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Simple Summary: Using a visual-based clustering method on the TCGA RNA sequencing data of a
large adrenocortical carcinoma (ACC) cohort, we were able to classify these tumors in two distinct
clusters largely overlapping with previously identified ones. As previously shown, the identified
clusters also correlated with patient survival. Applying the visual clustering method to a second
dataset also including benign adrenocortical samples additionally revealed that one of the ACC
clusters is more closely located to the benign samples, providing a possible explanation for the
better survival of this ACC cluster. Furthermore, the subsequent use of machine learning identified
new possible biomarker genes with prognostic potential for this rare disease, that are significantly
differentially expressed in the different survival clusters and should be further evaluated.

Abstract: Adrenocortical carcinoma (ACC) is a rare disease, associated with poor survival. Several
“multiple-omics” studies characterizing ACC on a molecular level identified two different clusters
correlating with patient survival (C1A and C1B). We here used the publicly available transcriptome
data from the TCGA-ACC dataset (n = 79), applying machine learning (ML) methods to classify the
ACC based on expression pattern in an unbiased manner. UMAP (uniform manifold approximation
and projection)-based clustering resulted in two distinct groups, ACC-UMAP1 and ACC-UMAP2,
that largely overlap with clusters C1B and C1A, respectively. However, subsequent use of random-
forest-based learning revealed a set of new possible marker genes showing significant differential
expression in the described clusters (e.g., SOAT1, EIF2A1). For validation purposes, we used a
secondary dataset based on a previous study from our group, consisting of 4 normal adrenal glands
and 52 benign and 7 malignant tumor samples. The results largely confirmed those obtained for
the TCGA-ACC cohort. In addition, the ENSAT dataset showed a correlation between benign
adrenocortical tumors and the good prognosis ACC cluster ACC-UMAP1/C1B. In conclusion, the
use of ML approaches re-identified and redefined known prognostic ACC subgroups. On the other
hand, the subsequent use of random-forest-based learning identified new possible prognostic marker
genes for ACC.
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1. Introduction

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with an incidence
rate of approximately 0.7–2.0 per million [1] and is characterized by high aggressiveness,
which leads to poor prognosis. The 5 year overall survival rate ranges from 16% to 47% and
is particularly poor in patients with metastatic disease [2]. Complete surgical resection is
the treatment of choice in localized ACC and is virtually the only option to achieve a cure.
As recurrence is frequent, adjuvant therapy is recommended in most patients [3,4]. Despite
continuous development in therapeutic concepts of ACC, the improvements brought to
patient survival remain modest [5,6]. Preliminary studies on the molecular events leading
to tumorigenesis in ACC [7] led to the first molecular targeted therapies, such as IGF1R
(insulin-like growth factor 1 receptor) [8] and VEGF (vascular endothelial growth factor) [9]
inhibitors, which all proved disappointing [10]. Given the situation only five years ago, it
was even pessimistically asserted that a breakthrough might not be in sight for the next 10 to
15 years [11]. Therefore, detailed information about the molecular and genetic background
of tumorigenesis in ACC is still as needed as before. In more recent years, with the advent
of affordable next generation sequencing and through concerted efforts of international
consortia, several pan-genomic studies were performed in adrenocortical tumors with
the goal to better understand the mechanisms that lead to adrenal tumorigenesis and are
linked to worse clinical outcome [12–15].

In the first integrated genomics study on ACC, Assié et al. [12] uncovered several novel
molecular features by performing a multi-omics profiling of germline and somatic exomes,
copy number variations, DNA methylation, as well as mRNA and miRNA expression in
45 ACC tissues. Among other things, the authors confirmed that somatic copy number
alterations (gains and losses) are common in ACC as shown by prior single nucleotide
polymorphism array studies [16]. While also confirming previously identified alterations
in CTNNB1, TP53, CDKN2A, RB1, and MEN1, the authors also identified novel somatic
alterations in ZNRF3, DAXX, TERT, and MED12. The gene most frequently targeted
for somatic alteration was ZNRF3, altered in 21% of ACC and mutually exclusive with
mutations in CTNNB1. This alteration suggests that Wnt ligands may be implicated in
the tumorigenesis of a subset of ACC [17]. The authors also identified a unique miRNA
signature associated with an imprinted DLK1-MEG3 cluster downregulated in a subset of
ACC that the group identified earlier and named C1B [18]. Importantly, they also showed
a higher mutation rate and higher incidence of recurrent mutations in the other subset,
called C1A, which was also associated with a poorer prognosis. These data were partly
validated by Juhlin et al. [14], who performed whole-exome sequencing and copy number
variations screening in a cohort of 41 ACC tissues.

In 2016, the largest multiplatform study on adrenocortical carcinoma to date followed
as part of the consortium of genomic cancer studies—The Cancer Genome Atlas project
(TCGA-ACC) [15]. The involvement of TCGA enabled the inclusion of 91 international ACC
samples in the study. However, the number of samples analyzed varied for each method:
whole-exome sequencing (n = 90), mRNA sequencing (n = 79), miRNA sequencing (n = 79),
DNA copy number via SNP arrays (n = 89), DNA methylation via DNA methylation arrays
(n = 79), and targeted proteome from reverse phase protein array (RPPA; n = 45). Compared
to Assié et al., TCGA-ACC identified additional recurrent somatic alterations in PRKAR1A,
RPL22, TERF2, and CCNE1, and somatic alterations in epigenetic modifiers including MLL
family members, SETD2, TET1, and SMARCA4. Somatic mutations observed in ACC
affected in ~45% of cases the cell cycle, in ~40% the Wnt pathway, and in ~20% epigenetic
modifiers. Looking at the copy number alterations, TCGA-ACC identified three recurrent
profiles: quiet (diploid tumor genome), chromosomal (frequent whole chromosome loss of
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heterozygosity and hypodiploidy in a subset of tumors), and noisy (frequent focal gains
and losses). A subset of the “noisy” and “chromosomal” tumors was also characterized by
whole genome doubling, associated with TERT overexpression. “Chromosomal” tumors
with genome doubling and “noisy” tumors in general were also associated with worse
prognosis [15].

TCGA-ACC identified that ACCs can also be classified in steroid-low/immune-high
(low expression of steroidogenic markers and high-expression markers associated with
an activated immune response) and steroid-high (high-expression of steroidogenic mark-
ers). Both categories can be further subdivided considering cell-cycle activation markers.
Steroid-low/low proliferation tumors were associated with the previously identified “good
prognosis” C1B cluster, whereas steroid-high/high-proliferation signature was associated
with the “poor prognosis” C1A cluster. Combining all the data from all the different ap-
proaches, ACC-TCGA divided the ACCs into three distinct molecular subtypes, referred to
as cluster of clusters (COC) 1, COC2, and COC3, directly correlating with patient prognosis:
COC1 tumors—best prognosis, COC2 tumors—intermediate prognosis, and patients with
COC3 tumors had the worst prognosis, with rapid disease progression [15].

What all these above-mentioned studies [13–15] have in common is the use of multi-
platform molecular profiling and clustering of genome wide data into several prognostic
relevant clusters. However, the multi-platform nature of these studies makes them also
very costly and unpractical to be routinely used in patient stratification in a clinical set-
ting. Furthermore, while defining the clustering analyses as unsupervised, the authors
perform several adjustments to the datasets—for example, quantification cut-offs, selection
of adrenal cortex specific markers and assisted combinations at different levels, which
are introducing a scientist-biased component into the analysis, making it even harder to
adapt the retrospective analysis into clinical everyday life. In this study, we present a
new, simple, unsupervised, machine-learning-based method that is delivering the same
clustering power for the adrenocortical tumors as the original complex analysis, based only
on the mRNA expression dataset from the ACC-TCGA study and validated in a separate
cohort of adrenocortical tumors that was previously evaluated by RNA-seq [19].

2. Materials and Methods
2.1. Patient Cohorts

In this work, we used the RNA-sequencing data provided by the TCGA-ACC con-
sortium consisting of 79 ACC samples [20] (accessed on 8 August 2019). For our analyses,
we used the fragments per kilobase per million (FPKM) files as input. For independent
confirmation, we additionally used a dataset published recently by the ENSAT consor-
tium [19] after being granted access to the sequencing results and clinical data. This dataset
containing RNA-sequencing results, consists of ACC (n = 7) samples, but mainly of non-
malignant forms: normal adrenal glands (NAG, n = 4) and adrenocortical adenomas (ACA;
n = 52), differentiating between endocrine inactive adenomas (EIA; ns = 9), adenomas with
mild autonomous cortisol secretion (MACS-CPA; n = 17) and Cushing syndrome cortisol
producing adenomas (CS-CPA; n = 26). As this study is only an in silico reanalysis of
previously published data, no ethic committee approval was needed.

2.2. Bioinformatics Analyses

A Jupyter Notebook environment (version 7.5.0) was used to perform all bioinformatic
steps using Python version 3.6.9, scikit-learn version 0.22.1 [20], SciPy version 1.3.0 [21]
and pandas version 0.24.2 [21,22]. The notebook for the unsupervised UMAP clustering is
available upon request.

2.2.1. Uniform Manifold Approximation and Projection (UMAP) Clustering

For UMAP clustering and plotting, we used euclidean_distances from the
sklearn.metrics.pairwise module to determine the squared pairwise Euclidean distance
between samples of the initial data set, on which the local connectivity parameter rho,
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together with the first nearest neighbor, is based. For each entry of the distance matrix, the
sum of probabilities in the high-dimensional space is calculated. The nearest neighbors
and the probabilities for each entry determine the entropy and, based on a binary search
the optimal rho for a fixed number of the 15 nearest neighbors is computed. To satisfy the
symmetry condition of the UMAP algorithm we used a simplified calculation: instead of
subtracting the product of the probability and the transposed probability from the sum
of the probability and the transposed probability, we divided the sum by 2. For the sub-
sequent building of low-dimensional probabilities we used mind_dist = 0.25. As a cost
function, we used cross-entropy—with a normalized Q parameter. The gradient of it was
used in the gradient descent learning—using the regular instead of the stochastic one with
2 dimensions and 50 neighbors.

Based on the results of the UMAP, we manually curated the data, determined the
clusters for subsequent analysis and deleted three outliers (TCGA-OR-A5J8, TCGA-OR-
A5JB, and TCGA-P6-A5OG—Table S1). Two of these three outliers (TCGA-OR-A5J8 and
TCGA-OR-A5JB) have been classified as sarcomatoid samples in the original publication
and were, therefore, expected to be outliers. The last datapoint (TCGA-P6-A5OG) was not
described at all in the original work but, as all three samples cluster closely together, is
most probably also a sarcomatoid sample. We then again performed the described UMAP
plotting with the curated data for better cluster representation, obtaining two distinct
clusters, which we named ACC-UMAP1 and ACC-UMAP2 according to their position in
the given UMAP.

2.2.2. Random Forest Learning

Based on the obtained clusters, we trained a supervised random forest (RF) classifier
(RandomForestClassifier of the sklearn.ensemble module) to specify the transcriptional
differences—based on unprocessed FPKM values—between the two identified clusters.
For training our model, we used a 50/50 split, letting the model learn on 50% of the data
and evaluating it on the other 50%, with 1000 trees in the forest (n_estimators = 1000).
We trained 100 models and determined the 100 features—representing the ensemble gene
IDs—with the highest impact on the model using the according “feature values”, which
imply the importance of the corresponding feature. For each feature, we counted its
occurrence in the top 100 for each of the 100 trained models, creating a form of ensemble
technique. For subsequent analysis, the combined top 100 genes—according to the number
of appearances in the top 100 of each individual model and the calculated mean rank—
from these, 100 different models were used, adapted from a previous analysis [23]. For
the 100 trained models, the minimum testing accuracy is 81.58%, the maximum testing
accuracy is 100%, and the mean testing accuracy over all different models is 95.5%. Within
these 100 trained models, 18 had a testing accuracy of 100%. The 5-fold cross-fold validation
yielded a mean accuracy of 96.00% ± 5.33%.

2.2.3. Mutation Analysis

For further insight into the differences between the determined clusters, we also in-
vestigated common mutations for ACC, namely TP53, CTNNB1, NF1, APC, ZNRF3, MEN1,
GNAS, and ATRX. The information on the mutational status of the samples were obtained
from cbioportal (https://www.cbioportal.org/ accessed on 2 September 2020) [24,25].

2.2.4. Plots and Statistical Analysis

Box and scatter plots were generated using matplotlib. For survival analysis, Kaplan
Meier (KM) plots were generated using the lifelines module (version 0.23.1) [26]. If not
stated otherwise, the statistical tests for clinical characteristics and mutation analysis
were performed using Kruskal–Wallis-Test—using scipy.stats module including indicated
significances in the box and scatter plots, for which we used the statannot module for
python (version 0.2.2). For the analysis of further interactions and relations between the
identified top 100 genes, we used a network generated by StringDB [27] showing a close

https://www.cbioportal.org/
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relation of the genes used for further analysis. Kaplan–Meier followed by Cox regression
analysis was used to estimate overall survival (OS) using IBM SPSS v 26 for Windows.

3. Results
3.1. An UMAP Clustering Approach Is Able to Generate Two Distinct Clusters of ACC Samples
That Largely Confirm Previously Published Clusters and Correlate with Patient Survival

In a first UMAP clustering approach of the log transformed FPKM values of the
whole TCGA-ACC dataset, most of the samples were attributed to two large clusters, with
only three samples not fitting in these clusters (Figure S1A). After curating the dataset
by eliminating these outliers from the analysis (see Table S1), the subsequent UMAP
provided two distinct clusters, which we named “ACC-UMAP1” (the left cluster) and
“ACC-UMAP2” (the right cluster) (Figure 1A). We correlated the samples from these two
clusters with the different clustering characteristics that were attributed to these samples in
the original description by Zheng et al. [15] and, interestingly, the clusters generated by our
UMAP approach overlapped very well with several clusters published before (Table S1).
Most importantly, the clusters identified this way overlapped nearly completely with the
clusters C1A and C1B from the Zheng et al. study (Figure 1B), with only 9 samples (11.84%)
not directly matching our cluster assignment. As clusters C1A and C1B were already
shown to tightly correlate with patient prognosis [12], it was no surprise that the two
ACC-UMAP clusters also correlated very well with the overall survival of the patients
(12.46 (95%CI 11.43–13.48) vs. 7.38 (95%CI 5.48–9.27) years, hazard ratio for death 6.27
(95%CI 2.34–16.77, p = 0.000029) (Figure 1C). Cluster ACC-UMAP1, mostly overlapping
with the C1B cluster, is associated with a better prognosis, while ACC-UMAP2 is associated
with a poorer prognosis, as previously described. The ACC-UMAP clusters also correlated
very well with other clusters from Zheng et al., like the steroid and immune phenotype
with only 11 samples (14.47%) off (Figure S1B), and with the COC with only 9 samples
(11.84%) that clustered differently (Figure S1D). In contrast, the genomic doubling clusters
from Zheng et al. were distributed independently over the two described UMAP clusters
(Figure S1C).

We applied the same UMAP approach to a dataset published recently by the ENSAT
consortium [19] which contained only 7 ACCs but many other adrenocortical tissues, either
from normal adrenal glands or from different benign adrenocortical tumors, as previously
described [19]. Interestingly, the obtained clusters for the ACC samples show a similar
clustering to the ACC-TCGA samples, with an ACC-UMAP1 cluster on the left side and
an ACC-UMAP2 on the right side, even though the sample numbers are comparatively
low (Figure 1D). Additionally, the number of samples per cluster with roughly 50% each
(4 left, 3 right) is comparable to the ACC-TCGA results (40 left, 36 right). Due to the
low number of ACC samples in this dataset, we could not perform a statistically relevant
analysis regarding patient survival, however, we observed that 2 out 3 (66.7%) ACC of the
ACC-UMAP2 cluster died (median survival was 7.25 years), whereas none of the ACC
patients of the ACC-UMAP1 cluster died due to the disease during the time interval of
the study. Another interesting cluster is the one containing nearly all of the benign tumor
samples, which is close to the ACC-UMAP1 cluster, showing a closer relation between
these two (Figure 1D).
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3.2. Random Forest Analysis Identifies 100 Genes That Are Differentially Expressed in Cluster
ACC-UMAP2, but Most of These Genes Have Not Yet Been Associated with Adrenocortical
Tumorigenesis

Being able to recreate already established ACC clusters with our UMAP approach,
we were interested in the molecular differences between the identified clusters. Applying
RF learning, we were able to determine the 100 genes with the most influence in distin-
guishing our clusters (Figure S2). Further analyses revealed that 98 of these 100 genes were
overexpressed in the ACC-UMAP2 cluster as compared to the ACC-UMAP1 cluster of
the ACC-TCGA data (Figure 2, Table S2). The only two exceptions were CSGALNACT1,
encoding for chondroitin sulfate N-acetylgalactosaminyltransferase 1, an enzyme usually
associated with cartilage development and KLRB1, encoding for the killer-cell lectin-like
receptor B1, a type II membrane protein known to play an inhibitory role on natural killer
cell cytotoxicity (Figure S2). Surprisingly, the vast majority of the 100 genes identified
by the RF analysis have little known connection with the adrenocortical function and
tumorigenesis. Notably, among the known genes we found the solute carrier family 2
member 1/glucose transporter 1 (SLC2A1/GLUT1) (Figure 2A), an important, stage inde-
pendent predictor of ACC patient outcome [28] as well as those encoding for the sterol-O
acyltransferase (SOAT1) (Figure 2B) and eukaryotic translation initiation factor 2 α (EIF2S1)
(Figure 2C), both known to be involved in endoplasmic reticulum stress processes in the
adrenocortical tissues associated with mitotane treatment and also having an influence
on ACC patient outcome [29,30]. There were also other interesting genes overexpressed
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in the poor survival cluster ACC-UMAP2 that were already reported in the context of
adrenal function disturbances, such as the proto-oncogene MYC (Figure 2D) [31] the TGF-β
signal transducer SMAD2 (Sma—and mad-related protein 2) (Figure 2E) [32], the mitotic
checkpoint gene BUB3 (udding uninhibited by benzimidazoles 3 homolog) (Figure 2F) [33]
and ASB4 (ankyrin repeat and SOCS box containing 4) (Figure 2G) [20]. MED27 (mediator
complex subunit 27) (Figure 2H), a cofactor involved in the transcriptional initiation by the
RNA polymerase II apparatus was shown to be involved in adrenal cortical carcinogenesis
by targeting the Wnt/β-catenin signaling pathway and the epithelial-mesenchymal tran-
sition process [34]. FSCN1 (Figure 2I), a fascin family member, was recently shown to be
associated with tumor invasiveness in ACC [35] and GNAI3 (guanine nucleotide binding
protein (G protein), alpha inhibiting activity polypeptide 3) (Figure 2J) was shown to be
increased in nutrient starved adrenal glands in RGS4ko mice [36].
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Looking at the mRNA expression of the same factors in the validation dataset, it
became obvious that, while some of the genes followed the same pattern of expression
as in the ACC-TCGA dataset, some differed (Figure S3A). Furthermore, in the validation
cohort we observed only a tendency of overexpression in most of the genes, without
significant differences (Table S3), probably due to the low number of ACC cases in this
dataset. However, more interesting are the differences in expression between the two ACC
clusters and the normal adrenal glands and adrenocortical adenomas (Figures S3A and 3).
For example, while the expression of SLC2A1 (GLUT-1) is higher in ACC than in NAG
and adenomas and highest in the ACC-UMAP2 cluster (Figure 3A), the expression of
MYC for example is significantly lower in both ACC clusters when compared to the
NAG (Figure 3D). This is in conformity with previously published data that shows low
MYC expression in adrenocortical tumors [31,37]. We performed these analyses while
also considering the different ACA entities (EIA, MACS-CPA and CS-CPA) separately
(Figure S3B, Table S4), however, as there were no significant differences between the three
subgroups, we pooled all ACAs together for the main analysis.
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Figure 3. Selection of mRNA expression pattern of 10 genes from the validation dataset, as identified by RF analysis,
that were previously shown to be involved in adrenal function. SLC2A1: solute carrier family 2 member 1 (A), SOAT1:
sterol-O acyltransferase (B), EIF2S1: eukaryotic translation initiation factor 2 α (C), MYC: proto-oncogene MYC (D), SMAD2:
sma—and mad-related protein 2 (E), BUB3: budding uninhibited by benzimidazoles 3 homolog (F), ASB4: ankyrin repeat
and SOCS box containing 4 (G), MED27: mediator complex subunit 27 (H), FSCN1: fascin actin-bundling protein 1 (I),
GNAI3: guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (J). NAG = normal adrenal
gland; ACA = adrenocortical adenoma; ACC = adrenocortical carcinoma. ns, not significant. * p < 0.05, ** p < 0.01, ns, not
significant. Y-axis units: FPKM.
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To gain further insight into possible connections of the identified genes, we performed
a network analysis, showing that overall, half of the top 100 genes is interconnected in a
large network that is involved in both cell division and transcription control.

3.3. Mutational Analysis Reveals CTNNB1 and TP53 as the Only Known Differentially
Mutated Genes

Previous studies have already shown the close relation between the C1A/C1B clusters
and mutation status. To further confirm our used approach, we additionally looked at
driver mutations and their impact on cluster affiliation. Analysis of known driver mutations
in ACC, including TP53, CTNNB1, NF1, APC, ZNRF3, MEN1, GNAS, and ATRX, show
that there is only a small proportion of genes that are significantly altered within the UMAP
identified clusters. For NF1, APC, ZNRF3, GNAS, and ATRX, no significance could be
observed. Only for the genes TP53 (ACC-UMAP2 vs. ACC-UMAP1: 11 vs. 1 sample,
p = 0.042) and CTNNB1 (ACC-UMAP2 vs. ACC-UMAP1: 12 vs. 1 sample, p = 0.00026)
were significant results present with a higher proportion of mutated samples in the right
cluster. For MEN1 a tendency was observable (p = 0.058), also with more mutated samples
in the right cluster. As such, these analyses confirm our used approach and confirm the
cluster ACC-UMAP2 as the worse cluster regarding both survival and distribution of
mutated genes.

4. Discussion

In comparison to Zheng et al. [15], our approach considers only the mRNA expression,
as it was performed previously by de Reyniès et al., in 2009 [18]. At that time, a gene
signature was determined on the basis of mRNA from microarrays, based on hierarchical
clustering methods [7], which identified the two groups C1A/C1B. Compared to Zheng
et al., who performed a pre-selection of genes before the clustering analysis (only consid-
ering the genes that are expressed in more than 25% of the samples and then only the
5000 most variable genes), we do not limit the amount of data in our approach using all
possible 60.483 transcripts provided by TCGA for our analysis, which is also the strength
of our study. Despite this difference, we can almost completely confirm the grouping
according to C1A and C1B, just as Zheng et al. had in their “K2” approach, who already
showed the separability into these two groups in their data. When we split the clusters
further to take into consideration the samples that clustered differently between the C1A/B
system and our ACC-UMAP1/2 system, it became clear that the unbiased UMAP cluster-
ing system is more robust in clustering together samples with similar expression patterns.
This is shown by the fact that in the majority of the split cases the differences between
the different UMAP sub-clusters were non-significant while this was not the case for the
C1A/B sub-clusters.

The subsequent use of a RF to identify the transcriptomic differences between the
two groups shows great differences between the two approaches. While Zheng et al.
name 151 genes in their K4 approach and de Reyniès et al. can limit their overall survival
prediction to only 2 genes (BUB1B and PINK1) [18], we show 100 genes that are most likely
to separate the two clusters found. Because of the unbiased consideration of all possible
transcripts, it is not surprising that the top 100 genes identified are mostly unknown in the
field of tumorigenesis or adrenocortical function, because preselection of variable genes
was widely used before the era of machine learning. This might be considered a weakness
of our method and leads to apparently strange results. For example, the overlap of the
top 100 genes of our approach compared to the K4 approach of Zheng et al. is just one
gene—ASB4. It is also striking that 98 genes are overexpressed in one of the clusters and
only two in the other cluster. However, this is solely a representation of the approach,
which represents the most influential genes for the learned models. Despite this, we
could still find at least 10 genes among the top 100 that were previously reported in the
context of the adrenal function, underlining their importance in the adrenocortical disease
progression, also strengthening the results and the approach. The prognostic role of some
of these genes was reported before, as in the case of SLC2A1/GLUT1 [28] or FSCN1 [35]. In
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other cases, such as with GNAI3, an increase in gene expression was reported in nutrient
starved adrenal glands in a mouse model [36], starvation that is often observed in adrenal
cancer. The fact that GNAI3 expression is highest in the poor prognosis cluster ACC-
UMAP2 and low in ACC-UMAP1 and benign adrenal tissues show that this gene has
high prognostic potential. Nevertheless, a gene does not have to already be reported in
the context of adrenal disease to be considered a good prognostic candidate. Just to take
one example, while not yet analyzed in adrenal cancer, CBX3 (Chrombox 3) has a similar
expression pattern between the different clusters with low expression in normal and benign
adrenocortical tissues and high expression in ACC, especially in the poor prognosis cluster
ACC-UMAP2. While it has no obvious connection with adrenal function, it is a gene that is
involved in histone methylation and was associated with other types of cancer [38]. We
are confident that the future analysis of the RF generated top 100 list of genes will bring to
light several new prognostic markers for ACC.

Our results also show that for the known mutations, CTNNB1 and TP53 both cluster
significantly differently between the two ACC-UMAP clusters. Combining these results
with the tendency observed for MEN1 (1 mutated sample in the left and 5 in the right
cluster) and the significant survival differences between the two clusters, it can be indirectly
assumed that these mutations do have an impact on patient survival.

Here we show a novel, completely unbiased way to clusters the TCGA-ACC dataset
without limiting the input data. We were able to clarify and maybe even refine the already
established and well-known ACC subgroups C1A and C1B described by TCGA-ACC.
Also, the novel differentially expressed genes discovered by our approach should be
further investigated and verified in future work regarding their potential role as prognos-
tic biomarkers.

5. Conclusions

In the present work, we applied machine-learning methods to a published ACC
dataset generated by the TCGA consortium and validated it in an ENSAT generated
dataset. First, we applied UMAP, a standard clustering method in single-cell sequencing
analysis, to identify possible clusters within the data. This approach yielded two clusters
that match to a large extent (>80%) the already published and well-known ACC clusters
(C1A/C1B). Subsequent survival analyses confirmed the clusters found by our approach
and show a significant survival advantage for the ACC-UMAP1 cluster (corresponding to
the already described C1A cluster). Examination of known mutations distribution within
the clusters showed a significant accumulation of mutations of the CTNNB1 and TP53
genes in the poorer survival cluster (ACC-UMAP2). The subsequent use of a RF learning
revealed the 100 genes that have the greatest influence on the separation of the two clusters
and could potentially serve as new biomarkers or novel targets for therapeutic approaches.
Taken together, we were able to show the capabilities of machine-learning-based methods
by identifying and redefining the already well-known C1A and C1B cluster of the TCGA-
ACC cohort and opening up their further evaluation and use in sub-group identification
research also for other entities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13184671/s1, Table S1. Clinical characteristics and different associated clustering
of the ACC samples in the ACC-TCGA cohort; Table S2. Differential mRNA expression levels of
the 100 genes selected by random forest in the ACC-TCG) cohort; Table S3. Differential mRNA
expression levels of the 100 genes selected by random forest in the validation (ENSAT) cohort con-
sidering all the ACA subgroups together; Table S4. Differential mRNA expression levels of the
100 genes selected by random forest in the validation (ENSAT) cohort considering all the ACA
subgroups separately; Figure S1. Various UMAP (Uniform Manifold Approximation and Projection)
cluster representations for the TCGA-ACC dataset. Representation of the UMAP of the. (A) ACC-
TCCA dataset and the overlap with different molecular clustering from the original publication of
Zheng et al. [15] without outliers: steroid phenotype (B), genome doubling (gd; (C)) and cluster
of clusters (COC; (D)).; Figure S2. mRNA expression pattern of all top 100 genes, in alphabetical
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order, from the validation dataset, considering the different ACA entities separately, as identified
by random forest. NAG = normal adrenal gland; EIA = endocrine inactive adrenocortical adenoma;
MACS-CPA = mild autonomous cortisol secreting adrenocortical adenoma; CS-CPA = Cushing syn-
drome cortisol producing adenoma; ACC = adrenocortical carcinoma. ns, not significant. p < 0.05,
* p < 0.01, *** p < 0.0001. Y-axis units: FPKM; Figure S3. STRING-DB network (https://string-db.org/,
accessed on 8 August 2019) analysis of known interactions between the top 100 genes as identified by
random forest learning to separate the ACC-TCGA dataset in clusters.
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