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Abstract

Single-cell RNA sequencing (scRNA-seq) techniques, which examine the genetic information of individual

cells, provide an unparalleled resolution to discern deeply into cellular heterogeneity. On the contrary,

traditional RNA sequencing technologies (bulk RNA sequencing technologies), measure the average RNA

expression level of a large number of input cells, which are insufficient for studying heterogeneous systems.

Hence, scRNA-seq technologies make it possible to tackle many inaccessible problems, such as rare cell types

identification, cancer evolution and cell lineage relationship inference.

Cell population identification is the fundamental of the analysis of scRNA-seq data. Generally, the work-

flow of scRNA-seq analysis includes data processing, dropout imputation, feature selection, dimensionality

reduction, similarity matrix construction and unsupervised clustering. Many single-cell clustering algorithms

rely on similarity matrices of cells, but many existing studies have not received the expectant results. There

are some unique challenges in analyzing scRNA-seq data sets, including a significant level of biological and

technical noise, so similarity matrix construction still deserves further study.

In my study, I present a new method, named Learning Sparse Similarity Matrices (LSSM), to construct

cell-cell similarity matrices, and then several clustering methods are used to identify cell populations respec-

tively with scRNA-seq data. Firstly, based on sparse subspace theory, the relationship between a cell and

the other cells in the same cell type is expressed by a linear combination. Secondly, I construct a convex

optimization objective function to find the similarity matrix, which is consist of the corresponding coefficients

of the linear combinations mentioned above. Thirdly, I design an algorithm with column-wise learning and

greedy algorithm to solve the objective function. As a result, the large optimization problem on the simi-

larity matrix can be decomposed into a series of smaller optimization problems on the single column of the

similarity matrix respectively, and the sparsity of the whole matrix can be ensured by the sparsity of each

column. Fourthly, in order to pick an optimal clustering method for identifying cell populations based on

the similarity matrix developed by LSSM, I use several clustering methods separately based on the similarity

matrix calculated by LSSM from eight scRNA-seq data sets. The clustering results show that my method

performs the best when combined with spectral clustering (Laplacian eigenmaps + k-means clustering). In

addition, compared with five state-of-the-art methods, my method outperforms most competing methods on

eight data sets. Finally, I combine LSSM with t-Distributed Stochastic Neighbor Embedding (t-SNE) to

visualize the data points of scRNA-seq data in the two-dimensional space. The results show that for most

data points, in the same cell types they are close, while from different cell clusters, they are separated.

Keywords Clustering, Cell type identification, Sparse similarity learning, Single cell
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1 Introduction

With the tremendous increase in single-cell RNA sequencing (scRNA-seq) data, algorithmic analysis tech-

niques are significant for studying cell heterogeneity. Single-cell sequencing, which is a sequencing technology

to obtain genetic information of individual cells, has been applied to broad biological fields over the past

few decades, such as microbiology, neurobiology, embryonic development, tissue mosaicism, immunology, and

cancer research [118]. In these researches, cell type identification is essential and necessary for clarifying the

complexity of the organization, including the number of cell types and the transcriptome characteristics of

each cell population [1]. Generally, unsupervised clustering methods are used for grouping cells into clusters.

The cluster labels can then be assigned to their corresponding biological cell types by several ways, such

as the differential expression of marker genes (i.e. [108]), development time of cells (i.e. [29]), directed cell

differentiation in vitro (i.e. [65]) and so on. However, there still are many unique challenges in scRNA-seq

data analysis because of high dropout rates, low and uneven read coverage, high variability and complex

batch effects of scRNA-seq data [89, 31, 86]. Therefore, in order to tackle these challenges in scRNA-seq data

analysis, appropriate algorithmic analysis techniques should be taken.

1.1 Previous research

1.1.1 Literature review

In recent years, many methods for identifying cell populations have been proposed. Generally, the workflow

of scRNA-seq analysis includes data pre-processing, normalization, dropout imputation, dimension reduction,

similarity matrix construction and clustering. Due to the high dimensionality of scRNA-seq data, dimen-

tionality reduction is usually performed, and commonly used methods include principal component analysis

(PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Laplacian eigenmaps and so on. Further-

more, data points are grouped by unsupervised clustering methods, such as k-means clustering, hierarchical

clustering and Gaussian mixture model (GMM) clustering. I summary several popular single-cell clustering

analysis tools in Table 1.1.

Majority of the exciting single-cell clustering methods rely on building similarity matrices between cells.
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Table 1.1: Summary of nine single-cell clustering analysis tools

Name Language Method type Download

ascend[99] R
PCA + hierarchical
clustering https://github.com/powellgenomicslab/ascend

TSCAN [50] R
PCA + model-based
clustering https://github.com/zji90/TSCAN

Seurat [98] R
PCA + graph-based
clustering https://github.com/satijalab/seurat

monocle [113] R
t-SNE + density-
based clustering http://monocle-bio.sourceforge.net/

scanpy [120] Python
PCA + graph-based
clustering https://github.com/theislab/scanpy

SC3 [60] R

PCA + k-
means cluster-
ing+hierarchical
clustering

https://github.com/hemberg-lab/SC3

SINCERA [44] R
hierarchical cluster-
ing https://github.com/xu-lab/SINCERA

RaceID [43] R

Pearson correlation
dissimilarities + K-
medoids clustering

https://github.com/dgrun/RaceID

CIDR [68] R

zero-imputed sim-
ilarities + PCA +
hierarchical cluster-
ing

https://github.com/VCCRI/CIDR

For example, Jiang et al. construct cell-cell similarity matrices based on the ‘differentiability correlation’,

which is calculated based on the relationship of every two cells deriving from gene differential patterns. The

algorithm can also automatically determine the optimal cluster number for hierarchical clustering [51]. Grün

et al. build cell-cell similarity matrices based on Pearson correlation coefficients, and further use k-means

clustering to reveal rare intestinal cell types [43]. Jeong et al. introduce a single-cell clustering framework,

consisting of discerning the set of potential features, estimating the similarity between cells through multiple

feature sampling, and using a network-based clustering method to cluster cells [48]. Xu and Su calculate

Euclidean distances between cells based on gene expression profile, and then utilize k-nearest-neighbor (KNN)

to construct cell-cell similarity matrices for a quasi-clique-based clustering algorithm [123].

1.1.2 Previous research at the University of Saskatchewan

Li et al. propose a single-cell clustering method, Improved Spectral Clustering (ISC), through constructing

cell-cell incidence matrices by integrating similarity matrices and dissimilarity matrices between cells. Then

classic spectral clustering method is used to cluster cells, which mainly consists of three steps, as illustrated

in Figure 1.1 [67].
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Figure 1.1: The ISC workflow for clustering scRNA-seq data

The three steps can be briefly summarized as follows.

1. Calculating similarity matrices and dissimilarity matrices between cells.

The authors construct a cell-cell similarity matrix, denoted as matrix A, and a cell-cell dissimilarity

matrix, denoted as matrix B, base on Pearson correlation coefficient (PCC) [6] to measure the strength and

direction of the linear correlation between two variables.

2. Integrating cell-cell similarity with dissimilarity matrices

The authors compute the adjacency matrix W by integrating matrix A with B as: W = (1-α)A+αB,

where α is a constant parameter.

3. Identifying cells by spectral clustering

The authors calculate the eigenstructure of the Laplacian matrix (L), which can be calculated based on

adjacency matrix W . The eigenvectors of L are sorted according to the corresponding eigenvalues. Finally,

they perform k-means clustering technique on the first k eigenvectores of L, where k is the number of cell

types.

Although ISC improves the accuracy and robustness of clustering qualities with single-cell data, there are

still potential improvements. Firstly, the authors do not explain clearly how to get the appropriate value of

α to calculate the adjacency matrix W . Secondly, they do not give more details about how to determine the

neighbors of similar cells or dissimilar cells to construct cell-cell similarity or dissimilarity matrices. Thirdly,

the sample sizes of their tested scRNA-seq data sets are too low. The number of cells, used in the paper, is

from 251 to 704, while a typical scRNA-seq data set contains thousands of cells. In my study, to address the

problems mentioned above, I clearly point out how to adjust the parameters used in my algorithms. Besides,

I test my method with scRNA-seq data sets, which contain much more data points than the data sets in ISC

study.
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1.2 Overview of the study

In this study, I propose a novel method, called Learning Sparse Similarity Matrices (LSSM), to construct

sparse cell-cell similarity matrices based on scRNA-seq data. I further apply several clustering methods to

identify cell populations based on the similarity matrices. The main steps are briefly summarized as follows.

Firstly, I preprocess the data, including removing zeros, logarithmic transformation, feature selection and

dimensionality reduction. Removing zeros and logarithmic transformation can reduce computation load and

alleviate data heterogeneity. Feature selection and dimensionality reduction of high dimensional data can

also reduce computational complexity well. For details, please refer section 3.2.

Secondly, I construct an objective function and design algorithms to calculate sparse cell-cell similarity

matrices. According to the sparse subspace theory, I assume that each cell can be represented by the other

cells in the same cell type with a linear combination, and the similarity matrices are composed by these linear

combinations. Furthermore, I decompose the large optimization problem into n easier-to-solve optimization

problems by column-wise learning. Combining with greedy algorithm, each column of the similarity matrix

can be calculated by adding only one non-zero value to the corresponding column at each iteration. For

details, please refer section 4.

Thirdly, in order to select an appropriate clustering method based on the cell-cell similarity matrices, I

apply two spectral clustering methods (including Laplacian eignmaps + k-means clustering and Laplacian

eignmaps + Gassian mixture model (GMM) clustering), a hierarchical clustering method and a Louvain

clustering method to identify cell groups with eight scRNA-seq data sets separately. For details, please refer

section 5.1.

Finally, I combine LSSM with t-SNE to reveal the visualization of the data points in two-dimensional

space from high-dimensional space. For details, please refer section 5.2.

The framework of this study is as Figure 1.2, and the specific process is detailed in the following chapters.

1.3 Motivation and contributions

1.3.1 Motivation

In single-cell data analysis, one of the problems with most existing methods of constructing cell-cell similarity

matrices is that, the similarity matrices are calculated based on the gene expression of two cells only. As a

result, they have the following issues.

• Firstly, constructing similarity matrices based on pairwise relationships cannot effectively reduce the
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Figure 1.2: The framework of this study

The framework includes: 1) data processing 2) sparse cell-cell similarity matrix construction 3) clustering 4) visualization.
L+k represents Laplacian eignmaps + k-means clustering. L+G represents Laplacian eignmaps + Gassian mixture model

clustering.

impact of noise in single cell gene expression data [68], because in high-dimensional scRNA-seq data,

some relationships may be caused by the noise. Hence, such similarity matrix tends to be more dense

due to noise and reduces the accuracy and efficiency of clustering.

• Secondly, most researchers do not take the information of individual cells into the context of the whole

data to explore similarity relationships among cells. As a result, constructing pair-wise similarity

matrices simplifies the problem by failing to consider the relationship among multiple cells. Therefore,

the clustering methods based on pair-wise cell similarity may be ineffective in cell type identification

task.

Due to the above problems, in this research, I want to leverage the idea of putting the information of a

single cell into the convex of the whole data to construct the similarity matrices. More specifically, I need to

address the following tasks.

• I need to look for a calculation method capable of building the relationships between one cell and

multiple cells.

• The method also needs to keep the similarity matrix to be sparse.

• After cell-cell similarity matrices are constructed, I need to find an appropriate clustering method to

identify cell populations according to the clustering qualities.

• Visualization in scRNA-seq data analysis is essential for biological interpretation and evaluating cell

populations. I want to combine visualization methods with the sparse cell-cell similarity matrices to
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visualize data points in two-dimensional space.

1.3.2 Contributions

Based on the motivations above, in this study, I propose a novel framework of single-cell data clustering.

More specifically, I make the following contributions.

• According to sparse subspace theory [33], I assume that each cell can be represented by linear combi-

nation of the other cells in the same population. Therefore, the relationships between a cell and other

cells in the same subspace can be built. Based on the assumption, I construct a convex optimisation

objective function and a convex hull to calculate the similarity matrix between cells.

• To solve the convex optimization objective function, I design an effective and convergent algorithm

by combining column-wise learning with greedy algorithm. In later section, I will present that using

column-wise learning, the original large and complex problem of finding the similarity matrices can

be recomposed into easier-to-solve smaller optimization problems through finding each column of the

similarity matrices. In order to guarantee each column of the cell-cell similarity matrix to be sparse, I

utilize greedy algorithm to add only one non-zero value to the corresponding column at each iteration.

• Based on the constructed sparse cell-cell similarity matrices, I apply several clustering methods, includ-

ing two spectral clustering methods (Laplacian eigenmaps + k-means clustering, Laplacian eignmaps

+ GMM clustering), a hierarchical clustering method and a Louvain clustering method to identify cells

over eight scRNA-seq data sets respectively. I will present it in the later section, and the results show

that my method (LSSM) combining with spectral clustering, especially Laplacian eignmaps + k-means

clustering, outperforms to most competing methods on the multiple data sets.

• For utilization, I combine the cell-cell similarity matrix, computed by LSSM, with t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) to visualize scRNA-seq data sets in two-dimensional space. The results

show that for most data points, if they are in the same cell populations, they are grouped nicely. At

the same time, from different cell populations, they are clear separation.

1.4 Organization

The thesis includes 8 chapters. Apart from the 1st chapter, the remaining chapters are organized as follows.

In chapter 2, some background knowledge is introduced from three major aspects: 1) single cell sequencing

technologies, 2) unsupervised clustering and 3) convex optimization. In chapter 3, I describe eight scRNA-

seq data sets and data preprocessing. For these data sets, I explain how the ground truths (cell labels) are
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annotated by the original papers and where to get the data sets. In chapter 4, I demonstrate the details about

constructing an convex optimization objective function and an algorithm to compute cell-cell sparse similarity

matrices with their derivations and proofs in detail. Subsequently, in chapter 5, based on the constructed

sparse similarity matrices, I introduce several clustering methods (two spectral clustering methods (Laplacian

eigenmaps + k-means clustering, Laplacian eignmaps + GMM clustering), a hierarchical clustering method

and a Louvain clustering method, which are denoted as LSSM-EK, LSSM-EG, LSSM-H and LSSM-L for

identifying cell populations. Also, I use t-SNE to visualize scRNA-seq data based on the similarity matrices.

In chapter 6, I depict three clustering evaluation metrics: Purity, normalized mutual information (NMI), and

adjusted rand index (ARI). In chapter 7, I show the results of clustering and visualization. I compare the

clustering results between the five state-of-the-art methods (NMF, SIMLR, MPSSC, DropClust, SC3) and

my methods (LSSM-EK, LSSM-EG, LSSM-H and LSSM-L) based on the three clustering evaluation metrics.

Besides, I present the visualization performance by using t-SNE. Finally, in chapter 8, I summarize the whole

research in this thesis and discuss several potential future improvement directions. In the appendix, I list

the Python code used in this study.

A paper based on the main results of this thesis has been accepted as a regular conference paper by IEEE

International Conference on Bioinformatics and Biomedicine 2021 (IEEE BIBM 2021) with the acceptance

rate of 19.6%.
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2 Background

2.1 Single cell sequencing

2.1.1 A brief overview of the development of sequencing technologies

The generation of first-generation sequencing technology

First-generation sequencing technologies include Sanger and Maxam-Gilbert sequencing technologies. In

the 1970s, Maxam and Gilbert [80] and Sanger et al. [96] developed methods for determining nucleotide

sequences in DNA by fragmentation and chain termination severally, which provided tools for deciphering

complete genes and later, entire genomes. While the approach developed by Sanger et al., usually called

Sanger sequencing, required less processing of toxic chemicals and radioisotopes compared with Maxam and

Gilbert’s approach, so Sanger sequencing became the most popular DNA sequencing method for the next 30

years [100]. With the demand for ever-increasing throughput, Sanger method was automated, which can be

used to analyze large-scare metagenomic libraries [94, 61].

The generation of next-generation sequencing (NGS) technology

Next-generation sequencing technologies, also called high throughput sequencing technologies, have mostly

replaced the first generation sequencing technologies lately. The Human Genome Project formally launched

in 1990 and was declared complete in 2003 [77]. It requires much faster, cheaper and larger scale sequencing

technologies, that provoked the development and commercialization of NGS technologies [58, 94]. For the

entire human genome sequencing, NGS technologies can finish in one day, while Sanger sequencing needs

more than a decade to complete. Compared to Sanger sequencing method, NGS technologies have lower

sample input requirements, higher accuracy, and detecting variants at lower allele frequencies features [5].

Therefore, NGS technologies have opened new perspectives for genomics research and diagnostic applications,

because of their high speed and throughput of data generation [5, 20].
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2.1.2 The workflow of single-cell RNA sequencing

To clearly understand single-cell RNA sequencing (scRNA-seq) technology, we should know RNA sequencing

(RNA-seq) first. RNA sequencing (RNA-seq), which is mainly applied to examine the quantity and sequences

of RNA in a sample, is one of the most widely using NGS technology. RNA-seq needs reverse transcription of

RNA into complementary DNA (cDNA), which is DNA synthesized from a single-stranded RNA, and then

examine the qualities and sequences of these cDNAs by using NGS technology [25, 84], because cDNA is more

stable and resistant to be degraded than RNA. Genes with higher expression, can generate more sequence

reads of DNA, RNA and cDNA. Therefore, RNA-seq technology provides a digital read of gene expression,

and the number of DNA sequence reads is consistent with the biological expression level of specific genes

in a sample [90]. Traditionally, researchers obtain RNA-seq data from bulk of cells, which measure the

average gene expression level in a large number of input cells [79, 107]. However, these measurements may

cover key differences of individual cells in the bulk of cells. Therefore, it is insufficient for studying cellular

heterogeneity, which measures the variability among cells.

Single-cell RNA sequencing (scRNA-seq) technologies, which depict the sequence information from indi-

vidual cells with a range of technologies for sensitive, highly multiplexed or combinatorially barcoded profiling,

are now becoming a powerful tool for mapping cell-cell variation on a genome-wide scale [106, 93, 46]. ScRNA-

seq technologies have been employed in many disparate fields of biology, such as microbiology, neurobiology,

tissue mosaicism, immunology, and cancer research over the past few decades [118].

Apart from the fact that scRNA-seq technologies require cells to be isolated first, the general scRNA-seq

workflow (Figure 2.1) is similar with bulk RNA-seq technologies. The steps to generate scRNA-seq data from

biological samples are as follows.

• Firstly, solid tissues need to be dissociated for producing a monodispersed suspension of viable cells by

using mechanical force and/or biological enzymes, such as collagenase, hyaluronidase and deoxyribonu-

clease. It is important to ensure that the cell surface epitopes are not affected.

• Secondly, single cells are captured and isolated. There are various methods, including low-throughput

single-cell isolationapproach (e.g. laser capture microdissection, fluorescence-activated cell sorting

(FACS)), and high-throughput single-cell isolation approach (e.g. microfluidics circuits, droplet flu-

idics platforms), to capture and isolate single cells.

• Thirdly, library construction is performed. Library construction is the process of capturing intracellular

mRNA, transcribing mRNA into cDNA and amplifying cDNA molecules. After library construction,

cDNA libraries are labelled with cellular barcodes. And then they are pooled together for sequencing
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by NGS technologies.

• Fourthly, bioinformatic and /or computational approaches can be used to analyze scRNA-seq data, once

the scRNA-seq data is produced. Generally, the common steps of analyzing scRNA-seq data includes

quality control, normalization, feature selection, dimensionality reduction, cell-cell distance/similarity

matrix calculation and unsupervised clustering for identifying cell types [59].

More detailed explanations of the workflow to do scRNA-seq experiments could be found in [74, 82].

2.2 Unsupervised clustering

Clustering (or cluster analysis) is a common unsupervised machine learning approach, which learns patterns

from a data set without classified or labeled responses[66]. Unsupervised clustering aims to divide the

populations or data points into a number of clusters, such that the data points in the same group are more

similar to each other than those in other groups [42]. Figure 2.2 shows a clustering diagram.

According to different notions of a cluster, more than 100 different clustering algorithms have been

developed [88]. Each clustering method follows a diverse set of rules to define the ’similarity’ between data

points. I introduce several typical cluster models (connectivity models, centroid models, distribution models,

graph-based models, density models), including their definition, some clustering examples, and their pros

and cons.

Connectivity models Connectivity models are based on the core idea that the closer data points are

to each other in data space, the more similar they are than the data points lying farther away [81, 88].

For example, hierarchical clustering algorithms, which hunts for building a hierarchy of clusters, cluster data

points based on distance matrices [52]. Although connectivity model clustering methods are robust with input

parameters and less affected by cluster shapes, when the data set has too many outliers, theses methods are

not very suitable, since plotting these outliers is complex and time consuming [87, 95].

Centroid models In centriod model clustering methods, the clusters is derived by the closeness of data

points to the centroids of the clusters, and these algorithms usually run iteratively to find the local optimal

[88]. The most widely-used centroid-based clustering algorithm is k-means clustering. Most centroid model

clustering algorithms are simple and fast, but they require specify cluster numbers in advance [56]. There are

several methods to determine the optimal number of clusters, such as elbow method [62], average silhouette

method [35] and gap statistic method [111].
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Figure 2.1: The workflow of single cell RNA sequencing experiments

The steps of a typical scRNA-seq experiment workflow are: 1) dissociate biological solid tissue samples 2) isolate single cells
3) lysis cells for getting mRNA 4) mRNA is converted into cDNA with reverse transcription 5) cDNA amplication (often by
polymerase chain reaction (PCR)) 6) sequence 7) use bioinformatic and /or computational methods to analyse scRNA-seq

data.
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Figure 2.2: A clustering diagram

In the first sub-graph, the data points are in one single group, while after clustering, the points are identified into four groups.
Different colors represent different clusters.

Distribution models The clustering algorithms based on distribution models assume that all objectives

in one cluster belong to the same distribution [88]. Hence, the use of distribution models, such as Gaussian

distribution, plays a key role in distribution-based clustering methods. A good property of distribution-based

models is that they are very similar to the way that a artificial data set is generated: by sampling random

objectives from a distribution [102]. Therefore, these models enable us to know other information beyond

cluster assignment of objectives, like revealing the correlation and dependence between data points. However,

these models suffer from a key problem: over-fitting [49].

Graph-based models In graph-based models, data points are treated as the vertices of a graph and

edges are constructed according to the distance or similarity between data points so that a weighted graph

can be formed by theses vertices and edges. And then, the clustering methods are achieved through graph

cutting. In graph cutting, the graph is divided into multiple sub-graphs, and these sub-graphs are the

corresponding clusters. Usually, these models employ sparsification of similarity (or distance) matrices under

diverse heuristics to extract similarity graphs for maintaining the main properties of data sets [8]. Sometimes

these models invoke the idea of spectrum theory, that is, applying the spectral decomposition of the Laplacian

matrices of graphs [72]. Graph structures can represent the relationships of data points in a clear and

manageable way, but the methods of graph construction and the choices of parameters (i.e. sparsity) impact

the performance of clustering results greatly [26, 76].

Density models The purpose of density-based clustering approaches is to identify clusters as areas with

high point density, which are separated by areas with low point density, so that they can be arbitrarily

shaped in data spaces [64]. More specifically, density-based models discover clusters by contiguous regions
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of low density of objects, while these data points in low-density areas are usually considered to be noise or

border points [17]. The most obvious advantage of the clustering methods is that they allow any shape of

distribution as long as dense regions can be connected. However, it is not easy for them to deal with data

with varying densities and high dimensions. In addition, these algorithms do not assign border points to

clusters. Popular examples are density-based spatial clustering of applications with noise (DBSCAN) [34]

and ordering points to identify the clustering structure (OPTICS) [3].

2.3 Convex optimization

Convex optimization is a typical class of optimization problems, which is a process to seek out the optimal

in the set of feasible solutions. There are many benefits to recognize or formulate a problem as a convex

optimization problem [11]. The most basic one is that this problem can be solved more reliably and effectively

[11], because of a good property of convex optimization: its local optimal solution is the global optimal

solution. In convex optimization, there are three common solving methods: gradient method, dual method

and alternating direction method of multipliers (ADMM) method. In the following, I will introduce several

basic definitions and concepts of convex set, convex combination, convex hull, convex function and convex

problem. If readers is interested in more details of convex optimization, he/she can read this publication [11].

2.3.1 Convex set, convex combination, convex hull

Convex set C is a convex set, if the line segment between any two points in C lies in C. It can be

represented as:

θx1 + (1− θ)x2 ∈ C, (2.1)

where x1, x2 ∈ C, 0 ≤ θ ≤ 1.

According to the definition above, several common examples of convex sets can be shown easily, like any

straight line, any line segment, sphere, ellipsoid, hyperplane and simplex. Figure 2.3 shows two examples:

one convex set and one non-convex set to further help readers to understand convex set.
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Figure 2.3: A convex set and a non-convex set

Convex combination Point x is a convex combination of points x1, x2, · · · , xk, if it can be represented

as:

x = θ1x1 + θ2x2 + · · ·+ θkxk (2.2)

with θ1 + θ2 + · · ·+ θk = 1, and θi ≥ 0, i = 1, 2, · · · , k. A convex combination of points can be thought as a

mixture or weighted average of the points.

Convex hull The convex hull of a convex set C, denoted as convC, is defined as the set of all convex

combinations of points in C, specifically:

convC = θx1 + · · ·+ θxk | xi ∈ C, θ1 + · · ·+ θk = 1, θi ≥ 0, i = 1, · · · , k (2.3)

By the definition, it can be proved that the convex hull convC is always convex, which is the smallest

convex set that contains C, which can be expressed as: C ⊆ convC. Figure 2.4 is an example of a convex

hull.

14



Figure 2.4: A convex set of points and its convex hull

2.3.2 Convex function

Definition A function f : Rn → R is a convex function, if the domain of f , denoted as domf , is a convex

set, and for ∀x, y ∈ domf , θ ∈ [0, 1], there is:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (2.4)

Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y)), which is the chord

from (x, f(x)) to (y, f(y)), lies above the graph of f . There is an simple example in Figure 2.5.

Figure 2.5: Graph of an example for convex function

The chord from (x, f(x)) to (y, f(y)), lies above the graph of f .
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Judgment criteria of convex function After introducing the definition of convex function, it is obvious

that we can use the definition of convex function to determine whether a function is convex or not. However,

in practice, there are simpler and more intuitive approaches to determine convex functions. I will introduce

two of these approaches: the first-order and second-order convexity conditions in the following.

1. First-order convexity conditions

Suppose f : Rn → R is a differentiable function, that is, its gradient ∇f exists at each point in the domain

of f , denoted as domf . Then f is convex if and only if :

1) domf is a convex domain;

2) f(y) ≥ f(x) +∇fT (x)(y − x), for all x, y ∈ domf , where ∇f(x) =
(
∂f(x)
∂x1

, ∂f(x)
∂x2

, · · · , ∂f(x)
∂xn

)
.

2. Second-order convexity conditions

Suppose f : Rn → R is twice differentiable over an open domain. Then f is convex if and only if :

1) domf is a convex domain;

2) ∇2f(x) � 0, for all x ∈ domf , where ∇2f(x)ij = ∂2f(x)

∂xi∂xj
, i, j = 1, · · · , n.

The Hessian matrix (∇2f(x)) is positive semi-definite, represented as: ∇2f(x) � 0 , which means the

curvature constant of f is non-negative for all x ∈ domf . The details of curvature constant can be seen in

section 4.2.3.

Common convex functions Here, some common convex functions, divided into two categories: scalar

convex functions and vector convex functions are introduced as below.

1. Scalar convex functions:

• affine: ax+ b

• exponential: eax

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: xlogx on R++

2. Vector convex functions:

• affine function on Rn: aTx+ b

• maximum function on Rn: max{x1, x2, · · · , xn}

• affine function on Rm×n: f(X) = tr(ATA) + b =
∑m
i=1

∑n
j=1AijXij + b

• log-determinant on Rm×n: for a symmetric positive-definite matrix (X), f(X) = logdetX = log(
∏
i

λi) =∑
i

logλi, where λ = λ1, λ2, · · · , λn are the eigenvalues of X
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2.3.3 Convex problem

Generally, for s convex problem, the objective function is a convex function, and the domain of the objective

function is a constrained convex set. The standard form of a convex optimization problem can be written as:

minimize
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, · · · ,m

s.t. hj(x) = 0, j = 1, · · · , p

(2.5)

In the function 2.5, x = [x1, · · · , xn] is the variable to be optimized. The function f0 : Rn → R is the

objective function. The functions fi(x) ≤ 0, i = 1, 2, · · · ,m are inequality constraints. And the function

hj = 0, j = 1, 2, · · · , p are equality constraints. The goal is to find the optimal over the feasible set, while

satisfy the constraints.

Common convex problems Common convex problems includes: linear program (LP), quadratic program

(QP) and semidefinite program (SDP).

A LP can be described as follows:

minimize
x

cTx

s.t. Dx ≤ d

s.t. Ax = b,

(2.6)

where c is a vector, D and A are matrices, d and b are real numbers.

A QP can be described as follows:

minimize
x

1

2
xTQx+ cTx

s.t. Dx ≤ d

s.t. Ax = b,

(2.7)

where c is a vector, Q is a positive semi-definite matrix, D and A are matrices d and b are real numbers.
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A SDP can be described as follows:

minimize
X

CT

s.t. AiX = bi, i = 1, 2, · · · ,m

s.t. X � 0,

(2.8)

where the variable is the matrix X, A and C are symmetric matrices, bi is a vector.
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3 Data Sources and Data Preprocessing

3.1 Data sources

A problem, I notice with many public scRNA-seq data sets, is that cell type labels in those data sets are

usually inferred by clustering methods. For example, in [16], after sequencing cells using scRNA-seq technique,

the authors use spectral clustering method to cluster cells. Then, they assign the labels of each cell cluster

according to the expression patterns of cell type specific marker genes. As a result, any assessment based

on these labels are potentially biased towards methods similar to those used to derive the labels originally

[31]. To avoid such artificial risk, in this study, I select eight data sets whose labels are derived from the

scRNA-seq data sets themselves. Specifically, the ground truth labels of the chosen data sets are defined

independently of any unsupervised clustering methods.

Yan’s data [125] Yan et al. get the data set from pre-implantation embryos and embryonic stem cells

of human at several key embryonic stages, including zygotes, 2-cell-stage embryos, 4-cell-stage embryos, 8-

cell-stage embryos, Morula and early hatching blastocysts. The authors label these cells of different stages

according to embryonic development time [109]. For this data set, I access it via SC3 software package

(https://github.com/hemberg-lab/SC3).

Deng’s data [29] Deng et al. collect the data set from mouse preimplantation embryos. There are 7

cell types including zygote, early 2-cell-stage, mid 2-cell-stage, late 2-cellstage, 4-cell-stage, 8-cell-stage, and

16-cell-stage. The researchers collect mouse embryonic cells at diverse stages of preimplantation development

at defined time periods after human chorionic gonadotropin (hCG) administration. This data set is used to

reveal independent and stochastic allelic transcription gene expression in mammalian cells. For this data set,

I download the processed data from SC3 software package (https://github.com/hemberg-lab/SC3).

Kumar’s data [65] Kumar et al. design experiments to characterize transcriptional heterogeneity in

mouse characterize transcriptional heterogeneity of mouse pluripotent stem cells (PSCs) through the analysis

of single cell expression profiles under different chemical and genetic perturbations. The labels of cells are

19



defined by the genetic perturbation and the medium where they were grown. For this data set, I download

it from Bioconductor (https://bioconductor.org/ packages/DuoClustering2018).

Koh’s data [63] Koh et al. culture undifferentiated H7 human embryonic stem cells (H7 hESCs) and

induce them to differentiate directly into 8 cell types in a defined medium. Therefore, this data set has 9

subpopulations including H7 hESCs and 8 kinds of H7-derived downstream early mesoderm progenitors. For

this data set, I download it from conquer [104]: SRP073808.

Tian’s data [110] Tian et al. design a serious of credible gold-standard scRNA sequencing experiments.

They identify the ground-truth of three human lung adenocarcinoma cell lines (HCC827, H1975 and H2228)

based on known genetic variation. For this data set, I get it from GEO (GSE118767).

Xin’s data [122] Xin et al. use stringent inclusion criteria to identify specific genes of four human pan-

creatic islet cells: α cells, β cells, δ cells and PP cells. For α cells, the specific genes are: GCG, DPP4, FAP,

PLCE1, LOXL4, IRX2, TMEM236, IGFBP2, COTL1, SPOCK3, and ARRDC4). For β cells, the specific

genes are:INS, ADCYAP1, IAPP, RGS16, DLK1, MEG3, INS-IGF2, and MAFA. For δ cells, the specific

genes are: SST, BCHE, HHEX, and RPL7P19), and for PP cells, it is PPY. This data set can be found in

GEO under ID code: GSE81608.

Zheng’s data [129] Zheng et al. purify 11 cell populations from peripheral blood mononuclear cells

(PBMCs), which are purified with fluorescence-activated cell sorting (FACS) [112]. I get these 11 pre-sorted

cell types from the 10x Genomics GemCode protocol (https://support.10xgenomics.com/ single-cell-gene -

expression/datasets). Then, I combine them into two data sets (denoted as Zheng11uneq and Zheng8eq

). For Zheng11uneq data set, I combine all 11 cell types in unequal proportions (200-300 cells per cell

population), which are randomly selected from CD14+ monocytes, CD19+ B-cells, CD34+ cells, CD56+

Natural Killer cells, 293T cells, CD4+ T-helper cells, regulatory T-cells, memory T-cells, naive T-cells, naive

cytotoxic T-cells and CD8+ cytotoxic T-cells. For Zheng8eq data set, I combine 8 cell types in equal

proportions (700 cells per cell subpopulation), which are randomly selected from CD14+ monocytes, CD19+

B-cells, CD34+ cells, CD56+ Natural Killer cells, 293T cells, CD4+ T-helper cells, regulatory T-cells, memory

T-cells.

More details of all these eight data sets are shown in Table 3.1.
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Table 3.1: Summary of the details of eight single-cell data sets

Data sets No. of cells No. of genes No. of clusters
Yan [125] 90 20,214 6
Deng [29] 135 12,548 7

Kumar [65] 246 45,159 3
Koh [63] 651 65,218 10

Tian [110] 902 16,468 3
Xin [122] 1,600 39,851 4

Zheng11uneq [129] 2,750 32,738 11
Zheng8eq [129] 5,600 32,738 8

3.2 Data preprocessing

Once single cells are sequenced, it is usually shown as an expression matrix. In the matrix, each row

corresponds to a gene and each column corresponds to a cell. Data preprocessing is essential due to the high

dropout rates, low and uneven read coverage and high variability of scRNA-seq data [89]. Figure 3.1 can

intuitively show the workflow of data processing.

Figure 3.1: Overview of the workflow for the scRNA-seq data processing

3.2.1 Removing zeros

Once raw scRNA-seq data sets are downloaded, I first remove genes with zero expression values in all cells,

and I also remove cells with zero expression values in all genes. From data processing perspective, this means

I delete all columns or rows where all elements are zero of the matrices. Usually, scRNA-seq data sets are

sparse with many biological zeros (i.e. not expressed) and technical zeros (i.e. expressed but not detected)
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[69]. These zero values would not help downstream analysis but occupy computing space. Because of this, I

remove these zeros.

3.2.2 Logarithmic transformation

After removing zeros, I apply the logarithmic transformation: log10(X + 1) [117] to transform single cell

expression data, where X is the scRNA-seq data set. For scRNA-seq data sets, the expression of different

genes often has a large variance, specifically, the values of variance increase monotonically with the value of

mean. Because of this, genes highly expressed have high variance values. On the other hand, genes barely

expressed or detected have almost zero variance. As a result, it is much easier in the data processing to lose

information on genes with smaller expression values. To address this, logarithmic transformations can reduce

the information loss of genes with small expression values, especially when the original median absolute

deviation (MAD) value is equal to or greater than the median value [75].

3.2.3 Feature selection

Feature selection, or gene filter, is used to select genes with useful biological information, remove genes

with high-dimensional random noise, and improve calculation efficiency for the whole algorithm. The choice

of genes during the feature selection has a big impact on constructing cell-cell similarity matrices and the

performance of downstream analysis. In order to select enough genes with useful biological information

while still removing genes with high-dimensional random noise, I select 2000 highly variable genes (HVG).

Specifically, it means I select genes which strongly contribute to the variation among cells in a heterogeneous

cell population [127]. For simplicity, the HVG selection method I used is to take the genes with the top 2000

largest values of the correlative variances.

3.2.4 Dimensionality reduction

Using a dimensionality reduction method can further improve the calculation efficiency of the whole algo-

rithm. In this study, I use two dimensionality reduction methods: principal components analysis (PCA) [39]

and t-distributed stochastic neighbor embedding (t-SNE) [131]. PCA is used for improving the computing

efficiency of the workflow of single cell clustering algorithm, while t-SNE is solely applied for scRNA-seq data

visualization.

PCA is a method to project data points only on the first few principal components (PCs) to obtain lower-

dimensional data but still keep the data’s variation as much as possible. PCA is defined as an orthogonal linear

transformation which transforms data points to a new coordinate system [54]. The first PC is equivalently
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taken as the direction maximizing the variance of the projected data. The second PC is taken as a direction

orthogonal to the first PC to maximize the variance of the projection data, and so on.

Specifically, the process of calculating PCs is the calculation of the eigenvectors, which are selected by the

corresponding eigenvalues of the correlation matrix XTX [53], where X is is the scRNA-seq data set. The

eigenvalues of XTX are ranked in descending order to retain as much variance as possible when choosing the

first few PCs. However, choosing the exact number of PCs is tricky in single cell analysis. In some studies,

the researchers choose the number as a fixed value (i.e. 30, 50), such as [19] and [121].

Given that the sizes of scRNA-seq data sets varies greatly, especially the number of cells spans widely

from dozens to tens of thousands, choosing a fixed number may not be appropriate. In this study, inspired

by the theory of maximum variance expansion [27], for each data set, I find the largest difference variance

value between every two neighbor PCs from the 30th PC to the 50th PC. I set the number of PC to the

latter neighbor. Below shows an example of this selection process for Deng’s data set (see Figure 3.2).

Figure 3.2: Explained variance ratios vs principle components of Deng’s data set with PCA

The PCs are ranked by descending order, for example, the 30th PC represents the PC with 30th highest
explained variance. The x axis represents the order of the PC, and the y axis represents the corresponding
explained variance. We can see the variance difference between the 40th and 41st is larger than any other

two PCs from 30th PC to 50th PC, thus I choose 41 as the reserved number of PCs for the algorithm.

Apart from PCA, I also use t-SNE solely for scRNA-seq data visualization. T-SNE maps data points to

probability distributions through affinity transformation mainly includes three steps:

• Construct a probability distribution (Gaussian distribution) between high-dimensional data points.
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• Construct a probability distribution (t-distribution) of these points in low-dimensional space.

• Minimize the Kullback–Leibler divergence (KL divergence) between these two probability distributions.

I will show more details at section 5.2.
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4 Cell-cell Sparse Similarity Matrix Representation

4.1 Problem formulation

A number of studies have been proposed on cell type identification, and many of which rely on the cell-cell

similarity construction. Many methods for calculating pairwise similarity or distance matrices have been

proposed, such as Pearson correlation coefficient [6], Euclidean squared distance [21] and Gaussian kernel

similarity [73]. In this study, inspired by sparse subspace theory, which declares that every data point in one

subspace can be represented as a linear combination of the other points in the same subspace [33], I decide

to construct sparse cell-cell similarity matrices for identifying cell types.

The process for constructing sparse cell-cell similarity matrices is as follows. Given a set of data points

X = {x1, x2, ...xn} ∈ Rp×n, where p represents the number of genes and n represents the number of cells.

According to sparse subspace theory, I assume that for the cells in the same cell sub-type, a cell could be

represented as a linear combination of the other cells. Then X can be represented as X = XS, where

S = (Sij) ∈ Tn×n is the similarity matrix of cells. Note that only when cell i and cell j are in the same cell

type, meaning cell i can be partly represented by cell j, expressed as Sij > 0. On the other hand, if cell i

and cell j are in different cell types, meaning cell j cannot explain any part of cell i, expressed as Sij = 0.

As a result, the cell-cell similarity matrix S should be a sparse matrix because the number of cell types is

much less than the number of cells.

To find the similarity matrix S, the optimization objective function should contain two parts:

1. Minimizing the reconstruction loss of gene expression matrix X.

Here, I use linear least squares regression model [119] to represent this loss function: min ||X − XS||2F .

Because matrix S is a symmetrical matrix, the loss function can be represented as: minS∈Tn×n
1
2 ||X−XS||

2
F .

2. Keeping the sparsity (i.e., minimizing the number of non-zero entries) of the similarity matrix S.

Here, I use `0 norm, which calculates the number of non-zero entries of a matrix, to guarantee the sparsity

of S: ||S||0.
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To realize the above ideas, the optimization objective function is as follows:

min
S∈Tn×n

J(S) = min
S∈Tn×n

1

2
||X −XS||2F + λ||S||0

s.t. diag(S) = 0, Sij ≥ 0,

(4.1)

where λ is a regularization parameter, ||· ||F denotes the Frobenius norm which calculates the square root

of the sum of all squared elements, ||S||0 is the `0 norm which counts non-zero entries of S, Sij is the element

of the ith row and the jth column of S, Tn×n is the set of all n× n symmetrical matrices.

Although the problem can be described accurately by function (4.1), it is intractable. In order to make

the optimization problem (4.1) computationally tractable, in practice, researchers usually relax `0 norm to

`1 norm, like [24] [41]. Following the similar idea, I relax the objective function in (4.1) as follows.

min
S∈Tn×n

J(S) = min
S∈Tn×n

1

2
||X −XS||2F + λ||S||1

s.t. diag(S) = 0, sij ≥ 0,

(4.2)

where ||S||1 =
∑
i,j

|Sij | expresses the `1 norm of the similarity matrix S.

In order to reduce the complexity of the problem, while still retaining sparsity of S, I reform the objective

function with column-wise learning. Specifically, for a given cell i0, the objective function in (4.2) can be

recast as:

min
S∈Tn×n

J(S) =
∑
i0

min
S·i0

{
1

2
||xi0 −

∑
i

Sii0xi||2 + λ||S·i0 ||1

}

=
∑
i0

min
S·i0

J(S·i0)

s.t. Sii = 0, Sii0 ≥ 0,

(4.3)

where S·i0 is the i0th column of the similarity matrix S, xi0 is the i0th column of the data set X, Sii0 is the

element of the ith row and i0th column of S, xii0 is the element of the ith row and i0th column of X.

To achieve the shift invariant similarities, I can set the sum of each column of matrix S equals to 1[45],

and thus have λ||S·i0 ||1 = λ, so that the regularization term λ has no impact on the objective function (4.3).
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As a result, I eliminate λ||S·i0 ||1 and get the following optimization problem.

min J(S·i0) = min
1

2
||xi0 −

∑
i

Sii0xi||2

s.t. Sii = 0, Sii0 ≥ 0,
∑
i

Sii0 = 1

(4.4)

By now, the large optimization problem (4.2) can be solved by optimizing n small optimization problems

(4.4), where n is the total number of cells of a scRNA-seq data set.

To make the notation simple, for a given i0, let α ∈ Rn with αi0 = −1,
∑
αi = 0, αi ∈ [0, 1] and i 6= i0,

so the objective function in (4.4) can be further rewritten as:

J = min
α∈Ωi0

J(α) = min
1

2
||Xα||2 (4.5)

where Ωi0 =

{∑
αi = 0, αi0 = −1, αi

i6=i0
∈ [0, 1], α ∈ Rn

}
is the optimization domain of J(α). According to

the definition of convex set, it is easy to observe that for a given ii0 , Ωi0 is a convex set in Rn.

From the function: J(α) = 1
2 ||Xα||

2 , we can get: ∇2f(α) � 0. According to second-order convexity

conditions, mentioned in section 2.3.2, J(α) = 1
2 ||Xα||

2 is a convex function of α on Ωi0 . Therefore, the

problem (4.5) is a convex optimization problem.

4.2 A convergent algorithm for sparse similarity learning

4.2.1 Related works

Greedy algorithm Greedy algorithm is a common method to find the optimal solution of a problem.

This method divides the solution process piece by piece, and select the best/optimal in the current state.

Specifically, it selects a locally optimal solution in every piece, hoping that the final stacked result is the

globally best/optimal solution.

Greedy on a convex set The published paper [47] presents a basic algorithm, called ”greedy on a convex

set”. The algorithm is showed below (see Algorithm 1). The algorithm is used to solve the convex function

f : min
x∈D

f(x), where D is the domain of f , and also a convex set. Based on this algorithm, I design a new

algorithm detailed in Section 4.2.2, to calculate sparse cell-cell similarity matrix.

Note: ExactLinear(5f(α(k)), D) is a method that minimizes the linear function
〈
x, f(α(k)

〉
over the

compact convex domain D, where 〈·〉 represents inner product. The algorithm returns a point s ∈ D.
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Algorithm 1: Greedy on a convex set

1 Input: Convex function f , convex set D, target accuracy ε X ∈ Rp×n, iter, ε;
2 Output: ε-approximate solution for min

x∈D
f(x);

3 Pick an arbitrary starting point x(0) ∈ D;
4 for k = 0 · · ·∞ do
5 Let α := 2

k+2 ;

6 Compute s := ExactLinear(5f(α(k)), D);

7 Update x(k+1) := x(k) + α(s− x(k)) ;

8 end

4.2.2 Main algorithm for sparse similarity learning

Observation 1 The domain Ωi0 =

{∑
αi = 0, αi0 = −1, αi

i 6=i0
∈ [0, 1], α ∈ Rn

}
of function 4.5 is a convex

hull. It can be described as follows:

conv(Ωi0) = conv{ei − ei0 | i 6= i0}

Note that conv(Ωi0) is a convex hull with n − 1 vertices. For given i and i0, (ei − ei0) is an n-dimensional

vector, whose i0th element is -1 and i( 6= i0)th element is 1, while its other elements are 0.

Proof According to the definition of convex hull. My goal is to show: Ωi0 ⊆ conv(Ωi0).

To do so, take any αi ∈ [0, 1] with i 6= i0,
∑
i6=i0

αi = 1, and α ∈ Rn. For a given i0, we have:

α = (α1, α2, · · · ,−1
↑
i0

, · · · , αn)

= (α1, α2, · · · , 0
↑
i0

, · · · , αn)− (0, 0, · · · , 1
↑
i0

, · · · , 0)

=
∑
i 6=i0

αi(0, 0, · · · , 1
↑
i

, 0, · · · , 0)− (0, 0, · · · , 1
↑
i0

, · · · , 0)

=
∑
i6=i0

αiei − ei0

(4.6)

αi ∈ [0, 1], so α =
∑
i 6=i0

αiei − ei0 ⊆ ei − ei0with i 6= i0, which means Ωi0 ⊆ conv(Ωi0).

The following algorithm (see algorithm 2) is the main algorithm for the optimization problem 4.5 to

calculate sparse cell-cell similarity matrices based on scRNA-seq data sets.

Parameter setting of algorithm 2: 1) The choice of initial i for α0: although any i from 1 to n and

i 6= i0 does not affect the convergence of Algorithm 1, it may affect the sparsity of α. To make α more sparse,

for a given i0, I choose initial i by the following formula: arg
i

(XTxi0), which indicates the ith cell is the most
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Algorithm 2: Sparse similarity learning

1 Input: data matrix X ∈ Rp×n, iter, ε;
2 Output: sparse similarity matrix (S);
3 initialization: S ∈ Rn×n to be a zero matrix;
4 for i0 in [1 : n] do
5 choose i 6= i0, let α0 = ei − ei0 , β0 = Xα0, a0 = 1, k = 0;
6 while True do
7 k = k+1;

8 Let ak =
1+
√

4a2k−1+1

2 ;

9 Compute i+ := ExactLinear(5J(α(k−1)),Ωi0);

10 Update α(k) := α(k−1) + 1
ak−1

(ei+ − ei0 − α(k−1)) ;

11 Update β(k) := β(k−1) + 1
ak−1

(xi+ − xi0 − β(k−1)) ;

12 if k > iter then
13 break;

14 err = (||β(k−1)||2 − ||β(k)||2)/||X||2;

15 end
16 if err < ε then
17 S[:, i0] = α(k);
18 end

19 end

20 end
21 diag(S) = 0 ;

22 S = S+ST

2 ;

similar to the i0th cell of the scRNA-seq data set. 2) The value of parameter iter represents the maximum

iterations, which also determines the sparsity of α, as each iteration of updating α(k) only adds one nonzero

element of α. It is empirically set as 40%× n in this study, where n is the total cell number of a sc-RNA seq

data set. 3) The value of ε controls the maximum difference between two consecutive iterations, which is set

to 1× 10−7 in this study.

The following explanations can help to understand Algorithm 2.

1. ExactLinear(5J(αk−1),Ωi0) in Algorithm 2 is used to find a column index i+ such that the linear

function 〈5J(αk−1),Ωi0〉 is minimized over the optimization domain Ωi0 at the vertex of convex hall Ωi0 .

2. In terms of the smooth convex optimization literature (i.e. [13]) the vectors (ei+ − ei0) have negative

scalar product with the gradient, i.e.
〈
ei+ − ei0 ,5J(αk−1

〉
< 0, which is called descent direction [18]. As a

result, in Algorithm 2, it always choose descent steps staying in the domain D, which is different with the

traditional gradient descend techniques, which usually use arbitrary directions and need to project back onto

D after each step.
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3. From the definition of J(α) = 1
2 ||Xα||

2, we have ∇J(α) = XTXα. Then we can get:

ExactLinear(5J(αk−1),Ωi0)

= argmin
0≤i≤n

{
(ei − ei0)T∇J(α(k−1))

}
= argmin

0≤i≤n

{
(xi − xi0)TXα(k−1)

}
,

(4.7)

where xi is the ith column of data matrix X, xi0 is the i0th column of data matrix X. Note that for given i

and i0, the vector (ei − ei0) have only two non-zero values (the ith element is 1, and the i0th element is -1),

so at each iteration of computing ExactLinear(5J(αk−1),Ωi0), updating α(k) and updating β(k), only one

non-zero value is added to the corresponding column of similarity matrix S.

4. In the algorithm 2, I replace Xα(k) with β(k) to reduce the computational effort in solving the

optimization problem of J(α).

5. To keep cell-cell similarity matrix (S) to be symmetry, S is calculated as S = (S+ST )
2 .

The derivation and convergence of algorithm 2 is in 4.2.3

4.2.3 The derivation of the algorithm for sparse similarity learning

In this part, I consider to solve the following convex optimization problem:

min
x∈D

f(x), (4.8)

where D ⊂ Rn is a convex set, and f(x) is a convex function on D.

Dual gap as a measure of approximate quality

For given points x, y ∈ D, where D ⊂ Rn is a compact set, ∇f(x) is the gradient of f(x), the dual function

value ω(x,∇f(x)) is defined as follows:

ω(x,∇f(x)) := min
y∈D
{f(x) + 〈y − x,∇f(x)〉} , (4.9)

where 〈·〉 represents inner product.

According to weak duality theorem [40], for each pair x, y ∈ D, there is:

ω(x,∇f(x)) ≤ f(y) (4.10)
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At any point x ∈ D, the duality gap g(x,∇f(x)), which is the difference between the original solution

f(x) and the dual solution w(x,∇f(x)), is defined as:

g(x,∇f(x)) := f(x)− w(x,∇f(x))

= f(x)−min
y∈D
{f(x) + 〈y − x,∇f(x)〉}

= max
y∈D
{〈x− y,∇f(x)〉}

(4.11)

Assuming that x∗ ∈ D is the optimal solution of function 4.8, according to weak duality theorem, which

declares the value of duality gap is always equal or greater than 0, I get:

g(x,∇f(x)) ≥ f(x)− f(x∗) ≥ 0, ∀x ∈ D (4.12)

The quantity f(x) − f(x∗) is called the primal error at point x. While the quantity is usually impossible

to calculate because x∗ is unknown, the duality gap g(x,∇f(x)), in case like defining, an upper bound on

the primal error is easier to compute. This property makes it an useful measure such as being a stopping

criterion in the practical optimizers or heuristics.

Convergence of the algorithm

Curvature constant The curvature constant Cf of a convex and differential function f with compact

domain D is defined as follows.

Cf = sup
1

θ2
{f(y)− f(x)− 〈y − x,∇f(x)〉} , (4.13)

where x, y ∈ D, θ ∈ (0, 1].

Imaging that the optimization procedure at the current state x = x(k−1), the next iteration can be

expressed as : y := x(k) = x(k−1) + θ(s− x(k−1)), and θ determines the step size of gradient descent.

In the case of our study, combining the algorithm 2, x(k−1) := α(k−1), θ := 1
ak−1

, s := ei+ − ei0 ,

y := α(k) = α(k−1) + 1
ak−1

(ei+− ei0 −α(k−1)), the domain is Ωi0 . Here, bounded Cf means the deviation of f

at α(k−1) from the ”best” linear prediction given by ∇f(α(k−1)) is bounded, where the acceptable deviation

is a2
k−1.

Lemma 4.1 For ∀f , f is a quadratic differentiable convex function, over a compact convex domain D,
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it has:

Cf ≤
1

2
diam(D)2sup

x∈D
λmax(∇2f(x)), (4.14)

where ∇2f(x) is the Hessian matrix of function f(x). From this limitation, it can be concluded that the

upper bound of Cf is the largest eigenvalue, denoted as λmax(∇2f(x)) of the Hessian matrix ∇2f(x), which

is scaled or formalized by the Euclidean diameter of the field.

Proof Firstly, according to Quadratic (the 2nd Order) Taylor approximation [30], for f(y) at point x,

we have:

f(y) = f(x+ θ(s− x))

= f(x) + θ(s− x)T∇f(x) +
θ2

2
(s− x)T∇2f(x)(s− x)

(4.15)

Combining function 4.13 and function 4.15, we can get:

Cf = sup
x,y∈D
θ∈(0,1]

y=x+θ(s−x)

1

θ2
{f(y)− f(x)− 〈y − x,∇f(x)〉}

=
1

2
sup

x,y,s∈D
θ∈(0,1]

y=x+θ(s−x)

(s− x)T∇2f(x)(s− x)

(4.16)

According to Cauchy-Schwarz inequality [7], we can further get:

Cf =
1

2
sup
x,s∈D
θ∈(0,1]

z∈[x,y]⊆D

(s− x)T∇2f(x)(s− x)

≤ ||s− x||2∇2f(x)||s− x||2

≤ ||s− x||22∇2f(x)

≤ 1

2
diam(D)2sup

x∈D
λmax(∇2f(x))

(4.17)

From the definition of convex hull Ωi0 , we have that diam(Ωi0) =
√

2. From the definition of J(α), we can

calculate that ∇2f(α) = XTX. Finally, we can get that Cf ≤ λmax(XTX).

Let the gradient ∇f(α(k−1)) = 1
ak−1

∈ (0, 1]. According to the definitions of Cf and g(x,∇f(x)), we can
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get the following formula.

f(α(k)) = f(α(k−1) +
1

ak−1
(s− α(k−1)))

≤ f(α(k−1)) +
1

ak−1
∇f(α(k−1))T (α(k) − α(k−1)) +

1

a2
k−1

Cf

≤ f(α(k−1))− 1

ak−1
g(α(k−1),∇f(α(k−1))) +

1

a2
k−1

Cf

(4.18)

Let h(α(k)) := f(α(k))− f(α∗) for the primal error at f(α(k)). Based on the former formula 4.18, we can get:

h(α(k)) ≤ h(α(k−1) − 1

ak−1
h(α(k−1)) +

1

a2
k−1

Cf

a2
k−1h(αk−2) ≤ (a2

k−1 − ak−1)h(α(k−1)) + Cf

(4.19)

Ask a2
k−1 − ak−1 = a2

k−2, then function 4.19 can be rewritten as: a2
k−1h(α(k−2)) ≤ a2

k−2h(α(k−1)) + Cf .

Expanding this function, we can get:

a2
k−1h(α(k))− a2

k−2h(α(k−1)) ≤ Cf

a2
k−2h(α(k−1))− a2

k−3h(α(k−2)) ≤ Cf

· · ·

· · ·

a2
1h(α(2))− a2

0h(α(1)) ≤ Cf

(4.20)

Adding up all the above functions together, we have:

a2
k−1h(α(k))− a2

0h(α(1)) ≤ (k − 1)Cf (4.21)

As a0 = 1, from formula 4.19, we can calculate: h(α(1)) ≤ Cf , so:

h(α(k) ≤ kCf
a2
k−1

(4.22)
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As ak =
1+
√

4a2k−1+1

2 > 0.5 + ak−1, we have ak > 0.5(k + 2). Therefore, we can get:

f(α(k))− f(α∗) = h(α(k)) ≤ kCf
a2
k−1

<
4kCf

(k + 1)2
<

4Cf
k + 2

<
4λmax(XTX)

k + 2
, (4.23)

where λmax is the maximum eigenvalue of XTX.

4.2.4 Optimizing over convex hull

In this study, the optimization domain Ωi0 is given as the convex hull of a finite subset {ei − ei0 ∈ Rn|i 6= i0}.

In my algorithm, the optimizer consists of greedily selecting the ”vertex” of the convex hull, which promises

best improvement. It makes the linear optimization sub-problems as needed in my algorithm particularly

easy to be solved.

Lemma 4.2 (Linear optimization over convex hull) Let D = conv(V ), where V ∈ Rn, D is a convex

hull, a compact domain. At some ”vertex” v (v ∈ V ), for any linear function y → cT y, the linear function

can attain its local minimum or maximum over D, while the local optimal are also global optimal, according

to the proper of convex optimization problems [4].

Proof Omitted, interested readers can refer to the proof of Lemma 2.8 in paper [47].
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5 Clustering and Visualization

Once similarity matrices are constructed, they can be used for clustering and visualization. In this study,

based on the sparse cell-cell similarity matrices, I use four different clustering methods and one visualization

method for analyzing scRNA-seq data.

5.1 Clustering

Clustering is an unsupervised method. It aims to divide a data set into different clusters according to a

certain stand (i.e. distance between data points), so similar data points are placed in the same cluster and

dissimilar data points are placed in different clusters [91]. In single cell data analysis, clustering plays a key

role on identifying cell populations.

In this study, based on the sparse cell-cell similarity matrix constructed in section 4, I further apply four

clustering methods including two spectral clustering methods, one hierarchical clustering method and one

Louvain clustering method, to find an optimal appropriate clustering method.

5.1.1 Spectral clustering

Spectral clustering is an algorithm evolved from graph theory [70]. Its main idea is to treat all data objects

as points in space, and these points can be connected by edges. Further distance between two points means

smaller edge weight. By cutting the graph composed of points and edges, this algorithm tries to make the

sum of edge weights between different sub-graphs is as small as possible, and the sum of edge weights within

the sub-graphs is as large as possible. because of this, it is called minimum cut. Spectral clustering uses this

idea to achieve the purpose of clustering. Figure 5.2 shows an example of minimum cut of a graph.

Spectral clustering combines a dimentionality reduction method, Laplacian eigenmap, with a clustering

method, such as k-means clustering and Gaussian mixture model clustering, to cluster data points. There

are three main steps of spectral clustering.

Firstly, Laplacian matrix L should be calculated using L = D−S, where S is the cell-cell sparse similarity

matrix, calculated in section 4.1, D is a diagonal matrix, whose ith diagonal element is the sum of the ith

column of S.
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Figure 5.1: An example for minimum cut of an undirected graph, in which the weight of each edge
is equal

The minimum cut is the smallest set of edges whose removal breaks the graph into two pieces.

Secondly, feature matrix F ∈ Rn×k is constructed, which consists of k eigenvectors (v1, ...., vk) corre-

sponding to the k smallest nonzero eigenvalues (0 6 λ1 6 λ2... 6 λk) of Laplacian matrix L. λ and v are

calculated by the eigenproblem: Lv = λDv.

Thirdly, a clustering method is applied to the feature matrix F for clustering data points. In this study, I

use k-means clustering and Gaussian mixture clustering respectively on F to group cells. K-means clustering

is used to divide data points into k clusters, by repetitively assigning points to clusters with the nearst

controids, and update the controids by averaging all the points in that cluster[116]. While Gaussian mixture

model clustering [10] is a probabilistic clustering method, which assumes that all data points are generated

by a mixture distribution composed of k mixed multivariate Gaussian distributions. In the section 7.1, I will

compare the performance between these two methods in order to select the most appropriate method.

5.1.2 Hierarchical clustering

Hierarchical clustering [52] is a type of clustering algorithm that creates a clustering dendrogram by merging

or splitting different clusters. Specifically, the approaches are called agglomerative approach (bottom-up)

and divisive approach (top-down).

In this study, I use an agglomerative algorithm, which iterates two processes: 1) calculating the distance
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Figure 5.2: Agglomerative approach vs divisive approach of hierarchical clustering

From top to down, it is divisive approach, while from bottom to up, it is agglomerative approach.

between two clusters, and 2) combining the two most close clusters across all clusters, until all clusters are

merged together. Note that in sparse cell-cell similarity matrix, the higher the value is, the similar the

corresponding cells are. This is the opposite of distance matrix, so I transform similarity matrices into

distance matrices using:

Dij = 1− Sij

s.t.Dii = 0,

(5.1)

where Dij is the value of the ith row and the jth column of distance matrix D, Sij is the value of the ith

row and the jth column of sparse cell-cell similarity matrix S.

Linkage methods work by calculating the distance between all data points. Then the closest pair of

clusters are merged into a single cluster. According to the diverse criterion of linkage methods, generally, in

agglomerative approach, there are four linkage methods including single-linkage, complete-linkage, average-

linkage and Ward-linkage [83]. Specifically, for single-linkage, two clusters with the closest distance are

merged. For complete linkage, two clusters with the farthest distance are merged. While, average-linkage

merges clusters based on the average distances of data points in two clusters. Ward-linkage merges two clusters

based on their error sum of square (ESS). The two clusters with the lowest ESS are merged. Ward-linkage is

different with the other three strategies mentioned above, which are based on distance.
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For Ward-linkage, the loss function of two clusters is calculated by Error Sum of Squares (ESS) [36]. ESS

can be calculated as follows.

ESS =

k∑
i=1

ni∑
j=1

(yij − ȳi·)2, (5.2)

where yij is the jth data point in the ith cluster, k is the number of clusters, ȳi· is the mean of all data points

of the ith cluster, and ni is the number of data points in the ith cluster.

In this study, I choose Ward-linkage, because it can minimize the information loss of each merger to link

clusters. Ward-linkage is less susceptible to noise and outliers compared with the other three strategies[36],

as a result, it is more suitable to analyze scRNA-seq data, which contains a lot of technical and biological

noise [12].

5.1.3 Louvain clustering

In order to explain Louvain clustering clearly, we need to know modularity first. Modularity is a measure of

the structures of networks or graphs which measures the strength of partition of networks into modules. It

measures the density of both the connections within modules and the connections between different modules.

The modularity is defined as follows.

Q =
1

2m

∑
ij

[Sij −
kikj
2m

]δ(ci,cj), (5.3)

where S is the cell-cell similarity matrix in this study, and Sij is the element of the ith row and the jth

column of S; m = 1
2

∑
ij

Sij , meaning it is the sum of all edge weights of the network; ki and kj are the sum of

elements of ith and jth column of matrix S, respectively. Based on that,
kikj
2m is the expected valued of the

weight between node i and node j; δ is Kronecker delta function defined as δ(cicj) =

{
1

0

if ci = cj

if ci 6= cj

, and

ci and cj are the communities of data points.

The original formula for modularity is complicated, so I simplify it to make it easier to understand:

Q =
1

2m

∑
ij

[Si,j −
kikj
2m

]δ(ci,cj)

=
1

2m
[
∑
ij

Si,j −

∑
i

ki
∑
j

kj

2m
]δ(cicj)

=
1

2m

k∑
i=1

[
∑

in
−

(
∑
tot)

2

2m
],

(5.4)
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where
∑
in is the sum of weights of all edges within the community;

∑
tot is the sum of weights of edges

between communities; k is the number of communities of the network. Obviously, the larger the value of

modularity Q is, the better the clustering quality is. Louvain clustering for community detection, also called

graph partition, is an algorithm based on multilevel modularity optimization [9]. It is becoming more and

more popular because of its great efficiency, accuracy and the ability to discover high modularity community

structures [37]. The optimization goal of Louvain clustering is to maximize the modularity of the entire data,

which will be explained further in the next few paragraphs.

In order to effectively maximize the value of modularity Q, Louvain clustering has two-phase iterations.

At the beginning, each node is regarded as an independent community, and the weights of connected edge

between communities are 0.

Phase1 For each node i, through removing node i from its own community j out and adding it into the

community of every neighbor of node i, the modularity benefit ∆Q for the community j can be calculated

as:

∆Q = [

∑
in +ki,in

2m
− (

∑
tot +ki
2m

)2]− [

∑
in

2m
− (

∑
tot

2m
)2 − (

ki
2m

)2], (5.5)

where
∑
in is the sum of weights of all edges within the community that node i is moving to (denoted as

community c); ki,in is the sum of weights of edges between node i with the nodes in community c;
∑
tot is

the sum of weights of edges between community c and the other communities in the graph; ki is the weighted

degree of node i, which can be calculated as the sum of elements of ith column of matrix S; m is the sum of

all edge weights of the network, which can be calculated as: m = 1
2

∑
i,j

Sij , and Sij is the element of the ith

row and the jth column of cell-cell similarity matrix S. Node i is placed to the community which results in

the largest modularity benefit ∆Q. The process is repeated until ∆Q equals zero.

Phase2 After phase 1, every community is regarded as merging into one big node (see the middle subgraph

of Figure 5.3). This node is a self-loop node, and its weight is the sum of the edge weights of all nodes within

the original community constructed in phase 1. The edge weights between these big nodes are the sum of the

edge weights of the corresponding communities constructed in phase 1. Once the new network is constructed,

phase 2 is over. Figure 5.3 shows an example of these two phases.

Phase 1 and Phase 2 are repeated until there is no increase of the value of modularity Q or reaching the

number of iterations set by users. In this study, the iteration is controlled by the first case.
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Figure 5.3: An example of louvain clustering for modularity optimization

Q is the value of modularity of each sub-graph. The whole process represents two-phase iterations of louvain
clustering

5.2 Visualization with t-SNE

Visualization is essential of biological interpretation for single-cell RNA sequencing data analysis. [130].

Generally, scRNA data visualization is in two-dimensional space, where each cell is given a pair of X-Y

coordinates to define its position [15]. Through highlighting cell metadata according to the information of

cells in given experiments, such as batch processing, donors, etc. or the differential expression of specific

genes of different cell types, visualization can be used to evaluate the cell types obtained [15].

In general, the methods for visualization can be divided into two categories: linear transformations (i.e.

principal component analysis (PCA)) and nonlinear transformations (i.e. t-distributed stochastic neighbor

embedding (t-SNE)). However, linear transformation methods cannot faithfully capture the nonlinear rela-

tionships of features, which are ubiquitous in scRNA-seq data sets [2]. And in visualizing scRNA-seq data,

t-SNE performs better than many nonlinear transformation methods (i.e. Isometric Mapping (Isomap), Lo-

cally Linear Embedding (LLE)). Hence, in this study, I choose to combine sparse cell-cell similarity matrices

with t-SNE to visualize scRNA-seq data.

T-distributed stochastic neighbor embedding (t-SNE) is an improved statistical method for visualization

based on stochastic neighbor embedding (SNE). The main idea of these two methods is that the more the data

points are closer in high-dimensional space, the more closer the distances mapped to low-dimensional spaces

are. The conventional methods use Euclidean distance between data points to express the similarity, while

SNE and t-SNE converts this distance relationship into a conditional probability to express the similarity.

Compared to SNE, t-SNE have two improvements. Firstly, t-SNE uses t-distribution to replace the original

Gaussian distribution in the low-dimensional space, while in the high-dimensional sparse, t-SNE still use
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Gaussian distribution like SNE. Secondly, t-SNE turn SNE into symmetrical SNE, which means, in low

and high dimensional spaces, the conditional probabilities of every two data points are equal. These two

improvements make t-SNE a better visualization method. Compared with SNE, the distances of data points

within clusters become closer, and the distances of different clusters become farther.

The t-SNE algorithm has two main stages to reduce data from high dimension to low dimension. Firstly,

t-SNE constructs a probability distribution over pairs of high-dimensional data points in such a way that

similar data points are assigned a higher probability while dissimilar points are assigned a lower probability.

Secondly, t-SNE defines a similar probability distribution over the points in the low-dimensional map, and

it minimizes the Kullback–Leibler divergence (KL divergence) between the two distributions with respect

to the locations of the points in the map. While the original t-SNE algorithm uses the Euclidean distance

between data points to construct similarity metric, this can be changed as appropriate. The details are as

follows.

Given the data points x1, x2, · · · , xn in high-dimensional space, the joint probability pij of point xi and

point xj (i 6= j) can be defined as:

pi|j =
exp(−||xi − xj ||2/2σ2

i )∑
k 6=i exp(−||xi − xj ||2/2σ2

i )

s.t. pi|i = 0,

(5.6)

where σ2
i is the variance of the Gaussian distribution centered on data point xi.

In order to keep the symmetry of the joint probability between i and j, pij = pji = 1
2n (pj|i + pi|j), where

n is the number of data points.

Given the data points y1, y2, · · · , yn in low-dimensional space, the joint probability qj|i of point yi and

point yj (i 6= j) can be defined as:

qi|j =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

s.t. qi|i = 0

(5.7)

Similarly, to keep the symmetry of the joint probability between data points i and j, qij = qji = 1
2 (qj|i +

qi|j).

Then, KL divergence is used to construct the following cost function between joint probability distributions
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P and Q.

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(5.8)

Furthermore, gradient descent algorithm [92], an iterative optimization algorithm which is used to find

the local minimum of a function, is used to minimize KL divergence with respect to the points y1, y2, · · · , yn

in low-dimensional space.

In this study, I combine my method, LSSM with t-SNE to visualize scRNA-seq data sets in two-

dimensional space. During the process, Sij (0 ≤ Sij ≤ 1,
∑
i

Sij = 1), the ith row and the jth column

element of sparse cell-cell similarity matrix S, is used to express the joint probability of point i and point

j in low-dimensional spaces. Hence, in low-dimensional space, the joint probability pij is calculated as:

pij =
Sij∑
k 6=j Skj

. The other parts of algorithms remain the same as t-SNE.
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6 Evaluation Metrics

Unsupervised clustering evaluation approaches play a key role on evaluating the success of clustering

algorithms. Generally, they can be divided into two categories: internal cluster evaluation and external

cluster evaluation [71].

Internal cluster evaluation assesses a clustering result based on the clustered data itself. Hence, it does not

need to know the ground truth of the data in advance. This evaluation is based on the following two criteria:

1) compactness, which measures how similar (close) the data points are within a cluster, 2) separation, which

measures how different (well-separated) of a cluster from the other clusters [71]. However, one shortcoming

of internal cluster evaluation is that good results over internal evaluation measures do not necessarily lead

to high performance in the application[78]. Besides, these internal evaluation methods may be biased to the

algorithms which are based on the same model. For example, both k-means clustering and Davies-Bouldin

index [28] (an internal evaluation) are distance-based methods. Therefore, using Davies-Bouldin index to

evaluate the results, which are generated by k-means clustering, may be biased towards k-means clustering.

Hence, this internal cluster evaluation method may not give good results for the clustering methods which

are not distance-based.

On the other hand, external cluster evaluation needs the external data information such as class labels.

Ideally, the ground truth is decided by human with great inter-judge agreements. External evaluation methods

measure the similarity between cluster results and predetermined class true labels.

Usually, for single cell gene expression data, the cells are labeled by researchers in advance, so external

cluster evaluation methods are often used to evaluate clustering results. There are a number of external

cluster evaluation metrics can be used here, such as Purity [114], normalized mutual information (NMI) [55],

adjusted rand index (ARI) [22] and F-measure [23]. In order to assess clustering results more comprehensively,

I choose three external cluster evaluation methods, Purity, NMI and ARI, to assess the clustering results.

Let T = (t1, t2, · · · , tk) represent the set of ground truth labels, where ti ⊆ T is the set of data points in

class ti, i ∈ [1, 2, · · · , k]. C = (c1, c2, · · · , cv) denotes the set of predicted clustering labels, where cj ⊆ C is

the set of data points in cluster cj , j ∈ [1, 2, · · · , v].
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6.1 Purity

Purity is a simple method of clustering evaluation. It is the percent of the total number of data points that

were classified correctly. The formal expression is as follows.

Purity(T,C) =
1

N

k∑
i=1

max
j
|ti ∩ cj |, (6.1)

where |ti ∩ cj | represents the number of data points in both ti and cj .

The advantage of using the Purity method is that it is easy to calculate. The value of Purity is between 0

and 1. When clustering is completely wrong, it is 0. On the contrary, when clustering is totally correct, the

value is 1. However, the shortcoming of purity method is also obvious. It cannot give a correct evaluation

for the degenerate clustering method. Assuming that if the clustering algorithm clusters all data points into

a single category, the value of purity is 1. This is obviously not the desired results.

6.2 NMI

Normalized mutual information (NMI) [55] can be explained by information theory. It is normalized, so

we can use NMI values to compare with different clustering methods, even with different predicted cluster

numbers. Using entropy of the true cluster labels and the predicted cluster result, NMI is defined as follows.

NMI(T,C) =
2× I(T ;C)

[H(T ) +H(C)]
, (6.2)

where I(T ;C) is the mutual information between group T (the ground truth labels) and group C (the

predicted clustering labels). H(·) represents entropy.

I is mutual information function, which measures the level of these two splittings (T and C) agreeing to

each other. It is defined as:

I(T ;C) =

k∑
i=1

v∑
j=1

P (ti ∩ cj)log
P (ti ∩ cj)
P (ti)P (cj)

=

k∑
i=1

v∑
j=1

|ti ∩ cj |
N

log
N |ti ∩ cj |
|ti||cj |

=

k∑
i=1

v∑
j=1

mij

N
log

Nmij

aibj

(6.3)
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where P (ti), P (cj) represent the marginal probabilities of a data point belonging to ti, cj respectively,

|ti ∩ cj | = mij represents the number of data points in both ti and cj , |ti| = ai and |cj | = bj denote the

number of data points in ti and cj respectively, P (ti ∩ cj) is the joint probability of a data point being in the

intersection of ti and cj .

H(·) is entropy, for example, H(T ) is defined as:

H(T ) = −
k∑
i=1

P (ti)logP (ti)

= −
k∑
i=1

|ti|
N
log
|ti|
N

= −
k∑
i=1

ai
N
log

ai
N

(6.4)

The range of NMI is from 0 to 1. The value is closer to 1, the better the clustering quality is.

6.3 ARI

In order to explain adjusted rand index (ARI) clearly, rand index (RI) should be introduced first. RI, based

on information theory interpretation, is considered as a series of decisions. It is defined as:

RI =
TP + TN

TP + FP + FN + TN
(6.5)

Between ground truth groups and predicted label groups, TP, TN, FP, FN are explained as follows:

• True positive (TP) decision is the number of pairs of similar data points, which are assigned to the

same cluster between T and C.

• True negative (TN) decision is the number of pairs of dissimilar data points, which are assigned to two

different clusters between T and C.

• False positive (FP) decision is the number of pairs of dissimilar data points, which are assigned to the

same cluster between T and C.

• False negative (FN) decision is the number of pairs of similar data points, which are assigned to different

clusters between T and C.

Intuitively, TP + TN can be regarded as the number of agreements of two groups, while FP + FN can

be regarded as the number of disagreements of two groups.
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RI has the following disadvantages: 1) RI is not being punitive enough, 2) RI cannot compare to random

sets. Because of these, adjusted rand index (ARI), the revised Rand index, is proposed. ARI increases

penalty and considers the randomness. It is defined as follows:

ARI =
RI − E(RI)

Max(RI)− E(RI)
(6.6)

More specifically:

ARI(T,C) =

∑k
i=1

∑v
j=1(

mij
2 )/(N2 )−

[∑k
i=1(ai2 )

∑v
j=1(

bj
2 )
]
/(N2 )

1
2

[∑k
i=1(ai2 )/(N2 ) +

∑v
j=1(

bj
2 )/(N2 )

]
−
[∑k

i=1(ai2 )
∑v
j=1(

bj
2 )
]
/(N2 )/(N2 )

=

∑k
i=1

∑v
j=1(

mij
2 )−

[∑k
i=1(ai2 )

∑v
j=1(

bj
2 )
]
/(N2 )

1
2

[∑k
i=1(ai2 ) +

∑v
j=1(

bj
2 )
]
−
[∑k

i=1(ai2 )
∑v
j=1(

bj
2 )
]
/(N2 )

(6.7)

where mij represents the number of data points in both ti and cj , ai and bj denote the number of data

points in ti and cj respectively. N is the total number of cells in the data, and (N2 ) = N(N−1)
2 .

RI =
∑k
i=1

∑v
j=1(

mij
2 )/(N2 ) is the number of pairs of data points which are in the same ground truth

group in T and in the same predicted label group in C.

Max(RI) = 1
2

[∑k
i=1(ai2 ) +

∑v
j=1(

bj
2 )
]
/(N2 ) is calculated assuming that the clustering is totally correct.

In order to explain E(RI) more clearly, I need to introduce the contingency table (Table 6.1), which can

intuitively display the relationship between two variables of sets T and C (see Table 6.1)

Table 6.1: The contingency table of ground truth labels set T and predicted labels set C

T
C

c1 c2 . . . cv sums

t1 m11 m12 . . . m1v a1

t2 m21 m22 . . . m2v a2

...
...

...
...

...
...

tk mk1 mk2 . . . mkv ak
sums b1 b2 . . . bv

From Table 6.1 we can know that there are (N2 ) = N(N−1)
2 pairs of data points between sets C and T in

total. Therefore, the expected value of RI is: E(RI) :
[∑k

i=1(ai2 )
∑v
j=1(

bj
2 )
]
/(N2 ).

The value of ARI is between 0 and 1. The value is 1 if only the predicted results are completely identical

to the true cluster labels. While the value is close to 0 for a random partition [126], which is not the case

with RI.
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7 Results and Discussion

In this part, the results of my method on scRNA-seq data sets and the results of some state-of arts

methods as comparison are shown. Furthermore, the visualization performance of t-SNE with the similarity

matrices constructed by my method also is shown.

7.1 Clustering

To evaluate my method’s performance, I apply my method, Learning Sparse Similarity Matrices (LSSM),

which constructs a sparse cell-cell similarity matrix, on eight scRNA-seq data sets. Based on the similarity

matrix, I further use four clustering methods to identify cell populations: 1) spectral clustering based on

Laplacian eigenmap and k-means clustering, denoted as LSSM-EK, 2) spectral clustering based on Laplacian

eigenmap and Gassian mixture model clustering, denoted as LSSM-GK, 3) hierarchical clustering, denoted as

LSSM-H, and 4) Louvain clustering, denoted as LSSM-L. I use three common clustering evaluation metrics:

Purity, normalized mutual information (NMI) and adjusted rand index (ARI) to evaluate the clustering

methods.

Using the metrics and data sets described above, I compare LSSM-EK, LSSM-EG, LSSM-H and LSSM-L

with five state-of-the-art methods: NMF [101], SIMLR [117], MPSSC [85], DropClust [103] and SC3 [60].

In these compared methods, NMF decomposes a large target matrix into two smaller non-negative matrices

(a basis matrix and a coefficient matrix), and a dimension of the latent space represents a particular cell

type in one of composed matrices (coefficient matrix); MPSSC and SIMLR focus on considering multiple

different resolution kernel function for constructing cell-cell similarity matrices; DropClust uses locally sen-

sitive hashing (LSH), a logarithmic-time algorithm, for searching approximate k nearest neighbors (KNN) of

scRNA data, and Louvain clustering is employed for this KNN network to cluster cells. SC3 is a popular tool

for single-cell researchers, and its clustering accuracy is improved by integrating two consensus clustering

solutions (k-means clustering and hierarchical clustering). More details are show in Table 7.1.

For the input parameters of the competing methods, the number of clusters are set as the number of

the pre-annotated cell types (except for DropClust which does not need this parameters as input). Other

parameters are set to the default values recommended by their original papers or downloadable programs.
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Table 7.1: Summary of the compared studies

Compared methods Programming language Download source
NMF Python https://github.com/ccshao/nimfa

SIMLR MATLAB/R https://github.com/BatzoglouLabSU/SIMLR
MPSSC MATLAB https://github.com/ishspsy/project/tree/master/MPSSC

DropClust R https://github.com/debsin/dropClust
SC3 R https://github.com/hemberg-lab/SC3

On the other hand, LSSM-EK, LSSM-EG and LSSM-H, the number of the pre-annotated cell types is also

needed as an input. However, LSSM-L algorithm does not need this input.

Figure 7.1, Figure 7.2 and Figure 7.3 depict the values of Purity, NMI and ARI of all methods with eight

scRNA-seq data sets. I compare four methods (LSSM-EK, LSSM-EG, LSSM-H and LSSM-L) with five other

methods respectively. In order to determine the best clustering method based on LSSM among these four

clustering methods, I further compare the clustering results of LSSM-EK, LSSM-EG, LSSM-H and LSSM-L.

Firstly, I compare the clustering results of the five state-of-the-art methods (NMF, SIMLR, MPSSC,

DropClust, SC3) with LSSM-EK, LSSM-EG, LSSM-H and LSSM-L separately.

1. Comparing LSSM-EK with NMF, SIMLR, MPSSC, DropClust, SC3 based on Purity, NMI and ARI.

From Figure 7.1, Figure 7.2 and Figure 7.3, it can be seen that LSSM-EK outperforms most compared

methods over eight data sets.

• For Purity, LSSM-EK is ranked first or in joint first place on the remaining data sets except for Deng

data set, Zheng11uneq data set and Zheng8eq data set.

• For NMI, LSSM-EK achieves the best or tied first on six data sets and places second on the other two

data sets: Xin data set and Zheng8eq data set.

• For ARI, LSSM-EK ranks first or tied first on seven data sets and ranks second on Zheng11uneq data

set.

2. Comparing LSSM-EG with NMF, SIMLR, MPSSC, DropClust, SC3 based on Purity, NMI and ARI.

• For Purity, the clustering quality of LSSM-EG is best on the remaining data sets except for Deng data

set, Zheng11uneq data set and Zheng8eq data set.

• For NMI, LSSM-EG is the first or tied for first place on six data sets apart from Xin data set and

Zheng8eq data set.

• For ARI, LSSM-EG ranks first or ties first on six of the eight data sets, and ranks second on the largest

two data sets: Zheng11uneq data set and Zheng8eq data set.
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Hence, my method LSSM combining with the spectral clustering (Laplacian eigenmap + k-means clus-

tering or Laplacian eigenmap + Gassian mixture model clustering), works well in scRNA-seq data analysis.

Considering all the values of Purity, NMI and ARI of the eight data sets, LSSM-EK outperforms LSSM-EG.

3. Comparing LSSM-H with NMF, SIMLR, MPSSC, DropClust, SC3 based on Purity, NMI and ARI.

• For Purity, LSSM-H surpasses these five methods on four data sets: Yan data set, Kumar data set,

Koh data set and Tian data set.

• For both NMI and ARI, LSSM-H performs best on Yan data set, Deng data set, Kumar data set

and Tian data set.

Hence, the clustering qualities of LSSM-H are not good as LSSM-EK and LSSM-EG based on the results

evaluated on the eight scRNA-seq data sets.

4. Comparing LSSM-L with NMF, SIMLR, MPSSC, DropClust, SC3 based on Purity, NMI and ARI.

• For Purity, LSSM-L surpasses the five methods on Yan data set, Deng data set and Zheng11uneq

data set, while on Kumar data set, LSSM-L ties first place with SC3 and SIMLR.

• For NMI and ARI, LSSM-L is ranked first or tied for first place on five data sets ( Yan , Deng , Kumar

, Koh and Zheng11uneq data sets) and four data sets ( Yan , Kumar , Koh and Zhneg11uneq

data sets) respectively.

However, it is important to note that LSSM-L algorithm does not need the number of clusters as an input,

which is the same as DropClust. Comparing these two methods, for Purity, LSSM-L surpasses DropClust

on six data sets, apart from Xin data set and Zheng8eq data set. For NMI, LSSM-L performs better than

DropClust except for Xin data set and Deng data set. And for ARI, except for Xin data set, LSSM-L

outperforms DropClust. Hence, if the number of cell groups is unknown, Louvain clustering can be chosen

to identify cell types with LSSM.

I would like to point out that these eight data sets varies in the data sizes, experiment apparatus, cell

types, collected tissues/species, etc. This indicates that the reliable results achieved by LSSM methods are

not affected by the scale and biological conditions of scRNA-seq data sets.

Additionally, I compare and analyze the clustering results of LSSM-EK, LSSM-EG, LSSM-H and LSSM-

L. From Figure 7.1, Figure 7.2 and Figure 7.3. Given all the eight data sets, it can be seen that LSSM-EK

is superior when compared to the other three methods. LSSM-EK gets the best or tied for first place over 4

data sets, 7 data sets and 6 data sets on Purity, NMI and ARI respectively. And LSSM-EG is tied for first

with LSSM-EK or ranked right behind LSSM-EK over these 8 scRNA-seq data sets. Hence, only considering
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the performance of clustering results, LSSM combined with spectral clustering methods (that are LSSM-EK

and LSSM-GK) performs better, and LSSM-EK performs better than LSSM-EG. I can then conclude that,

if the number of clusters is given, we can choose the spectral clustering (Laplacian eigenmap + k-means

clustering) to achieve optimal performance on scRNA-seq data analysis.

Furthermore, note that in the three figures (Figure 7.1, Figure 7.2 and Figure 7.3), MPSSC has no results

for Zheng8eq data set. This is due to the fact that MPSSC needs a lot of computational resource to deal

with large scale data sets. In my case, it cannot process Zheng8eq data set on the computing cluster (Plato

HPC cluster in University of Saskatchewan) with 32 CPUs, 1600 GB of memory. Actually I have to utilize

such a computing cluster to run some methods such as MPSSC and SIMLR on the large scale data sets

such as Zheng11uneq and Zheng8eq. On contrary, I can use a personal laptop, with 1 CPU, 8 GB of

memory, to run LSSM-EK, LSSM-EG, LSSM-H and LSSM-L, even on large scale data sets mentioned above.

So LSSM-EK, LSSM-EG, LSSM-H and LSSM-L have a highly computational efficiency, especially compared

with some of the state-of-art methods such as MPSSC and SIMLR.

Besides, from the clustering results, we note that NMF performs much worse on the two largest scale data

sets (Zheng11uneq and Zheng8eq). Actually NMF originally aims at finding a low-rank representation of

a matrix with non-negative elements. As a competing method in this study, NMF can improve the estimation

of the selected low-rank values. For a large scale data set, however, it is easy to lose information if the selected

rank is improper. Therefore, the clustering performance of NMF may not be good on large scale data sets.

7.2 Visualization

Visualization is essential to provide biological explanation of cell populations of single-cell RNA sequencing

data. LSSM can also contribute in this area. As detailed in section 5.2, I combine t-distributed stochastic

neighbor embedding (t-SNE) with LSSM to show the visualization of data points in 2-dimensional space

from high-dimensional space. Specifically, I calculate the joint probability in low-dimensional space based

the cell-cell sparse similarity matrices, computed by LSSM, and the other parts are the same with t-SNE.

Figure 7.4 shows the visualization of four scRNA-seq data sets with t-SNE based on the similarity matrix

computed by LSSM. For these four data sets, it is easy to observe that, in general, the points in the same cell

types are close, while the points in the different cell types are clearly distinguished. Specifically, in Kumar

data set, the cells are clustered into 3 mouse pluripotentstem cell types: TwoiLI, Dgcr8K and FBSLIF.

In Koh data set, it has 9 subpopulations including H7hESCs and 8 kinds of H7-derived downstream early

mesodermprogenitors, which are also clearly separated. And in Tian data set, the cells of 3 human lung

adenocar-cinoma cell lines: HCC827, H1975 and H2228 are divided well too. The same thing can be said to
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Figure 7.1: Purity values of nine methods with eight scRNA-seq data sets
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Figure 7.2: NMI values of nine methods with eight scRNA-seq data sets
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Figure 7.3: ARI values of nine methods with eight scRNA-seq data sets
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Xin data set, which contains four human pancreatic islet cells including α cells, β cells, δ cells and PP cells.

Figure 7.4: Visualization of four scRNA-seq data sets combining LSSM and t-SNE for (A) Kumar
data set, (B) Koh data set, (C) Tian data set and (D) Xin data set. Different colors represent different
cell sub-types. Labels represent diverse cell types.
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8 Summary and Future Work

8.1 Summary

Single cell RNA sequencing (scRNA-seq) provides an unparalleled resolution to explore cellular heterogeneity.

It determines the differential gene expression of individual cells by measuring the amount of RNA molecules.

With the development of scRNA-seq technologies, a huge number of data sets have been generated. Nowa-

days, identifying cell populations through unsupervised clustering methods based on constructing similarity

matrices between cells has become one of the most common applications of scRNA-seq data. However, there

are many unique challenges in analyzing scRNA-seq because the data contains a lot of technical and biolog-

ical noises. As a result, the performances of many scRNA-seq data clustering algorithms are not as good as

expected.

In this study, I propose a novel method, LSSM, to construct sparse cell-cell similarity matrices for scRNA-

seq data, and further apply several clustering methods to identify cell populations based on the similarity

matrices.

Firstly, I construct a convex optimization objective function to calculate sparse cell-cell similarity matrices.

According to sparse subspace theory, I assume that each cell can be represented by the other cells from

the same subgroup with a linear combination, and the similarity matrices are composed by these linear

combinations. In the cell-cell similarity matrices, the values are nonzero if the cells are in the same type,

while the values are zero if the situation is opposite.

Secondly, I design an effective and convergent algorithm to compute the similarity matrices. Using column-

wise learning, I decompose the large optimization problem into n easier-to-solve optimization problems.

Besides, in order to guarantee the sparsity of each column of the similarity matrix, I use a greedy algorithm

to add only one non-zero value to the corresponding column at each iteration. Hence, the number of sparsity

of each column of the matrix can be controlled by setting the number of iteration and convergence parameters.

Thirdly, for purpose of selecting an appropriate clustering method, I apply two spectral clustering methods

(Laplacian eigenmap + k-means clustering and Laplacian eigenmap + Gassian mixture model clustering),

hierarchical clustering method and Louvain clustering method separately on the sparse cell-cell similarity

matrices with multiple data sets. The clustering results show if the number of cell types is given, my method
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LSSM performs best when combining with spectral clustering, especially Laplacian eigenmap + k-means

clustering. If the number of cell types is unknown, Louvain clustering method can be chosen to identify cell

populations. Furthermore, I combine my method LSSM with t-SNE to visualize scRNA-seq data.

My method, Learning Sparse Similarity Matrices (LSSM), has several advantages. First of all, constructing

sparse cell-cell similarity matrices can reduce the effect of noise of scRNA-seq data, since some relationships

in the dense similarity matrix may be caused by high-dimensional noise. Besides, LSSM assumes each cell

can be represented by the other cells of the data set, which is a good way to build the relationships of multiple

cells. In addition, if the number of cell types is given, the clustering result is pretty good for LSSM combining

with the spectral clustering (Laplacian eigenmap + k-means clustering), no matter the size of the scRNA-seq

data set is. Moreover, LSSM has high computational efficiency. Last but not least, the visualization of t-SNE

based on my method also is pretty great.

8.2 Future work

Although the accuracy of identifying cell populations is improved with my method, there are several potential

directions for my future improvements.

1. Automatically determine the number of clusters with spectral clustering.

LSSM combining with spectral clustering has the best clustering performance, but the number of cell

types is needed as an input. So if I can find a good way to automatically decide the number of clusters,

this framework will be more practical in single cell RNA sequencing data analysis. There are many excellent

methods to determine the cluster number, such as gap statistic [115], elbow method [105] and average

silhouette method [57], which may provide inspiration for my future research.

2. Improve the method of gene selection.

Some studies show that in scRNA-seq data analysis, the prior knowledge (i.e. genome annotation) of the

data sets can be very helpful in determining genes. More specifically, a number of studies, like [128], [32],

[14], have verified that some related and functional gene sets play a key role in scRNA-seq data analysis [124].

Hence, utilizing prior biological knowledge to better filter genes may help improve my method.

3. Combine several clustering methods to improve the clustering performance.

In this study, based on the similarity matrices constructed by LSSM, I use several clustering methods to

identify cell populations respectively. One further improvement direction is to combine multiple clustering

methods [38] to improve clustering quality. There are many consensus function for integrating multiple

clustering methods, such as voting based approach, mixture models, information theory approach, and so on

[97]. Some studies have combined several clustering methods in single-cell clustering algorithms. For example,
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SC3, mentioned in section 7.1, combines the clustering solutions of k-means clustering and hierarchical

clustering in their algorithms.
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Appendix A

Data preprocessing

A.1 Data load

import pandas

import numpy as np

data = pd.read_csv(’yan_data.txt’,sep=’\t’)

data_lab = pd.read_csv(’yan_lab.txt’,sep=’\t’,header=None)

x = np.matrix(data).astype(float)

print(data_lab.head())

print(x)

A.2 Removing zeros

import math

m, n = x.shape

for i in range(m):

for j in range(n):

x[i,j] = math.log10(x[i,j]+1)

x = pd.DataFrame(x)

print(x.shape)

A.3 Feature selection

a,b = x.shape

gene_list = []

for i in range(b):

gene_var = np.var(x.loc[:,i])

gene_list.append(gene_var)

print(gene_list)

x_length = len(x)

x.loc[x_length] = gene_list

x_sort= x.sort_values(by=a, ascending=False, axis=1)

print(x_sort)

x_selct = x_sort.iloc[:,0:2000]

x_selct = np.matrix(x_selct)

print(x_selct.shape)

68



A.4 PCA

from sklearn.preprocessing import MinMaxScaler

from sklearn.decomposition import PCA

scaler = MinMaxScaler()

data_rescaled = scaler.fit_transform(x_selct)

pca = PCA(n_components = 34)

pca.fit(data_rescaled)

x_redc = pca.transform(data_rescaled)

x_redc = np.matrix(x_redc)

print(x_redc.shape)
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Appendix B

Sparse cell-cell similarity matrix contribution

B.1 Initialization

from numpy.linalg import norm

sim = np.zeros((n,n))

norm_x = norm(x_redc,2)**2

cov=np.array(x_redc.T*x_redc)

print(cov.shape)

for i in range(n):

for j in range(n):

if i==j:

cov[i,j]=0

cov_maxlist = list(cov.argmax(axis=1))

print(len(cov_maxlist))

B.2 Similarity matrix calculation

import time

time_start = time.time()

for i_0 in range(n):

print(i_0)

a_0 = 1

k = 0

alpha_0 = np.matrix(np.zeros((1,n)))

alpha_0[0,i_0] = -1

b = cov_maxlist[i_0]

alpha_0[0,b] = 1

beta_0 = x_redc*alpha_0.T

alpha_k = np.matrix(np.zeros((1,n)))

beta_k = np.matrix(np.zeros((m,1)))

from numpy.linalg import norm

e_0 = np.matrix(np.zeros((n,n)))

e_0[:,i_0] = -1

e = np.matrix(np.eye((n)))

e_1 = e+e_0 # construct conv of omega 0

while True:

k += 1

a_k = (1+np.sqrt(4*a_0**2+1))/2

## calculating i+

opt = []
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for j in range(n): # j reprents i

if i_0 == j:

b = np.inf

else:

beta_0 = x_redc*alpha_0[:,:].T

b = -(x_redc[:,i_0]-x_redc[:,j]).T*beta_0[:,:]

opt.append(b)

#print(opt)

c = opt.index(min(opt))

#print(c)

alpha_k[:,:] = alpha_0[:,:] + 1/a_0*(e_1[c,:]-alpha_0[:,:])

beta_k[:,:] = beta_0[:,:] + 1/a_0*(x_redc[:,i_0]-x_redc[:,c]-beta_0[:,:])

a_0 = a_k

conveg =

np.abs(norm((x_redc*alpha_k[:,:].T),2)**2-norm((x_redc*alpha_0[:,:].T),2)**2)/norm_x

#print(conveg)

if k>0.4*n:

print("iterations are arrived")

sim[i_0,:] = alpha_k[:,:]

break

#conveg = np.abs(norm((x*alpha_k[:,:].T),2)**2-norm((x*alpha_0[:,:].T),2)**2)

if conveg<0.0000001:

sim[i_0,:] = alpha_k[:,:]

break

alpha_0[:,:] = alpha_k[:,:]

#print(conveg)

print(sim)

time_end = time.time()

time_cost = time_end-time_start

print(time_cost)

# keep the similarity matrix to be symmetrical, and the sum of every column to be 1.

sim = (sim+sim.T)/2

for i in range(n):

for j in range(n):

if i == j:

sim[i,j] = 0

colum=list(sim.sum(axis=1))

for i in range(n):

for j in range(n):

sim[i,j]=sim[i,j]/colum[i]

print(sim)
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Appendix C

Clustering and visualization

C.1 Spectral clustering

D = np.sum(sim,axis=1)

L = np.diag(D) - sim

# normailze

sqrtDegreeMatrix = np.diag(1.0 / (D**(0.5)))

Nor = np.dot(np.dot(sqrtDegreeMatrix,L),sqrtDegreeMatrix)

L = Nor

print(L)

eigval,eigvec = np.linalg.eig(L)

cluster_num = 6

dim = len(eigval)

dictEigval = dict(zip(eigval,range(0,dim)))

kEig = np.sort(eigval)[0:cluster_num]

ix = [dictEigval[k] for k in kEig]

print(eigval[ix])

print(eigvec[:,ix])

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=cluster_num,random_state=0)

pred_y = kmeans.fit_predict(eigvec[:,ix])

y=np.array(data_lab.T)

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=cluster_num,random_state=0)

pred_y_G = gm.fit_predict(eigvec[:,ix])

C.2 Louvain clustering

pip install python-louvain

import community as community_louvain

import matplotlib.cm as cm

import matplotlib.pyplot as plt

import networkx as nx

G = nx.from_numpy_matrix(np.array(sim))

partition.items()

pred_y_L = partition.values()

C.3 Hierarchical clustering
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for i in range(n):

for j in range(n):

distce[i,j] = 1-sim[i,j]

print(distce)

for i in range(n):

for j in range(n):

if i == j:

distce[i,j] = 0

print(distce)

from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree

from matplotlib import pyplot as plt

# in this case, I use ’ward’

Z = linkage(distce, ’ward’)

print(cut_tree(Z, n_clusters=cluster_num))

pred_y_H = cut_tree(Z, n_clusters=cluster_num)

print(pred_y_H)

C.4 NMI, ARI, Purity

from sklearn.metrics import adjusted_rand_score

ari=adjusted_rand_score(y[0], pred_y)

print(’ ARI %f’%(ari))

from sklearn.metrics.cluster import normalized_mutual_info_score

nmi = normalized_mutual_info_score(y[0], pred_y)

print(’ NMI %f’%(nmi))

# purity

from collections import Counter

def purity(labels, clustered):

# find the set of cluster ids

cluster_ids = set(clustered)

N = len(clustered)

majority_sum = 0

for cl in cluster_ids:

# for this cluster, I compute the frequencies of the different human labels I encounter

# the result will be something like { ’camera’:1, ’books’:5, ’software’:3 } etc.

labels_cl = Counter(l for l, c in zip(labels, clustered) if c == cl)

# I select the *highest* score and add it to the total sum

majority_sum += max(labels_cl.values())

# the purity score is the sum of majority counts divided by the total number of items

return majority_sum / N

purity = purity(y[0], pred_y)
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print(purity)

C.5 t-SNE

import numpy as np

import matplotlib.pyplot as plt

realmin = 2.2251e-308

def tsne_l (P, labels, n_dims=2):

#P is a similarity matrix

# Check initial solution

if not isinstance(n_dims, int) and len(np.reshape(n_dims, -1))>1:

initial_solution = True

ydata = n_dims

n_dims = y_data.shape[1]

else:

initial_solution = False

n = P.shape[0]

momentum = 0.08; # initial momentum

final_momentum = 0.1; # value to which momentum is changed

mom_switch_iter = 250; # iteration at which momentum is changed

stop_lying_iter = 100; # iteration at which lying about P-values is

stopped

max_iter = 1000; # maximum number of iterations

epsilon = 500; # initial learning rate

min_gain = 0.01;

for i in range(n):

P[i,i] = 0

P = 0.5*(P+P.T)

P /= P.sum()

P = np.where(P>=realmin, P, np.ones(P.shape)*realmin)

const = (P*np.log(P)).sum()

if not initial_solution:

P = P * 4

if not initial_solution:

ydata = 0.0001 * np.random.randn(n, n_dims)

y_incs = np.zeros(ydata.shape)

gains = np.ones(ydata.shape)

for itera in range(max_iter):

sum_ydata = (ydata**2).sum(axis=1)

# column add

denomi = sum_ydata.T.reshape((-1,1)) - 2* ydata.dot(ydata.T)

# row add

denomi = denomi + sum_ydata

denomi += 1

num = 1/denomi

# reset the diagal

for i in range(num.shape[0]):

num[i,i] = 0

Q = num / num.sum()
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Q = np.where(Q>=realmin, Q, np.ones(Q.shape)*realmin)

L = (P-Q) * num

y_grads = 4 * (np.diag(L.sum(axis=0)) - L).dot(ydata)

gains = (gains + 0.2) * (np.sign(y_grads) != np.sign(y_incs)) + (gains * 0.8) *

(np.sign(y_grads)==np.sign(y_incs))

gains = np.where(gains>=min_gain, gains, np.ones(gains.shape)*min_gain)

y_incs = momentum * y_incs - epsilon * (gains * y_grads)

ydata = ydata + y_incs

ydata = ydata - ydata.mean(axis=0)

ydata = np.where(ydata>=-100, ydata, np.ones(ydata.shape)*(-100))

ydata = np.where(ydata<=100, ydata, np.ones(ydata.shape)*100)

if itera == mom_switch_iter:

momentum = final_momentum

if itera == stop_lying_iter and not initial_solution:

P = P / 4

colors = np.random.rand(11)

plt.scatter(ydata[:,0],ydata[:,1],c=labels)

plt.show()

return ydata,labels
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