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Abstract: Traditionally, classifiers are trained to predict patterns within a feature space. The image
classification system presented here trains classifiers to predict patterns within a vector space by
combining the dissimilarity spaces generated by a large set of Siamese Neural Networks (SNNs).
A set of centroids from the patterns in the training data sets is calculated with supervised k-means
clustering. The centroids are used to generate the dissimilarity space via the Siamese networks.
The vector space descriptors are extracted by projecting patterns onto the similarity spaces, and
SVMs classify an image by its dissimilarity vector. The versatility of the proposed approach in image
classification is demonstrated by evaluating the system on different types of images across two
domains: two medical data sets and two animal audio data sets with vocalizations represented as
images (spectrograms). Results show that the proposed system’s performance competes competitively
against the best-performing methods in the literature, obtaining state-of-the-art performance on one
of the medical data sets, and does so without ad-hoc optimization of the clustering methods on the
tested data sets.

Keywords: audio sound classification; image classification; clustering; prototype selection; siamese
network; dissimilarity space

1. Introduction

The most common image classification strategy involves extracting features from
samples and then training classifiers to discriminate them within the selected feature
space. Another less common method involves training patterns within one or more
(dis)similarity spaces. The idea of (dis)similarity, or semblance, is grounded in human
learning and plays a fundamental role in theories of knowledge and behavior [1]. For this
reason, (dis)similarity provides a sound theoretical basis for building learning algorithms.
Training in (dis)similarity spaces is considered particularly relevant when addressing
large multiclass problems [2] and when samples have discernible patterns, as is often
the case when dealing with shapes, spectra, images, and texts [3]. The basic idea of
(dis)similarity classification is to estimate an unknown sample’s class label based on
the similarities/dissimilarities between the sample and a set of labeled training samples
and pairwise (dis)similarities between the training samples. Some simple (dis)similarity
measures popular in computer vision include the tangent distance [4], earth mover’s
distance (EMD) [5], shape matching distance [6], and the pyramid match kernel [7]. Because
classification within (dis)similarity spaces does not require access to a sample’s features,
the sample space can be any set and not limited to the Euclidean space as long as the
(dis)similarity function is well defined for any pair of samples [8].

Dissimilarity spaces can be defined by pairwise dissimilarities computed between
complex objects like images, audio, time signals, spectra, graphs [9], 3D data, and in all
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problems where a distance measure between target objects can be specified more naturally
than can a feature representation [3]. The feature space is substituted by a proximity-
based representation space (RS) in which general-purpose classifiers are trained on all
training objects that demand comparisons to a small set of prototypes. The RS space can be
generated according to any meaningful dissimilarity measures, including non-Euclidean
and nonmetric ones [10].

One line of research in dissimilarity spaces focuses on developing different approaches
for defining an RS space. The two most common are direct learning with similarity
functions [11] and kernel methods [12]. It is also worth noting that some researchers have
conducted extensive experimentation on dissimilarity-based classifiers, comparing them
with traditional feature-based classifiers and concluding that this classification scheme
outperforms traditional classifiers in a large set of applications, thereby indicating that
these classifiers have a separate domain of competence [13].

Rather than selecting a predefined distance measure beforehand, a distance metric
can be learned during training. This is a process known as Metric Learning (MeL). A
general framework for MeL is proposed in [14], which the authors call Adaptive Nearest
Neighbor and which is experimentally demonstrated to produce a broader search space
within which better solutions can be found. Of recent note is a hybrid meta-learning
model called Meta-Metric-Learner [15] that can handle flexible numbers of classes and
generate generalized metrics for classification across domains. Other recent developments
involve the application of deep learning for MeL [16–19]. In [19], for example, the authors
developed a General Pair Weighting (GPW) framework that transforms the sampling
problem of deep metric learning into a unified view of pair weighting through gradient
analysis. In [20], a metric learning approach makes use of a Siamese Neural Network
(SNN) [21] to minimize and maximize the distance between pairs of images. For a survey
of deep MeL, see [22].

Before moving on, it is important to clarify terms. As pointed out in [23], the terms
distance and (dis)similarity are often used interchangeably in the literature, but (dis)similarity
is the broader term in that it can be produced by a range of functions that are not distance
measures. In other words, (dis)similarity can be viewed not only as a distance within a space
but also as a means for building other spaces. Moreover, though at first, it might appear
that the choice to distinguish two objects based on either their similarities or dissimilarities
is arbitrary (the terms similarity and dissimilarity are often used interchangeably in the
literature), the type of data and the problem itself have a bearing on the selection of one
perspective over the other [23].

The focus in this paper, as indicated by the title, is on image classification based on
dissimilarities, an idea introduced in [3], where differences are considered between samples
of different classes. Dissimilarity approaches can be divided into two types, those based on
dissimilarity vectors [24] and those on dissimilarity spaces [25], a nomenclature that was
introduced in [23]. Dissimilarity vectors transform a multiclass problem into a two-class
problem by computing the difference between feature vectors extracted from two samples.
If the two samples belong to the same class, they are considered positive; else they are
deemed negative. The basic idea is for the classifier to distinguish whether a dissimilarity
vector was generated from samples that either belong or do not belong to the same class.
This method was introduced in [24]. Some work based on [24] includes [26] and [27],
where both papers propose the idea of combining classifiers using receiver operating
characteristic (ROC). In [28], handcrafted texture features, such as scale-invariant feature
transform (SIFT), speeded up robust features (SURF), and local binary patterns (LBP) and
its variants, were used to generate a set of classifiers on the dissimilarity space. Explored
as well was the impact of dynamic classifier selection strategies. In [29], the authors
reduced sensitivity to a large number of classes in auditory bird species identification by
combining the extraction of features from audio spectrograms with the dissimilarity vector
approach. Finally, in [30], features extracted from convolutional neural networks (CNNs)
were combined via the dissimilarity vector approach.
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Dissimilarity methods based on dissimilarity spaces derive classifiers from feature
vector spaces where a vector represents the distance between pairs of samples compared
to the classical feature space where a feature vector represents a sample as measured
over all features. For instance, in [31], the authors used prototype selection to develop
classifiers based on dissimilarity spaces, and the dissimilarity representations were treated
as a vector space. In [32], a strategy for learning dissimilarity for interactive image retrieval
was proposed. Following the method described in [25], dissimilarity was adjusted via
a prototype-based dissimilarity space. In [33], descriptors were combined to capture
the gradient and textural characteristics of patterns using sparse representation in the
dissimilarity space.

More recently, researchers have begun to define dissimilarity spaces generated by deep
learners. For example, in [34], a dissimilarity space was built on top of deep convolutional
features, which produced a compact representation based on prototype selection methods.
In addition, MeL methods were used in the dissimilarity space rather than the Euclidean
distance. In [35], the authors proposed a variant that works well for the dissimilarity
representation space of the common maximum mean discrepancy (MMD) loss. The MMD
variant aligns the source and target data in the dissimilarity space by exploiting the
structure of intra-class and inter-class distributions, in this way producing a domain-
invariant pairwise matcher. In [36], the authors modified the traditional contrastive loss
function of the Siamese network to create a distance model learned by training SNN on
dissimilarity values for brain image classification; the system works by predicting the
correlation distance between the output features of image pairs. Finally, in [37] and [38],
systems for audio classification were developed by expanding the dissimilarity methods
proposed in [36]. Dissimilarity spaces were generated by a set of clustering techniques and
a small set of SNNs with different backbones. The clustering methods transformed the
audio images (spectrograms) in a bird [39] and a cat [40,41] vocalization data set into a set
of centroids that generated the dissimilarity space through the twin networks. Each audio
pattern was then projected into these spaces to obtain a vector space representation that
was fed into an SVM. The system was shown to produce superior results compared to the
standalone CNNs.

The system proposed in this work extends and generalizes the audio classification
systems developed in [37] and [38] with the goal of producing not only a more powerful
system but also one that can handle different types of images, not just audio spectrograms.
To accomplish this goal, the new system is built with a large set of eight different CNN
architectures selected for the twin classifiers, with four new CNN architectures presented
here. Heterogeneous auto-similarities of characteristics (HASC) [42] features are extracted
from the aforementioned bird [39] and cat [40,41] data sets as well as on a medical data set
for classifying narrow-band imaging (NBI) endoscopic videos [43] and a data set of images
for the classification of the maturation of human stem cell-derived retinal pigmented
epithelium [44]. In the training phase, a clustering algorithm is employed to select a set
of relevant samples to be used as the prototypes of the training samples. Moreover, a
distance measure is inferred by training a set of SNNs for comparing pairs of samples. In
the testing phase, an unknown pattern is compared to the centroids (prototypes) of the
dissimilarity spaces generated by the set of SNNs in order to measure the dissimilarity
of two patterns. In this fashion, the dissimilarity spaces represent each input pattern
(consisting of both the original images and the images processed by HASC) by a feature
vector obtained by calculating its distances from each of the centroids. Decisions are based
on a fusion by sum rule of the SVMs trained on the vectors generated by the different
dissimilarity spaces (produced by changing the value of k in the clustering methods) and
by the different network topologies. The proposed image classification system (produced
without ad-hoc optimization of the clustering methods on the tested data sets) is compared
to the state-of-the-art as well as with fusions with the state-of-the-art. Results demonstrate
the generalizability and power and of this approach, which achieved similar results on the
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audio and the medical data to the best performing methods reported in the literature and
state-of-the-art performance on one of the medical data sets.

The remainder of this paper is organized as follows. In Section 2, an outline of the
proposed system is provided that, for clarity, considers only one SNN. In Section 3, all
eight SNN backbones used to generate the dissimilarity spaces are described in detail with
a focus on the four new backbones used in this work. In Section 4, the clustering methods
are presented. In Section 5, experimental results are provided and discussed, along with
some comparisons on the same data sets with other classifier systems. The paper concludes
in Section 6 with some suggestions for future work.

2. Proposed System

An illustration of the approach taken in this work is provided in Figure 1, which
outlines the basic steps taken using only one SNN, though a set of eight is combined
in the whole system. The main steps outlined in Figure 1 are explained in more detail
in the subsections that follow. Algorithms in pseudocode are available for each step
in [37] and [38], and the MATLAB source code used in this work is available at https:
//github.com/LorisNanni accessed on 20 January 2021.
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Figure 1. A basic outline of the proposed approach. Note: in the training phase, prototype selection
is performed, and an SNN is trained to define a dissimilarity measure; in the testing phase, each
unknown pattern is represented by its distances to the prototypes and classified accordingly.

The training phase is geared towards generating a dissimilarity space via an SNN
that learns a distance measure d(x, y) from a set of prototypes P = p1, . . . pk. The SNN
is trained to maximize the dissimilarity between pairs of images belonging to one class
while at the same time minimizing the dissimilarity for pairs of images belonging to all the
other classes. The set of prototypes are the k centroids of the clusters produced by k-means
applied to a vector space representation of the images in the training set. The end result
is a feature vector f ∈ Rk that represents image x in the dissimilarity space, where for a
given fi the distance between x and the prototype is pi : fi = d(x, pi). This feature vector
is used to train an SVM.

The testing phase represents an unknown pattern by projecting it onto a dissimilarity
space. The feature vector is obtained by calculating the pattern’s distance to the set of
prototypes, P. This feature vector is fed into the SVM to determine its class. Both the
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original images in the data sets and the HASC [42] descriptors (outlined in Section 2.5)
serve as the input to the classification process.

2.1. SNN Training

To generate the dissimilarity space, the SNN is trained to compare two images and
return a dissimilarity value where larger values indicate that the images belong to the
same class and smaller values mean that both images belong to different classes. Details
regarding the eight SNN architectures are provided in Section 3.

2.2. Prototype Selection

To reduce the dimensionality of the dissimilarity space, prototype selection is accom-
plished by extracting from the training set only k prototypes using the supervised k-means
clustering technique outlined in Section 4. Without dimensionality reduction, it would be
too difficult to maintain each training sample as a prototype.

2.3. Projection in the Dissimilarity Space

To predict patterns by projecting them into a dissimilarity space, as proposed here,
each pattern x is characterized by its dissimilarity to a set of prototypes P = p1, . . . pk and
by the dissimilarity feature vector F defined as the dissimilarity of pattern d(x, y) as given
by a trained SNN:

F(x) = [d(x, p1), . . . , d(x, pi), , . . . , d(x, pk)]. (1)

Input patterns are compared with the k prototypes (stored in P) via the distance
measure learned by the SNN. The number of centroids is a parameter that is determined by
testing a set of values for k that are dependent on the number of classes c: k = kc× c, kc =
{15, 30 45, 60}. The feature space F is the output that includes the projections of all the
input images.

2.4. SVM Classification

SVM [45] is a classic learner that searches for a hyperplane that separates data belong-
ing to two classes. Prediction is a matter of mapping an unseen pattern to the side of the
hyperplane that represents its class. If the data are not linearly separable, kernel functions
can be employed to map the data into higher-dimensional spaces where the data can be
separated. SVM can handle multilabel problems by training an ensemble of SVMs and then
by combining their decisions using a one-against-all method that classifies a pattern as
belonging to the class with the highest confidence score. Such is the approach taken here.

2.5. HASC

HASC [42] is a local descriptor designed to capture the linear covariances (COV)
and nonlinear entropy combined with mutual information (EMI) relational characteristics
of an object. Some of the advantages of covariance matrices as descriptors include their
low dimension, robustness to noise, and their ability to capture the features of the joint
PDF. Covariance matrices suffer from two main disadvantages, however. First, outlier
pixels can make these descriptors more sensitive to noise; and, second, these descriptors
can only encapsulate the features of the joint PDF when the features are linked by a
linear relation. HASC overcomes these limitations by combining COV with EMI. The
entropy (E) of EMI is a measurement of a random variable’s uncertainty, while the mutual
information (MI) of two random variables captures generic dependencies: both linear and
nonlinear. The modeling of both linear and nonlinear dependencies is what makes HASC
a robust descriptor.

HASC descriptors are extracted by dividing an image into patches and generating the
EMI matrix (d× d). The main diagonal of EMI encapsulates the unpredictability (E) of the
d features. The off-diagonal (element i, j) captures the mutual dependency (MI) between
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the i-th and j-th feature. HASC is computed by concatenating the vectorized form of EMI
and COV.

The MI of a pair of random variables A, B is calculated as:

MI(A, B) =
∫

A

∫
B

p(a, b) log
(

p(a, b)
p(a)p(b)

)
dbda, (2)

where p(a), p(b), and p(a, b) are the PDF of A, the PDF of B, and their joint PDF, respectively.
In the case where A = B, then MI is the entropy of A:

E(A) = MI(A, A) = −
∫

A
p(a) log(p(a))da. (3)

If there exists a finite set M of realization pairs, then MI can be estimated as a sample
mean inside the logarithm:

MI(A, B) ≈ 1
M

M

∑
m=1

log
(

p(ak, bk)

p(ak)p(bk)

)
. (4)

A fast way to calculate the probabilities from the M realizations inside the logarithm is
to estimate them by building a joint 2D normalized histogram of values A and B, such that
p(ak, bk) is estimated by taking the value of the 2D histogram bin containing the pair ak, bk.
In this fashion, p(ak) and p(bk) can be estimated by summing all the bins corresponding to
ak and bk, respectively, and the i, j-th components of EMI related to the patch P. Thus, EMI
can be calculated as:

EMIp{ij} =
1
M

N

∑
m=1

log

(
p̃
(
zmi, zmj

)
p̃(zmi) p̃

(
zmj
)), (5)

where p̃( . . . ) and p̃(.) are the probabilities estimated with the histogram, and zmi is the
i-th feature at pixel M.

For this study, HASC is extracted from the whole image. The output FEAT of the
function HASC is a three-dimensional matrix (w × h × d) that contains all the features
extracted from the whole image. The dimension d is the number of low-level features.
The number of bins in the histograms in Equation (5) is 28, and the number of low-level
features is 6 (these are the default parameters). FEAT is reshaped to construct the vector
img = [FEAT (:,:,1) FEAT (:,:,2); FEAT (:,:,3) FEAT (:,:,4); FEAT (:,:,5) FEAT (:,:,6)], and this
vector is resized to serve as input to a CNN.

3. Siamese Neural Network (SNN)

SNNs are a class of deep architectures that take two images as input and compute
the dissimilarity between them [21]. SNNs are called Siamese networks because they are
made by combining two identical subnetworks whose outputs are subtracted and fed into
a fully connected layer. Figure 2 illustrates how these networks work. They are trained
to recognize whether the two input images (X1 and X2) belong to the same class or not.
The CNN subnetworks produce feature vectors (F1 and F2) of size 2048 or 4096. The
subtract block, FC Layer, and sigmoid function are described in Section 3.2. The binary
cross-entropy gives the loss function between the predicted score and the true label value.
A more detailed description of SNNs can be found in [46].
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3.1. The Two Identical Twin Subnetworks

In this study, eight backbone networks are used in the Siamese architectures. In
Table 1, the sequence of the CNN layers is reported.

The subnetworks use two different activation functions. The first one is ReLU [47],
and the other is leaky ReLU [48], which is a modification of ReLU, defined as:

yi = f (xi) =

{
0, xi < 0
xi, xi ≥ 0

(6)

Leaky ReLU is an activation function like ReLU that is equivalent to the identity func-
tion for positive values but has a hyperparameter α > 0 for negative inputs, guarantying
that the gradient of the activating function is never zero so that the optimization process
is less likely to become stuck in local minima. Leaky ReLU, however, alleviates problems
caused by the hard zero activations of ReLU.

Leaky ReLU is defined as:

yi = f (xi) =

{
axi, xi < 0
xi, xi ≥ 0,

(7)

where a is a real number (a = 1 here).
Table 1 describes the SNN backbones. The strategy in designing the topologies was to

start from a well-established and simple architecture and gradually vary the internal layers
(variations were informed by bibliographical suggestions and practitioner experience), with
the main aim of obtaining diversity in the final classification results. The backbones listed
in Table 1 are the result of a preliminary trial-and-error phase, where nine topologies were
tested and trained on the first fold on the Bird data set. Only those networks that converged
on the training data are reported below. Network 1 is the simple baseline convolutional
topology suggested by MATLAB for a Siamese network. The other topologies are designed
by adding variations to this baseline. Network 2 is an architecture that uses leaky ReLU. In
Network 3, the nonlinearities are alternated using either ReLU or max pooling after every
convolutional layer. Network 4 is similar to Network 1 but has different hyperparameters.
In Network 5, the sequence of layers reduces the size of the hidden layers to be very low
before the last FC layers. Hence, it has few parameters since the FC layer is small. Network
6 is the deepest network, with the size of the hidden layers decreasing very smoothly.
Network 7 has a dropout layer immediately after the input layer. In addition, it has no
ReLU layers, and all the nonlinearities are pooling layers. Network 8 is the shallowest
network. However, it is the one with the largest number of parameters since the last FC
layer is the largest.

3.2. Subtract Block, FC Layer, and Sigmoid Function

As illustrated in Figure 2, the subtract block operation subtracts the output of the two
networks and computes the absolute value, returning the feature vector:

Y = |F1 − F2|. (8)

Notice that, thanks to the absolute value, this quantity is unchanged by switching
the inputs X1 and X2, which is consistent with the fact that the similarity of two samples
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should be a symmetric function. The FC layer and the sigmoid function learn to predict
the dissimilarity of the inputs. The dissimilarity measure is not a metric since it does not
satisfy the triangular inequality and the identity property. However, it is continuous with
respect to the Euclidean metric, which means that arbitrarily small changes in the input
size lead to arbitrarily small changes in the output.

Table 1. CNN Siamese Networks (1–8) layers.

Siamese Network 1

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224

2D Convolution 215 × 215 × 64 6464 10 × 10 64

ReLU 215 × 215 × 64 0

Max Pooling 107 × 107 × 64 0 2 × 2

2D Convolution 101 × 101 × 128 401,536 7 × 7 128

ReLU 101 × 101 × 128 0

Max Pooling 50 × 50 × 128 0 2 × 2

2D Convolution 47 × 47 × 128 262,272 4 × 4 128

ReLU 47 × 47 × 128 0

Max Pooling 23 × 23 × 128 0 2 × 2

2D Convolution 19 × 19 × 64 204,864 5 × 5 64

ReLU 19 × 19 × 64 0

Fully Connected 4096 94,638,080

Siamese Network 2

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224 0

2D Convolution 220 × 220 × 64 1664 5 × 5 64

LeakyReLU 220 × 220 × 64 0

2D Convolution 216 × 216 × 64 102,464 5 × 5 64

LeakyReLU 216 × 216 × 64 0

Max Pooling 108 × 108 × 64 0 2 × 2

2D Convolution 106 × 106 × 128 73,856 3 × 3 128

LeakyReLU 106 × 106 × 128 0

2D Convolution 104 × 104 × 128 147,584 3 × 3 128

LeakyReLU 104 × 104 × 128 0

Max Pooling 52 × 52 × 128 0 2 × 2

2D Convolution 49 × 49 × 128 262,272 4 × 4 128

LeakyReLU 49 × 49 × 128 0

Max Pooling 24 × 24 × 128 0 2 × 2

2D Convolution 20 × 20 × 64 204,864 5 × 5 64

LeakyReLU 20 × 20 × 64 0 5 × 5

Fully Connected 2048 52,430,848
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Table 1. Cont.

Siamese Network 3

Layers Activations Learnable Filter Size Num. Filters

Input Layer 224 × 224

2D Convolution 55 × 55 × 128 6400 7 × 7 128

Max Pooling 27 × 27 × 128 0 2 × 2

2D Convolution 23 × 23 × 256 819,456 5 × 5 256

ReLU 23 × 23 × 256 0

2D Convolution 19 × 19 × 128 819,328 5 × 5 128

Max Pooling 9 × 9 × 128 0 2 × 2

2D Convolution 7 × 7 × 64 73,792 3 × 3 64

ReLU 7 × 7 × 64 0

Max Pooling 3 × 3 × 64 0 2 × 2

Fully Connected 4096 2,363,392

Siamese Network 4

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224

2D Convolution 218 × 218 × 128 6400 7 × 7 128

Max Pooling 54 × 54 × 128 0 4 × 4

ReLU 54 × 54 × 128 0

2D Convolution 50 × 50 × 256 819,456 5 × 5 256

ReLU 50 × 50 × 256 0

2D Convolution 48 × 48 × 64 147,520 3 × 3 64

Max Pooling 24 × 24 × 64 0 2 × 2

2D Convolution 22 × 22 × 128 73,856 3 × 3 128

ReLU 22 × 22 × 128 0

2D Convolution 18 × 18 × 64 204,864 5 × 5 64

Fully Connected 4096 84,938,752

Siamese Network 5

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224

2D Convolution 215 × 215 × 64 6464 10 × 10 64

Max Pooling 107 × 107 × 64 0 2 × 2

ReLU 107 × 107 × 64 0

2D Convolution 26 × 26 × 128 401,536 7 × 7 128

ReLU 26 × 26 × 128 0

2D Convolution 9 × 9 × 128 409,728 5 × 5 128

ReLU 9 × 9 × 128 0

2D Convolution 6 × 6 × 64 131,136 4 × 4 64

ReLU 6 × 6 × 64 0

Fully Connected 4096 9,441,280
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Table 1. Cont.

Siamese Network 6

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224

2D Convolution 218 × 218 × 64 3200 7 × 7 64

Max Pooling 109 × 109 × 64 0 2 × 2

ReLU 109 × 109 × 64 0

2D Convolution 107 × 107 × 128 73,856 3 × 3 128

Max Pooling 53 × 53 × 128 0 2 × 2

ReLU 53 × 53 × 128 0

2D Convolution 53 × 53 × 64 8256 1 × 1 64

ReLU 53 × 53 × 64 0

2D Convolution 51 × 51 × 128 73,856 3 × 3 128

ReLU 51 × 51 × 128 0

Max Pooling 25 × 25 × 128 0 2 × 2

2D Convolution 25 × 25 × 128 16,512 1 × 1 128

ReLU 25 × 25 × 128 0

2D Convolution 22 × 22 × 64 131,136 4 × 4 64

Max Pooling 11 × 11 × 64 0 2 × 2

ReLU 11 × 11 × 64 0

Fully Connected 4096 31,723,520

Siamese Network 7

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224

Dropout Layer 224 × 224 0

2D Convolution 218 × 218 × 64 3200 7 × 7 64

Max Pooling 109 × 109 × 64 0 2 × 2

2D Convolution 105 × 105 × 128 204,928 5 × 5 128

Max Pooling 52 × 52 × 128 0 2 × 2

2D Convolution 48 × 48 × 64 204,864 5 × 5 64

Max Pooling 24 × 24 × 64 0 2 × 2

2D Convolution 22 × 22 × 256 147,712 3 × 3 256

Max Pooling 11 × 11 × 256 0 2 × 2

2D Convolution 9 × 9 × 256 590,080 3 × 3 256

Fully Connected 4096 16,781,312
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Table 1. Cont.

Siamese Network 8

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224

2D Convolution 215 × 215 × 32 3232 10 × 10 32

Max Pooling 107 × 107 × 32 0 2 × 2

ReLU 107 × 107 × 32 0

2D Grouped
Convolution 101 × 101 × 64 50,240 7 × 7 64

2D Convolution 97 × 97 × 128 204,928 5 × 5 128

Max Pooling 48 × 48 × 128 0 2 × 2

ReLU 48 × 48 × 128 0

2D Grouped
Convolution 46 × 46 × 256 147,712 3 × 3 256

Fully Connected 4096 2.218,790,912

4. Clustering

Clustering algorithms segregate unlabeled samples into groups that maximize the
similarity and differences between members. Most of these algorithms calculate a centroid
(the mean) during the clustering process. Because centroids capture the salient characteris-
tics of patterns within a cluster, they can help reduce the dimensionality of the dissimilarity
space without losing too much critical information. Increasing the number of centroids
within each class retains even more significant information.

K-means clustering is one of the most popular and simplest clustering algorithms and
is the method used here. It partitions samples into k clusters defined apriori by placing
each observation into a cluster based on the nearest centroid as measured by the Euclidean
Distance. The standard k-means algorithm is a four-step process:

Step 1. Randomly select a set of centroids from the training data points;
Step 2. For each remaining data point in the training set, find the distance between it

and the nearest centroid;
Step 3. Calculate new centroids via a weighted probability distribution;
Step 4. Repeat Steps 2 and 3 until convergence.

5. Results

The generic image classification system proposed here is tested and compared with
the standalone classifiers and the state-of-the-art using four data sets representing two
classification tasks: audio classification (bird and cat vocalizations), with audio represented
by spectrograms, and two medical data sets (endoscopic videos and image-based classifica-
tion of maturation of human stem cell-derived retinal pigmented epithelium). The testing
protocol used for each data set is that which was initially proposed in the original papers.
The performance indicator is classification accuracy. The three data sets are described and
labeled in the experiments as follows:

• BIRDz [39]: This balanced data set is a real-world benchmark for bird species vocal-
izations. The testing protocol is ten-runs using the data split in [39]. The audio tracks
were extracted from the Xeno-Canto Archive (http://www.xeno-canto.org/ accessed
on 20 January 2021). BIRDz contains a total of 2762 acoustic samples from eleven
North American bird species along with 339 unclassified audio samples (consisting
of noise and unknown bird vocalizations). The bird classes vary in size from 246 to
259. Each observation is represented by five spectrograms: (1) constant frequency,

http://www.xeno-canto.org/
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(2) frequency modulated whistles, (3) broadband pulses, (4) broadband with varying
frequency components, and (5) strong harmonics;

• CAT [40,41]: This data set has ten balanced classes of cat vocalizations, with each class
containing ~300 samples for a total of 2962 samples taken from Kaggle, Youtube, and
Flickr. The testing protocol is 10-fold cross-validation. The average duration of each
sample is 4 s.

• InfLar [43]: This data set contains eighteen narrow-band imaging (NBI) endoscopic
videos of eighteen different patients with laryngeal cancer. The videos were retro-
spectively analyzed and categorized into four classes based on quality of the images
(informative, blurred, with saliva or specular reflections, and underexposed). The
average video length is 39s. The videos were acquired with an NBI endoscopic system
(Olympus Visera Elite S190 video processor and an ENF-VH rhino-laryngo video-
scope) with a frame rate of 25 fps and an image size of 1920 × 1072 pixels. A total
of 720 video frames, 180 for each of the four classes was extracted and labeled. The
testing protocol is three-fold cross-validation with data separated at the patient level
to ensure that the frames from the same class were classified based on the features
characteristic of each class and not on features linked to the individual patient (e.g.,
vocal fold anatomy).

• RPE [44]: This is a data set that contains 195 images for the classification of matu-
ration of human stem cell-derived retinal pigmented epithelium. The images were
divided into sixteen subwindows, each of which was assigned to one of four classes:
(1) Fusifors (216 images of nuclei and separated cells that are fuse shaped), (2) Ep-
ithelioid (547 images of relatively packed cells and nuclei that are globular in shape),
(3) Cobblestone (949 images of well-defined cell contours and cell walls that are tightly
packed, homogeneous cytoplasm, and hexagonal in shape), and (4) Mixed (150 images
containing two or more instances of the other three classes). Removed were images
that were out of focus or that contained only background information or other clutter.
The resulting total number of labeled images is 1862.

The Siamese networks in our experiments were trained with the options suggested by
the MATLAB framework for Siamese networks to make sure the values were not overfitted
on the selected data set. The parameters for ADAM optimization are learning rate: 0.0001;
gradient decay factor: 0.9; and squared gradient decay factor: 0.99. The number of iterations
was set to 3000 with no stop criterion.

The performance measures selected for evaluating the proposed approach and for
comparison with the literature are Area Under the ROC-curve (AUC) and accuracy. Both
are commonly reported in image classification. Accuracy is the ratio of the number of
true positives and the number of examples in the testing set. AUC is an indicator applied
to two-class problems and expresses the probability a given learner will assign a higher
score to a randomly picked positive sample versus a randomly picked negative one [49].
The “one vs. all” method for calculating a multiclass AUC is reported in the experiments
presented here.

The ensembles listed in Tables 2 and 3 were obtained by varying the network topology
and the input data (Sp refers to the spectrograms in the audio data sets; Im to the original
images in the InLar data set, and HASC to HASC features restructured as images). The
clustering method is k-means for all methods, and the number of prototypes belongs to
the set {15, 30, 45, 60}. The column #classifiers provides the number of classifiers in the
ensemble, and the first column Name is the label assigned to the ensemble.

As shown in Tables 2 and 3, the best average performance is obtained by the ensemble
F_NN6/8 using HASC images as the inputs to the Siamese network. Combining by sum
rule F_NN6-HASC and F_NN6-Spect/Im, the performance on CAT is 85.08, on BIRD 94.92,
and on InfLar 87.64. Clearly, the ensembles strongly outperform the network topologies.
The superiority of one method over another can be validated with the Wilcoxon signed-
rank test [50]: F_NN6-Hasc outperforms each of the other methods (except F_NN8-Hasc)
with a p-value of 0.05.
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The performance of the methods in [37,38] on the InfLar/RPE data sets is calculated
in this work using the original code, with no variation.

Table 2. Performance accuracy obtained considering different network topologies with HASC input
images. Best values are in bold-faced.

Name Input
Image

Network
Topology #Classifiers CAT InfLar BIRD RPE

HASC NN1 4 78.64 90.56 94.52 84.46

HASC NN2 4 81.69 88.33 93.22 84.75

HASC NN3 4 78.64 79.44 94.91 82.59

HASC NN4 4 82.37 88.33 93.33 84.58

HASC NN5 4 78.98 87.64 94.04 80.09

HASC NN6 4 80.68 89.72 93.09 85.22

HASC NN7 4 76.61 80.97 91.97 82.18

HASC NN8 4 78.64 85.69 91.37 80.84

F_NN4 HASC NN1 . . . NN4 16 84.07 89.86 94.99 84.80

F_NN6 HASC NN1 . . . NN6 24 84.41 91.11 95.10 85.24

F_NN8 HASC NN1 . . . NN8 32 84.75 90.56 95.10 84.80

[37] 82.41 74.86 92.97 66.19

[38] 84.07 89.86 94.99 84.80

Table 3. Performance accuracy obtained by different network topologies with input image = Spect/Im
(note: to reduce computation time and considering the low performance of RPE on Spect/IM (the
SNNs do not always converge during training), we only report the performance of NN1 and NN2).
Best values are in bold-faced.

Name Input
Image

Network
Topology #Classifiers CAT InfLar BIRD RPE

Spect/Im NN1 4 78.64 74.72 92.46 63.60

Spect/Im NN2 4 76.95 71.39 92.74 37.81

Spect/Im NN3 4 75.25 83.47 93.02 —

Spect/Im NN4 4 81.36 74.17 91.86 —

Spect/Im NN5 4 76.95 81.25 94.03 —

Spect/Im NN6 4 78.31 75.46 91.96 —

Spect/Im NN7 4 72.54 66.81 88.43 —

Spect/Im NN8 4 79.32 77.92 94.14 —

F_NN4 Spect/Im NN1 . . . NN4 16 79.32 79.17 93.44 —

F_NN6 Spect/Im NN1 . . . NN6 24 81.69 80.69 93.76 —

F_NN8 Spect/Im NN1 . . . NN8 32 83.39 79.58 94.24 —

It was shown in [38] that making ensembles of Siamese networks by varying clustering
algorithms is not as advantageous as combining different topologies. For this reason, in this
work, the focus is only on generating ensembles of Siamese networks trained with different
topologies. Reported in Tables 4 and 5 is a comparison between the Siamese networks and
standard CNNs tested in previous papers. The CNN labeled eCNN is the sum rule among
the different CNNs tested in a given data set. Accuracy is reported in Table 4 and AUC in
Table 5. The following conclusions can be drawn examining Tables 4 and 5:
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• The proposed F_NN6-Hasc ensemble improves previous methods based on Siamese
networks;

• F_NN6 obtains a performance that is similar to eCNN on BIRD but lower than eCNN
on the other data sets;

• Results show that the gap in performance between an ensemble of Siamese networks
and CNNs is closing.

Table 4. Performance accuracy obtained considering different standard CNN. Best values are in
bold-faced.

Method CAT BIRD InfLar RPE

F_NN4-Hasc 84.07 94.99 89.86 84.80

F_NN6-Hasc 84.41 95.10 91.10 85.24

F_NN8-Hasc 84.75 95.10 90.56 84.00

GoogleNet 82.98 92.41 90.42 87.70
VGG16 84.07 95.30 91.53 89.27
VGG19 83.05 95.19 92.22 89.30

GoogleNetP365 85.15 92.94 93.61 88.51
eCNN 87.36 95.81 94.03 89.82

F_NN6-Hasc + eCNN 88.14 96.04 95.56 89.75
F_NN8-Hasc + eCNN 88.14 96.04 94.86 89.86

Table 5. Performance (AUC) obtained considering different standard CNNs. Best values are in
bold-faced.

Method CAT BIRD InfLar RPE

[37] 0.967 0.983 0.906

F_NN4-Hasc 0.973 0.993 0.982 0.938

F_NN6-Hasc 0.973 0.993 0.985 0.937

F_NN8-Hasc 0.975 0.995 0.985 0.933

GoogleNet 0.979 0.994 0.992 0.966
VGG16 0.984 0.997 0.994 0.966
VGG19 0.981 0.997 0.995 0.972

GoogleNetP365 0.986 0.995 0.993 0.969
eCNN 0.987 0.997 0.996 0.972

F_NN6-Hasc + eCNN 0.986 0.996 0.997 0.968
F_NN8-Hasc + eCNN 0.987 0.997 0.997 0.969

The best performance across all four data sets is obtained by the weighted sum rule
between eCNN and F_NN6/8-Hasc (i.e., the fusion of the CNNs and the Siamese networks).
Before the fusion, the scores of eCNN and F_NN6/8-Hasc were normalized to mean 0 and
standard deviation 1. In the weighted sum rule, the weight of eCNN is 4 (since we use
4 CNNs), while the weight of F_NN6/8-Hasc is 1.

The fine-tuning of CNN pre-trained on ImageNet on the data sets is reported in
Table 4 and was performed with the following training options: batch size: 30; max epoch:
20; learning rate: 0.0001 (for all the networks with no freezing). Data augmentation was
applied only for InfLar with image reflections on the two axes and random rescaling
using a factor uniformly sampled in [1,2]. No data augmentation was used for CAT and
BIRD, where the input is a spectrogram. Moreover, it should be stressed that no data
augmentation to reduce computation time was used with the Siamese networks.

GoogleNet was also trained with the HASC images. In this case, performance dropped
compared to training on the original images. Also tested was ResNet50 as a backbone for
the Siamese networks, but it failed to converge in our tests.
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In Table 6, the state-of-the-art is reported on the tested data sets using the same testing
protocols that were used in all the other experiments. The performance of the ensembles
presented in this paper approximate those reported in the literature and obtain the state-
of-the-art performance on the InfLar data set. This shows the generalizability and power
of the proposed system. In the RPE data set, the fusion of Siamese and CNNs does not
improve eCNN, but Hasc clearly improves performance on that data set.

Table 6. Literature results (accuracy).

Authors Reference CAT BIRD InfLar RPE

Nanni et al. [51] — 96.3 — —
Nanni et al. [52] — 95.1 — —
Zhao et al. [53] — 93.6 — —

Pandeya & Lee. [41] 87.7 — — —
Pandeya et al. [40] 91.1 — — —
Pandeya et al. [40]−CNN 90.8 — — —
Zhang et al. [39] — 96.7 — —
Patrini et al. [54] — — 93.25 —
Moccia et al. [43] — — 80.25 —
Nanni et al. [55] — — — 97.1

Note that in Table 6 two results are reported from [40]; they are distinguished with the
labels [40] and [40]−CNN.

For a fairer comparison among the different topologies, a fuller experimental evalua-
tion across many more image/video data sets is required. Be that as it may, we believe that
the experiments presented in this paper speak to the robustness and generalizability of
the proposed system, which achieves competitive classification accuracy compared to the
state-of-the-art in the literature across four different image data sets without any ad-hoc
parameter tuning. Moreover, results were obtained following a clear and unambiguous
testing protocol. The value of reporting the results of a system across different data sets
is that the results can reasonably serve as a baseline for comparisons with new methods
introduced in the future.

6. Conclusions

The image classification system proposed here experimentally derived an ensemble
of Siamese networks that were utilized to generate dissimilarity spaces for the purpose of
image classification. A compact descriptor was obtained by projecting each sample into the
dissimilarity spaces generated by k-means using different sets of centroids combined with
the outputs of a set of eight Siamese networks. The classification step was performed by
SVMs trained on the resulting descriptors, with the SVMs combined by sum rule. Both the
original images and HASC images served as the input. This approach resulted in a highly
competitive ensemble, as tested on four very different data sets: two for animal vocalization
classification, one for classifying narrow-band imaging (NBI) endoscopic videos, and
another for classifying the maturation of human stem cell-derived retinal pigmented
epithelium. Experimental results demonstrated the competitiveness and generalizability of
the proposed approach compared to other methods, with the new system achieving the
state-of-the-art on the InfLar NBI video data set. The fusions improved performance on all
four data sets, outperforming the standalone CNNs.

Future work generating dissimilarity spaces with Siamese networks will focus on
experimentally deriving more robust and generalizable ensembles. The goal will be to
assess this approach across many more classification problems, such as those cited in [36,56].
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