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Abstract
In option pricing, it is customary to first specify a stochastic underlying model
and then extract valuation equations from it. However, it is possible to reverse this
paradigm: starting from an arbitrage-free option valuation formula, one could derive
a family of risk-neutral probabilities and a corresponding risk-neutral underlying as-
set process. In this paper, we start from two simple arbitrage-free valuation equations,
inspired by the log-sum-exponential function and an �p vector norm. Such expres-
sions lead respectively to logistic and Dagum (or “log-skew-logistic”) risk-neutral
distributions for the underlying security price. We proceed to exhibit supporting mar-
tingale processes of additive type for underlying securities having as time marginals
two such distributions. By construction, these processes produce closed-form valua-
tion equations which are even simpler than those of the Bachelier and Samuelson–
Black–Scholes models. Additive logistic processes provide parsimonious and simple
option pricing models capturing various important stylised facts at the minimum price
of a single market observable input.

Keywords Logistic distribution · Additive processes · Derivative pricing · Dagum
distribution · Generalised z-distributions

Mathematics Subject Classification (2020) 91G20 · 60G51

JEL Classification G12

1 Introduction

The classic early asset pricing models by Bachelier [2] and Samuelson–Black–Scholes
(SBS) (Samuelson [29], Black and Scholes [5]) set at least two paradigms in deriva-
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tive pricing research. Firstly, they quickly imposed themselves as universal bench-
marks, thereby placing the normal distribution and related formulae (e.g. for implied
volatility computations) at the center of the stage. Later alternative models that be-
came established were, and still are, assessed according to which shortcoming of
the normal distribution they resolve, and to which extent they do so. Secondly, on a
methodological level, they paved the way to the standard research practice of first in-
troducing a risk-neutral process and then extracting from it valuation formulae. This
way of proceeding is rather logical, since it is intrinsic in the fundamental theorem
of asset pricing that specifying directly a risk-neutral distribution for the underly-
ing must lead to a no-arbitrage valuation formula. The flip side of this approach is
that such a formula is typically rather cumbersome, if available at all. It is gener-
ally accepted that the simplest option pricing equation is that from the SBS model,
originally offered by Black and Scholes [5].

On the other hand, it is known since Kellerer [20] that for a given family of
marginals satisfying a certain property (increase in convex order), there exists a
Markovian martingale fitting those marginals; Madan and Yor [25] show various dif-
ferent ways of constructing one such martingale. What is more is that by virtue of the
celebrated Breeden and Litzenberger [6] remark, each set of observed option prices
uniquely determines a family of risk-neutral distributions. More precisely, as shown
in Carr and Madan [9] and Davis and Hobson [12], providing a call option valuation
formula which is increasing in maturity and decreasing and convex in strike, with
slope in strike bounded below by −1, is sufficient for the application of Kellerer’s ar-
gument, which in turn guarantees the existence of an underlying martingale security
supporting the given formula.

Therefore, it is possible to specify a no-arbitrage option pricing formula, use the-
oretical arguments to establish the existence of supporting martingale(s), and then
maybe try to provide an explicit representation along the lines of [25] (which include
the classic Dupire [13] PDE argument). Of course, there is no guarantee that the re-
sulting supporting martingales will have a simple expression. Two papers taking this
approach are Figlewski [14] and Henderson et al. [19].

In this paper, we present two extremely simple no-arbitrage option valuation for-
mulae that produce, in the modelling approach described above, risk-neutral distribu-
tions of logistic type. As it turns out, there exists a class of infinitely divisible distri-
butions, the generalised z-distributions (GZD) introduced by Grigelionis [17], whose
associated processes retain a simple and yet rich structure, able to naturally accom-
modate logistic marginals. Such associated processes turn out to be additive Markov
processes, that is, stochastically continuous Markovian semimartingales with inde-
pendent, but time-inhomogeneous, increments. Recent financial research has been
focusing on additive processes as a promising alternative to classic Lévy models; see
e.g. Madan and Wang [24].

The two option valuation formulae we introduce are inspired respectively by the
log-sum-exponential (LSE) function, popular in computer science, and the �p-norm
of a two-dimensional vector. The former has as support the whole real line and cor-
responds to a logistic distribution; in option pricing, the use of a logistic distribution
has been advocated before by Levy and Levy [21]. The second is supported on the
positive half-line and determines a Dagum risk-neutral law, which after taking a log-
arithmic transformation yields a skew-logistic distribution for the log-price. The two
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underlying processes we develop in correspondence of such distributions turn out to
be martingales, and thus viable option pricing models in full accordance with the
risk-neutral theory of option pricing.

The models obtained can be thought of as logistic analogues of the Bachelier
and SBS models. However, unlike the normal models, they can reproduce finan-
cial stylised facts such as return kurtosis and skewness, self-similarity, semi-heavy
tails and a realistic cumulant term structure which proves to be flexible enough to
capture several shapes of the volatility surface. We also determine some potentially
useful closed-form formulae for exotic derivative pricing and provide stochastic time-
changed model representations of fairly general type. Moreover, after an appropriate
measure change, we are able to present physical (non-martingale) dynamics for the
involved processes which, although not logistic, still belong to the GZD class. This
ideally concludes our “reverse trek” in stochastic modelling starting from, rather than
leading to, no-arbitrage option prices.

The paper is organised in the following way. In Sect. 2, we introduce the pricing
formulae and explain their connection with the logistic, Dagum and skew-logistic dis-
tributions. In Sect. 3, we detail some properties of the distribution classes we require
for the analysis of the general framework. A theory of additive processes supporting
the LSE and �p pricing formulae is presented in Sect. 4. In Sect. 5, we discuss the
distributional properties of the models, in particular their cumulant term structure and
its implications on the volatility surface. Some considerations and formulae for exotic
derivative valuations are provided in Sect. 6. Section 7 illustrates the time-changed
representation of GZD additive processes, and Sect. 8 the measure transformation
taking returns of the logistic and Dagum martingales to some equivalent physical
GZD process. Numerical comparisons in terms of calibration performance with some
popular Lévy models are offered in Sect. 9. In Sect. 10, we conclude. The proofs are
in the Appendix.

2 Option valuation in a logistic framework

On a filtered probability space (�,F∞, (Ft )t≥0,P) satisfying the usual conditions
and representing a financial market, we assume that there exists an equivalent mar-
tingale measure Q ≈ P under which all discounted asset prices are martingales. For
simplicity, throughout the paper, we assume that a zero risk-free interest rate is
paid.

We consider two risk-neutral underlying asset price dynamics SR = (SR
t )t≥0 and

SP = (SP
t )t≥0 producing two different valuation formulae for two distinct derivative

securities. The superscripts R and P stand respectively for “real-valued” and “pos-
itive”; the terminology will be justified in what follows. In many respects, the two
models we introduce represent logistic-world analogues of the Bachelier and SBS
models, although superior to these under various aspects, as we hope to make clear
in this paper.

Let R+ = (0,+∞). A call option written on SR with strike K ∈ R and maturing
at T > 0 is valued at time zero by the log-sum-exponential function

CR
0 (K,SR

0 , T ) = s(T ) ln

(
1 + exp

(SR
0 − K

s(T )

))
, SR

0 ∈R, (2.1)
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where s : R+ → R+ is an increasing continuous function with limt→0 s(t) = 0. No-
tice that enforcing call–put parity produces a put value equal to

P R
0 (K,SR

0 , T ) = s(T ) ln

(
1 + exp

(K − SR
0

s(T )

))
, SR

0 ∈ R.

The requirement on SP is instead that the married put portfolio of long one put option
of strike K > 0 and maturity T > 0 and long one unit of the underlying, whose payoff
is the max-expression

MT = max{SP
T ,K},

has a price given by the formula

MP
0 (K,SP

0 , T ) = (
(SP

0 )1/b(T ) + K1/b(T )
)b(T )

, SP
0 > 0. (2.2)

This formula coincides with that of the �p-norm in R
2, for p = 1/b(T ), of the

vector (SP
0 ,K). We require the function b : R+ → (0,1] to be increasing with

limt→0 b(t) = 0. From the call–put parity, we can derive from MP
0 the call and

put option values CP
0 and P P

0 on SP by using the relations CP
0 = MP

0 − K and
P P

0 = MP
0 − SP

0 .
As a consequence of Carr and Madan [9] and Davis and Hobson [12], a (differ-

entiable) pricing formula for a call (respectively put) option is arbitrage-free if and
only if the following requirements are fulfilled: (a) the formula is convex and decreas-
ing (resp. increasing) in strike with derivative uniformly bounded from below by −1
(resp. from above by +1), avoiding static arbitrage; (b) it is increasing in maturity,
avoiding calendar arbitrage; (c) the limit of the formula for maturity tending to zero
is the option intrinsic value (payoff). Equation (2.1) clearly satisfies this set of re-
quirements because of the assumptions on s. For (2.2), we observe that requirement
(a) implies that a married put must be increasing in strike, which is easily checked in
the expression. Furthermore, convexity and boundedness by −1 of the derivative in
K follows from the condition b ≤ 1, and monotonicity in T is clear by recalling the
properties of the �p-norms. Finally, it is easy to see that

lim
T →0

MP
0 (K,SP

0 , T ) = M0

for all K,SP
0 > 0. These elementary no-arbitrage pricing formulae enjoy a surprising

amount of empirically consistent properties.
We begin by analysing the functional expression of (2.1) and (2.2). By simply

dividing, (2.1) is equivalent to

CR
0 (K,SR

0 , T )

s(T )
= ln

(
1 + exp

(SR
0 − K

s(T )

))
, (2.3)

whereas (2.2) can be rewritten as

ln
MP

0 (K,SP
0 , T )1/b(T )

SP
0

= ln

(
1 + exp

( ln(K/SP
0 )

b(T )

))
. (2.4)
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After appropriate normalisation, the option values depend on only one dimensionless

market input parameter, namely the respective normalised moneynesses
SR

0 −K

s(T )
and

ln(K/SP
0 )

b(T )
. The functions s and b determine the prices term structure, although they

have different unit measures: s is expressed in monetary terms, whereas b is a pure
number. One can also explicitly relate s and b to the implied volatility at-the-money
term structure, which we do in Sect. 5.

We denote by CR
0 (K,SR

0 , s(T )) and MP
0 (K,SP

0 , b(T )) the valuation equations in
(2.1) and (2.2) with explicit dependence on the term functions. For all λ > 0, we have

CR
0

(
K + λ,SR

0 + λ, s(T )
) = CR

0

(
K,SR

0 , s(T )
)
,

CR
0

(
λK,λSR

0 , λs(T )
) = λCR

0

(
K,SR

0 , s(T )
)
,

MP
0

(
λK,λSP

0 , b(T )
) = λMP

0

(
K,SP

0 , b(T )
)
,

MP
0

(
Kλ, (SP

0 )λ, λb(T )
) = MP

0

(
K,SP

0 , b(T )
)λ

.

The value of a call option on SR is translation-invariant and scale-invariant, whereas a
married put on SP is scale-invariant and enjoys a form of power-invariance. For com-
parison, the Bachelier call valuation formula is translation-invariant, but not scale-
invariant; in the SBS model, the married put price is scale-invariant, but not power-
or translation-invariant, nor can it be reduced to a function of a single moneyness
input. It is also straightforward to show that the value MR

0 (K,SR
0 , s(T )) of a married

put on SR is given by

MR
0

(
K,SR

0 , s(T )
) = s(T ) ln

(
exp

( K

s(T )

)
+ exp

( SR
0

s(T )

))
, SR

0 ∈ R,

from which we can derive the striking equality

exp
(
MR

0

(
K,SR

0 , b(T )
)) = MP

0

(
eK, eSR

0 , b(T )
)

(2.5)

connecting married put prices under SR and SP , which is evidence of the close rela-
tionship between the two models.

2.1 The associated distributions

Once valuation formulae are provided, we can use the classic Breeden and Litzen-
berger [6] argument to solve the inverse problem of finding the risk-neutral implied
price distributions. The risk-neutral densities implied in a set of quoted option prices
can be recovered as the second derivative of the values with respect to strike. Corre-
spondingly we can obtain the risk-neutral cumulative distribution function (CDF) of
the terminal underlying prices SR

T and SP
T as

Q[SR
T < K] = 1 + ∂CR

0

∂K
= 1 − e

SR
0 −K

s(T )

1 + e
SR

0 −K

s(T )

= 1

1 + e
− K−SR

0
s(T )
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and

Q[SP
T < K] = ∂MP

0

∂K
=

(
1 +

( K

SP
0

)−1/b(T )
)b(T )−1

.

Recall that a real-valued random variable L has the logistic distribution L(σ,μ),
σ > 0, μ ∈ R, if its CDF FL is given by

FL(x) = 1

1 + e− x−μ
σ

, x ∈ R,

with corresponding probability density function (PDF)

fL(x) = e− x−μ
σ

σ (1 + e− x−μ
σ )2

, x ∈ R.

A random variable D follows the Dagum distribution D(a, b, c) with a, b, c > 0 if it
is positively supported with CDF

FD(x) =
(

1 +
(x

b

)−a
)−c

, x ≥ 0,

and PDF

fD(x) = ac

b

(
1 +

(x

b

)−a
)−c−1(

x

b

)−a−1

, x ≥ 0. (2.6)

We then see that the centred/normalised terminal distributions of SR and SP follow
respectively

SR
T − SR

0 ∼ L
(
s(T ),0

)
,

SP
T

SP
0

∼ D
(
1/b(T ),1,1 − b(T )

)
(2.7)

for all T > 0. Notice that the values a = 1/b(T ) and c−1 = 1/(1 − b(T )) are Hölder
conjugates, that is, a−1 + c = 1, a property that will be relevant for martingale rela-
tions.

Let us further introduce the skew-logistic distribution class SL. We write for a
random variable SL ∼ SL(α,σ,μ) with α,σ > 0, μ ∈ R if its CDF is such that

FSL(x) = 1

(1 + e− x−μ
σ )α

, x ∈ R. (2.8)

Clearly, SL(1, σ,μ) ≡ L(σ,μ). The skew-logistic distribution has negative skewness
for α < 1 and positive skewness for α > 1. We notice that this CDF can be recov-
ered by simply raising that of an L(σ,μ) random variable to the power α. Therefore
x 
→ xα acts as a distortion function taking logistic to skew-logistic. This can be
seen as the analogous relationship at the CDF level (or, financially, for digital put
prices/greeks) of (2.5).
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Notice that by applying a log-transform to the price ratios SP
T /SP

0 , we have for all
x ∈ R the log-price probabilities

Q[ln(SP
T /SP

0 ) < x] = (1 + e−x/b(T ))b(T )−1. (2.9)

Comparing (2.8) with (2.9), we also see that

ln(SR
T /SR

0 ) ∼ SL
(
1 − b(T ), b(T ),0

)
. (2.10)

The problem of identifying risk-neutral price distributions consistent with the val-
uation formulae (2.1) and (2.2) is therefore completely solved. The centered distri-
butions of SR are logistic, allow negative values, are symmetric and leptokurtic with
semi-heavy tails, making them better suited to capture real market distributions than
its normal counterpart, the Bachelier model. In full analogy, the normalised skew-
logistic distribution for the logarithm of the positive model SP exhibits leptokurtosis,
semi-heavy tails and negative skewness, features which the normal distribution for
the log-price in the SBS model is lacking. What (2.7) and (2.10) also make clear is
that the term functions s and b appearing in the valuation equations coincide with
the scale functions of the underlying risk-neutral distribution, so that they play the
same role of the term volatility in the normal asset pricing models. In order to build
a fully consistent valuation theory based on logistic processes, we must seek two
Q-martingales SR and SP such that SR

t and SP
t satisfy (2.7) for all t > 0. The rest of

this paper is devoted to identifying some suitable such processes and discussing their
properties.

3 Generalised z-distributions and Lévy processes

In order to determine martingale dynamics for SP and SR with the appropriate logis-
tic marginals, it is convenient to broaden the scope of our investigation and consider
more general distribution families, to which both the logistic and skew-logistic dis-
tributions belong.

Let us begin by introducing the family of z-distributions ZD(σ, c1, c2,μ) charac-
terised by the PDF

fZD(x) = 1

σB(c1, c2)

e(x−μ)c1/σ

(1 + e(x−μ)/σ )c1+c2
, x ∈R, (3.1)

where B(·, ·) is the Beta function. The ZD class has been prominently studied in
Barndorff-Nielsen et al. [4]. The constant σ > 0 is the distribution scale, the value
μ ∈ R a location parameter, while c1, c2 > 0 represent respectively left and right
asymmetry parameters. This can be appreciated by noticing that the distribution has
log-linear tails: taking the limits to ±∞ in (3.1), we have limiting logarithmic slopes
c1/σ and −c2/σ , showing that if c1 < c2 (resp. c2 < c1), the distribution is negatively
(resp. positively) skewed. If c1 = c2, the distribution is symmetric. The CDF of a
general SL law is not known in closed form. However, the characteristic function
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f̂ZD of a ZD random variable is given by (see [4, Eq. (3.3)])

f̂ZD(z) = B(c1 + izσ, c2 − izσ )

B(c1, c2)
eiμz, z ∈R. (3.2)

At this point, we notice that SL ∼ SL(α,σ,μ) has the PDF

fSL(x) = α

σ

e− x−μ
σ

(1 + e− x−μ
σ )α+1

= α

σ

eα
x−μ

σ

(1 + e
x−μ

σ )α+1
, x ∈ R, (3.3)

so that the SL distribution family is a subclass of the ZD family.
The ZD class has been further extended by Grigelionis [17] who introduced the

generalised z-distribution GZD(σ, c1, c2, δ,μ). A random variable GZD has a GZD
distribution if its characteristic function is given by

f̂GZD(z) =
(

B(c1 + izσ, c2 − izσ )

B(c1, c2)

)δ

eiμz, z ∈R, (3.4)

for some shape parameter δ > 0, with all the remaining parameters retaining the same
interpretation as in the ZD case. The PDFs and CDFs of the GZD distributions are
not known analytically, but we have the relations

GZD(σ, c1, c2,1,μ) ≡ ZD(σ, c1, c2,μ),

GZD(σ,α,1,1,μ) ≡ ZD(σ,α,1,μ) ≡ SL(α,σ,μ). (3.5)

Another distribution class which can be embedded in the GZD family is the Meixner
distribution class, which arises when c1,2 = 1/2±β , |β| < 1/2. Associated processes
have been used in finance by Schoutens [33].

A property which allows us to canonically generate processes from an assigned
distribution is infinite divisibility. We recall that a random variable X is infinitely
divisible if for all n ∈ N, there exists a family {Xn

k }k=1,...,n of independent identically
distributed (i.i.d.) random variables such that in law

X
d=

n∑
k=1

Xn
k .

For a given infinitely divisible random variable X, standard theory (e.g. Sato [31,
Theorem 7.10]) establishes the existence of a Lévy process, that is, a stochastically
continuous process with i.i.d. increments, whose time-1 marginal has the same dis-
tribution as X.

Let us first investigate if infinite divisibility is helpful for the identification of a
logistic process. Grigelionis [17, Proposition 1] proves that the GZD(σ, c1, c2, δ,μ)

class is self-decomposable, a result which is well known for the SL and L distribu-
tions. A random variable S is said to be self-decomposable if for all 0 < α < 1, there
exists a random variable Rα independent of S such that in law

S
d= αS + Rα.
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Self-decomposability implies infinite divisibility so that we are in a familiar Lévy
setup. From (3.4), we obtain that the characteristic exponent 
 of a Lévy process
Z = (Zt )t≥0, where Z1 has a GZD distribution, is


(z) := ln f̂GZD(z) = δ ln
B(c1 + izσ, c2 − izσ )

B(c1, c2)
+ iμz, z ∈R, (3.6)

so that the Lévy marginals Zt have characteristic function f̂Z,t given by

f̂Z,t (z) = exp
(
t
(z)

) =
(

B(c1 + izσ, c2 − izσ )

B(c1, c2)

)δt

eitμz, z ∈R.

Hence

Zt ∼ GZD(σ, c1, c2, δt,μt), (3.7)

and Z is called a generalised-z Lévy process.
Assume now we are given a ZD law from the SL or L family, and we wish to build

some Lévy process Z such that Z1 has that law. For this to happen, by (3.5), we need
to set δ = 1 in the GZD specification, and from (3.7), we conclude that Zt will not be
ZD-distributed unless t = 1. In particular, Zt cannot have an L or SL distribution at
all times. A logistic Lévy process seems then not to be obtainable along these lines.
The reason for the introduction of GZD processes is exactly that of determining a
class of infinitely divisible distributions of z-type closed under convolution, so that
the associated Lévy processes – unlike those arising from L, SL and more general
ZD distributions – have marginals in the same class. We need instead to bind Zt to
be (skew) logistic at all times, and in the next section, we shall see how this can be
done.

4 The additive logistic framework

As observed, a logistic Lévy process seems not to be available. We could then try and
relax the Lévy structure to see if considering a larger set of processes could accom-
modate one with the required laws. Removing the assumption of time-homogeneity
of the increments leads to considering the so-called family of additive processes,
i.e., processes with independent but non-stationary increments. The marginals of an
additive process are still infinitely divisible random variables. For a given additive
process, we call the Lévy triplet of the marginal distributions the Lévy character-
istic triplet of the process; note that this depends on t in a usually nonlinear way.
As illustrated in Sato [31, Chap. 2], there exists a canonical way of building additive
processes from a time-dependent family of infinitely divisible distributions. Applying
this technique to GZD laws allows us to establish the following general result.

Proposition 4.1 Let σ, δ, c1, c2 : R+ → R+ and μ : R+ → R be continuous func-
tions. Then the random variables

Zt ∼ GZD
(
σ(t), c1(t), c2(t), δ(t),μ(t)

)
(4.1)
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are a self-decomposable family with Lévy characteristic triplet (a,0, vdx) given by

at = δ(t)σ (t)

∫ 1/σ (t)

0

e−c2(t)x − e−c1(t)x

1 − e−x
dx, (4.2)

v(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ(t)
e
−x

c2(t)

σ (t)

x(1 − e
− x

σ(t) )
, x > 0,

δ(t)
e
x

c1(t)

σ (t)

|x|(1 − e
x

σ(t) )
, x < 0.

(4.3)

If in addition δ, σ are nondecreasing with limt→0 σ(t) = 0 and c1, c2 are bounded
around zero and such that the functions c1/σ, c2/σ : R+ → R+ are nonincreas-
ing, there exists a unique in law additive process Z = (Zt )t≥0 null at zero whose
marginals are given by (4.1).

Whenever v is absolutely continuous in t , we have that ν defined by

ν(t, x) := d

dt
v(t, x)

is such that the measure νdtdx represents the compensating measure of the jumps of
Z. Since the Lévy densities (i.e. the Radon–Nikodým derivatives of the Lévy mea-
sures with respect to Lebesgue measure) are O(x−2) around zero for all t > 0, the
corresponding GZD additive processes are of infinite variation. Although (4.2) and
(4.3) are valid for any GZD law, GZD Lévy processes cannot be obtained as a partic-
ular case of the second statement of Proposition 4.1, consistently with the discussion
at the end of the previous section, since a positive constant σ obviously does not meet
the requirements of Proposition 4.1.

By an appropriate choice of parameters, it is easy to single out from the class of
processes that can be built around Proposition 4.1 a pair with L and SL distributions,
which also determine the martingale models SP and SR .

Proposition 4.2 Let s and b be the functions appearing in the valuation formu-
lae (2.1) and (2.2). There exist unique in law additive processes X = (Xt )t≥0 and
Y = (Yt )t≥0 null at zero such that for all t > 0,

Xt ∼L
(
s(t),0

)
,

Yt ∼SL
(
1 − b(t), b(t),0

)
.

The processes X and Y have respective Lévy characteristic triplets (0,0, vXdx) and
(aY ,0, vY dx), where aY

0 = vY (0, x) = vX(0, x) = 0 and for t > 0,

vX(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e
− x

s(t)

x(1 − e
− x

s(t) )
, x > 0,

e
x

s(t)

|x|(1 − e
x

s(t) )
, x < 0,

(4.4)
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and

aY
t = b(t)

∫ 1/b(t)

0

e−x − e−(1−b(t))x

1 − e−x
dx, (4.5)

vY (t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e
− x

b(t)

x(1 − e
− x

b(t) )
, x > 0,

e
x

1−b(t)
b(t)

|x|(1 − e
x

b(t) )
, x < 0.

(4.6)

Furthermore, the asset price processes SR and SP defined respectively by

SR = X + SR
0 , SR

0 ∈R, (4.7)

and

SP = SP
0 exp(Y ), SP

0 > 0, (4.8)

are martingales. In particular, for all K,T , the respective values CR
0 (K,SR

0 , T ) and
MP

0 (K,SP
0 , T ) of a call option written on SR and a married put written on SP are

given by (2.1) and (2.2), respectively.

In view of the discussion in Sect. 2, Proposition 4.2 naturally implies that we have
SP

t /SP
0 ∼ D(1/b(t),1,1−b(t)) for the positive model price ratios. Motivated by this

result, we call the martingale underlying asset models SR and SP respectively the
symmetric logistic additive (SLA) model and the conjugate-power Dagum additive
(CPDA) model, following the remark that the parameters a and c−1 in the law of
SP

t /SP
0 are Hölder conjugates.

The martingale property is naturally featured by these processes since the time
marginals reflect the fact that (2.1) and (2.2) are proper no-arbitrage valuation equa-
tions. For the CPDA model, this has an interesting implication on the exponential na-
ture of the process. The commonest and simplest way of generating a positive equity
model is to apply an exponential transformation to some given real-valued process.
However, martingale relations are needed after such a transformation. Typically, in
option pricing based on Itô diffusions, one starts with a martingale which can be both
positive or negative, and then performs a stochastic exponentiation to end up with a
positive martingale. Alternatively – usually for Lévy processes – one could perform
a natural exponentiation, but then some form of drift adjustment of the base process
is normally required to achieve the martingale property. Here, the situation is differ-
ent. The risk-neutral valuation formula of the married put leading to the option prices
(2.2) produces asset log-price processes which are not martingales. However, its nat-
ural exponential – having the required Dagum time marginals – is a martingale, and
this is without any need of drift adjustment. This is a direct consequence of having
worked out the log-returns Yt directly from a valuation equation, instead of having
supplied them as a model input.
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4.1 The logistic self-similar additive pricing model

As observed, being members of the GZD distribution class, logistic distributions are
self-decomposable. As demonstrated by Sato [30], starting from a self-decomposable
distribution D and for all H > 0, one can determine a family of additive processes SH

such that SH
1 equals D in distribution. These processes retain the additional property

of being self-similar of index H , i.e., for all a, t > 0, they satisfy the equality in law

Sat
d= aH St .

The self-similar process SH is in general not the same as the Lévy process associated
with D (which exists, since self-decomposability implies infinite divisibility), unless
D is a stable distribution; see [30] for more details. The analysis of self-similarity as
a statistical property of asset returns is a well-established line of research since the
work of Mandelbrot [26].

In our logistic additive framework, there exists a specification for the function s

in the SLA model which coincides with the self-similar additive model that can be
constructed from a given logistic distribution. We have the following corollary to
Proposition 4.2.

Corollary 4.3 Let σ > 0 and H > 0. The additive process X from Proposition 4.2
with the specification s(t) = σ tH is the self-similar additive process associated with
a self-decomposable random variable D ∼ L(σ,0).

In accordance with the introduced terminology, we refer to the SLA model under
the specification s(t) = σ tH as the self-similar logistic additive model (SSLA) and
denote it by SR,H to emphasise the self-similarity exponent H .

5 Distributional and term structure properties

The logistic distribution L is a leptokurtic distribution symmetric about the mean and
thus has all odd moments zero, while the SL distribution is skewed. Both distributions
have moments of all orders. The similarity between the logistic and normal distribu-
tion is a well-known fact, and in a real-valued option pricing context is reflected in
a similarity of the SLA model with the Bachelier model. Additionally, the logistic
distribution features excess kurtosis, an observed statistical property of (risk-neutral)
financial returns. A comparison between an SSLA PDF and a normal one is provided
in Fig. 1. Kurtosis and symmetry of the logistic distribution determine a symmetric
smile in the normal implied volatility surface, as observed in Fig. 2. When comparing
the risk-neutral Dagum distribution and its normal counterpart, the lognormal distri-
bution, the similarity is less stringent. This has in part to do with the discussion on the
nature of the exponential transform of the log-returns determining the security price,
and we illustrate it further in the following.

More insight on the nature of the two martingale underlying price processes is
provided by their return cumulant structure. Cumulants are related to the distribution
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Fig. 1 PDF of S
R,1/2
1 with

σ = 0.2 (blue) compared to a
normal PDF from the Bachelier
model with the same variance
(purple). The excess kurtosis is
slight but visible

Fig. 2 Normal implied volatility
surface of the SR,1/2 model

shape and symmetry, which in turn connect to the volatility smile and skew, as well
as the volatility term structure. As is well known, for n ∈ N, the cumulants κY

n (t) of
Yt = ln(SP

t /SP
0 ) can be found by direct differentiation of the Lévy–Khintchine repre-

sentation of the characteristic exponent: taking into account (4.5) and (4.6), we have

κY
n (t) = b(t)n

∫ ∞

0
xn−1 e−x + (−1)ne−x(1−b(t))

1 − e−x
dx =: b(t)nIn(t). (5.1)

Using the integral representation of the digamma function ψ(z) = d
dz

ln�(z) given by

ψ(z) =
∫ ∞

0

(
e−x

x
− e−zx

1 − e−x

)
dx, (5.2)
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we have the explicit expression

I1(t) = ψ
(
1 − b(t)

) − ψ(1) = ψ
(
1 − b(t)

) + γ, (5.3)

where γ = −ψ(1) is the Euler–Mascheroni constant. Since ψ is increasing on R+,
we see that Yt has negative expectation, consistently with the property that the nat-
ural exponential of Y is a martingale. If n > 1, using the integral forms of the Rie-
mann zeta function ζ and the polygamma function ψ(m−1) = dm

dzm ln�(z), m > 0, we
see that

In(t) =
∫ ∞

0

xn−1

ex − 1
dx + (−1)n

∫ ∞

0
xn−1 e−x(1−b(t))

1 − e−x
dx

= ζ(n)(n − 1)! + ψ(n−1)
(
1 − b(t)

)
. (5.4)

The above cumulant formulae recover and generalise those in Gupta and Kundu [18,
Sect. 4.3]. The analogous differentiation for Xt = SR

t − SR
0 produces

κX
n (t) = s(t)n

∫ ∞

0
xn−1 e−x + (−1)ne−x

1 − e−x
dx,

which is zero for n odd. For n even, it holds that

κX
n (t) = 2s(t)n

∫ ∞

0

xn−1

ex − 1
dx = 2s(t)nζ(n)(n − 1)!. (5.5)

From the above, we recover the well-known variance and kurtosis values of the logis-
tic distribution, namely Var(Xt ) = s(t)2π2/3 and Kurt(Xt ) = κX

4 (t)/(κX
2 (t))2 = 6/5,

indicating constant slight excess kurtosis in the (S)SLA model.
Focusing on Yt , recall that we say that the tails of a PDF f are semi-heavy if

f (x) ∼ C±xρ±eβ±x as x → ±∞.

From (3.3), we see that the PDF of Yt has semi-heavy tails with

ρ± = 0, C± = β− = 1

b(t)
− 1, β+ = − 1

b(t)
. (5.6)

From these values, we can infer that the distributional asymmetry is minimal when
t ≈ 0 and increases as t gets larger. Note that this is not a property of the lognormal
distributions in the SBS model, which are symmetric at all times. An illustration is
given in Fig. 3.

A related aspect is the term structure of the return cumulants. In Lévy models,
return cumulants increase linearly in t , and hence skewness and kurtosis are of the
respective orders O(t−1/2) and O(t−1), which is at odds with market data. In an ad-
ditive model, due to the time-inhomogeneity of the returns, the cumulants’ time decay
can in principle be different. We already observed constant intertemporal kurtosis for
the (S)SLA model. For the CPDA model, we can calculate

Skew(Yt ) = I3(t)

I2(t)3/2
, Kurt(Yt ) = I4(t)

I2(t)2
.
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Fig. 3 PDFs of Y0.5 (blue) and
Y2 (purple). We used b as in
(5.7) with σ = 0.3. The
asymmetry increases with t

The time evolution of the return cumulants is provided in Figs. 4 and 5. As we can
see, for a set of maturities including those commonly traded, negative skewness and
excess kurtosis increase with time, consistently with what can be deduced from (5.6).
The function b chosen here is

b(t) =
√

1 − e−σ 2t , (5.7)

which has the property that b(t) ∼ σ
√

t , the familiar normal accrued volatility, when
t ≈ 0.

We can use cumulants to further investigate the analogy between the logistic and
normal pricing paradigms. Having in mind that the Bachelier and SBS option values
are similar at short maturities (see e.g. Schachermayer and Teichmann [32]), in order
to replicate such a similarity for the SSLA and the CPDA models, given an exponent
H > 0, we choose b = bH as

bH (t) = (1 − e−t σ 1/H

)H . (5.8)

Indeed, from (5.5) with s(t) = σ tH and (5.8), using that the integrand is dominated
and bH (t) ∼ σ tH when t ≈ 0, we obtain the estimates

κY
n (t) = bH (t)n

∫ ∞

0
xn−1 e−x + (−1)ne−(1−bH (t))x

1 − e−x
dx

∼ 1{n=2k,k∈N}σntnH 2
∫ ∞

0

xn−1

ex − 1
dx = κH

n (t),

where κH
n (t) is the nth cumulant of S

R,H
t . This highlights how at small times under

the specification bH , the distributions of SP
t and S

R,H
t are similar.
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Fig. 4 Skew(Yt ) with the
parametrisation (5.7), using
σ = 0.1 (blue), σ = 0.2 (purple)
and σ = 0.3 (red)

Fig. 5 Kurt(Yt ) with the
parametrisation (5.7), using
σ = 0.1 (blue), σ = 0.2 (purple)
and σ = 0.3 (red)

Another element of interest is the phenomenon of moment explosion in the CPDA
model. Using (2.6), for all n > 0, the nth moment of SP

t is given by

E[(SP
t )n] = 1 − b(t)

b(t)

∫ ∞

0
xn x

− 1
b(t)

−1

(x−1/b(t) + 1)2−b(t)
dx

= (
1 − b(t)

) ∫ ∞

0

y−nb(t)

(y + 1)2−b(t)
dy. (5.9)

The last integral converges at zero whenever b(t) < 1/n, and in that case, using Grad-
shteyn and Ryzhik [16, 8.380.3], we can verify that

E[(SP
t )n] = (

1 − b(t)
)
B

(
1 + (n − 1)b(t),1 − nb(t)

)
,

which coincides with the characteristic function of an SL(1 − b(t), b(t),0) random
variable calculated in z = −in, as it must. However, the integral in (5.9) is diver-
gent whenever b(t) ≥ 1/n; since b(t) is increasing, this means that for all n > 1,
the root tn of b(t) = 1/n is the explosion time for the nth moment of the asset, i.e.,
E[(SP

t )n] = ∞ for all t ≥ tn. As an implication, if we require for the market analysis
a moment of some given order n to exist, we need to choose b such that the equation
b(t) = 1/n has no roots. This can be achieved by modifying (5.8) to

bH,n(t) = 1

n

(
1 − e−t (nσ )1/H )H

.
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Fig. 6 Implied volatility surface
of the SP model using bH with
H = 0.5 and σ = 0.25

Fig. 7 Implied volatility surface
of the SP model using bH with
H = 0.5 and σ = 0.05

This function is always bounded by 1/n and maintains the asymptotic regime σ tH

when t ≈ 0. For example, if the asset manager wishes to perform minimum variance
hedging on SP , she or he must take into consideration bH,2, with H and σ being free
parameters.

Finally we can connect the term functions s and b with the at-the-money (ATM)
implied volatility term structure σATM as follows. Denoting by CR

ATM and CP
ATM the

ATM call prices respectively in the SLA and CPDA model and equating them to
the ATM call prices from respectively the Bachelier and Black–Scholes call pricing
formulae, we have

CR
ATM(T ) = σR

ATM(T )

√
T

2π
, CP

ATM(T ) = S0

(
2�

(σP
ATM(T )

√
T

2

)
− 1

)
, (5.10)
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Fig. 8 Implied volatility surface
of the SP model using bH with
H = 0.3 and σ = 0.1

Fig. 9 Implied volatility surface
of the SP model using bH with
H = 0.7 and σ = 0.1

where � is the standard normal CDF. Now by (2.1) and (2.2), CR
ATM(T ) = s(T ) ln 2

and CP
ATM(T ) = S0(2b(T ) − 1), so that substituting in (5.10) yields the relations

σR
ATM(T ) = s(T )

√
2π

T
ln 2, s(T ) = σR

ATM(T )

ln 2

√
T

2π
,

σP
ATM(T ) = 2√

T
�−1(2b(T )−1), b(T ) = ln�(

σP
ATM(T )

√
T

2 )

ln 2
+ 1.

These equations reveal that the functions s and b can also be interpreted as a
transformation of the ATM implied volatility term structure, which can be helpful
to calibrate the (S)SLA and CPDA models to market option prices. In particular, s is
nothing but a rescaling of σR

ATM. By inspection, we see that in the SLA model, we can
generate an upward, downward or constant ATM volatility term structure according to
whether H > 1/2, H < 1/2 or H = 1/2. Similar sensitivity patterns can be observed
in the CPDA model volatility surface, which we illustrate in Figs. 6, 7, 8 and 9.
Decreasing σ in (5.8) increases the volatility skew, while changing H primarily acts
on the slope of the term structure.
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6 Exotic derivative pricing

One of the benefits of an additive framework is that a more realistic intertemporal
behaviour of price distributions comes at almost no cost in terms of added complex-
ity for derivative pricing. Pricing techniques for additive models typically consist of
minor modifications of those used for Lévy models; see e.g. Cont and Tankov [11,
Chap. 14] for an account. In addition, in our setting, the explicit knowledge of the
underlying probability densities and the properties of the logistic distributions con-
tribute to an even higher degree of tractability.

It is well known (see e.g. Lewis [22]) that whenever the characteristic function
�T of a terminal log-price distribution lnST is known and F is a European-style
contingent claim maturing at T and satisfying some minimal regularity assumptions,
the time-0 value V0 of F(ST ) = G(lnST ) is given by the complex Parseval integral

V0 = E[F(ST )] =
∫
C

�T (−z)Ĝ(z)dz. (6.1)

Here ·̂ denotes the Fourier transform, and the integration contour C is a line contained
in the region of analyticity of �T . This formula is very useful if the probability densi-
ties of the underlying model are not known, as virtually everywhere in the literature.
However, in the (S)SLA and CPDA models, while characteristic functions are avail-
able, we also know the explicit distributions and hence have the plain representations

E[F(SR
T )] =

∫
R

F(SR
0 + x)fL(x)dx, E[F(SP

T )] =
∫ ∞

0
F(SP

0 ex)fSL(x)dx,

where L ∼ L(s(T ),0) and SL ∼ SL(1 − b(T ), b(T ),0). These equations are simple
real-valued integrals which do not suffer from the complications surrounding com-
plex integration (e.g. branch cuts or loss of analyticity in C) and are clearly preferable
to (6.1). As a consequence, in some cases, closed-form formulae are available. For
example, valuing the log-contract F(x) = lnx in the CPDA model involves just the
calculation of the expectation of a skew-logistic random variable, which is known
from Sect. 5. Using (5.1)–(5.3), we have the time-0 value

E[lnSP
T ] = lnSP

0 + b(T )
(
ψ

(
1 − b(T )

) + γ
)
. (6.2)

As is well known (see Neuberger [27], Carr and Madan [8]), the log-contract is
intrinsically linked to volatility derivatives. For instance, since its 2003 revision, the
continuously monitored volatility index VIX can be defined in terms of a continuum
of traded vanilla options on the S&P 500 index S synthesising the log-contract. This
leads for the theoretical VIX at time zero to the formula

VIX0 =
√
E

[−2 ln(Sτ /S0)

τ

]
,
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where τ = 30/365. Using (6.2), we then have that the VIX based on a CPDA model
is valued by

VIX0 =
√
E

[−2 ln(SP
τ /SP

0 )

τ

]
=

√
−2

b(τ)(ψ(1 − b(τ)) + γ )

τ
.

In CPDA models, variance swap valuation is also straightforward. A continuously
monitored variance swap pays at maturity T the quadratic variation [Y ]T of the log-
returns of the underlying. The semimartingale jump characteristic νY (t, x)dtdx of Y

is known by differentiating (4.6); hence basic martingale theory and making use of
(5.1)–(5.4) gives

E
[[Y ]T

] = E

[ ∑
0<s≤T

(Ys − Ys−)2
]

= E

[∫
R

∫ T

0
x2νY (t, x)dtdx

]

=
∫
R

x2vY (T , x)dx = κY
2 (T ) = b(T )2

(
π2

6
+ ψ(1)

(
1 − b(T )

))
. (6.3)

When path-dependent options are considered, general additive models are well
suited for numerical PIDE valuation, and this applies to the (S)SLA and CPDA mod-
els as well. For example, consider a down-and-out barrier option paying off at matu-
rity T

(ST − K)+1{inft∈[0,T ] St>D}

for some D > 0. Assuming some technical conditions are met, the time-0 value V0

of this option in the CPDA case is V0 = V (0, S), where V = V (t, S) is the solution
of the PIDE

∂V

∂t
(t, S) +

∫ ∞

0

(
V (t, Sex) − V (t, x) − S(ex − 1)

∂V

∂S
(t, S)

)
vY (t, x)dx = 0

for (t, S) ∈ (0, T ] × (D,∞),

V (t, S) = 0 for (t, S) ∈ (0, T ] × [0,D],
V (T ,S) = (S − K)+,

with vY given by (4.6). The solution can be numerically approximated using e.g.
finite difference methods. As an another example, American options can be valued
by studying the linear complementarity problem associated with our models. For a
comprehensive treatment, see Cont and Tankov [11, Chap. 12].

A context in which techniques for pricing under an additive process come together
with the analytic properties of the GZD world is the valuation of forward-starting op-
tions. Assume we want to find the time-0 value of a put option on SP with expiration
T2 and strike set at 0 < T1 < T2 to be a multiple m > 0 of SP

T1
. Indicating by ET1[ · ]
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the conditional expectation at time T1, using the independence of increments and the
martingale property, we have that the time-0 value V0 of this payoff equals

V0 = E[(mSP
T1

− SP
T2

)+] = E
[
SP

0 eYT1ET1 [(m − eYT2 −YT1 )+]]
= SP

0 E[(m − eYT2 −YT1 )+].
Now (6.1) can be used since again by the independence of increments, the charac-
teristic function �T2,T1 of YT2 − YT1 satisfies �T2,T1(z) = �T2(z)/�T1(z). Here the
characteristic function �t of Yt is known from (3.4) with CPDA parameters; hence
�T2,T1 has in terms of the Beta function and the term function b the expression

�T2,T1(z) = 1 − b(T2)

1 − b(T1)

B(1 + (iz − 1)b(T2),1 − izb(T2))

B(1 + (iz − 1)b(T1),1 − izb(T1))
.

Finally, the logistic marginals of our models find use in the valuation of certain
exchange options. Assume for instance that S1 and S2 are two independent identi-
cal copies of an SLA asset of term function s. An exchange option with maturity
T is the right of exchanging S1 for S2 at time T . The risk-neutral value V0 of the
corresponding payoff is thus

V0 = E[(S1
T − S2

T )+].
Recall that the L-scale λ2 of a random variable X with finite mean is the transforma-
tion of the expectations of the order statistics Xk:2 given by

λ2 = E[X2:2] −E[X1:2]
2

.

It is well known that when X follows the logistic distribution, λ2 equals the scale
parameter. This implies that when X = SR

T , then λ2 = s(T ). Furthermore, it is easy
to show that for two i.i.d. copies X1, X2 of X, we have

(X1 − X2)
+ = X2:2 − X1:2

2
.

By taking expectations in the above, we can then conclude that

V0 = s(T ),

which also provides a third interpretation of the logistic term function s. Order statis-
tics properties of the logistic distribution may play a role in valuing more general
types of exchange options or options depending on more than one underlying secu-
rity, such as basket options.

7 Time-changed representation of GZD processes

Subordination, or more generally time-changing, is the operation of stochastically
changing the time evolution of a stochastic process by using a second, increasing
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process almost surely diverging at infinity (the time change). The theory of stochas-
tic time changes in option pricing is well established. There are multiple benefits
linked to subordination and time-changing, concerning the availability of closed-
form formulae, mathematical tractability, the possibility of recovering normality of
returns in business time, and incorporating stochastic volatility in jump processes
(see e.g. Geman et al. [15], Carr and Wu [10], Ané and Geman [1], Carr et al.
[7]).

In order to devise a time-changed representation for GZD processes, and thus in
particular for the logistic and skew-logistic processes X and Y , we need the class
of generalised Gamma convolutions GGC(a,u) or Thorin distributions, introduced
in Thorin [35]. A GGC random variable G is characterised by the Laplace trans-
form

E[e−sG] = exp
( − φ(s)

)
, Re(s) > 0, (7.1)

with

φ(s) = as +
∫ ∞

0
ln

(
1 + s

y

)
u(dy),

where a ≥ 0 and u is a positive measure (the Thorin measure) such that

∫ 1

0
| lny|u(dy) < ∞,

∫ ∞

1

u(dy)

y
< ∞.

Using the Frullani integral and Fubini’s theorem, one has

∫ ∞

0
ln

(
1 + s

y

)
u(dy) =

∫ ∞

0

(∫ ∞

0

e−yx − e−(s+y)x

x
dx

)
u(dy)

=
∫ ∞

0

1 − e−sx

x

(∫ ∞

0
e−yxu(dy)

)
dx.

Therefore G is a positively supported infinitely divisible (and self-decomposable)
distribution with Laplace exponent φ, drift a and Lévy measure

σ(dx) := 1

x

(∫ ∞

0
e−yxu(dy)

)
1{x>0}dx.

Conversely, all Lévy measures of the form k(x)1{x>0}dx/x, where k is a completely
monotone function, define a GGC distribution whose Thorin measure u coincides
with the measure in the Laplace-integral representation of k, i.e.,

k(x) =
∫ ∞

0
e−yxu(dy),

and such a representation is unique. Some examples are the following.
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Example 7.1 Setting a = 0 and uλ,κ = κδλ for κ,λ > 0, with δλ the Dirac delta con-

centrated in λ, we obviously have σ(dx) = e−λx

x
1{x>0}dx, which is the Lévy measure

of a Gamma random variable �(λ, κ). Therefore GGC(0, uλ,κ ) ≡ �(λ, κ) and we can
verify that

φ(s) =
∫ ∞

0
κ(1 − e−sx)

e−λx

x
dx = ln

((
1 + s

λ

)κ
)

.

Example 7.2 More generally, if a = 0 and

un =
n∑

j=0

κj δλj

for n > 0 and some κj , λj > 0, j = 0, . . . , n, then

φn(s) =
∫ ∞

0
(1 − e−sx)

∑n
j=0 κj e

−λj x

x
dx = ln

( n∏
j=0

(
1 + s

λj

)κj

)
(7.2)

and thus

G =
n∑

j=0

�j

with �j ∼ �(λj , κj ), j = 0, . . . , n, i.e., G ∼ GGC(0, un) is a sum of n + 1 indepen-
dent Gamma random variables.

Example 7.3 According to Thorin [36, Theorem 5.2], the lognormal distribution with
parameters μ,σ is a GGC(0, u�dy) law, where

u�(y) = 1

π
arctan

(
Im(λ(y))

Re(λ(y))

)
,

λ(y) = e
π2

2σ2

√
2π

∫ ∞

−∞
exp

(
− ye−σx+μ − x2

2
+ iπx

σ

)
dx.

This is how infinite divisibility of the logistic distribution was originally proved.

Assume now a = 0 and let (κj )j≥0, (λj )j≥0 be two sequences of positive real
numbers. For Re(s) > 0, let G∞ be the random variable whose Laplace transform is
given by

E[e−sG∞] =
∞∏

j=0

(
1 + s

λj

)−κj

, (7.3)
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assuming further that (κj )j≥0, (λj )j≥0 are such that the limit on the right-hand side
exists. Analogously to Example 7.2 above, by setting

u∞ =
∞∑

j=0

κj δλj
,

we see that G∞ is GGC(0, u∞), since this choice produces

φ∞(s) = ln

( ∞∏
j=0

(
1 + s

λj

)κj

)
< ∞

in the representation (7.1). We have the formal expression

G∞ =
∞∑

j=0

�j ,

with �j ∼ �(λj , κj ), j ≥ 0, i.e., G∞ can be seen as an infinite sum (a weak limit)
of Gamma random variables. Finally, as in (7.2), we observe that the Lévy density
corresponding to u is the convergent series

�(x) =
∞∑

j=0

κj

e−λj x

x
1{x>0}. (7.4)

We now show that there exists a GGC additive subordinator with time marginals
of the form G∞ above, providing a time-changed representation of a certain class of
GZD additive processes. This way of specifying a process starting from some given
marginals has also been explored in Madan and Yor [25], and nicely ties in with our
results in the previous section. The following proposition is inspired by Barndorff-
Nielsen et al. [4] who give a Gaussian mixing formula for the ZD class.

Proposition 7.4 Let α,β : R+ → R+ be continuous functions with β nondecreasing,
α nonincreasing and α > β . Assume Z is a GZD additive process as in Proposi-
tion 4.1, whose marginals can be written in the form

Zt ∼ GZD
(
σ(t), α(t) − β(t), α(t) + β(t), κ(t),μ(t)

)
.

Then

Z
d= B� + μ,

where B = (Bt )t≥0 is a Gaussian continuous additive process with variance σ(t)

and mean −β(t), whereas � = (�t )t≥0 is a driftless additive GGC subordinator in-
dependent of B whose Lévy densities �(t, x) are given by the right-hand side of (7.4)
with

κj = κ(t), λj (t) = (α(t) + j)2 − β(t)2

2σ(t)
.
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From the above result, the CPDA log-returns process Y is recovered by setting
σ(t) = b(t), α(t) = 1 − b(t)/2, β(t) = b(t)/2, κ(t) = 1, μ(t) = 0, while the pro-
cess X for the SLA returns is obtained by choosing σ(t) = s(t), α(t) = κ(t) = 1 and
β(t) = μ(t) = 0. Actually, for these processes, we have an alternative, more famil-
iar, time-changed representation: the parent Gaussian process can be taken to be a
Brownian motion.

Proposition 7.5 Let X, Y be the processes in Proposition 4.2 and �X , �Y additive
GGC subordinators having Lévy densities �X(t, x), �Y (t, x) with specifications in
(7.4) given respectively by

κX
j = 1, λX

j (t) = (1 + j)2

2s(t)2 , (7.5)

κY
j = 1, λY

j (t) = (1 + j)2 − (1 + j)b(t)

2b(t)2
.

Then for a standard Brownian motion W independent of �X and �Y , we have

X
d= W�X,

Y
d= W�Y − �Y

2
. (7.6)

When � is a GGC Lévy process having Lévy measure �(x) in (7.4) with κ = 1 and
λj as in (7.5), where s(t) ≡ r/π , r > 0 (a hyperbolic subordinator), the process W�

was discussed by Pitman and Yor [28]. The representation of the logistic distribution
as a normal mixture is known since Stefanski [34]. Time-changed representations for
SR and SP can be easily obtained from Propositions 7.4 and 7.5 by applying the
necessary transformations taking returns to prices.

8 Physical dynamics

The underlying asset processes that we gave in this paper are naturally defined in
terms of their risk-neutral dynamics Q, as they must conform to price distributions
implied by a valuation formula. However, for GZD additive processes, an equiva-
lent measure change theory exists, relying on additive Esscher density transforms,
which makes it possible to explicitly determine equivalent physical dynamics. As
we shall illustrate, when starting from risk-neutral dynamics, physical equivalent
processes will no longer be logistic but still retain ZD marginals. In other words,
logistic additive processes do not constitute a class closed under equivalent mea-
sure changes, but ZD additive processes do. This supports the idea that logistic pro-
cesses are better looked at as members of the class of the (G)ZD additive processes.
That GZD and ZD Lévy processes are closed under Esscher transforms is shown
in Grigelionis [17, Proposition 8]. Similar arguments apply in our additive frame-
work.
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Proposition 8.1 Fix T > 0 and let X, Y be the additive processes of Proposition 4.2
with respective Laplace cumulants ψX and ψY .

(i) For θ ∈ � = (0,1), the additive Esscher transform

dPθ

dQ

∣∣∣∣
Ft

= exp
(
θYt − ψY

t (θ)
)
, t ∈ [0, T ], (8.1)

induces an equivalent measure change P
θ ≈ Q on FT , and on the filtered proba-

bility space (�,FT , (Ft )t∈[0,T ],Pθ ), the process Y is an additive ZD process with
distribution

Y θ
t ∼ ZD

(
b(t), c1(θ, t), c2(θ, t),0

)
, (8.2)

where

c1(θ, t) = 1 − (1 − θ)b(t), (8.3)

c2(θ, t) = 1 − θb(t). (8.4)

(ii) For all θ ∈ � = (−1/s(T ),1/s(T )), setting

dPθ

dQ

∣∣∣∣
Ft

= exp
(
θXt − ψX

t (θ)
)
, t ∈ [0, T ], (8.5)

induces an equivalent measure change P
θ ≈ Q on FT , and on the filtered proba-

bility space (�,FT , (Ft )t∈[0,T ],Pθ ), the process X is an additive ZD process with
distribution

Xθ
t ∼ ZD

(
s(t), s1(θ, t), s2(θ, t),0

)
, (8.6)

where

s1(θ, t) = 1 + θs(t), (8.7)

s2(θ, t) = 1 − θs(t). (8.8)

Proposition 8.1 identifies for each θ a physical (log-)returns process, which in turn
determines θ -physical underlying models SR,θ and SP,θ for the (S)SLA and CPDA
model respectively. Conversely, since the transformations (8.3), (8.4) and (8.7), (8.8)
are invertible in θ , for any fixed specification of the dynamics of Y θ and Xθ under
P

θ , there exist unique additive Esscher equivalent martingale measure changes with
densities of the form (8.1)–(8.5) determining the risk-neutral dynamics of Y and X.

Proposition 8.1 is consistent with the facts observed in Sect. 2 related to the logis-
tic distributions. Changing measure in the logistic (and more generally, in the GZD)
world acts on the whole distribution symmetry, not just on the mean/location as in the
normal case. Therefore measure changing does not merely reduce to a drift change
(which is, however, present), but modifies the whole moment structure. This also
means that the usual rule thumb of an “invariant variance” upon changing measure
breaks down, the measure change invariants being instead the functions s and b re-
lating to the whole cumulant term structure. Clearly, the subordination representation
of Sect. 7 also holds for the processes Xθ and Y θ .
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Table 1 VG model calibration to near-the-money S&P 500 call option prices, April 16th, 2021. In the first
four columns, the results of the single maturity calibrations are listed, in the last two those for multiple
maturities

Parameters / T 3 months 6 months 9 months 12 months 3 and 12 months all maturities

κ 0.4818 0.7666 1.3197 1.745 0.2970 0.2473

σ 0.1598 0.1709 0.1851 0.1861 0.1470 0.1000

θ −0.1301 −0.1115 −0.0925 −0.0877 −0.1575 −0.2673

Error 1.07% 0.23% 0.10% 0.03% 4.79% 7.71%

Table 2 NIG model calibration to near-the-money S&P 500 call option prices, April 16th, 2021. In the
first four columns, the results of the single maturity calibrations are listed, in the last two those for multiple
maturities

Parameters / T 3 months 6 months 9 months 12 months 3 and 12 months all maturities

κ 0.8701 1.0797 1.7065 1.6241 0.4836 0.2198

σ 0.1601 0.1600 0.1658 0.1504 0.1464 0.1085

θ −0.1399 −0.1385 −0.1272 −0.1388 −0.1650 −0.2890

Error 0.51% 0.23% 0.10% 0.03% 4.54% 7.54%

9 Empirical comparisons

In the calibration exercise of this section, we test the logistic models’ option pric-
ing performance and compare it to that of popular Lévy models. We considered four
maturity time sections of near-the-money S&P 500 call options with times to matu-
rity of 3, 6, 9 and 12 months. Moneynesses are about ±6% strike to spot, with 20
options for each maturity. We calibrated four models: the CPDA and SSLA mod-
els and the variance gamma (VG, Madan et al. [23]) and normal inverse Gaussian
(NIG, Barndorff-Nielsen [3]) exponential Lévy models. For the VG and NIG mod-
els, we used the reduced-form time-changed specification in Cont and Tankov [11,
Chap. 4] with parameters κ , σ , θ . Here σ and θ are the parent arithmetic Brownian
motion volatility and drift, and κ represents the unit time variance of the subordina-
tor. In general terms, the parameter σ mostly picks up the risk-neutral variance, θ the
skewness and κ the excess kurtosis. For the CPDA model, we chose the parametrisa-
tion (5.7), which requires calibration of the single parameter σ ; the alternative two-
parameter term function bH in (5.8) does not appear to lead to a major improvement
of the calibration quality. To be consistent with this choice, the SSLA was taken in its
SR,1/2 specification. We employed a differential evolution global optimisation algo-
rithm with the mean relative pricing error (MRE) as objective function; the calibration
error is thus given by the in-sample MRE. The call option pricing formulae for the
Lévy models are implemented according to the integral valuation equation (6.1). The
results are shown in Tables 1, 2, 3 and 4.

As we can observe in the first four columns of each table, the VG and NIG mod-
els calibrate very accurately to any given individual maturity cross-section. The ac-
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Table 3 SSLA model calibration to near-the-money S&P 500 call option prices, April 16th, 2021. In the
first four columns, the results of the single maturity calibrations are listed, in the last two those for multiple
maturities

Parameters / T 3 months 6 months 9 months 12 months 3 and 12 months all maturities

σ 344.6777 370.5770 393.8968 401.0870 356.2414 354.1769

Error 7.26% 5.94% 4.84% 4.08% 8.78% 10.25%

Table 4 CPDA model calibration to near-the-money S&P 500 call option prices, April 16th, 2021. In the
first four columns, the results of the single maturity calibrations are listed, in the last two those for multiple
maturities

Parameters / T 3 months 6 months 9 months 12 months 3 and 12 months all maturities

σ 0.0812 0.0862 0.0902 0.0927 0.0831 0.0825

Error 8.37% 7.32% 6.25% 5.52% 9.35% 10.98%

curacy increases with time-to-maturity, as the implied volatility skew/smile relaxes
over time. The one-parameter SSLA and CPDA models show the same error reduc-
tion pattern when moving the calibration sample forward in time, but feature a sub-
stantially larger overall error. This was expected: notwithstanding any consideration
on the model structure, a one-parameter model can hardly provide a better fit to em-
pirical data than a three-parameter one. In our view, that single-parameter models are
able to achieve calibration results as those listed in Tables 3 and 4 is already quite
remarkable.

The data in the last two columns provide instead more insight on the structural dif-
ference between reduced-form Lévy and additive logistic models. Here we calibrate
the models with respect to multiple maturity cross-sections: the 3- and 12-month ma-
turity sections in the fifth column, and across the whole range of maturities in the
sixth column. As theory predicts, the calibration of the Lévy models noticeably dete-
riorates, up to a tenfold increase from the maximum single section calibration error.
This is due to the well-recognised fact that the time rate of statistical dispersion of
homogeneous models does not match the one implied by the rate of volatility skew
flattening observed in market prices. In contrast, the CPDA and SSLA models do not
suffer that much when calibrated to multiple time sections: compared to the 3-month
single maturity calibration, the error increase after adding further time sections is
only about 2–3 percentage points. In other words, owing to the additive structure, the
single parameter in the logistic models is able to interpolate across different volatility
skews at different maturities in a way comparable to models with a richer distribu-
tional parametrisation, but a less flexible term structure.

When comparing the SSLA and CPDA models, we notice that the SSLA model
performs slightly better. A possible heuristic explanation may be the following. The
SSLA is a symmetric distribution so that when extracting the lognormal volatility
(a convex decreasing function of strike), a skew naturally arises. However, as we
observed, the SSLA excess kurtosis is small and constant across maturities. Thus for
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any given maturity, the SSLA model reproduces the implied volatility skew, but less
so its convexity. In contrast, the CPDA model has a more pronounced time-varying
kurtosis, but small skewness at the origin (see Figs. 4 and 5). Therefore, it may fit
well the short-term implied volatility smile, but not its asymmetry. Apparently, when
calibrating to a single maturity, for the set of prices considered, the trade-off between
these two complementary features favors the SSLA model.

We finally observe that as expected, the calibration run-time for the logistic models
is much lower than that of Lévy models. In our implementation, the SSLA and CPDA
models take about 0.5 seconds on average to calibrate to a single maturity cross-
section (20 options), while the VG and NIG models take approximately 11 seconds.
With respect to the whole set of prices considered (80 options), the values are instead
about 1.5 seconds for the logistic models and between 20 and 30 seconds for the
Lévy ones. This is a clear consequence of having fully analytic valuation equations
and only one parameter to calibrate.

10 Conclusions and future research

In this paper, we have demonstrated that simple no-arbitrage valuation formulae can
produce risk-neutral distributions fully supported by additive processes. By assum-
ing option valuation formulae to be a log-sum-exponential and an �p-norm, we have
derived logistic-type risk-neutral distributions for which a theory of Markov additive
processes can be devised. The overall take is that logistic laws for asset returns cor-
respond to simple and parsimonious additive underlying asset pricing models, which
nonetheless adequately capture several market stylised facts and are viable for deriva-
tive pricing. Ultimately, by starting to model underlying security prices from option
valuation formulae rather than stochastic processes, it is to a certain extent possible
to challenge the common wisdom that realism must necessarily come at the cost of
mathematical tractability. In parallel work, we are currently investigating the proper-
ties of a class of diffusion processes supporting the pricing formulae (2.1) and (2.2).

Appendix: Proofs

Proof of Proposition 4.1 The Lévy characteristic triplets of general GZD distributions
and their self-decomposability have been determined in Grigelionis [17, Proposi-
tion 1] by matching the derivatives of the digamma function with the Lévy cumulants.
An alternative proof in our setup goes as follows.

Let 
t(z) = lnE[eizZt ] be the Fourier cumulant function associated to the vari-
ables Zt . After expanding (3.6), we have for z ∈R that


t(z) = δ(t)
(

ln�
(
c1(t) + izσ (t)

) − ln�
(
c1(t)

)

+ ln�
(
c2(t) − izσ (t)

) − ln�
(
c2(t)

))
. (A.1)
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We recall that the integral representation for ln�(z), Re(z) > 0, is (see Gradshteyn
and Ryzhik [16, 8.341.3])

ln�(z) =
∫ ∞

0

(
e−zx − e−x

x(1 − e−x)
− (z − 1)

e−x

x

)
dx.

Therefore for all z ∈ R, we can use the above in (A.1). For the last two terms, we
obtain

ln�
(
c2(t) − izσ (t)

) − ln�(c2(t))

=
∫ ∞

0

(
e−(c2(t)−izσ (t))x − e−c2(t)x

x(1 − e−x)
− izσ (t)

e−x

x

)
dx,

which after the substitution xσ(t) 
→ x becomes

ln�
(
c2(t) − izσ (t)

) − ln�
(
c2(t)

)

=
∫ ∞

0

(
(eizx − 1)e

−x
c2(t)

σ (t)

x(1 − e−x/σ(t))
− izσ (t)

e−x/σ(t)

x

)
dx

=
∫ ∞

0

(
(eizx − 1 − izx1{x<1})e−x

c2(t)

σ (t)

x(1 − e−x/σ(t))
− izσ (t)1{x>1}

e−x/σ(t)

x

)
dx

+ iz

∫ 1

0

(
e
−x

c2(t)

σ (t)

1 − e−x/σ(t)
− σ(t)

e−x/σ(t)

x

)
dx. (A.2)

An analogous calculation for the first two terms of (A.1) produces

ln�
(
c1(t) + izσ (t)

) − ln�
(
c1(t)

)

=
∫ 0

−∞

(
(eizx − 1)e

x
c1(t)

σ (t)

−x(1 − ex/σ(t))
+ izσ (t)

ex/σ(t)

x

)
dx

=
∫ 0

−∞

(
(eizx − 1 − izx1{x>−1})ex

c1(t)

σ (t)

−x(1 − ex/σ(t))
+ izσ (t)1{x<−1}

ex/σ(t)

x

)
dx

+ iz

∫ 0

−1

(
− e

x
c1(t)

σ (t)

1 − ex/σ(t)
+ σ(t)

ex/σ(t)

x

)
dx. (A.3)

Summing expressions (A.2) and (A.3), multiplying by δ(t) and using the obvious
integral substitution in the second term yields


t(z) =
∫ ∞

−∞
(eizx − 1 − iz1{|x|<1})v(t, x)dx + izat ,

which is the Lévy–Khintchine representation we require.
To show the second part, by virtue of Sato [31, Theorem 9.8], all we need to verify

to prove the existence of Y is that at is continuous for all t ≥ 0 and that the Lévy
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measures μt(dx) = v(t, x)dx are such that μt(B) is a continuous and nondecreasing
function of t for all Borel sets B ⊆ R not containing 0.

Set a0 = v(0, x) = 0 for all x = 0. From the assumptions on σ, c1/σ , c2/σ and
δ, we see that for all x, the Lévy densities v(t, x) are nondecreasing in t ; hence by
positivity of the Lévy densities, so is μt(B). Continuity of at for all t ≥ 0 and that of
v(t, x) at t = 0 is clear. When t = 0, the assumptions on c1, c2 and δ ensure that all
the involved right limits in zero exist, and setting y = x/σ(t), we have for x > 0 that

lim
t→0

v(t, x) = lim
y→+∞σ(0+)δ(0+)

e−c2(0+)y

y(1 − e−y)
= 0,

and analogously for x < 0 that

lim
t→0

v(t, x) = − lim
y→−∞σ(0+)δ(0+)

ec1(0+)y

y(1 − ey)
= 0.

Let now sn ↑ t ; by the previous part, for all Borel sets B as above, we have

lim
n→∞μsn(B) = lim

n→∞

∫
B

v(sn, x)dx =
∫

B

lim
n→∞v(sn, x)dx =

∫
B

v(t, x)dx = μt(B)

due to monotone convergence. This shows μs(B) → μt(B) when s → t−. Similarly,
if sn → t and since v(s1, x) has finite integral on B , monotone convergence shows
that μs(B) → μt(B) as s → t+. �

Proof of Proposition 4.2 Define Xt and Yt as in (4.1) with respectively

σ(t) = s(t), c1(t) = 1, c2(t) = 1, δ(t) = 1, μ(t) = 0 (A.4)

and

σ(t) = b(t), c1(t) = 1 − b(t), c2(t) = 1, δ(t) = 1, μ(t) = 0. (A.5)

In view of (3.5), Xt and Yt have the required distributions. Furthermore, both sets
of functions above satisfy the assumptions of Proposition 4.1 so that the existence of
X and Y and their uniqueness in law is established. Using (A.4) and (A.5) in (4.3),
we obtain (4.4) and (4.6). Moreover, (4.5) follows from (A.5) and (4.2), while the
analogous substitution for X shows that the drift is zero.

To show the martingale property of X (and hence that of SR), recall that vX is the
jump compensator of the pure jump process X which implies that

Xt −
∫
R

xvX(t, x)dx

must be a local martingale. But vX is symmetric about zero for all t , and therefore
∫
R

xvX(t, x)dx = 0
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so that X is a mean-zero local martingale. Furthermore, proceeding as in (6.3), we
have for all t ≥ 0 that

E
[[X]t

] =
∫
R

x2vX(t, x)dx = κX
2 (t) < ∞,

and therefore X is a martingale.
Regarding the process Y , we recall from general theory that if 
(z) = (
t (z))t≥0,

z ∈ C, is the Fourier cumulant process of Y , then exp(Y − 
(−i)) is a local martin-
gale. For additive processes, Fourier cumulants are deterministic functions of time,
and the cumulant function of the infinitely divisible distribution SL(1 − b(t), b(t),0)

can be recovered from (3.6) as


t(z) = ln
B(1 + (iz − 1)b(t),1 − izb(t))

B(1 − b(t),1)
.

But then


t(−i) = ln
B(1,1 − b(t))

B(1 − b(t),1)
= 0,

and therefore SP = SP
0 exp(Y ) is a positive local martingale and thus also a martin-

gale, being a supermartingale with constant expectation SP
0 . Now comparing (4.7)

and (4.8) with (2.7), the last statement follows from the strike differentiation argu-
ment for (2.3) and (2.4) illustrated in Sect. 2. �

Proof of Corollary 4.3 Let D ∼ GZD(σ,1,1,0) ≡ L(σ,0). Since D is self-decompos-
able, the existence and uniqueness of a self-similar process X is established in Sato
[30, Theorem 3.2]. Furthermore, from that theorem, the Lévy characteristic triplet of
X has zero drift and Lévy measure given by

vH (t, x)dx := t−H vD(xt−H )dx, (A.6)

where vD is the Lévy density of D which by the first part of Proposition 4.1 can be
recovered from (4.3) using c1 = c2 = 1, δ(t) = 1, μ = 0, σ(t) = σ . It is straightfor-
ward to check that under these choices, (A.6) equals (4.4) with s(t) = σ tH , and this
proves the corollary. �

Proof of Proposition 7.4 By the assumptions, the function λj (t) is continuous, posi-
tive and decreasing in t for all j , with λj (0+) = +∞. Therefore the densities �(t, x)

are strictly increasing and continuous in t > 0 with �(0+, x) = 0 for all x > 0. Com-
pleting �(t, x) with the value zero for t = 0, we can use Sato [31, Theorem 9.8]
as in Proposition 4.1 to establish the existence of �. The existence of B is another
straightforward application of that theorem. To prove the claim, we then only need to
show the identity of the characteristic functions. The calculation of the characteristic
function of Zt = B�t +μ(t) can be performed using (7.3). Denoting by φ the Laplace
exponent of �, the familiar argument on conditioning under independence leads to
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E

[
exp

(
iz

(
B�t + μ(t)

))]

= eizμ(t)
E

[
exp

(
−

(z2σ(t)

2
+ izβ(t)

)
�t

)]

= eizμ(t) exp

(
− φ

(z2σ(t)

2
+ izβ(t)

))

= eizμ(t)

∞∏
j=0

(
1 + z2σ 2(t) + 2izσ (t)β(t)

(α(t) + j)2 − β2(t)

)−κ(t)

= eizμ(t)
∞∏

j=0

((
1 + izσ (t)

α(t) − β(t) + j

)(
1 − izσ (t)

α(t) + β(t) + j

))−κ(t)

= eizμ(t)

(
�(α(t) − β(t) + izσ (t))�(α(t) + β(t) − izσ (t))

�(α(t) − β(t))�(α(t) + β(t))

)κ(t)

= eizμ(t)

(
B(α(t) − β(t) + izσ (t), α(t) + β(t) − izσ (t))

B(α(t) − β(t), α(t) + β(t))

)κ(t)

, (A.7)

which matches the required GZD characteristic function. In the second to last equal-
ity, we have used Gradshteyn and Ryzhik [16, Eq. 8.325.1]. �

Proof of Proposition 7.5 The existence and properties of � are shown exactly as in
Proposition 7.4. When analysing the characteristic function of e.g. (7.6), we can pro-
ceed as in (A.7). Denoting by φY the Laplace exponent of �Y , we obtain

E
[

exp
(
iz(W�Y

t
− �Y

t /2)
)]

= E

[
exp

(
− z2 + iz

2
�Y

t

)]

= exp

(
− φY

(z2 + iz

2

))
=

∞∏
j=0

(
1 + b(t)2(z2 + 2iz)

(1 + j)2 − (1 + j)b(t)

)−1

=
∞∏

j=0

((
1 + izb(t)

1 − b(t) + j

)(
1 − izb(t)

1 + j

))−1

= B(1 + (iz − 1)b(t),1 − izb(t))

B(1 − b(t),1)
,

which is the SL(1 − b(t), b(t),0) characteristic function. A similar but simpler cal-
culation yields the representation of X as a subordinated Brownian motion (see also
Pitman and Yor [28, Eq. (78)]). �
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Proof of Proposition 8.1 (i) Since b(t) ∈ (0,1], we have for all θ ∈ �, t > 0 that
c1(θ, t), c2(θ, t) > 0, and the density process (8.1) is a local martingale. Moreover,
because Y is additive, (8.1) is a supermartingale with expectation one and hence a
martingale, so that the equivalent change of measure P

θ ≈ Q is well defined.
By general theory, the claim is equivalent to ψθ

t (z) = ψt(z + θ) − ψt(θ), where
ψθ

t (z) denotes the Laplace cumulant of the additive GZD process from Proposi-
tion 4.1 with the specification (8.2)–(8.4). Using (3.2) yields

ψt(z + θ) − ψt(θ) = ln
B(1 − b(t) + (z + θ)b(t),1 − (z + θ)b(t))

B(1 − b(t),1)

− ln
B(1 − b(t) + θb(t),1 − θb(t))

B(1 − b(t),1)

= ln
B(c1(θ, t) + zb(t), c2(θ, t) − zb(t))

B(c1(θ, t), c2(θ, t))

= ψθ
t (z) (A.8)

for all t . Now note that as functions of t , c1(θ, t), c2(θ, t) are bounded in zero for
all θ and c1(θ, t)/b(t), c2(θ, t)/b(t) are decreasing in t . Therefore an application of
Proposition 4.1 proves part (i).

(ii) We notice that since s is increasing, its maximum for fixed T is s(T ) so that
if θ ∈ � = {0}, then s1(θ, t), s2(θ, t) > 0 for all t , and the Esscher transform (8.5)
exists for all t ≤ T and is a martingale. The verification of (8.6) is performed in
exactly the same way as in (A.8), and the existence of an additive process follows
again from Proposition 4.1 after observing that as functions of t , s1(θ, t) and s2(θ, t)

are bounded around zero for all θ and s1(θ, t)/s(t) and s2(θ, t)/s(t) are decreasing
in t . �
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