equivalence. We also establish
completeness, on processes with only output-controlled names.
We do not know whether completeness holds in the general
case, with also input-controlled names. We also study some
refinements of the bisimilarities: one is obtained by injecting
ideas from bisimilarities for calculi with references [16]; other
refinements are forms of ‘up-to techniques’. We illustrate
applications of our techniques on a number of examples, most
of which have to do with the representation of functions and
references. Usually the examples are about equalities that only
hold under the sequentiality or well-bracketing disciplines;
other examples show that sequentiality and well-bracketing
may make equalities simpler to prove because there are fewer
observables to take into account.

Paper outline. We introduce some background in Section II.



We study sequentiality in Section III, and well-bracketing in
Section IV: in each case, we present our type system, define
an appropriate notion of bisimilarity, and show some examples
or laws that we can derive. Related and future works are
discussed in Section V. For lack of space, some technical
definitions and proofs are given in [17].

II. BACKGROUND: THE (ASYNCHRONOUS) π-CALCULUS

We recall here the standard syntax of the asynchronous π-
calculus, Aπ, from [18]:

P,Q ::= a〈̃b〉
∣∣ !a(̃b).P

∣∣ P | Q ∣∣ (νa)P
∣∣ G

G,G′ ::= 0
∣∣ a(̃b).P

∣∣ τ .P
∣∣ [a = b]G

∣∣ G+G′

Names are ranged over by a, b, . . .. In prefixes a〈̃b〉 and
a(̃b).P , name a is the subject and b̃ are the objects. We use a
tilde, like in b̃, for (possibly empty) tuples of names; similarly
(νã)P stands for a sequence of restrictions. As usual, we write
a.P and a when the object of a prefix is the empty tuple.
We use

∑
i∈I Gi (resp.

∏
i∈I Pi) for Gi1 + · · · + Gin (resp.

Pi1 | . . . | Pin ) where I = {i1, . . . , in}. We write P{a/b} for
the result of replacing name b with a in P in a capture-avoiding
way. Contexts, C, are processes containing a single occurrence
of a special constant, the hole (written [·]). The static contexts,
ranged over by E, have the form νã(P | [·]). In examples, for
readability we sometimes use basic data values such as integers
and booleans. The definition of structural congruence, written
≡, and of the strong and weak labelled transitions, written
µ−→, =⇒, and

µ̂
=⇒, are standard and are given in [17]. We note

fn(P ) (resp. fn(µ)) the set of free names of P (resp. µ). We
sometimes abbreviate reductions P τ−→ P ′ as P −→ P ′.

The calculi in the paper will be typed. For simplicity we
define our type systems as refinements of the most basic type
system for π-calculus, namely Milner’s sorting [19], in which
names are partitioned into a collection of types (or sorts), and
a sorting function maps types onto types. If a name type S is
mapped onto a type T , this means that names in S may only
carry names in T . We assume that there is a sorting system
under which all processes we manipulate are well-typed. We
write ∆ ` P when process P is well-typed under ∆, and
similarly for other objects, such as contexts.

The reference behavioural equivalence for us will be the
context-closure of barbed bisimulation. We focus on barbed
equivalence (as opposed to barbed congruence) because it is
simpler (notably, we do not need to consider issues of closure
of the labelled bisimulations under name substitutions). The
definition of barbed bisimulation uses the reduction relation
=⇒ along with an observation predicate ⇓a for each name a,
which detects the possibility of performing an output to the
external environment along a. Moreover, since we work in a
typed setting, such an output should be allowed by the typing
of the tested processes. Thus, we write ∆ � P ⇓a if ∆ is a
typing for P (i.e., ∆ ` P holds), there is an output µ with
subject a s.t. P

µ
=⇒ P ′, and such a transition is observable

under the typing ∆. The meaning of ’observable under a
typing’ will depend on the specific type system adopted; in
the case of the plain sorting, all transitions are observable.

Having typed processes, in the definition of barbed equiv-
alence we may only test processes with contexts that respect
the typing of the processes.

Definition 1. C is a Γ/∆ context if Γ ` C holds, using the
typing for the processes plus the rule

∆ ` [·]
for the hole.

Similarly, P is a ∆-process if ∆ ` P . We assume (as
in usual Subject-Reduction properties for type systems) that
typing is invariant under reduction.

Definition 2 (Barbed bisimulation, equivalence, and congru-
ence). Barbed ∆-bisimulation is the largest symmetric relation.
≈∆

on ∆-processes s.t. P
.
≈∆

Q implies:
1) whenever P −→ P ′ then there exists Q′ such that Q =⇒

Q′ and P ′
.
≈∆

Q′;
2) for each name a, ∆ � P ⇓a iff ∆ � Q ⇓a.

Two ∆-processes P and Q are barbed equivalent at ∆, written
P '∆ Q, if for each Γ/∆ static context E it holds that
E[P ]

.
≈Γ

E[Q]. Barbed congruence at ∆, ∼=∆, is defined
in the same way but employing all Γ/∆ contexts (rather than
only the static ones).

Barbed equivalence in the plain (untyped) Aπ, ', can be
proved to coincide with the ordinary labelled early asyn-
chronous bisimilarity, on image-finite processes, exploiting the
n-approximants of the labelled equivalences. We recall that
the class of image-finite processes is the largest subset I of
processes that is derivation closed and s.t. P ∈ I implies that,
for all µ, the set {P ′ | P

µ
=⇒ P ′}, quotiented by alpha

conversion, is finite. In the remainder of the paper, we omit
the adjectives ‘early’ and ‘asynchronous’ in all bisimilarities.

Definition 3 (Bisimulation). A relation R on processes is a
bisimulation if whenever P R Q and P

µ−→ P ′, then one of
these two clauses holds:

1) there is Q′ such that Q
µ̂
=⇒ Q′ and P ′ R Q′;

2) µ = a〈̃b〉 and there is Q′ such that Q | a〈̃b〉 =⇒ Q′ and
P ′ R Q′.

Moreover the converse holds too, on the transitions from Q.
Bisimilarity, ≈, is the largest bisimulation.

Theorem 4 ([18]). On image-finite processes, relations ' and
≈ coincide.

III. SEQUENTIALITY

In this section we study sequentiality. We first formalise it
by means of a type system, and then we examine its impact
on behavioural equivalence.

A. Type system

As mentioned in Section I, intuitively, sequentiality ensures
us that at any time at most one interaction can occur in a
system; i.e., there is a single computation thread. A process
that holds the thread decides what the next interaction can be.
It does so by offering a single particle (input or output) that
controls the thread. The process may offer multiple particles,
but only one of them may control the thread. The control on



the thread attached to a particle is determined by the subject
name of that particle. A given name may exercise the control
on the thread either in output or in input; in the former case
we say that the name is output-controlled, in the latter case
the name is input-controlled. For instance, suppose that x, y, z
are output-controlled and u, v are input-controlled. Then the
following process correctly manages the thread and will indeed
be typable in our type system:

P
def
= u. (x | y.x) | z. y | v

The initial particles in P are u, z, v; however only u controls
the thread, as z is output-controlled and v is input-controlled.
When the input at u is consumed, the new particles x, y are
available, where x now controls the thread, as both names
x, y are output-controlled. An external process that consumes
the particle x will acquire the control over the thread. For
instance, a process such as Q def

= u | x.Q′ initially does not
hold the thread; in the parallel composition P | Q, after the
two interactions at u and x, the control on the thread will be
acquired by Q′:

P | Q −→−→ (y.x | z. y | v) | Q′

Now Q′ will decide on the next interaction; for instance, it
may offer an output at y or z, or an input at v. It may only
offer one of these, though it may offer other particles that do
not control the thread.
Notation. In the remainder, x, y, z range over output-
controlled names, u, v, w over input-controlled names; we
recall that a, b, c range over the set of all names.

The name used is therefore an indication of its type. For
instance, in (νx)P , x is output-controlled, and can be only
alpha-converted using another output-controlled name.

The type system for sequentiality is presented in Figure 1.
Judgements are of the form η `s P , for η ∈ {0, 1}. A
judgement 1 `s P indicates that P owns the thread, i.e., P is
active, and 0 `s P otherwise, i.e., P is inactive.

We recall that we only present the additional typing con-
straints given by sequentiality, assuming the existence of a
sorting under which all processes are well-typed (thus the
fully-fledged typing judgements would be the form ∆; η `s P ,
rather than η `s P ).

Some remarks on the rules in Figure 1: a rule with a double
conclusion is an abbreviation for more rules with the same
premises but separate conclusions. The continuation of an
input always owns control on the thread; the input itself may
or may not have the control (rules I-ACT and I-INA). A τ -prefix
is neutral w.r.t. the thread. The rule for parallel composition
makes sure that the control on the thread is granted to only
one of the components; in contrast, in the rule for sum, the
control is maintained for both summands. Operators 0 and
match cannot own the thread; this makes sure that the thread
control is always exercised.

We present some behavioural properties that highlight the
meaning of sequentiality. A reduction P

τ−→ P ′ is an
interaction if it has been obtained from a communication

between an input and an output (formally, its derivation in
the LTS of [17] uses rule ACOMM). In a sequential system, one
may not find two disjoint interactions.

Proposition 5. Whenever η `s P , there exists no P1, P2, ã
such that P ≡ (νã)(P1 | P2) with P1

τ−→ P ′1 and P2
τ−→ P ′2,

and both these transitions are interactions.

An inactive process may not perform interactions.

Proposition 6. If 0 `s P , then there is no P ′ with P τ−→ P ′

and this transition is an interaction.

An inactive process may however perform τ -reductions, no-
tably to resolve internal choices. In other words such internal
choices represent internal matters for a process, orthogonal
with respect to the overall interaction thread. The possibility
for inactive processes to accommodate internal choices will
be important in our completeness proof. However, an inactive
process may only perform a finite number of τ -reductions. A
process P is divergent if it can perform an infinite sequence
of reductions, i.e., there are P1, P2, . . . , with P −→ P1 −→
P2 . . . Pn −→ . . ..

Proposition 7. If 0 `s P then P is not divergent.

In contrast, an active process may be divergent, through se-
quences of reductions containing infinitely many interactions.

Sequentiality imposes constraints on the interactions that a
‘legal’ (i.e., well-typed) context may undertake with a process.
For the definition of barbed bisimulation and equivalence
we must therefore define the meaning of observability. The
following definition of type-allowed transitions shows what
such ‘legal’ interactions can be.

Definition 8 (Type-allowed transitions). We write η �s P
µ−→

P ′ if η `s P , and P
µ−→ P ′, and one of the following clauses

holds:
1) η = 0
2) µ = τ
3) η = 1 and µ = u〈ã〉 for some u, ã or µ = (νã)x〈̃b〉 for

some ã, x, b̃.

Clause (1) says that all interactions between an inactive
process and the context are possible; this holds because
the context is active and may therefore decide on the next
interaction with the process. Clause (2) says that internal
reductions may always be performed. Clause (3) says that the
only visible actions observable in active processes are those
carrying the thread; this holds because the observer is inactive,
and it is therefore up to the process to decide on the next
interaction.

We now examine how typing evolves under legal actions.
We recall that x stands for an output-controlled name.

Definition 9. We write [η;P ]
µ−→ [η′;P ′] when η �s P

µ−→ P ′

and:
1) if µ = x〈ã〉, then η′ = 1.
2) if µ = (νã)x〈̃b〉, then η′ = 0.
3) otherwise η′ = η.



I-ACT
1 `s P

1 `s u(ã).P
I-INA

1 `s P

0 `s x(ã).P, !x(ã).P
O-ACT

1 `s x〈ã〉
O-INA

0 `s u〈ã〉
RES

η `s P

η `s (νa)P

NIL
0 `s 0

PAR
η1 `s P η2 `s Q

η1 + η2 `s P | Q
η1 + η2 ≤ 1 SUM

η `s G1 η `s G2

η `s G1 +G2

TAU
η `s P

η `s τ .P
MAT

0 `s G

0 `s [a = b]G

Fig. 1. The typing rules for sequentiality

Theorem 10 (Subject Reduction). If η `s P and [η;P ]
µ−→

[η′;P ′] then η′ `s P
′.

Weak type-allowed transition are defined as expected, ex-
ploiting the invariance of typing under reductions: η �s P

µ
=⇒

P ′ holds if there are P0, P1 with P =⇒ P0, η �s P0
µ−→ P1

and P1 =⇒ P ′.

B. Behavioural equivalence

To tune Definition 2 of barbed bisimulation and equivalence
to the setting of sequentiality, we have to specify the meaning
of observables. An observable η �s P ⇓a holds if there are P ′

and an output action µ such that η �s P
µ
=⇒ P ′ and the subject

of µ is a. Following Definition 1, in barbed equivalence, the
legal contexts are the η/η′ static contexts. We write barbed
equivalence at η as 'η . Thus P 'η Q holds if η `s P,Q and
E[P ]

.
≈η

′

E[Q], for any η′ and any η′/η static context E.
We are now ready to define the labelled bisimilarity to

be used on sequential processes, which is our main proof
technique for barbed equivalence. A typed process relation
is a set of triplets (η, P,Q) with η `s P,Q.

Definition 11 (Sequential Bisimulation). A typed process rela-
tion R is a sequential bisimulation if whenever (η, P,Q) ∈ R
and [η;P ]

µ−→ [η′;P ′], then one of the two following clauses
holds:

1) there is Q′ such that Q
µ̂
=⇒ Q′ and (η′, P ′, Q′) ∈ R;

2) µ = a〈̃b〉 and there is Q′ such that Q | a〈̃b〉 =⇒ Q′ with
(η′, P ′, Q′) ∈ R.

Moreover, the converse of (1) and (2) holds on the transitions
from Q. Processes P and Q are sequentially bisimilar at
η, written P ≈ηs Q, if (η, P,Q) ∈ R for some sequential
bisimulation R.

In clause (2), Q | a〈b〉 is well-typed, be a an input- or
output-controlled name. Clauses (1) and (2) are the same as for
ordinary bisimilarity ≈ (Definition 3); typing however prevents
certain transitions to be considered as challenge transitions in
the bisimulation game. Thus the resulting bisimilarity becomes
coarser.

Ordinary bisimilarity is included in the sequential one (the
inclusion is strict, see Section III-C).

Proposition 12. For η `s P,Q, if P ≈ Q then also P ≈ηs Q.

Theorem 13 (Soundness). If P ≈ηs Q, then P 'η Q.

As usual, the proof of Theorem 13 relies on the preservation
of ≈ηs under parallel composition, which requires some care

in order to enforce sequentiality. This is ensured by typability.
Theorem 13 allows us to use the labelled bisimilarity ≈ηs as
a proof technique for typed barbed equivalence.

This proof technique is also complete, assuming only
output-controlled names (i.e., the thread may only be exercised
by output particles, not by the input ones).

Theorem 14 (Completeness on output-controlled names). For
all image-finite processes P,Q that only use output-controlled
names, and for all η, if P 'η Q then P ≈ηs Q.

The completeness proof can be found in [17]. While the
overall structure of the proof is standard, the technical details
are specific to sequentiality. As usual, we rely on a stratifi-
cation of bisimilarity and approximants ≈η,ns , and reason by
contradiction to show that if η `s P,Q and P 6≈η,ns Q, then
there is a η′/η static context E such that E[P ] 6

.
≈η

′

E[Q]. The
case η = 0 (tested processes are inactive) is rather standard:
the context E is of the form (νx̃)([·] | z | z.R), for some
fresh z, and some “tester process” R. The barb at z allows us
to detect when the tested process interacts with R.

The delicate case is when η = 1 (tested processes are
active): the context must be inactive and hence cannot have
an unguarded output at z. We use in this case a context of
the form E

def
= (νx̃)([·] | GR + G). Process GR is the tester

process, and G is
∑
y∈S y(ỹ′). z, defined for some fresh z

and some set S containing fn(P ) ∪ fn(Q). G satisfies the
following property: for any P0 and for any x, if 1 �s P0 ⇓x
then 1 �s P0 | G ⇓z . Thus, as soon as P0 exhibits some barb,
we have 1 �s E[P0] ⇓z , and P0 cannot interact with R without
removing the barb at z, which allows us to reason as in the
case η = 0.

The proof schema above does not apply if input-controlled
names are allowed, intuitively because in this case the pro-
cesses being tested may be active and perform an input (at
an input-controlled name), thus maintaining the thread; both
before and after the transition the testing context is passive
and hence unable to signal, with appropriate barbs, which
interaction occurred.

C. Examples

With respect to ordinary bisimilarity, in sequential bisim-
ilarity (≈ηs ) fewer challenges are allowed. This may both
mean that certain processes, otherwise distinguishable, become
equal, and that certain equalities are simpler to prove because
the state space of the processes to be examined is reduced. We
present some equalities of the first kind (valid for ≈ηs only).



In Section III-C2, we also show a refinement of ≈ηs useful for
reasoning about references.

1) Basic examples: In the type system, 0 is inactive —-
without the thread. We write 01 to abbreviate (νx)(x) (an
active process without transitions).

Example 15. While a component of a system is active,
other components cannot be observed. Thus, if the active
component keeps the thread, the existence of other components
is irrelevant. Indeed we have, for any R,Q inactive:

R | 01 ≈1
s R | (νx)(x | !x.x) ≈1

s Q | (νx)(x | !x.x) ≈1
s 01

Example 16. An unguarded occurrence of an input at an
input-controlled name becomes the only observation that can
be made in a process. This yields the following equalities

u.P | x.Q ≈1
s u. (P | x.Q)

u.P | v ≈1
s u. (P | v) for u 6= v

Example 17. Consider the process

P
def
= (νy′, z′)(!x. (z′. z | y′) | !y. z′).

The output at z becomes observable if both an input at x and
an input at y are consumed, so that the internal reduction at
z′ can take place. However the input at x acquires the thread,
preventing a further immediate input at y; similarly for the
input at y. Indeed we have P ≈0

s x.01 + y.01.

2) Examples with references: We now consider a few
examples involving references. For this, we use the standard
encoding of references into Aπ, and we enhance the bisimi-
larity for sequentiality so to take references into account.

We use n,m, . . . to range over the entities stored in ref-
erences (which can be names or values belonging to a first-
order data type like booleans and integers) and placeholders
for them. Name ` is used to represent a reference.

In Aπ, a reference ` holding a value n is represented as
an output particle `〈n〉. A process that contains a reference
` should have, at any time, exactly one unguarded output at
`, meaning that at any time the reference has a unique value.
We say that in this case ` is accessible. The read and write
operations on ` are written as follows:

re`(m).R
def
= `(m). (`〈m〉 | R)

wr`〈n〉.R
def
= `(m′). (`〈n〉 | R) for m′ /∈ fn(R)

Thus a name ` used to encode a reference is input-controlled,
as an action on a reference is represented by an input at `
— we use ` rather than u, v, . . . to stress the fact that names
used to represent references obey constraints that go beyond
input-control.

Proof techniques for the representation of references in Aπ
have been studied in [16]. Adopting them requires enhancing
our type system with information about references, which
simply consists in declaring which names represent references.
In the definition of barbed equivalence, the main constraint
is that the tested context should make sure that all existing
reference names are accessible. To reason about references,

several definitions of labelled bisimilarity are presented in
[16], varying on the forms of constraints imposed on tran-
sitions. Here we only import the simplest such constraint:
it forbids observations of input transitions P

`〈n〉−→ P ′ at a
reference name ` when ` is accessible in P (i.e., an unguarded
output at ` occurs in P ). Such a constraint represents the fact
that an observer may not pretend to own a reference when the
reference is accessible in the process.

Formally, with the addition of references, judgements in the
type system become of the form S; η `s P , where S is a finite
set of reference names, meaning that η `s P holds and that S
is the set of accessible reference names in P . The definition
of type-allowed transitions, S; η �s P

µ−→ P ′, is the same as
before (Definition 8) with the addition, in clause (3), of the
constraint

if µ is an input `〈n〉 at a reference name ` then ` 6∈ S. (∗)

Finally the definition of sequential bisimilarity with references
at (S, η), written ≈S;η

s is the same as that of sequential
bisimilarity (Definition 11), just using S; η `s P,Q and
S; η �s P

µ−→ P ′ in place of η `s P,Q and η �s P
µ−→ P ′.

It is straightforward to extend the soundness proof for
sequential bisimilarity w.r.t. barbed equivalence (Theorem 13)
to the case of sequential bisimilarity with references.

Example 18. This example shows that reading or writing on
a global reference is not subject to interferences from the
outside, as these operations require the thread:

`〈n〉 | re`(m).R ≈`;1s `〈n〉 | R{n/m}
`〈n〉 | wr`〈m〉.R ≈`;1s `〈m〉 | R

Indeed, in each law, if P (resp. Q) is the process on the left-
hand (resp. right-hand) side, then the relation {((`; 1), P,Q)}∪
I is a sequential bisimulation, when taking the constraint (∗)
for references into account.

Example 19 (Fetch-and-add, swap). We consider fetch-and-
add and swap operations, often found in operating systems.
The first, written faa`〈n〉(m) atomically increments by n the
content of the reference `, and returns the original value as m;
the second, written sw`〈n〉(m), atomically sets the content of
` to n and returns the original value as m:

faa`〈n〉(m).R
def
= `(m). (`〈m+ n〉 | R)

sw`〈n〉(m).R
def
= `(m). (`〈n〉 | R)

These operations may be mimicked by a combination of read
and write operations (we take m′ /∈ fn(R)):

faa2`〈n〉(m).R
def
= re`(m). wr`〈m+ n〉.R
= `(m). (`〈m〉 | `(m′). (`〈m+ n〉 | R))

sw2`〈n〉(m).R
def
= re`(m). wr`〈n〉.R
= `(m). (`〈m〉 | `(m′). (`〈n〉 | R))

For this mimicking to be correct, sequentiality is necessary.
To see this, consider the simple case when R

def
= c〈m〉. In

the ordinary Aπ, processes sw`〈n〉(m).R and sw2`〈n〉(m).R
are distinguished, intuitively because the observer is capable



of counting the two inputs and the two outputs at ` in
sw2`〈n〉(m).R (against only one in sw`〈n〉(m).R) and/or is
capable of detecting the output `〈m〉 in sw2`〈n〉(m).R.

The processes are also distinguished with the proof tech-
niques for references in [16], intuitively because, after the
initial input `(m) (whereby the processes read the content of
the reference), an observer may interact with the derivative of
sw2`〈n〉(m).R and use its output `〈m〉 so to know the value
that had been read. Such an observation is not possible with
sw`〈n〉(m).R.

In contrast, the two processes are equal if we take sequen-
tiality into account. That is, we have:

sw`〈n〉(m).R ≈∅;1s sw2`〈n〉(m).R

This is proved by showing that the relation

∪m′{((`; 1), `〈n〉 | R{m′
/m}, `〈m′〉 | wr`〈n〉.R{m

′
/m})

∪ I ∪ {((∅; 1), sw`〈n〉(m).R, sw2`〈n〉(m).R)}

is a sequential bisimulation. The equivalence between
faa`〈n〉(m).R and faa2`〈n〉(m).R is established using a
similar relation.

Example 20 (Optimised access). Two consecutive read and/or
write operations can be transformed into an equivalent single
operation.

wr`〈n〉. wr`〈m〉.R ≈∅;1s wr`〈m〉.R
wr`〈n〉. re`(m).R ≈∅;1s wr`〈n〉.R{n/m}

re`(m). re`(m
′).R ≈∅;1s re`(m).R{m/m′}

For the first equality, one shows that

I ∪ {((∅; 1), wr`〈n〉. wr`〈m〉.R, wr`〈m〉.R)}
∪ {((`; 1), `〈n〉 | wr`〈m〉.R, `〈m〉 | R)}

is a sequential bisimulation. The second law is treated simi-
larly. In both cases, the relation exhibited is finite.

For the third equality, one defines R as

∪n
{

((`; 1), `〈n〉 | re`(m′).R{n/m}, `〈n〉 | R{n, n/m,m′})
}

Then {((∅; 1), re`(m). re`(m
′).R, re`(m).R{m/m′})}

∪ R ∪ I is a sequential bisimulation.

IV. WELL-BRACKETING

A. Type System

We now go beyond sequentiality, so to handle well-
bracketing. In languages without control operators, this means
that return-call interactions among terms follow a stack-based
discipline.

Intuitively, a well-bracketed system is a sequential system
offering services. When interrogated, a service, say A, acquires
the thread and is supposed to return a final result (unless
the computation diverges) thus releasing the thread. During
its computation, A may however interrogate another service,
say B, which, upon completion of its computation, will return
the result to A. In a similar manner, the service B, during its
computation, may call yet another service C, and will wait

for the return from C before resuming its computation. B
may also delegate to C the task of returning a result to A. In
any case, the ‘return’ obligation may not be thrown away or
duplicated.

The implementation of this policy requires continuation
names. For instance, when calling B, process A transmits a
fresh name, say p, that will be used by B (or other processes
delegated by B) to return the result to A. Moreover, A waits
for such a result, via an input at p. Therefore continuation
names are linear [3] — they may only be used once — and
input receptive [15] — the input-end of the name must be
made available as soon as the name is created; and they are
output-controlled: they carry the thread in output.

In short, the ‘well-bracketing’ type system defined in this
section refines the type discipline for sequentiality by adding
linear-receptive names and enforcing a stack discipline on the
usage of such names. Proof techniques for well-bracketing will
be studied in Section IV-D.

Thus, with well-bracketing, we have three kinds of names:
output-controlled names (ranged over by x, y, z, . . .) and input-
controlled names (ranged over by u, v, w. . .), as in the previ-
ous section; and continuation names, ranged over by p, q, r. . ..
As before, names a, b, c. . . range over the union of output- an
input-controlled names.

Continuation names may only be sent at output-controlled
names. Indeed, any output at an output-controlled name must
carry exactly one continuation name. Without this constraint
the type system for well-bracketing would be more complex,
and it is unclear whether it would be useful in practice. By
convention, we assume that, in a tuple of names transmitted
over an output-controlled name, the last name is a continuation
name. We write ã, p for such a tuple of names.

The type system is presented in Figure 2. Judgements are
of the form

σ `wb P

where σ is a stack, namely a sequence of input- and output-
tagged continuation names, in which the input and output tags
alternate, always terminating with an output tag unless the
sequence is empty:

σ ::= σO | σI
σO ::= p : o, σI σI ::= p : i, σO | ∅

Moreover: a name may appear at most once with a given
tag; and, if a name appears with both tags, then the input
occurrence should immediately follow the output occurrence,
as for p in p′ : i, p : o, p : i, σ. We write p ∈ σ if name p
appears in σ, and |σ| for the length of the sequence σ.

Intuitively, a stack expresses the expected usage of the free
continuation names in a process. For instance, if

p1 : o, p2 : i, p3 : o, p3 : i, p4 : o `wb P

then p1, . . , p4 are the free continuation names in P ; among
these, p1 will be used first, in an output (p1 may be the subject
or an object of the output); then p2 will be used, in an input
interaction with the environment. P possesses both the output



WB-OUT1
p : o `wb p〈ã〉

WB-OUT2
p : o `wb x〈ã, p〉

WB-OUT3
∅ `wb u〈ã〉

WB-INP1
p : o `wb P p 6= q

q : i, p : o `wb q(ã).P
WB-INP2

p : o `wb P

∅ `wb x(ã, p).P, !x(ã, p).P
WB-INP3

p : o `wb P

p : o `wb u(ã).P
WB-NIL

∅ `wb 0

WB-RES1
ξ, p : o, p : i, σ′ `wb P

ξ, σ′ `wb (νp)P
WB-RES2

σ `wb P

σ `wb (νp)P
p /∈ σ WB-RES3

σ `wb P

σ `wb (νa)P
WB-MAT

∅ `wb P

∅ `wb [a = b]P

WB-PAR
σ `wb P σ′ `wb Q

σ′′ `wb P | Q
σ′′ ∈ inter(σ;σ′) WB-TAU

σ `wb P

σ `wb τ .P
|σ| ≤ 1 WB-SUM

σ `wb P σ `wb Q

σ `wb P +Q
|σ| ≤ 1

Fig. 2. Type system for well-bracketing

and the input capability on p3, and may use both capabilities
by performing a reduction at p3; or P may transmit the output
capability and then use the input one; the computation for
P terminates with an output at p4. This behaviour however
concerns only the free continuation names of P : at any time
when an output usage is expected, P may decide to create a
new continuation name and send it out, maintaining its input
end. The Subject Reduction Theorem 25 will formalise the
behaviour concerning continuations names in stacks.

As simple examples of typing, we can derive

p : o `wb p〈a〉 and p : o `wb u(a). p〈a〉

In the latter typing, by rule WB-INP3, an input at an input-
controlled name has the thread, and does not affect the stack
because u is not a continuation name.

The same stack can be used to type a process that invokes
a service at x before sending the result at p, as in

p : o `wb (νq)(x〈b, q〉 | q(c). p〈c〉)

where q is a fresh continuation name created when calling
x. To type the process without the restriction at q, the stack
should mention the input and output capabilities for q:

q : o, q : i, p : o `wb x〈b, q〉 | q(c). p〈c〉

For another example, the process

P0
def
= p(a). p′〈a〉 | q(b). q′〈b〉

can be typed using two stacks: we have both p : i, p′ : o, q :
i, q′ : o `wb P0 and q : i, q′ : o, p : i, p′ : o `wb P0. The
choice of the stack depends on whether the call answered at
p has been made before or after the call answered at q.

We comment on the rules of the type system. In WB-OUT1
and WB-OUT2 the obligation in the stack is fulfilled (the output
capability on the only name in the stack is used in WB-OUT1
and transmitted in WB-OUT2). As explained above, the last
name in the tuple transmitted at x is a continuation name,
and the only one being transmitted (to enforce the stack
discipline). In contrast, in WB-OUT3 an output at an input-
controlled name does not own the thread and therefore may not
carry continuation names. In WB-INP1 the input-tagged name

on top of the stack is used. Rule WB-INP2 is the complement
of WB-OUT2. In WB-INP3, an input at an input-controlled name
maintains the thread. In all rules for input and τ prefixes,
the stack in the premise of the rules may not contain input-
tagged continuation names because their input capability must
be unguarded (as they are receptive names). The same occurs
in rule WB-SUM, following [15] where choice on inputs at
receptive names is disallowed (though the constraint could
be relaxed). Matching is allowed on plain names, but not
on continuation names; this is typical of type systems where
the input and output capabilities on names are separate [1];
moreover, no continuation name may appear in the process
underneath, to make sure that the obligations on continuation
names are not eschewed. In WB-RES1 a continuation name is
created, and then its output and input capabilities are inserted
into the stack. In the rule, ξ, σ is a decomposition of the stack
for νp P where σ is a stack beginning with an output tag;
hence ξ is either empty or it is of the form σ′, p : i, (i.e. ξ is
an initial prefix of the stack, either empty or ending with an
input tag).

Rule WB-RES2 is for continuation names that do not appear
in the body of the restriction (this form of rule is common in
type systems for linearity, to simplify the assertion of Subject
Reduction). In rule WB-PAR, the typing stack is split to type the
two process components P1 and P2; splitting of the typing is
usual in type systems with linearity. Here, however, the split
must respect the order of the names. That is, the stack in the
conclusion should be an interleaving of the two stacks in the
premises, as by the following definition.

Definition 21 (Interleaving). We write σ1 ∈ inter(σ2;σ3) if
(i) σ1 is a stack, and (ii) σ1 is an interleaving of σ2 and σ3

as by the following inductive rules:

1) ∅ ∈ inter(∅; ∅)
2) p : o, σ1 ∈ inter(σ2; p : o, σ3) if σ1 ∈ inter(σ2;σ3)

3) p : o, σ1 ∈ inter(p : o, σ2;σ3) if σ1 ∈ inter(σ2;σ3)

4) the same as (2) and (3) with p : i instead of p : o

If a name appears both in σ2 and in σ3 with the same tag,
then inter(σ2;σ3) may not contain any stack.

Being stack-ordered means that p. q | q. p cannot be typed.



Indeed, the left process would require p before q in the stack,
whereas the right process needs the opposite.

In rule RES1, having the possibility to add names in the
middle of the stack is mandatory to preserve typability after
reduction. Consider for instance:

(νq)((νp)(b〈p〉 | p. q) | q. p′) (νp)b〈p〉−−−−−→ (νq)(p. q | q. p′) To
type the derivative of the transition above, we have to use rule
RES1 with ξ = p : i and σ′ = p′ : o.

Typability in the type system of Figure 2 implies typability
in the type system for sequentiality. Indeed, when σ `wb P , if
the first name in σ is output-tagged then P is active, otherwise
P is inactive. We write seq for the function that ‘forgets’ the
well-bracketing information in a stack, therefore seq(σ) = 1
if σ = p : o, σ′, for some p and σ′, and seq(σ) = 0 otherwise.

Proposition 22. If σ `wb P then also seq(σ) `s P .

In Definition 23, we extend type-allowed transitions to
processes with continuation names. As previously, we must
ensure that the process is typed, and that the transition is
allowed by sequentiality (clauses (1) and (2) below). Clause
(3) says that the first continuation name observed must be on
top of the stack, and that the input or output capability on a
continuation name may not be exercised by the environment
when both capabilities are owned by the process.

Definition 23. We write σ �wb P
µ−→ P ′ when

1) σ `wb P
2) seq(σ) �s P

µ−→ P ′ and
3) if p ∈ fn(µ) and p ∈ σ, then either σ = p : o, σ′ or

σ = p : i, σ′ for some σ′; moreover, if p ∈ σ′, then p is
not the subject of µ.

We exploit type-allowed transitions to define transitions
with stacks, which make explicit the evolution of the stack.

Definition 24. We note [σ;P ]
µ−→ [σ′;P ′] when σ �wb P

µ−→
P ′ and

1) if µ = (ν b̃)p〈ã〉, then σ = p : o, σ′

2) if µ = p〈ã〉, then σ = p : i, σ′

3) if µ = (ν c̃, p)a〈̃b, p〉, then σ′ = p : i, σ

4) if µ = (ν c̃)a〈̃b, p〉, then σ = p : o, σ′

5) if µ = a〈̃b, p〉, then σ′ = p : o, σ
6) if µ = τ , then for σ = p : o, p : i, σ′′ and p /∈ fn(P ′),

we have σ′ = σ′′, otherwise σ′ = σ.

In cases (1), (4) (resp. (2)), we must have σ = p : o, σ′′

(resp. p : i, σ′′) by definition of type-allowed transitions. In
clauses (1) and (2), the action is an input or an output at
a continuation name that must be on top of σ, and is then
removed. In clause (3), the action extrudes a continuation
name, and then, following the stack discipline, the process
waits for an answer on that name. In clause (4), emitting a free
continuation name amounts to passing the output capability on
that name to the environment. Dually, in clause (5), receiving
a continuation name imposes to use it in output. Finally, in
clause (6), a τ transition may come from an interaction at a
continuation name, in which case σ is modified. It can also

come from an interaction at a restricted name or from an
internal choice; in such cases, σ is unchanged.

Theorem 25 (Subject Reduction). If σ `wb P and [σ;P ]
µ−→

[σ′;P ′] then σ′ `wb P
′.

If a process owns both the input and the output capability
on a continuation name p, then the environment may not
use p. Semantically, this is the same as having a restriction
on p in the process. It is therefore safe, in the definition
of barbed bisimulation and observability, to assume that all
such restrictions are syntactically present, i.e., there is a single
occurrence of any free continuation name. We call clean such
processes.

Definition 26. A stack σ is clean if no name appears in σ both
output- and input-tagged. A process P is clean if σ `wb P
for some clean σ.

On clean processes, typing is preserved by reduction.

Proposition 27. If σ `wb P for σ clean, then P −→ P ′

implies σ `wb P
′.

Defining barbed bisimulation on clean processes, we can
use the seq function above to recast observability in the well-
bracketing system from that in the sequentiality system: thus,
for σ clean, we have σ �wb P ⇓a (resp. σ �wb P ⇓p) if
seq(σ) �s P ⇓a (resp. seq(σ) �s P ⇓p).

In the definition of barbed equivalence, the contexts testing
the processes must be clean. Writing 'σ for barbed equiva-
lence at σ, we have P 'σ Q if σ `wb P,Q, and for any clean
σ′ and any σ′/σ static context E, it holds that E[P ]

.
≈σ

′

E[Q]
(note that σ itself need not be clean).

B. Discreet Processes

In this section we put forward the subclass of discreet
processes, in which all continuation names that are exported
must be private, and show how to transform any process into
a discreet one. Then, on discreet processes:
(1) we express a behavioural property that formalises the

stack-like discipline on the usage of continuation names;
(2) we develop proof techniques, in form of labelled bisim-

ilarities, to reason about the behaviour of well-typed
processes.

(Concerning (2), while the technical details are quite different,
we follow the approach of proof techniques for receptive
names in [15], where the techniques are first defined on
processes where only fresh names may be sent.)

Definition 28 (Discreet processes). A process P is discreet
if any free continuation name p ∈ fn(P ) may not appear in
the object of an output, and, in any sub-process x(ã, q).Q, the
same holds for q in Q. The definition is extended to contexts,
yielding discreet contexts.

If E and P are discreet, then so is E[P ]. We can transform
all well-typed processes into discreet processes using the law
in Lemma 29 below. The law transforms the output of a global



continuation name p into the output of a local name q. In
general, all outputs of continuation names in a process P are
local, as a global output corresponds to P delegating a stack-
like obligation to another process. In other words, in general
the transformation of a non-discreet process into a discreet one
will modify only a few outputs of the initial process. The law
in Lemma 29 is valid for barbed congruence, not just barbed
equivalence, and may therefore be applied to any component
of a given process.

Lemma 29. x〈ã, p〉 ∼=p:o (νq)(x〈ã, q〉 | q(̃b). p〈̃b〉).

Thus, in the definition of barbed equivalence (and congru-
ence) it is sufficient to consider discreet contexts.

A discreet process may only export private continuation
names. Dually, the process may only receive fresh continuation
names from a discreet context. We call discreet the transitions
that satisfy this property.

Definition 30 (Discreet transitions). A typed transition σ �wb

P
µ−→ P ′ is discreet if any continuation name in the object of

µ is not free in σ (and hence also in P ).

Lemma 31. If P is discreet, and σ �wb P
µ−→ P ′ is discreet,

then P ′ is discreet. If, moreover, P is clean, then so is P ′.

C. The Well-bracketing property on traces

Following game semantics [20], we formalise well-
bracketing, that is, the stack-like behaviour of continuation
names for well-typed processes, using traces of actions. In
this section, all processes are discreet and clean. A trace
for such a process is obtained from a sequence of discreet
transitions emanating from the process, with the expected
freshness conditions to avoid ambiguity among names.

Definition 32 (Trace). A sequence of actions µ1, . . . , µn is a
trace for a (discreet and clean) process P0 and a stack σ0 if
there are σ1, . . . , σn, P1, . . . , Pn such that for all 0 ≤ j < n

we have [σj ;Pj ]
µj+1−−−→ [σj+1;Pj+1], where the transition is

discreet, and moreover all continuation names appearing as
object in µj+1 are fresh (i.e., the names may not appear in
any µi for i ≤ j).

The notion of discreet transition already imposes that con-
tinuation names in object position do not appear free in the
process. The final condition in Definition 32 on continuation
names ensures us that for actions like (νp)x〈ã, p〉, name
p is fresh, and that after an action p〈ã〉 (thus the only
allowed interaction at p has been played), name p cannot be
reintroduced, e.g., in an action x〈ã, p〉. We simply say that
µ1, . . . , µn is a trace, or is a trace for P , when the stack or
the process are clear from the context.

The well-bracketing property is best described with the
notion of questions and answers.

Definition 33. For a trace µ1, . . . , µn, we set µi y µj if i < j
and:

1) either µi = (ν c̃, p)a〈̃b, p〉 and µj = p〈ã′〉,
2) or µi = a〈̃b, p〉 and µj = (ν c̃)p〈ã′〉.

Actions µi (with a continuation name in object position) are
called questions, while actions µj (with a continuation name
in subject position) are called answers.

A discreet transition is either an internal transition, or a
question, or an answer. A question mentioning a continuation
name p is matched by an answer at p. When questions and
answers are seen as delimiters (‘[p’,‘]p’, different for each
continuation name), a well-bracketed trace is a substring of
a Dyck word.

Remark 34. For a discreet transition [σ;P ]
µ−→ [σ′;P ′], the

value |σ′| − |σ| is 1 for a question, 0 for an internal action,
and −1 for an answer.

Lemma 35 (Uniqueness). Given a trace µ1, . . . , µn, if µi y
µj and µi′ y µj′ , then we have (i = i′ iff j = j′).

Definition 36 (Well-bracketing). A trace µ1, . . . , µn is well-
bracketed if for all i < j, if µi is a question and µj is an
answer with µi 6y µk and µk 6y µj for all i < k < j, then
µi y µj .

To prove that all traces are well-bracketed, we need the
following property relating questions and answers to stacks.

Lemma 37. Let µ1, . . . , µn be a trace, and σ0, . . . , σn be the
corresponding stacks, as in Definition 32. Suppose σ0 = σn,
and for all i, |σi| > |σ0|. Then µ1 y µn.

Proposition 38. Any trace (as by Definition 32) is well-
bracketed.

D. Bisimulation and Full Abstraction

As in Section III, a wb-typed relation on processes is a set
of triplets (σ, P,Q) with σ `wb P,Q.

Definition 39 (WB-Bisimulation). A wb-typed relation R
on discreet processes is a wb-bisimulation if whenever
(σ, P,Q) ∈ R and [σ;P ]

µ−→ [σ′;P ′] is discreet, then one
of the three following clauses holds:

1) there is Q′ with Q
µ̂
=⇒ Q′ and (σ′, P ′, Q′) ∈ R

2) µ = x〈ã, p〉 and for some fresh q, there is Q′ with Q |
(νq)(x〈ã, q〉 | q(̃b). p〈̃b〉) =⇒ Q′ and (σ′, P ′, Q′) ∈ R

3) µ = u〈ã〉 and there is Q′ with Q | u〈ã〉 =⇒ Q′ and
(σ′, P ′, Q′) ∈ R,

and symmetrically for the transitions from Q.
Processes P and Q are wb-bisimilar at σ, noted P ≈σwb Q,

if (σ, P,Q) ∈ R for some wb-bisimulation R.

Compared to Definition 11, the clause for input actions is
here split into two clauses. In clause (2), we apply Lemma 29
to obtain a discreet process.

WB-bisimulation is sound with respect to barbed equiv-
alence for all discreet processes. The main result concerns
preservation by parallel composition:

Lemma 40 (Parallel composition). If P ≈σwb Q, then for any
discreet process R and stacks σ′, σ′′ such that σ′ `wb R and
σ′′ ∈ inter(σ;σ′), we have P | R ≈σ′′

wb Q | R.



Note that even if P,R are clean, P | R needs not be so.

Theorem 41 (Soundness). ≈σwb ⊆ 'σ .

To prove soundness, we show that ≈σwb is preserved by all
discreet static contexts. By Lemma 29, we can then replace
any non-discreet context with a discreet one.

We further refine the coinductive technique given by ≈σwb

by introducing some up-to techniques, which make it possible
to work with smaller relations. We write P −→d P

′ when the
reduction is deterministic, meaning that whenever P

µ−→ P ′′,
then µ = τ and P ′ ≡ P ′′. Similarly, we write P =⇒d P

′ if all
reduction steps are deterministic. Moreover, for a relation R,
we write (σ, P,Q) ∈ =⇒dRC when there exists a stack σ′, a
σ/σ′ context E, and processes P ′, Q′ such that Q ≡ E[Q′],
P =⇒d E[P ′] and (σ′, P ′, Q′) ∈ R.

Definition 42 (Up-to static contexts and up-to deterministic
reductions). A wb-typed relation R on discreet processes is a
wb-bisimulation up-to static contexts and up-to deterministic
reductions if whenever (σ, P,Q) ∈ R, for any discreet
transition [σ;P ]

µ−→ [σ′;P ′], one of the following clauses
holds:

1) there is Q′ with Q
µ̂
=⇒ Q′ and (σ′, P ′, Q′) ∈ =⇒dRC,

2) µ = x〈ã, p〉 and for some fresh q, there is Q′ with Q |
(νq)(x〈ã, q〉 | q. p) =⇒ Q′ and (σ′, P ′, Q′) ∈ =⇒dRC,

3) µ = u〈ã〉 and, there is Q′ with Q | u〈ã〉 =⇒ Q′ and
(σ′, P ′, Q′) ∈ =⇒dRC,

and symmetrically for the transitions from Q.

Lemma 43. If R is a wb-bisimulation up-to static contexts
and up-to deterministic reductions, then (σ, P,Q) ∈ R implies
P ≈σwb Q.

1) Completeness: As in Section III, we prove completeness
for processes that only use output-controlled names.

Theorem 44 (Completeness). For all image-finite, discreet and
clean processes P,Q that only use output-controlled names,
and for all σ, if P 'σ Q then P ≈σwb Q.

As for Theorem 14, the crux of the proof is defining
the discriminating static contexts. The additional difficulty is
related to receptiveness of continuation names: we cannot use
z.R or GR + T , as in Section III, when the tester process, R
or GR, contains an input at a free continuation name.

Suppose σ `wb P , for P discreet and clean. We decompose
σ as ξ, p1 : o, q1 : i, . . . , pn−1 : o, qn−1 : i, pn : o for ξ = ∅
or ξ = q : i, and then define, for fresh qn and x̃i,

Ex̃i
σ

def
= (νp̃i, q̃i)([·] |

∏
i≤n

pi(ỹ).xi〈ỹ, qi〉).

We have ξ, qn : o `wb Ex̃i
σ [P ]. Intuitively, Ex̃i

σ forwards
information from the pi’s (which are in σ) to the xi’s.
Accordingly, the tester process can use names in x̃i (rather
than in p̃i), and can use them in input.

Let fno(−) denote the set of free output-controlled names.
We distinguish two cases. If ξ = ∅, then P is active. To follow

the reasoning in the proof of Theorem 14, we work with E
of the form

(νx̃)(Ex̃i
σ | R+

∏
y∈S

y(ỹ′, p). z〈p〉),

for some set S ⊇ fno(P ) ∪ fno(Q) ∪ x̃i and fresh z.
If ξ = q : i, then P is inactive. We reason with E of

the form (νx̃, q)(Ex̃i
σ | z〈q〉 | z(q′).R). By typing, only the

continuation name q′ received at z may appear free in R. Such
q′ will be instantiated with q and then R will use it to test
the input at q from the tested processes. (A restriction on q is
needed, as the overall process has to be clean.)

In both cases, the resulting E is a qn : o/σ static context
where qn is a fresh continuation name. More details on the
proof can be found in [17].

2) An Example: We explain how the techniques we have
introduced allow us to reason about a well-known example,
the well-bracketed state change (sometimes called ‘awkward’,
or ‘very awkward’, example) [21], [22], [23]. It is usually
presented in ML thus:

M1
def
= let ` = ref 0 in fun y ->

(` := 0; y() ; ` := 1; y() ; !`)

M2
def
= fun y -> (y() ; y() ; 1)

Function M2 makes two calls to an external function y and
returns 1. The other term, M1, between the two calls, modifies
a local reference `, which is then used to return the final
result. Intuitively, equivalence between the two functions holds
because: (i) the reference ` in M1 represents a local state,
not accessible from an external function; (ii) computation
respects well-bracketing (e.g., the language does not have
control operators like call/cc).

Below are the translations of M1 and M2, following a
standard encoding of functions and references in Aπ, and using
the notations for references from Section III-C2:

[[M1]]p′
def
= (νx, `)(`〈0〉 | Q) with

Q
def
= p′〈x〉 | !x(y, p). wr`〈0〉. (νq)(y〈q〉 |

q. wr`〈1〉. (νr)(y〈r〉 | r. re`(n). p〈n〉))

[[M2]]p′
def
= (νx)(p′〈x〉 | !x(y, p). (νq)(y〈q〉 |

q. (νr)(y〈r〉 | r. p〈1〉)))

[[M1]]p′ has a unique transition, [[M1]]p′
(νx)p′〈x〉−−−−−−→ P1. Sim-

ilarly, let P2 be the unique derivative from [[M2]]p′ . The
equivalence between [[M1]]p′ and [[M2]]p′ follows immediately
from P1 ≈∅wb P2. To prove the latter, we exhibit a relation
R containing the triple (∅, P1, P2) and show that R is a wb-
bisimulation up-to deterministic reductions and static context.
To see the importance of well-bracketing, R contains the triple(

q2 : i, p2 : o, r1 : i, p1 : o,

(ν`)(`〈0〉 | Q | q2. wr`〈1〉. (νr2)(y〈r2〉
| r2. re`(n). p2〈n〉)) | r1. re`(n). p1〈n〉),

P2 | q2. (νr2)(y〈r2〉 | r2. p2〈1〉) | r1. p1〈1〉
)

Without the well-bracketing constraint, the first process in the
triple could perform an input at r1, an internal transition, and



finally an output p1〈0〉. The second process cannot emit 0,
which would allow us to distinguish P1 and P2. With well-
bracketing, since r1 is not on top of the stack in the triple, the
initial transition on r1 is ruled out.

The details of the definition of R can be found in [17].
In the same Appendix, we also discuss a simplified example,
which exposes the main difficulties. The primary simplification
consists in using linear functions. Some twisting in the ML
terms is necessary, as M1 and M2 become equivalent — even
dropping well-bracketing — if they can be used at most once.

V. RELATED WORK AND CONCLUSIONS
Sequentiality is a form of linearity, hence our type system

has similarity with, and borrow ideas from, systems with linear
types, in languages for concurrency or functional languages,
including types for managing locks as in [7]. The type system
in [24] ensures one that terms of the Ambient calculus are
single-threaded, a notion similar to the sequentiality for Aπ
examined in this paper. The type system in [25] has been
designed so to make the encoding of PCF into the π-calculus
fully abstract. The system therefore goes beyond sequentiality
as described in our paper. For instance, the system presents
a form of duality on types and ensures that computations are
stateless, hence also deterministic. Indeed, the only behaviours
inhabited by the types are those in the image of the PCF
terms. Types ensure the uniqueness of the computation thread,
and such a thread is carried by outputs (the thread cannot be
carried by input processes, as in our system). The system [25]
has been further refined in [9], adding causality information
and acyclicity constraints, so to ensure strong normalisation of
well-typed processes. The issue of finding labelled bisimilarity
characterisations of barbed equivalence or reduction-closed
barbed equivalence is extensively discussed in [1]; see also
[26] for an example involving types.

Type systems for linearity and receptiveness in the π-
calculus have been introduced in [3], [27], [15]. The way
we formulate well-bracketing (Definition 36) is inspired by
‘well-bracketed strategies’ in game semantics [20], [28], used
in functional programming languages and extensions thereof
(they have in turn inspired type systems for π-calculi with
stack-like information and input/output alternation, e.g., [25],
[29]). The notion of well-bracketed control flow is studied
in the field of secure compilation, for a wider class of
languages. In works like [30], [31], the technique of fully
abstract compilation guarantees control flow correctness (and,
in particular, well-bracketing) against low-level attacks.

Several methods have been proposed to establish contextual
equivalence of sequential programs that include higher-order
and stateful computation, including the above-mentioned game
semantics, (step-indexed Kripke) logical relations [21], [22],
dedicated forms of bisimulations designed on top of an oper-
ational semantics of the languages [32], [33], [34], [35], [36].
Works like [23] or algorithmic game semantics [37], aim at
automatically establishing contextual equivalences, by relying
on model-checking techniques.

The main goal of this paper was to tailor some of the
most prominent proof techniques in the π-calculus — those

based on labelled bisimilarity — to the sequentiality and well-
bracketing disciplines. This is instrumental to the use of the
π-calculus as a model of programming languages, as sequen-
tiality and well-bracketing are often found in programming
languages or subsets of them. We have shown the usefulness of
our techniques on a number of examples, that have mainly to
do with the representation of functions and store — none of the
equalities in the examples is valid in the ordinary bisimilarity
of the calculus.

In Section III-C we have combined our proof technique for
sequentiality with techniques concerning the representation of
references in π-calculus from [16]. The resulting technique
allows us in some cases to reason about programs with store
without an explicit representation of the store (as usually
required in the techniques in the literature, recalled above).
This avoids universal quantifications on the possible values
contained in the store, thus reducing the size of the relation to
consider, sometimes making them finite. Further possibilities
of reducing the size of relations may be possible by defining
‘up-to techniques’ for our bisimilarities, as exemplified by the
up-to technique considered in Definition 42 and applied in
Section IV-D2.

Our treatment of sequentiality raises a few technical ques-
tions that deserve further investigation. We would like to see
whether our proof of completeness (Theorem 14) could be
extended to handle input-controlled names. Similarly, we do
not know whether the result still holds if internal choice is
disallowed in inactive processes. The usual encoding of an
internal choice τ .P + τ .Q in terms of parallel composition
as (νc) (c | c.P | c.Q), for some fresh c, is not applicable
because the latter process is active (for instance, the encoding
is not valid within a context testing active processes). Indeed,
if the result still holds, the current proof might require some
significant modifications. For similar reasons, it is unclear if
and how our completeness proof could be tuned to handle
reduction-closed variants of barbed equivalence [11], [1].

In the asynchronous π-calculus considered in this paper,
an interaction involves only one prefixed process (the input).
Therefore, in the type systems, this process always acquires
the control on the thread after the interaction. In a synchronous
setting, in contrast, an interaction involves also an output
prefix. Hence the type systems could be richer, specifying,
for each name, where the control on the thread goes after an
interaction at that name. The representation of references in
Section III-C, however, might have to be revisited as it relies
on the asynchronous model.

We have studied proof techniques for sequentiality and well-
bracketing in the π-calculus based on labelled bisimilarities.
We would like to examine also the impact of the disciplines
on algebraic theory and modal logics.
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