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Abstract

Plasma is rich with waves and instabilities, on scales ranging from the fastest electron

plasma waves down to the slow fluctuations due to ion and atom inertial effects. The common

theme of this study is flows, nonlinear waves and instabilities in low-temperature plasmas

with atomic processes such as ionization and instabilities. Several nonlinear plasma problems

related to applications in electric propulsion and open-mirror linear fusion devices are studied

in this thesis. Hall thrusters, the devices for electric propulsion, are prone to many waves

and instability phenomena, and the low-frequency ionization oscillations (propagating along

its channel) stand as most commonly observed (so-called breathing mode). Though the ion-

ization nature of the breathing mode is generally accepted, with the mode frequency scaling

as the fly-by time of the slow neutral atoms, exact mechanisms remain poorly understood.

In this study, we formulate a full fluid model for three species: atoms, ions, and electrons,

and perform a comprehensive benchmark study between the fluid model and hybrid model

(heavy kinetic species and fluid electrons). A novel result of this study is the identification

of two different regimes of breathing modes. In one regime, the breathing mode co-exists

with the higher frequency resistive mode, and the second – is clear breathing mode. The

main features and characteristics of these regimes are identified and confirmed in both mod-

els. Generally, the benchmark study shows a good agreement between the fluid and kinetic

models. A simple reduced fluid model is proposed for the solo regime. In this regime, the ion

backflow region (the near-anode region with negative ion velocity) is identified as a driving

mechanism for the breathing mode.

The related theme of this work is the role of atomic physics effects (ionization and charge

exchange) on plasma flow in the divertors of linear fusion devices. In open magnetic field

configurations, the magnetic mirrors are placed at the ends both to confine the plasma in the

core and to distribute output energy over a larger area, thus reducing the wall load. Direct

interaction of plasma flow with the material wall results in the re-emission of neutrals into

the plasma (recycling) due to particles’ reflection, desorption, and other processes. This re-

emitted neutral component can dramatically impact the whole system. It is found that the

low-energy neutral component has the largest influence, generating ion sources (via ionization
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and charge exchange) in the region near the wall and resulting in strong modification of

plasma potential and flow. To study these effects, we have developed a time-dependent hybrid

drift-kinetic code with a detailed model of atom transport near the wall, including collision

processes. This tool can be used for studying global quasineutral plasma flow dynamics

and its interaction with atom components, such as in divertors of linear fusion devices. To

illustrate its capabilities, we confirm previous findings (based on qualitative and steady-state

analysis) that the ion temperature in the source generally reduces the transport of neutral

atoms. Additionally, we show that an increase in the density of slow atoms above some critical

value results in dramatic destabilization of plasma flow via ion streaming instabilities.
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Chapter 1

Introduction

1.1 Thesis motivation and outline

It is of great importance to study and understand diverse plasma phenomena to address

fundamental problems of nature. Plasma is heavily used in modern technology, e.g. electric

propulsion for space exploration, the problem of controlled thermonuclear fusion. Plasma

is a gas of charged particles, and the long-range electromagnetic interaction defines its dy-

namics. It is also dense enough (quantitative discussion follows) to exhibit collective plasma

effects absent for a simple collection of charged particles. This includes a tendency to keep

overall electric neutrality and support many wave phenomena often exhibiting turbulence.

Transport in plasma caused by turbulence is an unsolved problem of classical physics, and it

is manifested in numerous plasma applications and natural phenomena.

This thesis studies the dynamics of low-temperature plasma with a large fraction of neu-

trals, thus focusing on the flows and lower-frequency plasma waves affected by collisional

atomic processes such as ionization and charge exchange. The related applications include

problems for electric propulsion (Hall thrusters) and linear fusion devices, specifically its

divertor region dynamics. We study the equilibrium flow, the low-frequency waves and in-

stabilities, and their mechanisms. The reduced plasma models are formulated for specific

problems and include fluid and hybrid (combining fluid with kinetic) models.

In Chapter 2 we will start with the problem of ionization modes observed in Hall thrusters.

These are electric propulsion devices successfully used for low-orbital and deep space missions.

The so-called breathing modes are observed as low-frequency oscillations of the discharge cur-

rent and all major plasma parameters along its channel (in the axial direction). Breathing

modes are associated with the periodic interplay of plasma species and neutrals via the ioniza-

1



tion process. Periodic depletion of neutrals and their fly-by time define the frequency of the

observed mode, but the exact mechanisms remain unknown. In this study, we will compare

two models, fluid and hybrid, most commonly used for studying the axial dynamics of these

thrusters. The models include dynamics of three species: ions, neutrals, and electrons, with

ionization that supports the discharge in the applied potential across the channel. The prob-

lem of axial dynamics is non-linear and inherently non-local; it is particularly complicated

for analytical studies, even for linearized equations. Thus, numerical simulations here are the

primary tool to elucidate these processes. We compare fluid and hybrid models against each

other and identify their major differences. Additionally, we identify two different regimes for

breathing modes (seen in both models), one with pure breathing mode and the other regime

where the breathing mode co-exists with the higher frequency resistive modes. The latter

are also axial modes associated with ion fly-by times. These modes are highly sensitive to

electron mobility and can lead to ion heating. Note that the breathing mode frequency is

almost independent of electron mobility. Our benchmark shows that the ion heating and

pressure effects are important when the resistive modes are present. For the pure breathing

mode regime, we identified an important role of the ion-backflow region (where the ions flow

toward anode), and plasma recombination at the anode, significantly impacting the breathing

modes. The benchmark study between fluid and hybrid models exposed some limitations of

the fluid description of heavy species and provided important insights about axial modes of

Hall thrusters.

Chapter 3 is built on the investigation of the full dynamics of breathing modes outlined

in Chapter 2. In Chapter 3, we propose a mechanism for the breathing mode and a reduced

model. Various mechanisms for the breathing modes are proposed in literature based on the

zero-dimensional predator-prey model for neutrals and ions. Construction of a simpler model,

based on continuity equations of ions and neutrals, allowed to identify the importance of the

ion backflow region (formed by presheath region near anode). We show substantial evidence

that the ion backflow region is responsible for the excitation of low-frequency breathing

modes.

An interesting problem, presented in Chapter 4, exists in the field of linear fusion devices,

consists of studying plasma dynamics on the ends of such devices in the configuration of
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converging-diverging magnetic fields. These are used to distribute the output energy (by

flaring magnetic field lines) that inevitably leaks from a linear fusion device. By its definition

and configuration, they are inherently open systems with direct contact between plasma

and outer structures (walls). Wall material bombarded with plasma includes a multitude

of processes, among which we will focus on neutral recycling processes (due to reflection

and desorption). Slow neutrals, introduced to the system, will potentially create low-energy

plasma species sources, affecting the plasma potential distribution and thus dynamics of the

whole fusion device. It is interesting to point out that any distortions, plasma sources, and

dynamics spread quickly (possibly with dramatic implications) along field lines throughout

the whole device, affecting the source region.

Chapter 2 of the thesis is based on the manuscript prepared for publication (preprint is

published), Chapter 3 is based on the published manuscript. Both contain a short preface

with a description of how they relate to the main theme.

1.2 Brief history and definition of plasma

Historical perspective

The invention of the first vacuum pumps at the beginning of the 18th century and active

studies of electric phenomena brought an interesting object associated with passing a current

through partially evacuated gas tubes. The visible glow observed in these experiments,

where a high voltage was applied between plates inside a partially vacuumed tube, named

Geissler tubes (filled with neutral gas), raised questions about the nature of this phenomenon.

Throughout time, vacuum technology improved, and lower pressure discharges were obtained,

allowing to observe rays of current in rarefied gas that travel in straight lines between anode

and cathode (in Geissler tubes, the effect was more diffusive due to larger neutral). These new

rays were named “cathode rays” by William Crookes [1], who first studied this phenomenon

after achieving a higher vacuum in a discharge tube1.

1William Crookes observed that “cathode rays” mostly disappear but remain near the anode. Later, Sir
J.J. Thomson discovered the nature of cathode rays, consisting of negatively charged discrete particles -
named electrons. He used Crookes tubes to discover positively charged particles and formulated one of the
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The specific features of ionized gases as a separate state of matter were not recognized

until the work of Irving Langmuir and Lewi Tonks. In the 1920s, they studied gas discharges

in the tungsten-filament light bulbs (to improve the lifetime of the filament) [2]. They

were the first who quantified and acknowledged unique plasma features, such as the notion

of quasineutrality, plasma electron waves, and boundary plasma-wall effects called sheaths.

These studies were fundamental for plasma physics as we know it today. They also come up

with the name plasma, from the Greek word πλασµα – “moldable substance” or “jelly”. Imagine

a plasma system consisting of heavy ions and electrons. Its tendency to hold quasineutrality

creates forces that counteract the inertial motion of light electrons, and thus vibrations

of electrons in the effectively stationary ion background resemble jelly-like motion. After

that, more objects (new or known before) started to fit into the plasma category: Earth’s

ionosphere, an upper layer of the atmosphere consisting of partially ionized gas (by solar

radiation), astrophysical objects, like stars and solar wind. The amount of research in plasma

physics scaled up significantly in the mid 20th century, addressing never-ending stability

problems in controlled thermonuclear fusion (a concept of the power plant) where hot plasma

is confined in strong magnetic fields.

Plasma definition

If we take a gas of charged particles, the interaction between particles is defined by the long-

range electromagnetic forces. Here we discuss the criteria that make plasma state and its

major properties. Imagine that you have a cloud of heavy and electrically neutral particles

that occupy a sphere of radius a. If one injects electrons with sufficient energy ϵe into

the cloud, successively ionizing heavy particles, the cloud becomes charged to a potential

ϕ = Ne/a (CGS units), where e is the scalar elementary charge, and N is the number of

charged ions. Until eϕ < ϵe, electrons can easily escape the volume after an ionization event.

After some critical number of neutrals are ionized, eϕ = ϵe, electrons can no longer leave the

volume. Thus, if we continue the process, we end up with about an equal number of ions and

electrons. This leads to the notion of quasineutrality, where the whole population of charged

first atomic structure models. Another application with huge implications was using vacuum tubes in the
early age of digital electronics, before the transistor era.
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particles contains about the same number of positive and negative charges [3]. One can

estimate the scale on which quasineutrality holds. Given the number density n = N/(4/3)πa3,

the radius is deduced from θa2 = ϵe/4πne
2 (with θ = 1/3). The radius a is called the Debye

radius, and commonly denoted as λD, is given by

λD =

√
Te

4πnee2
, (1.1)

where ne is the electron density, with the electron temperature Te ≡ kBTe (temperature in

plasma conveniently defined in energy units), where kB is the Boltzmann constant.

One of the main criteria of plasma state is that the spatial extent of plasma L is much

larger than the Debye radius, L ≫ λDe; on this scale, the system is quasineutral. For a gas

of charged particles λD ∼ n
−1/2
e , and thus there exist the critical density n for which L ≥ λDe

will hold. Another important property of the Debye radius is that any uncompensated charge

“placed” into plasma (or created by random fluctuations) will be screened (shielded) on scales

larger than the Debye length; e.g., the potential of a point charge immersed into plasma is

ϕ = ϕ0e
−r/λD , with ϕ0 = e/r (vacuum potential). It becomes negligibly small (by screening)

over distances r ≫ λD. Such collective plasma behaviour defines its unique properties and

distinguishes it from a simple set of charged particles.

Binary Coulomb interactions in plasma are screened, and particles do not effectively

interact with those outside its local Debye sphere. We call such systems weakly coupled

(as opposed to configurations where binary collisions dominate). Implications of this are

far-reaching in what is generally called the collective behaviour of plasma. Another criterion

of weakly-coupled plasma is that the particle kinetic energy must remain larger than the

potential energy over the average distance between particles, r0 ≈ n−1/3,

e2

r0
≪ 3

2
T. (1.2)

One can see that this condition is equivalent to the requirement that the number of particles

in the Debye sphere, ND = (4/3)πλ3
Dn, is large. Indeed, Eq. (1.2) states that N

2/3
D ≫ 1.

Numerous laboratory and natural plasma configurations are non-relativistic (typical veloc-

ities v ≪ c) and with negligible quantum effects. Essentially, quantum effects are negligible

as the average distance between particles is much larger than the de Broglie wavelength,
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n
−1/3
0 ≫ h/mv, where m is a particle mass, v is the particle velocity, h is the Planck con-

stant. Substituting the thermal velocity vT =
√

2T/m, the condition for classical treatment

of plasma becomes T 3/2/n ≫ h3/(2m)3/2. For a given temperature, this condition may break

first for light particles such as electrons, for example, in white dwarfs (starts with degenerate

electrons).

Based on the above definitions, we assume a weakly-coupled, non-degenerate, and non-

relativistic plasma. This includes a wide variety of laboratory and nature plasmas. Such

systems are treated classically and, to high accuracy, are described by kinetic plasma theory

coupled with classical electromagnetism.

1.3 Electric propulsion and Hall thrusters

Electric propulsion

Figure 1.1: Ratio of propellant

mass to total rocket mass required to

achieve an increment of velocity ∆v,

given by Tsiolkovsky equation (1.3).

Electrically powered propulsion uses charged particles

as a propellant in external electric and magnetic fields.

The main advantage over chemically based propul-

sion is that a charged propellant can achieve much

higher exhaust velocities. It can be demonstrated

with a simple force relation acting upon an accelerat-

ing object, the generated thrust2 is FT = ṁvex, where

vex is the exhaust velocity (assumed constant) and ṁ

is the mass flow rate. The same thrust values may

be obtained with higher vex and utilizing less propel-

lant, resulting in a better mass efficiency. In fact,

the chemical propulsion is limited to exhaust veloc-

ities ∼5 km/s, which imposes restrictions on its ap-

plications to long-term space missions, as well as for

compact and lightweight satellites (orbital corrections

2Force exerted on a rocket during ejection of propellant by Newton’s third law.
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and simple maneuvers). Fig. 1.1 demonstrates that larger exhaust velocity (∼25 km/s) al-

lows to carry much less fuel to achieve the same increment in velocity ∆v. It is seen via

Tsiolkovsky’s rocket equation [4, 5]

mf

mp +mf

= exp

(−∆v

vex

)
, (1.3)

where mf is the initial fuel mass and mp is the useful payload. The limitations of electric

propulsion mainly consist in the power source that must be carried on the spacecraft. For

that reason, electric propulsion operates in relatively low power regimes, with the thrust

∼100mN [6], and thus usually requires long times to achieve the desired ∆v.

So, how do electric thrusters work? Consider systems that use plasma (consisting of

heavy ions and electrons) and work on the electrostatic principle, i.e. acceleration of ions by

an electric field. When ionized gas is placed in an external electric field, the work done by

the electric field on ions mostly contributes to the thrust, but at the same time, it drives an

electron current (moving in the opposite direction), which consumes the supplied power. It is

possible to reduce the electron current and its losses by introducing an external magnetic field

perpendicular to the motion of ions (and electric field). When the amplitude of the magnetic

field is not too high, it can effectively trap electrons (significantly reduce the current along

the electric field) while leaving ions effectively unmagnetized (ion gyroradius is larger than

the system size). Moreover, in the configuration of crossed E and B fields, electrons will

drift in the direction perpendicular to both fields, so-called E × B drift. If this direction

is closed (e.g., azimuthal), electrons will follow closed trajectories, becoming trapped, with

highly reduced motion along the thruster channel.

Hall thrusters

One class of electric propulsion thrusters working on this principle are Hall thrusters. Hall

thrusters were originally developed in USSR and USA and applied in practical flights in

USSR in the 1970s [7]. In the 1990s, the technology spread worldwide, and active research

is ongoing, with numerous modifications and new theoretical insights [8].
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Figure 1.2: Hall thruster schematic [8]. Radial-axial dissection (cut) is shown on the

left, and a three-dimensional model on the right.

The schematic of conventional Hall thruster is shown in Fig. 1.2. It contains plasma

in the coaxial cylindrical configuration, between two dielectric cylinders, with the anode at

the back wall and the cathode electron gun3 in front of the exit plane. The nearly radial

magnetic field lines are created with electromagnets, with the maximum magnetic field lines

near the exit plane. Neutral atoms are injected into the near-anode region. With the applied

potential difference, the discharge is created and continuously supported by ionization by

electron-neutral impact. The cathode serve a dual role: it is a source of electrons in the

thruster channel and the charge neutralizer of the output ion beam. A strong magnetic field

is used near the channel’s exit to confine electrons, increasing their residency time for effective

ionization. Low electron conductivity (especially near the exit) leads to the establishment of

a bulk electric field in the axial direction. Ions, effectively insensitive to the magnetic field,

accelerate by the axial electric field towards the exit and generate thrust. Interestingly, the

established electric field is nearly uniform in the azimuthal direction, despite the asymmetric

placement of the cathode.

Thus, we have the following degrees of freedom: axial, which is parallel to the thruster

3A thermionic element emits electrons when heated, such as hot metal filament.
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motion in space, the direction of the electric field and accelerating ions; it has a physical

boundary on one side (anode) and open on the other (channel exit); azimuthal, which confines

drifting electrons due to the E × B drift and thus sustain high electron current; radial, the

direction of the magnetic field and bounded with dielectric walls (to suppress the secondary

electron emission). In our studies of low-frequency modes of Hall thruster, the axial dynamics

is of particular interest; its schematic is shown in Fig. 1.3. As noted above, the plasma

discharge is supported by the continuous ionization process, which relies on neutral supply

and the applied potential difference (across the channel). All these factors contribute to

complex nonlinear dynamics involving three species: neutrals, ions, and electrons. It is also

nonlocal via the applied potential constraint.
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Figure 1.3: Schematic representation of Hall thruster dissected radial-axial plane,

with qualitative distributions of particles and fields in the channel. Axial dynamics is

highly nonlocal due to applied external potential between anode and cathode.

One of the characteristics of Hall thruster is the presence of turbulence and structures

(azimuthal and axial) that affect their operation. In particular, the observed axial electron

transport is orders of magnitude larger than the classical collisional transport predicts. The

classical transport is due to electron collisions allowing drift in the axial direction (perpen-

dicular to the magnetic field). Estimates for the collisional electron transport are readily
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obtained from the stationary electron momentum balance equation:

0 = − e

me

(E+ v ×B)−∇pe − νve, (1.4)

where E = Eêx is along the axial direction, B = Bêr is the radial magnetic field; ν is the

total electron collision frequency (mainly due to electron-neutral collisions), ve is the electron

flow velocity. Then the axial electron flow velocity is

vx = −µeE − µe

n

∂p

∂x
, (1.5)

where µe is the classical expression for the electron mobility across the magnetic field:

µe =
e

mν

1

1 + ω2
ce/ν

2
, (1.6)

where ωce = eB/me is the electron cyclotron frequency. In the region of the high magnetic

field, B ≈ 150G and ωce ≈ 1×109 s−1, while ν ≈ 5×106 s−1, thus the so-called Hall parameter

h = ωce/ν ≫ 1 is typical for a Hall thruster setup. Thus, for a large Hall parameter Eq. (1.4)

predicts

µe ∼
1

B2
, (1.7)

which is the classical transport for electrons; it appears that the modest values of B could

effectively entrap electrons.

Even in early experiments with Hall thrusters, it was noted that the measured electron

current exceeds the classical values by few orders [6], and the exact mechanisms involved are

not clear. Possible explanations are electron-wall collisions and turbulent electron transport.

Turbulence-related transport is likely due to instabilities developing in azimuthal direction:

low-frequency spoke phenomena [9] and high-frequency magnetized drift instabilities excited

by strong E×B electron currents [10]. Then, the fluctuating azimuthal electric field Ẽ = Ẽθêθ

can push the axial current via the Ẽ×B drift (given a non-zero correlation between Ẽθ and

the electron density fluctuation ñe [11]). To account for the anomalous parts of the electron

current, the Bohm diffusion [12] is used, giving the mobility expression

µB =
1

16B
, (1.8)

where the factor 1/16 was obtained empirically. The Bohm diffusion is often included in Hall

thruster models, as used in our models in Chapters 2 and 3. The Bohm anomalous frequency
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νB =
βe

16me

1

B
, (1.9)

is added to the total electron momentum exchange frequency ν, with the parameter β to con-

trol the anomalous contribution. In this way the total frequency ν accounts for contributions

from different factors, including collisions with neutrals, wall collisions, etc.

Accurate models for the electron transport from first principles must likely include two or

all three dimensions, electron inertia effects. Due to the general problem of scale separation,

high computational costs, and potential numerical problems, phenomenological description

of electron transport is a typical choice for reduced models.

1.4 Magnetic mirror for thermonuclear fusion

Thermonuclear Fusion

Thermonuclear fusion is a nuclear reaction when a few atomic nuclei are merged into one

(or, at least, a smaller amount of) nuclei that are chemically different from the initial reac-

tants. Suppose the nuclear binding energy of the product (per nucleus) is larger than that

of reactants. This leads to the mass defect, the product mass is smaller than the sum of

reactants masses. The excess energy is released in some form (gamma radiation, the kinetic

energy of byproduct, etc.), with the amount corresponding to E = mdc
2, where md is rest

“defect” mass, c is the speed of light. Fusion reactions associated with the energy release

(exothermic) involve lightweight reactants, so the atomic number of a resulting product is 26

(iron) or smaller; for the heavier products binding energy start to decrease (due to effective

nucleus size grows, see the nuclear binding energy curve [13]). The reverse nuclear reaction is

known as fission which has been successfully utilized by existing nuclear power plants since

the 1950s.

Fusion is both one of the fascinating natural phenomena (as the energy source for stars)

and a very challenging applied physics and engineering pursuit which run since the late 1950s

(for peaceful applications to build controllable energy plants). The main difficulty from a

physics standpoint arises from overcoming the repulsive Coulomb interaction of reactants;
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they need to get close, at distances where the strong nuclear force begins to take effect, at

∼10−15 m. For example, to bring two protons to the distance 10−15 m, one needs the energy

of ∼10 keV to overcome the Coulomb force. At the same time, it is not enough just to reach

this energy, the probability of Coulomb scattering dominates over fusion cross-sections in the

whole energy spectrum. Therefore, one must confine hot plasma long enough for a sufficient

number of fusion reactions and positive power outputs. Indeed, successful confinement is the

main difficulty for fusion devices.

Controlled fusion is one of the important applications of laboratory plasma physics. Sev-

eral configurations were proposed based on magnetic, inertial, or electrostatic plasma con-

finement. One of the promising approaches is the magnetic confinement that uses a magnetic

field as a wall-less barrier that keeps hot charged particles (plasma) away from the material

walls. Main configurations for magnetically confined systems can be categorized as systems

with open or closed magnetic field lines4. Closed systems, for example, are the torus-shaped

tokamak and stellarator with the predominantly toroidal magnetic field with some addi-

tional poloidal magnetic field to suppress hydrodynamic instabilities [14]. Generally speak-

ing, closed systems are advantageous for confinement since transport in the perpendicular

(to magnetic field) direction is suppressed for magnetized particles. In an open system the

magnetic field leaves the confinement volume thus resulting in large losses along the field

lines. At the same time, open ends allow to naturally extract power from such devices. The

magnetic mirrors flaring towards end walls also serve an additional purpose to reduce and

control heat load per unit of area by expanding the plasma flow over the larger region.

Plasma flow escaping the magnetic mirror accelerates ions to supersonic speeds. The

direct plasma-wall contact with the end structures (walls) may pollute the divertor region

by slow neutral atoms. Such atom sources can affect the whole operation of the device by

generating slow ion and electron sources. This scenario is studied in Chapter 4 of this thesis.

Thus, we briefly discuss the physics of magnetic mirror configuration, plasma acceleration

through the magnetic mirror, and possible effects due to neutral sources.

4Physically, all magnetic field lines closed as per ∇ ·B = 0, here the closed magnetic configuration means
that the magnetic field lines are closed within the volume of a device.
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Figure 1.4: Converging magnetic field lines in configuration of magnetic mirror with

the most intense field on the right (magnetic throat).

Plasma flow in magnetic mirror

The magnetic mirror is a magnetic field configuration with converging magnetic field lines,

Fig. 1.4. Particles moving to the region of the stronger field in this configuration can be

reflected purely by the magnetic (Lorentz) force (parallel energy transforms to perpendicular,

effectively slowing down parallel motion). The symmetric configuration with mirrors on

both ends is called the magnetic trap; it can effectively confine charged particles5. It is

worth mentioning that the reversed configuration (diverging magnetic field) is known as the

magnetic nozzle and is used in electric propulsion applications, e.g. VASIMR rocket [15], it

converts the thermal energy of charged particles into parallel motion, thus generating thrust6.

A charged particle in a sufficiently strong magnetic field characterized with magnetic moment

µ as the integral of motion [14]

µ = mv2⊥/2B = const, (1.10)

where m is the mass of a charged particle, v⊥ its perpendicular velocity, and B is the mag-

nitude of a magnetic field. The magnetic moment is well conserved when the Larmor radius

of a particle is much smaller than the gradient length of magnetic field LB = (|∇B|/B)−1,

5It applies only to single particles that do not resemble collective effects; it is shown further that plasma
is not confined in the standard magnetic trap.

6Similarly to de Laval nozzle for neutral gas.
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i.e. when the magnetic field does not change significantly per one gyro-rotation [14]. Then

the total kinetic energy

ε =
m

2

(
v2⊥ + v2z

)
=

mv2z
2

+ µB = const, (1.11)

where vz is the parallel velocity; it is seen that the quantity µB plays a role of potential

energy if we consider dynamics along to the magnetic field line. If a particle moves in the

direction of stronger B, its parallel energy decreases, and depending on its initial energy εi

and the value of µ. The particle can be even reflected, if the following condition is satisfied:

mv2z
2

= εi − µB < 0, (1.12)

which is similar to the classical result for a particle trapped in a potential well (maximum

of µB must be larger than the initial energy), where potential energy is µB, but with the

important difference that this quantity depends on particle’s initial (perpendicular) velocity.

In the coordinates of initial parallel and perpendicular velocities (v⊥0, vz0), the condition

(1.12) describes the so-called loss cone, i.e. the region of initial velocities that will lead to a

loss (reciprocal region leads to reflection, and thus confinement), which is

v2⊥0 < v2z0

(
1− Bmax

B0

)−1

, (1.13)

where B0 is the magnetic field at point entry (would be the minimum value if the injection

is in the middle of magnetic trap), and the Bmax is the maximum value of magnetic field

(throat of the magnetic mirror), R ≡ Bmax/B0 is the magnetic mirror ratio.

Now, if the configuration of the magnetic trap is used to confine plasma (which is the case

for highly ionized and hot gas), collective effects will play a crucial role. One may think that

particles could bounce between two ends of the trap, losing only particles in the loss cone,

and eventually, losses will stop. But binary collisions in plasma will scatter particles into the

loss cone. Estimates show [16] that the Coulomb electron-electron collisions are
√

mi/me

more frequent, and they effectively become isotropic, thus continuously filling the loss cone.

This leads to higher electron losses and the ambipolar electric field rising to keep plasma

quasineutrality. The electric field slows down electron losses but increases ion losses (it is

shown below how the loss cone is modified in the presence of an electric field). The Boltzmann
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approximation for electrons gives a good estimate for the electrostatic field appearing in this

case; it is derived from the electron momentum balance equation with the electron inertia

neglected:

0 = ene∇zϕ− Te∇zne, (1.14)

where the force due to density gradient is compensated by the electric field force, so there is

no net electron current. With plasma quasineutrality we have n = ni = ne, and integrating

Eq. (1.14), the potential along the magnetic field line is eϕ(z)/Te = lnn(z)− lnn(0) (setting

ϕ(0) = 0V). Depending on the magnetic mirror ratio, plasma density may drop about 1-2

orders crossing the throat of the mirror [17], and thus potential difference may reach few

electron temperatures Te/e (e.g., ∆ϕ ≈ 700V for Te = 200 eV with R = 7, and system length

3m, as shown in the numerical simulations in Chapter 4). The electrostatic electric field is

conservative, Ez = −∇zϕ, thus the condition (1.12) modifies to

miv
2
z

2
= εi − eϕ− µB < 0, (1.15)

where the quantity Ueff = eϕ + µB is often called the effective (or Yushmanov) potential.

Note, in Eq. (1.15) we assumed an ion particle (positively charged) with the mass mi. Thus,

the particle is trapped if εi < Ueff, which depends on both B and ϕ profiles. The loss boundary

with the conic shape becomes a more complicated surface, given by

v2⊥0 <

(
v2z0 +

2e∆ϕ(z′)

mi

)(
1− B(z′)

B0

)−1

, (1.16)

where z′ is the location of the maximum of Ueff. As discussed above, the faster electron losses

lead to the potential that reduces these losses. Thus, one should consider ∆ϕ(z′) < 0 in

Eq. (1.16). The schematic representation of loss and trapped regions for positively charged

particles in velocity space is shown in Fig. 1.5. While the loss cone is the same irrespective

of the sign of the charge, the electric field expands the ion loss region and shrinks that of

electrons.

In full generality, with the thermal spread of particle energies, the kinetic (or drift-kinetic)

description of plasma flow through magnetic nozzle requires numerical treatment. It cannot

be analytically obtained even with the Boltzmann electron model (1.14), and the assumption

of quasineutrality. Indeed, the electrostatic potential can be integrated only when the density
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Figure 1.5: Schematic representation of regions for lost and trapped positively charged
particles in absence of electric field (standard loss cone), and in presence of electric field.

is known, and the density is evaluated from microscopic particle’s position that requires the

potential for integration of motion (and accurate account of escaped or reflected particles of

different energy). In literature, this was addressed, for example, with a drift-kinetic stationary

model with µ = const using an iterative approach [18] or time-dependent particle-in-cell [19].

Our model of Chapter 4 is time-dependent and based on drift-kinetic ions (particle-in-cell),

Boltzmann electrons, and full quasineutrality assumption. It also includes the model of

atom transport (due to ions bombarding the wall) and collisions due to charge exchange

(ion-neutral) and ionization (electron-neutral).

Analytical solutions, however, have been obtained for the cold fluid theory. The stationary

ion momentum equation can be written in the form [17]

(
M2 − 1

) ∂M
∂z

= −M
∂ lnB

∂z
, (1.17)

where M = Vi/cs, the ion flow velocity Vi normalized on the ion sound speed cs =
√
Te/mi

(constant for isothermal electrons). The right-hand side of Eq. (1.17) represents the effect

of the guiding magnetic field acting equivalently to de Laval nozzle’s variable cross-section

area. Continuous solutions to Eq. (1.17) are obtained with the regularization condition that

states that both ∂ lnB/∂z = 0 and M2 − 1 = 0 must hold at the transition point. This
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Figure 1.6: Magnitude of axial magnetic field in configuration of magnetic nozzle. Ion
velocity profile is shown as solution to Eq. (1.17)

defines the location of the sonic point (M = 1), which is tied to the extrema (maximum) of

the magnetic field. The example of the magnetic field profile and the corresponding solution

to Eq. (1.17) are shown in Fig. 1.6.

In Chapter 4 we show that the presence of neutrals and collisions in the near-wall region

will strongly affect the plasma flow accelerated through the magnetic mirror. Additional

plasma sources near the wall contribute to an overall drop in potential difference and can

even excite streaming instabilities. Understanding the main mechanisms behind these effects

is essential, as they may significantly impact the overall fusion device operation.

1.5 Plasma models

1.5.1 Kinetic description

It was pointed out that in weakly coupled plasma ND ≫ 1 and L ≫ λD, the number of

particles is enormous, it allows to use the statistical approach to describe discrete particles

with the continuum distribution function f(x,v, t) defined as a number of particles per phase

space volume dxdv. The phase space volume dxdv considered here is physically small; it

still must contain a large number of particles, so the fluctuations are small due to the change

of the number of particles. The evolution of the distribution function in time gives the

most accurate statistical description of the plasma system (exactly tracking every particle in
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phase space is impractical for analysis or numerical treatment). Then the total change of the

distribution function in time is given by the Boltzmann equation

dfα(x,v, t)

dt
= Ccoll(fα), (1.18)

where α denote species type (e.g. electrons, ions), Ccoll is a collision operator. A simple form

for Ccoll in the presence of collisions with neutral atoms

Ccoll = ν (f0 − fα) , (1.19)

called the Krook collision operator, where ν is the average collision frequency, f0 is an equi-

librium distribution function.

The total time derivative is obtained via the chain rule as

d

dt
=

∂

∂t
+

dx

dt
· ∂

∂x
+

dv

dt
· ∂

∂v
, (1.20)

where the characteristics dx/dt = v, dv/dt = F/mα given by the classical equations of

motion. In the case where collisions are negligible, Ccoll = 0, one obtains the Vlasov equation:

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(
E+

v

c
×B

)
· ∂fα
∂v

= 0, (1.21)

where the macroscopic electromagnetic fields E and B satisfy Maxwell equations:

∇ · E = 4πρ, (1.22)

∇ ·B = 0, (1.23)

∇× E = −1

c

∂B

∂t
, (1.24)

∇×B =
4π

c
J+

1

c

∂E

∂t
. (1.25)

The system of equations (1.21-1.25) is known as the Vlasov-Maxwell system. The coupling

is due to the charge density ρ(x, t) and the current density J(x, t) evaluated from the first

moments of the distribution function fα. The charge density can be found by summation:

ρ(x, t) =
∑

α=i,e

qαnα(x, t), (1.26)
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where the number density nα is evaluated by integrating the distribution function over the

entire velocity space:

nα(x, t) =

∫

v

fα(x,v, t)d
3v. (1.27)

The current density J(x, t) is

J(x, t) =
∑

α=i,e

qαnα(x, t)V(x, t) =
∑

α=i,e

qα

∫

v

vfα(x,v, t)d
3v, (1.28)

where V(x, t) is the average flow velocity.

1.5.2 Fluid description

Full kinetic treatment achieved with the Vlasov-Maxwell system (1.21) is often difficult for

analytical and numerical treatment. Also, the evolution of the distribution function in six-

dimensional phase space may be too detailed for some problems. The reduced treatment

exists in terms of the fluid equation, describing the evolution of macroscopic plasma quan-

tities. The fluid reduction is formally obtained by taking the successive moments of the

Boltzmann equation,

∫

v

[x]
dfα(x,v, t)

dt
d3v =

∫

v

[x]Ccoll(fα)d
3v, (1.29)

weighted with the physical quantities [x], and allows to evaluate average macroscopic

quantities, such as number density, [x] = 1, velocity, [x] = v, pressure [x] = mv′2 (here v′ is

the random component of the velocity, defined below), etc. During integration of Eq. (1.29),

three-dimensional velocity space averages out. Thus, some effects associated with velocity

space (commonly called as kinetic effects) are missing. This procedure results in an infinite

hierarchy of partial differential equations (in time and space) for macroscopic quantities.

For collisionless plasma, Ccoll(fα) = 0, integrating Eq. (1.29) with [x] = 1, we obtain the

continuity equation for the number density n(x, t) (index α is further omitted):

∂n

∂t
+∇ · nV = 0, (1.30)

and, the next moment with [x] = v, the conservation of momentum [20]

mn

(
∂V

∂t
+V · ∇V

)
= −∇ ·Π+ en

(
E+

V

c
×B

)
, (1.31)
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where Π the total stress tensor, given by

Π = m

∫

v

d3v v′v′f, (1.32)

with the microscopic random velocity v′ = v −V; here v is the microscopic velocity and V

is the average (flow) velocity. One can expand the total stress tensor into components:

Π = pI+ π, (1.33)

where π is the stress tensor

π = m

∫

v

d3v

(
v′v′ − 1

3
v′2

)
f, (1.34)

and p is the scalar pressure. Thus, the total stress tensor is decomposed on the scalar pressure

p (accounts for diagonal elements of Π) and the stress tensor π (off-diagonal). Then, the

conservation of momentum is written as

mn

(
∂V

∂t
+V · ∇V

)
= −∇p+ en

(
E+

V

c
×B

)
−∇ · π, (1.35)

The moment equation for evolution of the scalar pressure p is found with [x] = mv′2 and

given by [20]:
3

2

∂p

∂t
+

3

2
V · ∇p+

5p

2
∇ · u = −π:∇u−∇ · q, (1.36)

where q is the heat flux, and represent the next (higher order) moment variable. For the

consistency, the definitions of the macroscopic variables defined above are

n =

∫

v

d3v f, (1.37)

V =
1

n

∫

v

d3v fv, (1.38)

p =
1

3

∫

v

d3v fv′2, (1.39)

q =

∫

v

d3v f
mv

′2

2
v

′
. (1.40)

Often, to model lower frequency dynamics in unmagnetized plasma (or along magnetic

field lines), there is no need for detailed resolution of electron motion, thus neglecting the

electron inertia effects. Then the stationary electron momentum balance equation gives

0 = −∇pe + ene∇ϕ, (1.41)
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where E = −∇ϕ; which describes equilibrium of electron current due to pressure gradient

and electric field forces. In this approximation, electrons instantaneously respond to the

combination of these forces and perfectly balance them out. For the isothermal electrons,

one can integrate it

ne = n0e exp
eϕ

Te

, (1.42)

where n0e is the constant of integration. The Boltzmann approximation for electrons has

been used in Chapter 4 for modeling electrons in the magnetic mirror (along field lines).

A more detailed, magnetized form of Eq. (1.41) that also includes the friction term due to

collisions has been utilized in the low-frequency model of Hall thrusters in Chapters 2 and 3.

1.6 Numerical methods

Nowadays, numerical simulations are widely used in plasma physics research. Simulations

accompany almost all newly published works in plasma physics, not least due to the general

complexity of plasma systems. Simulations can give a greater insight into plasma processes

than experiments and are used for prototyping and testing new or modified devices.

1.6.1 Kinetic methods

Solving the Vlasov-Maxwell system (1.21-1.25) gives most complete descriptions of plasma.

Direct methods solving for the continuum distribution function in discretized phase space,

e.g. with the finite differences [21], or expanding the distribution function with spectral

representation in velocity space [22, 23]. But the most popular and very robust method

is a particle method, called particle-in-cell (PIC). In PIC, plasma species are simulated as

particles carrying the artificial weight; each particle represents some number of real particles

and is called a macroparticle (for brevity, we will use particle). The particle’s trajectories

evolve in the continuous phase space, and their dynamics are described by the classical

equations of motion (the characteristics of the Vlasov equation):

dx

dt
= v,

dv

dt
=

q

m
(E+ v ×B) . (1.43)
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While using the artificial weight reduces the number of simulation particles, calculating all

binary electromagnetic forces would be too expensive. Thus, the corresponding electromag-

netic fields in PIC are obtained from the Maxwell equations and solved on the grid, elegantly

combining Lagrangian and Eulerian approaches. The source terms ρ = e(ni − ne), J =

e(niVi − neVe) are evaluated on the grid from the microscopic coordinates and velocities,

and Maxwell equations (1.22-1.25) are solved for E,B fields. The interpolation functions

used for evaluation of ρ,J give particles a “shape” (and finite-size) as seen by the field solver

on the grid. The finite size of particles eliminates the problem of the singular potential of

point sources with potential ϕ ∼ 1/r.

The described PIC algorithm, in principle, tracks the exact trajectories of particles in

plasma. In fusion applications, for highly magnetized charged particles, a simplified gy-

rokinetic approach is often used. The simplification is achieved by averaging over the fast

gyrofrequency, and thus equations of motion (1.43) are averaged removing the gyrophase

angle [24]. Another simplification is possible when the effects of finite gyroradius are also ne-

glected leading to the drift-kinetic model. In this thesis, in Chapter 4, we apply a drift-kinetic

model for ions in plasma for magnetic mirror configuration.

The PIC method was invented in Los Alamos National Laboratory, originally applied to

hydrodynamic problems [25], where combining of the Lagrangian and Eulerian approach (uti-

lizing advantages of both) was beneficial in resolving shock-wave structures [26]. PIC gained

popularity for plasma simulations after successful demonstration of the Landau damping ef-

fect preceding its experimental evidence [27]. Since the very first work [25], it is pointed out

that the lack of macroparticles leads to a high level of statistical noise (especially due to a

limited amount of computational resources at the time). Indeed, the statistical noise in PIC

is one of its major drawbacks7, as the level of noise scales with a number of particles in cell

Nc as ∼1/
√
Nc. It can lead to inaccurate results in capturing pure kinetic effects, such as

wave-particle resonances in a developing instability [30].

7The main techniques for noise reduction include so-called cold start: instead of using pseudo-random
number sequence, sampling of initial phase space information is done with the low-discrepancy sequences
(not without its “side-effects”) [28]. Another recently adopted technique is the delta-f method, which consists
of augmenting particle approach with continuum method for equilibrium distribution [29].
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1.6.2 Fluid methods

Fluid modeling is often useful for macroscopic global simulations of plasma; its reduced form

and lower dimensionality allow for faster simulations. It can also be advantageous to use a

“flexibility” of fluid equations: physical effects are easily added or removed. For example,

in Chapter 3 we were able to strip off the fluid model to a much simpler set of equations

(continuity equations), which gave a better insight into the problem. At the same time, a

lack of some effects cannot be simply observed, and a good physical intuition is required

behind using fluid modeling of plasma.

For studies presented in this work, namely in Chapters 2 and 3, BOUT++ computa-

tional framework [31] was used for fluid modeling. It is free and open-source project, de-

veloped continuously by a number of contributors [32], originating in Lawrence Livermore

National Laboratory. BOUT++ is a modular code for solving an arbitrary number of three-

dimensional partial-differential equations (PDE). It supports curvilinear geometry and relies

on finite-difference methods [31, 33]. Time integration of PDE in BOUT++ is based on

the method of lines (MOL). MOL consists of two main steps: discretization (approximation)

of spatial derivatives and then time integration of resulting ordinary-differential equations

(ODEs) along with boundary conditions, resulting in a differential-algebraic system. Spa-

tial derivatives are approximated with finite-difference (FD) methods. These include central

derivatives, upwinding schemes in each dimension separately, and flux conserving schemes, all

of up to 4th order. BOUT++ includes various implicit, explicit, and implicit-explicit schemes

among ODE integrators. One commonly used and robust ODE integrator is the CVODE

solver from the SUNDIALS package[34], with variable-order, variable-step multistep meth-

ods suitable for stiff and nonstiff problems. The CVODE solver was used to solve the fluid

equations for Hall thruster models, presented in Chapters 2 and 3.

1.6.3 Hybrid and quasineutral models

Reduction to fluid equations effectively decreases the number of degrees of freedom (compared

to kinetic representations) and simplifies the analysis or numerical treatment. Nevertheless,

kinetic effects may play a substantial role in some problems (beam instabilities, resonance
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wave-particle effects). Thus, in some models coupling between different approaches is done

for different plasma species. In Chapter2 we utilized a hybrid model for a Hall thruster

simulation, where heavy species (ions and atoms) were modeled with the kinetic approach

(PIC), and electrons described with the fluid model. Later, in Chapter4, a similar approach

was employed for the configuration of plasma acceleration in a large-scale magnetic mirror.

For large-scale electrostatic problems, where the Debye length λD is small compared to

the plasma dimensions, and there is no particular interest in the microscopic phenomena, it is

common to use the quasineutrality assumption, ne = ni. Instead of the Poisson equation, the

electric field can be deduced e.g. from the electron fluid equations. Since the electron density

ne is known, the electric field becomes the unknown quantity in the set of electron fluid

equations [35]. By neglecting the smallest plasma scale ∼λD, we also neglect the electron

inertial motion and assume that electrons (immediately) re-position in a way to balance out

currents and satisfy quasineutrality. Up to high accuracy, it holds on average over time scale

ω ≪ ωpe. Therefore, the quasineutral approximation is typically used in the low-frequency

models (called plasma approximation [14]). The obvious drawback of such an approach is the

inability to resolve the sheath potentials, which are inherently non-quasineutral. It requires

additional analytical approximations added to the potential boundary conditions. Numeri-

cally, quasineutral models are advantageous; they eliminate computational time constraints

posed on the small electron time scale while remaining explicit. It is suggested that a prac-

tically useful alternative is a semi-implicit method for the Poisson equation, stable irrelative

to the resolved time and spatial domain [35] (if Debye length is not resolved, the sheath

potential drop occurs on the order of discretization size).
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Chapter 2

Fluid and hybrid simulations of the ioniza-

tion instabilities in Hall thruster

2.1 Preface

Low-frequency axial modes of ionization nature in Hall thrusters are observed in most ex-

periments. Predictive models that recover these modes are important from an engineering

standpoint and serve as a research tool in plasma physics. Time-dependent nonlocal and

nonlinear phenomena often can only be solved with numerical simulations. In this work, two

reduced models, fluid and hybrid, are compared against each other in a series of experiments.

The parameters of the model correspond to the benchmark project LANDMARK [36], which

provides the set of parameters for the reduced fluid and hybrid models based on experimen-

tal benchmarks. In this work, we identify various regimes of breathing modes, give their

main characteristics, and discuss major differences between the models. The publication is

prepared based on the material of this Chapter; its preprint is available in arXiv [37]. Note

that there are Appendices associated with this publication; they are presented at the end of

this Chapter.

2.2 Abstract

Low-frequency axial oscillations in the range 5-50 kHz stand out as a pervasive feature ob-

served in many types of Hall thrusters. While it is widely recognized that the ionization

effects play the central role in this mode, as manifested via the large-scale oscillations of

neutral and plasma density, the exact mechanism(s) of the instabilities remain unclear. To
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gain further insights into the physics of the breathing mode and evaluate the role of kinetic

effects, a one-dimensional time-dependent full nonlinear low-frequency model describing neu-

tral atoms, ions, and electrons, is developed in full fluid formulation and compared to the

hybrid model in which the ions and neutrals are kinetic. Both models are quasineutral and

share the same electron fluid equations that include the electron diffusion, mobility across the

magnetic field, and the electron energy evolution. The ionization models are also similar in

both approaches. The predictions of fluid and hybrid simulations are compared for different

test cases. Two main regimes are identified in both models: one with pure low-frequency

behavior and the other one, where the low-frequency oscillations coexist with high-frequency

oscillations in the range 100-200 KHz, with the characteristic time scale of the ion channel

flyby time, 100-200 kHz. The other test case demonstrates the effect of a finite tempera-

ture of injected neutral atoms, which has a substantial suppression effect on the oscillation

amplitude.

2.3 Introduction

Hall thrusters are successfully used for electric propulsion in space, e.g. for satellite orbit

keeping, and becoming an enabling technology of choice for long-term missions, such as trips

to Mars. Despite the relatively long history of practical use (since 1972 [7]), the crucial phys-

ical aspects of their operation are poorly understood. In the absence of predictive modeling

capabilities, scaling of these devices for large (e.g., for long-term missions) and for low (for

microsatellites) power is very difficult and expensive. The quantitative understanding of the

physics of these devices remains an important task.

The plasma discharge in Hall thrusters is supported by the electrons drifting in the closed

(periodic) azimuthal E × B direction. At the same time, ions create the thrust (effectively

unmagnetized due to large gyroradius) accelerated by the electric field in the axial direction.

One of the characteristics of Hall thrusters is the presence of turbulence and structures (az-

imuthal and axial) that affect their operation. Studies of nonlinear phenomena in these plas-

mas are of great practical importance and address fundamental problems of plasma physics

and plasma turbulence. In particular, the turbulent electron transport in such devices is
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orders of magnitude larger than the classical collisional transport (across the magnetic field)

predicts. Inhomogeneous plasmas with E × B electron drift are typically prone to various

drift instabilities, both due to the fluid [38] and kinetic mechanisms [11, 39, 40, 41, 42], which

drive high cross-field electron currents (for more details see Ref. [43]).

Among the plethora of wave phenomena in a Hall thruster device, low-frequency oscilla-

tions propagating in the axial direction stand as one of the most common and observed in

most types of Hall thrusters [7]. They appear as the axial discharge current oscillations with

frequencies of 5-50 kHz [44]. A strong periodic depletion of atoms in the ionization region is

observed during the oscillations, suggesting the ionization nature. In the literature, they are

known as breathing modes (due to slow periodic plasma bursts out of the channel exhaust).

Analytical studies of these phenomena are difficult due to the importance of nonlinear effects

and the global nature of solutions; thus, numerical methods have to be used. Qualitatively,

the oscillation period of breathing modes depends on the travel time of neutral particles to

the ionization region, e.g. for the characteristic 1 cm and atom velocity 150m/s gives 15 kHz.

Overall, we understand the phenomenology of the oscillations but cannot accurately predict

their existence and amplitude. Generally accepted phenomenological description of these

oscillations is described as the following sequence: decrease of the discharge current → de-

crease of ionization → increase of the neutral density in the exhaust region → increase of

the electron conductivity in that region → increase of the current and ionization → neutral

depletion → decrease of the current and so on. According to this picture, the oscillation

frequency is related to the time necessary for the neutrals to refill the ionization region.

The 0D predator-prey model proposed earlier [45, 46, 47] is appealing because of its

simplicity but fails to identify the conditions for the instability. Moreover, more accurate

treatments show that the basic two-component (plasma-neutral) system with uniform ion

and neutral velocities is stable [47, 48, 49]. A simple model was proposed that the ion back-

flow region, which occurs near the anode as a result of the large contribution of the electron

diffusion current (due to the density gradient) and quasineutrality constraint, provides a crit-

ical excitation mechanism for the breathing mode [48]. Linear resistively unstable modes [50]

and fluctuations of electron temperature and power absorption [47, 49] were also investigated

as possible triggers of the breathing modes.
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In general, several physical mechanisms affect the breathing mode excitation and char-

acteristics: electron momentum and energy losses to the wall, anomalous cross-field trans-

port and heating, the ion backflow, and recombination at the anode. These mechanisms

are interrelated, depend in a complex way on the magnetic field configuration, and are not

easily quantifiable. Numerical models that include many of these effects were proposed

[51, 52, 53, 54, 46, 55]. However, some calibration and adjustment of the parameters are

required to satisfactorily reproduce the breathing modes characteristics observed experimen-

tally [56]. Therefore further insights on key physical processes are required to expand the

predicting powers of such models, especially to new parameters range and new operational

regimes.

While many time-dependent numerical models for breathing modes are based on fully

fluid formulations, the hybrid modeling was also undertaken using the kinetic description for

ions and neutrals [53, 57, 50, 54, 58, 59]. The extent to which the ion and neutrals kinetic

effects influence the breathing mode excitation and characteristics remain a mute point of

many studies. The goal of this paper is to analyze the role of ions and neutrals kinetic effects

under the same physics of the electron dynamics, which is treated with the fluid theory. We

use the axial one-dimensional full fluid and hybrid models and compare their results.

The basic fluid model describes ions and atoms with the two fluid moments (conservation

of mass and momentum), and electrons are considered in drift-diffusion approximation with

a full electron energy balance. In the hybrid model, heavy species (ions, atoms) are kinetic

(via particle-in-cell method), and electrons are fluid (modeled in the same way in both ap-

proaches). Both models include plasma recombination at the anode and neutral dynamics

with ionization due to electron-neutral impact. The plasma discharge is supported by the

ionization process driven by the axial current due to the applied potential across the domain.

For the fluid simulations BOUT++ computational framework [31] is used. The hybrid code

was developed in the LAPLACE laboratory, France [60, 61, 52]. The parameters of the

simulations are chosen according to the “Fluid/Hybrid” test case in the LANDMARK (Low

temperAture magNetizeD plasMA benchmaRKs) benchmarking project [36]. Previously, a

comparison between fluid and hybrid models for the axial direction of Hall thruster config-

uration was presented in Ref. [54]. However, this model did not include electron pressure
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gradients, thus omitting the effects of electron diffusion resulting in the formation of the

presheath region near the anode and ion transition through the ion-sound barrier. Nor did

it include the full electron energy balance.

One of the important findings of the present paper is the identification of two distinct

regimes of breathing oscillations, the result which was confirmed with both fluid and hy-

brid models during this benchmark. We show that the regime with higher electron energy

losses exhibits the low-frequency mode (∼14 kHz) that coexists with the high frequency ion

“transient-time” oscillations (∼150 kHz) [44]. In the second regime, with low electron energy

losses, pure breathing oscillations are observed, the so-called solo regime. We believe that

different mechanisms are involved in these regimes.

For the first regime, we identify the high frequency oscillations as the excitation of the

resistive modes (convective instability with the characteristic ion fly-by frequency) [62, 50,

63, 64]. Such resistive-type modes appear in simple models without ionization or electron

diffusion. The main feature of resistive modes is a strong dependence of growth rate and

frequency on the electron mobility (resistivity) [63]. Similar features are shown in this work,

while the low-frequency mode (breathing mode) has weak or no dependency on the electron

mobility (see Appendix 2.A).

In fact, the frequency of resistive modes can vary significantly, ranging 0.1-10 MHz, and

may become close to that of the breathing modes at the lower end of its spectrum. Some

axial thruster models (with ionization but without electron diffusion) [7, 65] claimed that

these modes might be responsible for the breathing modes observed in Hall thrusters. For

clarity, here we will call breathing modes only those associated with atom depletion, whose

frequencies scale according to atom fly-by time and ionization processes.

In our earlier work, we have proposed a reduced model (only ion and atom dynamics

included) for the second, solo regime of the breathing mode. In this regime, the instability is

triggered by the ion backflow (negative ion velocity) in the near-anode presheath region [48].

It was demonstrated that such configuration is prone to low-frequency oscillations, where

the ion backflow region is necessary. Recently, it has been shown in Ref. [66] with a more

rigorous formal analysis that the sign-alternating ion velocity profile with a positive slope (i.e.

negative ion velocity near anode and positive towards the exit) indeed is a necessary condition
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to excite the oscillations. It is also pointed out that the problem cannot be reduced to the

0D predator-prey model.

Finally, we demonstrate the effect of atom temperature in the solo regime. We find that

a finite energy spread of injected atoms strongly suppresses the amplitude of the oscillations

compared to the injection cases with the same velocity (called below as monokinetic injec-

tion). It is found that even a small spread in atom temperature for the solo regime notably

lowers the amplitude of breathing mode. For the first regime, with the presence of resistive

modes, the atom temperature effect is negligible. We also show the role of ion heating (due

to the resistive modes) and selective ionization of neutrals.

The paper is organized as follows. In Section 2.4 the detailed description of both fluid

and hybrid models is given. Section 2.5 defines the main features of two distinct regimes of

low-frequency oscillations and presents results for three test cases with a detailed comparison

between models.

2.4 Fluid and hybrid models of low-frequency dynamics

This section presents a detailed description of the full fluid model and the hybrid model.

Two models share the same electron fluid equations (drift-diffusion approximation and energy

evolution). The models are considered in the electrostatic and quasineutral approximation,

with the three species: neutral atoms, ions, and electrons. The ionization effects included via

the electron-atom collisions, serving as a mechanism for supporting plasma discharge. Atom

losses are only due to ionization, and radial atom losses were not included. The models

also include the self-consistent electric field, the anode plasma recombination, the electron

pressure effects, and the electron heat flux across the magnetic field.

The simulated length of 5 cm is assumed in the axial direction of a Hall thruster (x-

direction), with the channel exit in the middle where the radial magnetic field has its maxi-

mum, Fig. 2.1. The profile of the magnetic field magnitude given by B = B0 exp
[
− (x− x0)

2 /2δ2B
]
,

where x0 = 2.5 cm is the channel exit location, and δB is the characteristic width coefficient

for the magnetic field profile, which are set δB,in = 1.1 cm, δB,out = 1.8 cm, respectively for

the inner and outer regions [36].
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Figure 2.1: The magnetic field profile used in simulations, with the channel exit
located 2.5 cm from anode (dashed line).

2.4.1 Fluid model

First, a short description of each species dynamics is given, and then the full system of

time-dependent equations is formulated. For the neutral atoms, a constant flow velocity Va

along the channel is considered, and the continuity equation with the source term is used to

describe their dynamics:
∂na

∂t
+ Va

∂na

∂x
= −βnane, (2.1)

where na is the atom number density, ne is the electron number density, β(ε) is the ionization

rate coefficient that depends on the electron energy ε = (3/2)Te, where Te is the electron tem-

perature (β is shown in Appendix 2.B). The ionization due to electron-atom impact produces

a pair of ion and electron with a loss of neutral atom, hence the sink term −βnane (same

and opposite sign source terms are included in the ion and electron continuity equations).

The ion species are unmagnetized (gyroradius is much larger than the thruster dimen-

sions for a typical magnitude of a magnetic field in the thruster) and described with the

conservation of number density and momentum equations:

∂ni

∂t
+

∂

∂x
(niVi) = βnane, (2.2)

∂Vi

∂t
+ Vi

∂Vi

∂x
=

e

mi

E + βna (Va − Vi) , (2.3)

where ni is the ion density, Vi is the ion flow velocity, E is the axial electric field, e is the
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elementary charge, mi is the ion mass (Xenon, 131.293 amu). The ion pressure term and

generalized viscosity tensor are neglected in this model (ions are ballistic with temperatures

much lower than that of electron component).

The magnetized electron species are described with the first three fluid moment equations:

(electron inertia is neglected)

∂ne

∂t
+

∂

∂x
(neVex) = βnnne, (2.4)

0 = − e

me

E− eB

me

(Ve⊥ × ẑ)− 1

neme

∂ (neTe)

∂x
− νmVe⊥, (2.5)

3

2

∂

∂t
(nTe) +

5

2

∂

∂x
(neVexTe) +

∂qe
∂x

= −neVex
∂ϕ

∂x
− nenaK− nW, (2.6)

where ne is the electron density, Ve⊥ = (Vex, Veθ) is the electron flow velocity perpendicular

to the magnetic field (x and θ are the axial and the azimuthal coordinates), me is electron

mass, B is the external radial magnetic field, νm is the total electron momentum exchange

frequency, W is an anomalous energy loss coefficient, K is the collisional energy loss coefficient

(it is shown in Appendix 2.B) and qe is the electron heat flux. A phenomenological anomalous

electron energy loss coefficient (e.g., due to radial sheath losses) W is introduced [53] as

W = νεε exp (−U/ε), (2.7)

where ε = 3Te/2, U = 20 eV, νε is the anomalous energy loss frequency. The heat flux across

the magnetic field is

qe = −5

2
µenTe

∂Te

∂x
. (2.8)

The electron momentum conservation equation (2.5) is simplified assuming no pressure

gradients nor equilibrium electric fields other than in the axial direction, hence the axial

electron velocity (denoted further as Ve) can be expressed as

Ve = −µeE − µe

ne

∂(nTe)

∂x
, (2.9)

where the electron mobility µe is the well-known classical electron mobility across the mag-

netic field:

µe =
e

meνm

1

1 + ω2
ce/ν

2
m

, (2.10)
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where ωce = eB/me is the electron cyclotron frequency. Eq. (2.9) commonly called the

drift-diffusion equation. The model of electron transport as based on the assumption of the

following total electron momentum exchange collision frequency:

νm = νen + νwalls + νB, (2.11)

where the electron-neutral collision frequency νen, electron-wall collision frequency νwalls, and

anomalous Bohm frequency νB are given with

νen = kmna, (2.12)

νwalls = α107 [s−1], (2.13)

νB = (βa/16) eB/me. (2.14)

where km = 2.5×10−13m−3s−1, α and βa are free parameters. For the electron mobility model

different parameters are used inside and outside the channel (denoted additionally as in, out):

the near wall conductivity contribution αin = 1, αout = 0, the anomalous contribution is set

to βa,in = 0.1, βa,out = 1. The anomalous loss (electron) energy frequency coefficient in

Eq. (2.7) is a constant, set to νε,out = 107 s−1 outside the channel. Inside the channel νε,in is

an input parameter of the model (see Section 2.5).

Here, we seek the low-frequency and bulk plasma modes, thus electron inertia is neglected

(as shown above) and further the full plasma quasineutrality is assumed. One can check the

validity of the quasineutral approximation [51] by using the Poisson equation ε0∂E/∂x =

e(ni − ne) (ε0 is the permittivity of free space). With the typical values of the electric

field E ≈ 104 V/m and the size of acceleration zone 1 cm, average plasma density n0 =

1017 m−3, the difference (ni−ne)/n0 ≈ 5×10−4. Instead of the Poisson equation, the electric

field is found from the electron momentum equation as shown below. Note that while the

quasineutrality neglects a potential drop on the Debye sheath near the anode, it still allows

the presheath region to form if the electron pressure is included [67, 68, 69, 70], as in our

electron model. The presheath is the region where the electric field is induced to accelerate

ions towards a plasma boundary to compensate the electron current due to the pressure

gradient.

Thus, the full system of time-dependent fluid equations to be solved include Eqs. (2.1,2.2,2.3,2.6),

along with the drift-diffusion form for the electron velocity equation (2.9). Full quasineu-
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trality n = ni = ne is enforced and the self-consistent electric field is found via the electron

drift-diffusion equation (2.9), given by

E =
JT
enµe

− Vi

µe

− 1

n

∂nTe

∂x
, (2.15)

where the total current density JT = en (Vi − Ve). Here JT is constant in space (divergenceless

current), which can be seen by combining continuity equations for ions and electrons with

quasineutral assumption. We will use the integral approach, consisting of the evaluation the

total current density JT via the constraint
∫ L

0
Edx = U0 (then it is substituted to Eq. (2.15)

to evaluate the electric field), which yields to

JT =

U0 +

∫
L

0

(
Vi

µe

+
1

n

∂pe
∂x

)
dx∫

L

0

dx

enµe

, (2.16)

where L is the system length, U0 is the applied voltage (without sheath voltage).

The fluid model is solved with the following boundary conditions. A constant mass flow

rate ṁ and the full recombination of plasma that flows to the anode determines the value of

na at the anode boundary,

na(0) =
ṁ

miAVa

− nVi(0)

Va

, (2.17)

where A is the anode surface area. The value of the ion velocity is imposed at the anode

as Vi(0) = −bv
√
Te/mi with the parameter bv = 0–1, the Bohm velocity factor that can be

varied. Both anode and cathode electron temperature are fixed with Te(0) = Te(L) = 2 eV.

As noted in Ref. [51], plasma acceleration in the configuration of the axial direction of a

Hall thruster shows similarities to the flow in de Laval nozzle. Indeed, the whole acceleration

region can be split into subsonic Vi < cs and supersonic Vi > cs regions, where cs =
√

Te/mi

is the ion sound speed. While in de Laval nozzle the transition through sonic point happens

at the region with the smallest cross-section of the channel (due to extrema condition and

regularity requirement), for the bounded plasma configuration the position is determined via

the nonlinear relationship between plasma parameters (and their first derivative) at the sonic

point and a value of the total current [71]. Note that the total current JT , given by Eq. (2.16),

is a function of U0 with the integral dependence on all main plasma parameters, thus the

problem is inherently nonlocal, which has no analogy with the standard de Laval nozzle.
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Another difference is that in the axial direction of Hall thrusters the presheath region can

induce the backward ion flow in a large portion of the thruster channel (see Case 2 below).

The time-dependent fluid model, equations (2.1,2.2,2.3,2.6), are solved via the BOUT++

[31] computational framework. The CVODE solver from the SUNDIALS package [34] was

used to solve the algebraic-differential system resulting from the method of lines utilized in

the BOUT++. The upwind terms are discretized with the WENO 3rd order scheme and

other terms with the 2nd order central-difference scheme. The numerical parameters used

are the following: the axial direction is discretized with 256 points, the absolute and relative

tolerances for the CVODE are set to 10−8 and 10−4, respectively. Note that the fluid equations

are normalized, and the normalization scheme is given in Appendix 2.C.

2.4.2 Hybrid model

The hybrid model has the same electron equations as in the fluid model, while ions and

neutrals are modeled via particle-in-cell (PIC) method [60, 61, 52]. The plasma recombination

effect is also included via the relationship (2.17), but the ion velocity at the anode is not

forced to satisfy the Bohm velocity. The ionization is included via the electron-atom impact

with the Monte Carlo sampling of ionization events (via the null collision method [72, 35])

using the macroscopic ionization rate β(ε), obtained in the same way as in the fluid model.

Neutral atoms are injected with a constant flow rate ṁ either with the constant velocity

Va (monokinetic), thus f(vx) = δ(vx − Va), or with a half-Maxwellian velocity distribution

function at the left wall (anode),

f(vx) =
2vx
v2Ta

exp(− v2x
v2Ta

), vx > 0, (2.18)

where v2Ta = 2kBTa/ma is the atom thermal speed (ma = mi), Ta is the atom temperature

(in K). For the half-Maxwellian injection (2.18) the average flow velocity is vTa/
√
π. Ions are

assumed singly charged and unmagnetized, thus they are only accelerated by an electric field.

Ions are produced according to the ionization rate coefficient β(ε), i.e. self-consistently with

the electron temperature evolution and the local atom density. Both atoms and ions are lost

at the boundaries. In this model the ion velocity is not forced to the Bohm velocity, like in

the fluid ion model. With the quasineutral approach (ne = ni is forced at every time step),
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plasma density is evaluated from the ion particle distribution and thereafter used for the

electron temperature (2.6) and the electric field (2.9) calculations. Formally, the evolution

of the distribution function for ions fi(x, vx, t) and atoms fa(x, vx, t) is described with the

Boltzmann equation for each specie:

∂fi
∂t

+ vix
∂fi
∂x

+
e

mi

E
∂fi
∂v

= S(x, vx), (2.19)

∂fa
∂t

+ vax
∂fa
∂x

= −S(x, vx), (2.20)

where S(x, vx) is the collisional source term due to the ionization. In the case of the monoki-

netic target species (atoms), the ionization leads to the ion creation with the atoms velocity

Va (constant) and the source term can be expressed [53] as S(x, vx) = βnenaδ(vx − Va). For

the simulations with finite atom temperature, newly created ions assigned velocities by sam-

pling from the isotropic Maxwellian distribution with the temperature Ta with the standard

sampling techniques [73]. Solutions to Eqs. (2.19,2.20) effectively obtained by solving the

motion equations for the corresponding particle type (the method of characteristics via PIC

method). Eqs. (2.19,2.20) and the electron fluid equations (2.6, 2.9) form the complete set

of equations solved in the hybrid model.

In the hybrid model, in all test cases presented below, the average total number of

macroparticles in the system was 5 million for the ions and 0.5 million for the atoms. The

time step was set to ∆t = 1.62 ns. The fluid equations (for electrons) in the hybrid model

are resolved with the finite volume methods [35], with the same spatial discretization as the

PIC method, set to 300 cells. The results presented in this paper do not depend significantly

on these parameters.

2.5 Simulation results and comparison

The fluid and the hybrid models described above were studied for three test cases (denoted

as Cases 1, 2, and 3). Cases 1 and 2 will demonstrate two distinct regimes of low-frequency

oscillations, and Case 3 shows the effect of atom temperature. Note that Cases 1 and 2

use monokinetic atoms with the velocity Va = 150m/s. Cases 1 and 2 are chosen with the

following observation: larger values of anomalous (electron) energy loss frequency νε,in in
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Eq. (2.7) allow the high frequency (of ion fly-by time) modes to appear and coexist with

the low-frequency modes, represented in Case 1. The simulations with lower values of νε,in

reveal only the large amplitude low-frequency oscillations, we call it the solo regime. In Case

1 νε,in = 0.95 × 107 s−1, and in Case 2 νε,in = 0.4 × 107 s−1. This is the only parameter

distinguishing Cases 1 and 2 (for all cases reported in this paper we keep νε,out = 107 s−1).
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Figure 2.2: Averaged in time profiles of ion velocity (a) and electron temperature (b)
for Case 1 (νε,in = 0.95 × 107 s−1) and Case 2 (νε,in = 0.4 × 107 s−1). The result is
obtained with the hybrid model.

Besides the different time-dependent behaviour, these regimes show a notable difference

in the time-averaged axial profiles of the ion velocity and the electron energy, see Figs. 2.2a

and 2.2b. For Cases 1 and 2 the ion velocity profile is similar near the exit and beyond, but in

the near-anode region the ion backflow region (where ions are moving towards the anode) is

much shorter for Case 1, Fig. 2.2a. The ion backflow region is associated with the presheath

formation near the anode (with the negative electric field). The size of the presheath region

as a function of νε,in is shown in Fig. 2.4, where a transition between regimes with large and

short backflow region happens near the value νε,in = 0.75×107 s−1. The electron temperature

for Case 2 is peaked near the channel exit, Fig. 2.2b, with very low values in the near-anode

region. For Case 1 the electron temperature spreads more uniformly and to the near-anode

region.

The difference in the electron temperature distributions might be due to the difference in

37



0.0 0.5 1.0 1.5
Position, [cm]

−200

−100

0

100

v e
,

[k
m

/s
]

〈−µeE〉 (Case 1)
〈
−µe
ne

∂pe
∂x

〉
(Case 1)

〈−µeE〉 (Case 2)
〈
−µe
ne

∂pe
∂x

〉
(Case 2)

Figure 2.3: Electron flow velocity components, response to the electric field and due
to due for Case 1 and 2 (result obtained with the hybrid model).

the electron flow velocity near the anode. Fig. 2.3 shows the time-averaged electron velocity

components, evaluated according to Eq. (2.9). Note substantially higher electron velocity due

to the pressure gradient in Case 1 for x < 0.4 cm, which also results in larger total electron

flow velocity near the anode. Thus, in Case 1, convection reduces the electron temperature in

the ionization region (increasing it near the anode). Indeed, the average gradient parameter

L−1
n = ∂xni/ni is about five times larger for Case 1, which drives this electron current. Recall

that the presheath region is formed due to diffusive electron current by inducing ion current

(total current is conserved), generating the negative electric field in this region. All features

presented above clearly distinguish Case 1 and Case 2.

Finally, Case 3 demonstrates the effect of finite atom temperature, where atoms are

injected into the system with the half-Maxwellian distribution, Eq. (2.18), and all the other

parameters are the same as in Case 2. The main effect of atom temperature is found to be

a significant reduction of breathing mode amplitude to those observed in Case 2. Besides

finite atom temperature, all parameters for Case 3 are exactly the same as in Case 2, and

the atom temperature is set to Ta = 500K (Va = 142m/s, close to monokinetic 150m/s used

in Cases 1 and 2).
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Figure 2.4: Extent of the presheath zone, defined as the region with negative electric
field near the anode, as a function of anomalous electron energy losses coefficient νε
(result obtained with the hybrid model).

2.5.1 Case 1: Low electron energy losses; the co-existence of low-

and high-frequency modes

This case exhibits both low- and high-frequency oscillations in the fluid and the hybrid

models. The hybrid model results in a smaller amplitude of the total current, see Figs. 2.5a

and 2.5b. The time-averaged total currents are close, 8.2A in the hybrid model and 8.3A in

the fluid model. The ratio of the time-averaged ion current (at the plume exit, x = 5 cm) to

the total current is 45% in the hybrid model and 48% in the fluid.

The spectral power of the total current also shows some differences in both low- and

high-frequency ranges, Figs. 2.6a and 2.6b. The main low-frequency mode in the fluid model

is 11.4 kHz, while it is 14.4 kHz in the hybrid model. The total current signal in the hybrid

model contains more noise (statistical noise due to the use of macroparticles), but the high-

frequency component is clearly seen at around 125 kHz. In the fluid model the high-frequency

mode is shifted towards higher frequencies, centered at about 175 kHz.
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(a) (b)

Figure 2.5: Amplitudes of the total, ion, and electron currents in fluid model (a)
and hybrid model (b). Ion and electron currents are evaluated at x = 5 cm. Small
averaging window of length 2.3µs is applied to the ion and electron currents (to filter
out high-frequency noise).
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Figure 2.6: Spectral density of the total current yield in fluid model (a) and hybrid

model (b).

Besides the currents, a more rigorous comparison between the two models is shown in

Figs. 2.7a-2.7d, with the time-averaged axial profiles of the main plasma quantities. Due

to the oscillatory nature of these solutions, the averaging time window was chosen as the

ten periods of the corresponding main low-frequency mode in each simulation. The main
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discrepancy lies in the peak plasma density in the ionization (source) region at about 1.3 cm

from the anode; the hybrid model results in the higher value of the peak plasma density.

Also, the ion velocity in the plume (x > 2.5 cm) is slightly higher in the hybrid model.

(a) (b)

(c) (d)

Figure 2.7: Comparison of time-averaged axial macroscopic profiles resulted from fluid

and hybrid models of neutral density (a), plasma density (b), ion flow velocity (c), and

electron temperature (d).

The ion phase space (hybrid model) is shown in Fig. 2.8a. The ion velocity distribution

function (IVDF) is highly inhomogeneous inside the channel, suggesting that the higher fluid

moments may play a role (recall that the nullified pressure term gives the closure in the ion
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fluid model). Typically, ion pressure effects are neglected due to a low ion temperature; ion

formation is due to the ionization process as they carry the low atom temperature even when

accelerating by the axial electric field.
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Figure 2.8: Instantaneous image of ion distribution function (in space of axial co-

ordinate and axial velocity) in the hybrid model (a). Ion temperature spatial profile

(time-averaged) evaluated from ion kinetic representation in the hybrid model (b).

To check the validity of this assumption, the fluid moments were calculated from the

kinetic particle representation in the hybrid model. It allows to test the ion momentum

balance equation (to identify the role of the ion pressure term) in a more complete form:

∂Vi

∂t
+ Vi

∂Vi

∂x
=

e

mi

E − 1

ni

∂pi
∂x

+ βna (Va − Vi) , (2.21)

where the fluid moments, such as the ion density ni, the ion flow velocity Vi, and the ion

pressure pi were evaluated from the ion distribution function in the following way:

ni =

∫
fidvix, (2.22)

Vi =
1

ni

∫
vifidvix, (2.23)

pi = mi

∫
v′iv

′
ifidvix, (2.24)

where v′i = vi−Vi is the random component of particle velocity. The time-averaged profile of

the ion temperature Ti = pi/ni is shown in Fig. 2.8b, revealing values of the ion temperature

42



up to 3.5 eV in the ionization region (with the average over the whole domain of 1.7 eV).

For the momentum balance test, each term in Eq. (2.21) was evaluated as a function of time

and space and then averaged in time over a few periods of the main low-frequency mode.

Fig. 2.9a shows the difference between the left- and the right-hand sides of equation (2.21).

The plotted terms were normalized to the value V 2/L, where the ballistic ion velocity is

V 2 = 2eU0/mi with the potential difference U0 = 300V over the system length L. It is seen

that the ion pressure term notably improves the overall ion momentum balance, suggesting

the fluid model for this configuration should not ignore the ion pressure.
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Figure 2.9: Difference between left and right hands sides of the ion momentum balance
equation (ion-mom) evaluated from the kinetic description of the hybrid model (a).
Separate terms of the same equation averaged in time (denoted with angle brackets)
over few periods of the low-frequency component (b).

It is interesting to further inspect each term in Eq. (2.21). The unsteady term ∂Vi/∂t

is negligible due to time averaging, while the other terms have comparable values inside

the channel, see Fig. 2.9b. In the near-anode region, the ion pressure (Ti ≈ 0.1 eV) and the

ionization friction are negligible, so the ions accelerate towards the anode in the weak negative

electric field ballistically. Then in the ionization (source) region, we see that all terms are

comparable. The ion pressure and the collisional drag compensate the ballistic acceleration,

so the ion inertia remains low. Finally, in the acceleration zone (x > 1.5 cm) and beyond

the inertial and the ballistic terms start to dominate. It is seen that the ion pressure term

changes the sign at x ≈ 1.6 cm (due to ion density profile, Fig. 2.7b) and contributes to the
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ion acceleration.

Based on the results above, the ion pressure force term −Ti∂xni was added to the fluid

model with the temperature kept constant for simplicity. We understand that for the self-

consistent treatment, an ion energy balance equation shall be included (or equation of state).

The average (space and time) value of the ion temperature evaluated in the hybrid model

for this case was 1.7 eV. However, it is found to produce a fully stationary solution with

the ion pressure force mentioned above. Using a slightly lower value, Ti = 1.2 eV, resulted

in the oscillatory solution. This results in a better agreement between the two models, the

total current amplitude decrease and the main low-frequency mode increase, Figs. 2.10a and

2.10b. The low-frequency mode increased to 13.9 kHz, and the high-frequency peak is shifted

to a lower value of 153 kHz. The ratio of the ion current to the total current shows an

improved agreement, 45%, the same as in the hybrid model. However, the time-averaged

total current value of 8.7A became somehow larger than in the hybrid model (8.2 A). Also,

the higher frequency component is closer to the hybrid result. As for the peak plasma density

discrepancy (Fig. 2.7b), it remained similar.
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Figure 2.10: Comparison of total current in the fluid model and hybrid model (a)

and the spectral power density of the total current in the fluid model (b). The result

obtained is for the fluid model with the ion pressure term included.
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2.5.2 Case 2: High electron energy losses; the solo regime of the

low-frequency mode

This case is subject to the low-frequency oscillations only, with the only difference to Case 1

in the value of the anomalous (electron) energy loss frequency, which is νε,in = 0.4× 107 s−1.

As in the previous case, the total current amplitude is higher in the fluid model, Figs. 2.11a

and 2.11b, but the main oscillation frequency in two models is similar, Figs. 2.12a and 2.12b.

The time-averaged profiles agree well between the two models, with the only notable

discrepancy in the plasma density profile, which is ∼30% lower inside the channel region for

the fluid model, see Figs. 2.13a-2.13d.

Unlike in Case 1, the IVDF for this case (Fig. 2.14a) reveals that the ion population

remains cold (everywhere except in the near-anode region), and the ion momentum balance

must be well satisfied without the ion pressure term. This is seen in Fig. 2.14b, where the

ion pressure force remains low everywhere in the channel. In fact, in this case, the ballistic

ion acceleration is more pronounced, dominating everywhere except the stall point (Vi ≈ 0).

Indeed, the average (space and time) ion temperature, calculated similarly as in Case 1 from

the hybrid model, is 0.3 eV (about 5 times smaller than in Case 1) and not exceeding 1 eV

in the domain.
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Figure 2.11: Amplitudes of total, ion, and electron currents in fluid model (a) and

hybrid model (b) for Case 2. Ion and electron currents are evaluated at x = 5 cm.
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Figure 2.12: Spectral density of the total current for fluid model (a) and hybrid model

(b).

The main stages of the breathing mode dynamics are illustrated with the plasma and atom

density distributions at various moments in time, Fig. 2.15. After atoms reach the ionization

zone and undergo ionization, plasma density increases and is quickly depleted (∼1 km/s) to

the left (due to the backflow region with negative ion velocity) and the right of the ionization

zone. Then all of the ion flux that reached to the anode recombines and forms the peak

in neutral density at the anode, increasing the number of atoms advecting to the ionization

zone; this process repeats. In our previous work, Ref. [48], this setup was studied in detail,

and it was shown that the ion backflow region plays a crucial role in these oscillations and

that they can exist without the recombination mechanism.

It is found that the oscillation dynamics in Case 2 highly depends on the recombination

at the anode, modeled with Eq. (2.17), and the number of recombined atoms proportional to

the oscillation current amplitude. Note that in Case 1, recombination plays a minor role and

does not affect the presented results. In contrast, turning off the recombination in Case 2

nullifies the oscillations and the stationary solutions obtained (in both models). We suggest

that the main difference in this case between the fluid and the hybrid model, in this case,

lies in the differences with the ion velocity boundary condition.
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(a) (b)

(c) (d)
Figure 2.13: Comparison of spatial distribution of time-averaged macroscopic profiles
between fluid and hybrid models for Case 2.
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Figure 2.14: Instantaneous image of ion distribution function (in space of axial coor-

dinate and axial velocity) in the hybrid model (a). Separate terms of the ion momentum

balance equation (2.22) evaluated from the ion kinetic description (hybrid model), av-

eraged in time (denoted with angle brackets) over few periods of the low-frequency

component (b). 47



Figure 2.15: Neutral and plasma density evolution during one oscillation period.
Dashed line separates the region with negative (to the left) and positive (to the right)
ion velocity.

Normally, in the fluid quasineutral models, this boundary condition is fixed to the Bohm

velocity, as in our fluid model. When the Bohm boundary condition is scaled with the factor

bv = 0–1 (ion velocity effectively decreased at the anode) in the fluid model, the oscillation

amplitude also decreases, see Fig. 2.16. It clearly shows that the plasma recombination

provides the additional feedback in this configuration, and the main difference with the

hybrid model lies in the ion boundary conditions causing larger oscillation amplitude in the

fluid model. In the hybrid model (in our setup), ions are not forced to satisfy the Bohm

condition, and the flow velocity is established self-consistently. We modeled this behaviour

with the free boundary condition for the ion velocity at the anode in the fluid model, forcing

∂2
xVi(0) = 0. In the presence of ion backflow (like we see in Case 1,2) in the quasineutral

approximation, the ion velocity at the anode is defined self-consistently by the characteristic

at the location where Vi = 0; thus, a fixed boundary is not required.
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Figure 2.16: Minimum and maximum total current values during oscillations for
various ion velocities at the anode, expressed as fractions of the Bohm velocity. Note
that oscillations are absent for Vi < −0.65cs.

The obtained result in the fluid model with the free boundary condition for the ion

velocity at the anode reveals less violent oscillations and generally better agrees with the

hybrid model results. The total current oscillation amplitude is lower, Fig. 2.17, closer to

the hybrid mode result. The time-averaged atom and plasma density profiles are in a better

agreement, Figs. 2.18a and 2.18b.

(a) (b)

Figure 2.18: Atom (a) and ion (b) axial profiles, averaged in time, compared in both

models where the free boundary condition used in the fluid model.
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Figure 2.17: Comparison of the total current obtained in both models where the free
boundary condition used in the fluid model for ion velocity at the anode.

2.5.3 Case 3: Effects of finite temperature of neutral atoms

Here, the finite atom temperature is included while all other parameters are kept as in Case

2. Atoms are injected at the anode with the half-Maxwellian flux distribution, Eq. (2.18)

with a temperature Ta = 500K. Unlike Case 2, the oscillation amplitude in this case is

much smaller in the hybrid model, Fig. 2.20a, with the amplitude of ∼1A (in comparison

to Case 2 with ∼13A). In the previous cases, injected atoms in the hybrid model were kept

monokinetic (zero thermal energy). The average injection velocity for the half-Maxwellian is

V0 = vTa/
√
π = 142m/s, which is close to 150m/s used in the previous monokinetic runs.

It was noticed that the atom flow velocity in the hybrid model exhibits a clear spatial

dependence, “accelerating” along the channel. This effect is known as selective ionization

(the ionization frequency does not depend on the atom particle velocity, but their mean free

path does), observed both in experiments [74, 75] and simulations [76]. It is clear that atoms

in the fluid model with the simple advection equation (2.1) cannot capture this effect; hence

the atom momentum balance equation was included in the fluid model:

∂ (naVa)

∂t
+

∂

∂x

(
naV

2
a

)
= −βnaniVa −

Ta

mi

∂ (na)

∂x
, (2.25)

where the closure is given with the constant temperature Ta = 500K. The illustration that
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the momentum balance given by Eq. (2.25) has a sufficient number of terms, the atom fluid

moments were calculated from the kinetic representation of atoms in the hybrid model, and

the balance is compared, see Fig. 2.19. Thus, Eq. (2.25) along with the continuity equation

∂na

∂t
+

∂ (naVa)

∂x
= −βnani (2.26)

solved in the fluid model, with Ta = 500K and the fixed atom flow velocity at the an-

ode Va(0) = 142m/s (Dirichlet condition), and the same recombination boundary condition

given by Eq. (2.17). This allowed to recover qualitatively the atom flow velocity behaviour,

Fig. 2.20b, but in the same time the fluid model resulted in a completely stationary solution,

Fig. 2.20a.
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Figure 2.19: Atom momentum balance equation terms evaluated from the hybrid
model results. Note that the number of macroparticles (and atom density) significantly
decrease to the right along the channel elevating the noise.

To better identify the role of the atom distribution in the hybrid model, we configured

the shifted Maxwellian distributions [73] for atoms with various temperatures denoted as

Ta,s, and the fixed shift velocity 150m/s. Thus, the value of Ta,s = 0K corresponds to Case

2. We found that even a low spread for atom velocities, e.g. corresponding to Ta,s ≈ 50K,

heavily damps the oscillation amplitude to the order 1A, similar to what we obtained with
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Figure 2.20: The total current in fluid and hybrid simulations (a); comparison of
time-averaged spatial profile of atom flow velocity for both models (b).

the half-Maxwellian and Ta = 500K.

Interestingly, we were not able to find higher amplitude low-frequency oscillations for this

case in the hybrid model (scanning parameters like νε or βa). However, slightly varying the

maximum magnetic field profile position (moving it inside the channel), higher amplitude

breathing modes were observed even with thermal atoms. This important behaviour needs

further attention, which is out of the scope of this paper and is left for future studies.

2.6 Concluding remarks and summary

Generally, plasma models for Hall thruster configuration have to deal with long time scales

(defined by slow neutral dynamics, requiring at least ∼106 electron plasma periods) and large

spatial scales (above ∼103 λDe). A scale separation by many orders is a typical problem in

plasma modeling. Full kinetic descriptions for the problem involving low-frequency dynamics

in the axial direction may not be practical due to computational cost and potential numerical

problems. Reduced plasma models, such as the fluid model formulated via the conservation

laws derived from higher dimensional kinetic formulation, are less computationally expensive

and capture main physical phenomena in many situations. Fluid formulations typically allow

easier analysis and physical interpretation of the results. A good compromise is achieved with
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Figure 2.21: Power spectrum of the total current in the hybrid simulation. Note that
there is increase in frequency (from 10.2 kHz to 18.2 kHz) in compare to Case 2 (with
monokinetic atoms).

hybrid models. One species is modeled with fluid equations, and the other is kinetic (e.g.

fluid electrons with neglected inertia are common for such low-frequency models). Typically,

full kinetic simulations for plasma thrusters require some speed-up techniques, such as arti-

ficial increase of dielectric permittivity, an increase of electron to ion mass ratio, geometrical

downscaling [77, 78, 79, 80], all to overcome numerical constraints and resolve low-frequency

dynamics. Full kinetic (particle-in-cell) 2D axial-azimuthal model (with the artificial in-

crease of dielectric permittivity) reproduces the low-frequency ionization oscillations with no

assumptions made on anomalous electron transport coefficients (electron current develops

self-consistently via azimuthal drift instabilities), presented in Ref. [81]. Note that the radial

coordinate may introduce important modifications to the azimuthal drift mode (excitation of

large scale MTSI modes) with an influence on the anomalous electron transport [40, 41, 42].

Thus, ideally, the detailed model of electron transport will be reproduced in a 3D simulation.

In this paper, low-frequency plasma dynamics in the axial direction of a Hall thruster

are studied with full fluid and hybrid (kinetic/fluid) models. The model parameters are

taken close to those of the LANDMARK benchmarking project [36]. We identified and

distinguished two low-frequency oscillations regimes: one is subject to the low-frequency
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oscillations only, and another with both low frequency and high frequency (time of ion flyby

oscillations) components. Another distinct feature is the extent of the ion backflow region:

in the case with the pure low-frequency component, the ion backflow on average is about

half of the channel length, while for the regime where two modes coexist, it is much shorter,

Fig. 2.2a. These regimes are observed in fluid and hybrid models and presented as Cases

1 and 2 in the numerical experiments. Finally, Case 3 illustrates the effects of finite atom

temperature.

The main difference between the full fluid and hybrid model results, as expected, is caused

by the different approaches in heavy species modeling. The kinetic method for heavy particles

in the hybrid model automatically includes effects of the non-equilibrium distribution function

(i.e. higher fluid moments effects, only limited by statistical noise errors of the PIC approach).

However, as seen from the results, a simple fluid model for both ion and atom components

(first two moments) is well sufficient to reproduce the main results and capture breathing

mode frequency and the resistive mode presence.

It is found that in Case 1 (regime with co-existence of low- and high-frequency modes),

the finite value of ion pressure played a notable role in oscillatory behaviour. Ion temperature

is often assumed negligible in Hall thrusters operation (similar to a neutral temperature, up

to about 1000K or 0.1 eV), thus it was not included in the primary fluid model. Using

kinetic representation from the hybrid model, we show that the ion momentum balance

without the ion pressure was notably violated. Thus the ion pressure term (with constant

temperature) was added into the fluid model. It resulted in a better conformity between the

two models. Nevertheless, both fluid and hybrid models predicted the existence of two modes

in this configuration even without the ion pressure in the fluid model, suggesting that these

oscillations are the so-called resistive modes [50, 64]. We believe these modes are observed

in the models without electron pressure, many of which were done in the primary studies

and modeling of the axial dynamics of Hall thrusters [7, 50]. We conjecture that the resistive

modes of high frequencies play an important role in the excitation of the low-frequency modes.

For Case 2, which shows only the low-frequency oscillations, we already performed ex-

tensive studies, Ref. [48], where we identified that the mechanism of these oscillations lies

in the ion backflow region (presheath) and that they can be additionally reinforced with the
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plasma recombination. This led to the observation that the difference in the ion boundary

conditions at the anode played a crucial role in our benchmark. Bohm velocity for ions in the

fluid model generated a larger atom yield (due to recombination, Eq. (2.17)) from the anode

in comparison to the hybrid model where this velocity was unconstrained and found to be

smaller on average (thus leading to smaller atom yield). Modifying the ion velocity boundary

condition in the fluid model (replacing the Bohm condition with a free boundary condition)

resulted in better conformity between the two models. Similar to the previous case, we

conclude that the main physical behaviour was identified in both models even without this

modification.

Finally, in Case 3, with finite atom temperature in the hybrid model but the same val-

ues of other parameters as in Case 2, it is shown that the advection equation in the fluid

model, Eq. (2.1), with the constant flow velocity is not sufficient to describe atom dynamics.

An effect of selective ionization of neutral particles is observed in this case, where average

macroscopic velocity increased more than twice along the channel. Thus, the fluid model was

supplemented with the atom momentum balance equation (2.25), which resulted in a bet-

ter agreement between the two models, reproducing the selective ionization effect. Though

it resulted in a completely stationary solution, the hybrid model preserved the breathing

oscillations (with similar frequency to Case 2) but with a much smaller amplitude.

In summary, benchmarking of the fluid and hybrid models show very close agreement

for averaged plasma parameters profiles. Both models reveal the existence of the two dif-

ferent regimes of the low-frequency oscillations in Hall thrusters. While qualitatively, the

two regimes are identifiable in both models, there are some quantitative differences in the

frequencies and the amplitude of the oscillations. These differences are attributed to the

ion finite thermal (pressure) effects which were not originally included in the fluid model.

Account of the finite ion pressure improves the agreement. The finite temperature (energy)

spread of the neutral atoms provides a strong stabilizing effect on the oscillations. These

results highlight limitations of the fluid models that have to be considered in future modeling

of practical devices.
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2.A Resistive modes

Here we present the cases with more prominent resistive modes and show their effect on

the ion heating, which is the extension to Case 1. It is found that the larger value of the

anomalous (electron) energy loss frequency, νε,in = 1.2× 107 s−1, leads to the solution where

the resistive mode dominate, see Fig. 2.23a. It reveals larger amplitude and clearly distinct

high-frequency oscillations (168 kHz), with the small low-frequency modulation (14.4 kHz),

Fig. 2.23b shows its spectrum. As it was demonstrated for Case 1, ion temperature effects

were not negligible, and ions were heated to a few electron volts. We noticed that the average

ion temperature is higher with presence of the resistive modes as shown in Fig. 2.22, where

the resistive modes appear for values νε,in = 0.9 s−1 and higher.
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Figure 2.22: Ion average thermal energy as a function of the anomalous electron

energy loss coefficient. As we move into regime with resistive modes present (studied

in Case 1), ion heating increases and ion pressure effects may become important.
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Figure 2.23: Currents (a) and the total current spectra (b).
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Figure 2.24: Frequency of breathing and resistive modes as a function of averaged

(over time and space inside the channel) total electron momentum exchange frequency

ν̄m (a). Average ion temperature (in time and whole domain) as function of ν̄m (b).

The parameter varied in this study was the anomalous Bohm coefficient βa,in inside the

channel, directly affecting the total electron frequency, Eq. (2.11).

Now, we show that the frequency of the resistive mode scales with the average electron

collision frequency ν̄m, Fig. 2.24a, and thus the higher electron mobility ∼1/ν̄m leads to
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the higher frequencies. At the same time, the ion heating effect is stronger for the higher

frequency of resistive modes, Fig. 2.24b. It is interesting to note that the breathing mode

frequency stays approximately the same, Fig. 2.24a, along with the size of the presheath

region.

2.B Ionization rate and energy loss functions
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Figure 2.25: Ionization rate β and electron ionization energy loss coefficient K.

The ionization rate β(ε) = ⟨σ(v)v⟩ as a function of electron energy ε is obtained by averaging

over Maxwellian EEDF with the cross-sections from the SIGLO database [82]. The collisional

energy loss coefficient K(ε) is generated by BOLSIG+ [83] as a table-valued function. Both

functions are shown in Fig. 2.25.

2.C Normalization scheme for fluid model

The system length L0 and a typical ion-sound velocity cs =
√

Te/mi (for Te = 20 eV)

are chosen as basis for normalization, they form the characteristic frequency f0 = cs/L0.
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Densities are normalized to the neutral density at the anode N0 = na(0, t) without the

recombination (thus ). Normalization scheme:

t∗ = f0t, x∗ =
x

L0

, E∗ = E
eL0

miV 2
0

, j∗ =
j

eN0V0

, µ∗
e = µe

mif0
e

, β∗ =
βN0

f0
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Chapter 3

On the mechanism of ionization oscillations

in Hall thrusters

3.1 Preface

This chapter aims to bring light on one of the possible mechanisms of the breathing mode.

In the previous Chapter, a purely breathing mode regime (corresponding to Case 2) was

reproduced in the fluid and hybrid models. Here we show a clear connection between the

existence of the ion backflow region (due to presheath near the anode) and excitation of the

breathing mode. We briefly describe a hierarchy of the simple reduced models based on 0-D

predator-prey dynamics. We point out the importance of axial coordinate dynamics where

spatial profiles (like ion velocity with backflow region) play a crucial role. We introduce the

reduced fluid model based on the continuity equations for ions and atoms (provided fixed

velocity and ionization profiles). The material presented in this Chapter is published in the

Journal of Applied Physics [48].

3.2 Abstract

Low frequency ionization oscillations involving plasma and neutral density (breathing modes)

are the most violent perturbations in Hall thrusters for electric propulsion. Because of its

simplicity, the zero-dimensional (0-D) predator-prey model of two nonlinearly coupled or-

dinary differential equations for plasma and neutral density has been often used for the

characterization of such oscillations and scaling estimates. We investigate the properties of

its continuum analog, the one-dimensional (1-D) system of two nonlinearly coupled equations
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in partial derivatives (PDE) for plasma and neutral density. This is a more general model,

of which the standard 0-D predator-prey model is a special limit case. We show that the 1-D

model is stable and does not show any oscillations for the boundary conditions relevant to

Hall thruster and the uniform ion velocity. We then propose a reduced 1-D model based on

two coupled PDE for plasma and neutral densities that is unstable and exhibit oscillations if

the ion velocity profile with the near the anode back-flow (toward the anode) region is used.

Comparisons of the reduced model with the predictions of the full model that takes into

account the self-consistent plasma response show that the main properties of the breathing

mode are well captured. In particular, it is shown that the frequency of the breathing mode

oscillations is weakly dependent on the final ion velocity but shows a strong correlation with

the width of the ion back-flow region.

3.3 Introduction

Hall thrusters are electric propulsion plasma devices with cross-field E × B configuration,

where electrons are effectively trapped by the magnetic field, and heavy ions are accelerated

by the electric field generating thrust. Despite the long history and a large number of

successful missions, as well as the relatively simple design of these devices, many physical

phenomena are not well understood. Large amplitude discharge current oscillations in the

axial direction of Hall thrusters, or the so-called breathing modes, are among the most strong

perturbations that affect the operation, e.g. with current oscillations reaching 100% and even

extinguishing the discharge [84]. The physics of the breathing mode has been studied in

many papers but the full understanding is far from complete. Simulations of low-frequency

axial dynamics of Hall thrusters were done earlier with various approximations, including

fluid [7, 60, 55], and hybrid [7, 53, 85, 50, 76] (fluid electrons and kinetic ions and atoms)

models. Ionization is one of the key physics elements of the breathing mode oscillations. In

addition to the basic coupling of plasma density and neutral gas due to the ionization, many

models include self-consistent electric field calculations along the channel, and some models

include electron pressure evolution and detailed electron energy balance.

At the same time, a simple zero-dimensional (0-D) model was proposed [45, 46] to explain

61



the mechanism of breathing mode, in which neutral and ion (plasma) densities are coupled

in the form of predator-prey model (Lotka-Volterra equations). The predator-prey model is

a system of two nonlinearly coupled ordinary differential equations that describes periodic

oscillations in a number of physics and biology systems. This model is claimed to predict the

frequencies close to the observed in experiments. It was, however, noted that for the constant

ion and neutral velocities, the model is stable and does not predict any instability [47] so the

conditions for the excitation of the ionization oscillations are not clear. Additional effects

and modifications [47, 86] were proposed for the predator-prey model to make it unstable

but it remains unclear to what degree the 0-D models are capable to predict the breathing

mode oscillations (discussed in section 3.4).

Nevertheless, simple reduced models are of considerable interest. First, such models are

useful as scaling tools, e.g. for the design of power supply sources. Another motivation stems

from the considerable complexity of the full models. In the full models with many parame-

ters that are unknown experimentally, it is rather difficult to predict the conditions for the

instability and therefore difficult to translate the predictions of the theoretical models into

practical recommendations. The search for physical mechanism (or mechanisms) and critical

controlling parameters continues [87]. Reduced models focusing on selected specific phenom-

ena may allow easier experimental validation and eventually lead to a better understanding

of the physics of the instability, its conditions, and the development of the full predictive

model(s) [88, 89].

In this work, we analyze the properties of the continuum one-dimensional (1-D) model,

based on two coupled partial differential equations (PDE) for the evolution of neutral and

plasma densities. The 0-D predator-prey is a reduction of the 1-D model. If anything, the

more complete 1-D model should exhibit the same physics (and e.g. predict similar charac-

teristics of the oscillations) if the reduction from the 1-D to the 0-D model is appropriate for

the relevant physics, and the oscillations in the 0-D model are not the artefact introduced by

the simplifications. We show, however, that the 1-D model is not only stable with boundary

conditions of a typical Hall thruster and the standard assumptions of the uniform velocity (as

it is used in 0-D model) but also does not show the oscillations observed in the 0-D model.

On the contrary, any oscillations, even introduced externally, are damped in time and space.
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We then propose a modified 1D model with a non-uniform ion velocity profile and with a

back-flow (toward the anode) the region near the anode. We show that such a model is

unstable and exhibit ionization oscillations with characteristics roughly consistent with the

predictions of the full fluid model [90]. Rather good agreement of the results of the reduced

(simplified) and full models suggests that the reduced model captures well essential physics

relevant to the breathing mode and may point to the critical conditions for the instability.

The paper is organized as follows. In section 3.4, various modifications of the 0-D model

are discussed. In section 3.5, the continuum 1-D model is introduced. The stationary solu-

tions are obtained here, their stability and response to external perturbations are discussed

for the uniform profile of the ion velocity. Section 3.6 presents a reduced 1-D continuum

model with the ion back-flow region near the anode and shows that this model exhibit unsta-

ble nonlinear oscillations. In section 3.7, the predictions of the reduced model are compared

against the full self-consistent simulations.

3.4 Zero-dimensional (0-D) predator-prey models

In this section we discuss the various modifications and properties of the zero-dimensional (0-

D) predator-prey models for the ionization oscillations. Such a simplest model includes basic

time and space dynamics of plasma and neutrals and is based on the continuity equations

for the ion density ni (assuming full plasma quasineutrality), and neutral atom density na:

∂na

∂t
+ va

∂na

∂x
= −βnani, (3.1)

∂ni

∂t
+

∂

∂x
(nivi) = βnani, (3.2)

where vi, va are ion and atom flow velocities, respectively, and β is the ionization rate co-

efficient. We assume that va is a constant, but vi and β, in general, could be non-uniform

in space. A basic assumption leading to a simple zero-dimensional predator-prey model [45]

is that the ionization zone and acceleration zone is replaced by the transition layer of the

width L. The integration of Eqs. (3.1)-(3.2) over this region results in the system of ordinary
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differential equations (ODE):

∂

∂t
⟨na⟩+

1

L
(nava)|L0 = −β ⟨nani⟩ , (3.3)

∂

∂t
⟨ni⟩+

1

L
(nivi)|L0 = β ⟨nani⟩ , (3.4)

where averages over the transition layer are defined as ⟨(...)⟩ = L−1
∫ L

0
(...) dx and β is

assumed constant here. A set of approximations are made to obtain the original predator-

prey model [45]. First, the ion and neutral fluxes at the boundaries of the transition layer

are assumed in the form: (nivi)|0 = 0, (nivi)|L = nvi and (nava)|0 = nava and (nava)|L = 0,

where vi is the final ion velocity and n(t) is plasma density at the exit of the transition layer,

at x = L, n(t) ≡ ni(t, L), and N(t) is neutral density at x = 0, N(t) ≡ na(t, 0). Thus,

these boundary conditions imply full ionization, na(L) = 0, zero flux of the ions from the left

boundary,(nivi)|0 = 0, and full acceleration the transition layer, (nivi)|L = nvi. Then, the

boundary values for the plasma and neutral densities are used to approximate the averages

over the transition layer: ⟨nani⟩ ≃ nN , ⟨na⟩ ≃ N , and ⟨ni⟩ ≃ n. These steps lead to the 0-D

ODE system [45]

dN

dt
− 1

L
Nva = −βNn, (3.5)

dn

dt
+

1

L
nvi = βNn. (3.6)

These equations have the equilibrium solution with neq = va/Lβ and Neq = vi/Lβ.

Considering the perturbations
(
ñ(t), Ñ(t)

)
∼ exp (−iωt) near the equilibrium, n = neq+ñ(t),

N = Neq + Ñ(t) one obtains stable oscillations with

ω2 = β2neqNeq = viva/L
2 (3.7)

It was later noted [46] that oscillations (time dependence) in N are inconsistent with the

constant mass rate boundary condition at x = 0, (nava)|0 = Nva = Ṁ/Ama = const, which

means that the N should be constant for the constant neutral flow velocity; A is the cross-

section area. A modification of the 0-D model was suggested in Ref. [47] where the value

of neutral density at the left (entrance) side was fixed constant, (nava)|0 = N0va, and the

value at the exit was assumed time dependent, (nava)|L = N (t) va, so the neutral balance

equation takes the form
dN

dt
+

1

L
(N −N0) va = −βNn. (3.8)
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The plasma balance equation was also modified with an additional term due to the sheath

losses at the lateral walls
dn

dt
+

1

L
nvi +

1

d
ncs = βNn, (3.9)

where sheath losses are estimated based on the Bohm condition for the ion velocity, where

d is the radial channel width and cs =
√

Te/mi. With these modifications, the equilibrium

value of the neutral density in equations (3.8-3.9) is only corrected by the sheath losses,

Neq =
1

β

(vi
L

+
cs
d

)
, (3.10)

while the equilibrium value of plasma density can be very different from that in equation

(3.5) and takes the form

neq =
va
βL

(
N0

Neq

− 1

)
. (3.11)

Note that in this model, the value of the neutral density at x = 0 should be sufficiently

large N0 > Neq = (vi/L+ cs/d) /β. Considering perturbations near Neq and neq one obtains

damped oscillations [47]

ω = − i

2

va
L

N0

Neq

±
√

β2neqNeq −
1

4

(va
L

)2
(
N0

Neq

)2

. (3.12)

The essential problem of the predator-prey model is that it does not predict instability

so no condition for the oscillations can be determined. It was argued that the electron

dynamics should be important and more complex models were proposed such as using the

electron (instead of ion) continuity equation with the drift-diffusion approximation for the

electron velocity [91, 92, 93], ion flows [86], electron energy evolution [47, 94], and two-zone

model [88, 89]. Ref. [95] provides an overview of various models and involved mechanisms.

3.5 Continuum (1-D) predator-prey model

Ideally, the reduction from the continuous 1-D model to the 0-D models as was discussed in

the previous section should preserve the essential properties and features of the more com-

plete model and do not introduce any fundamental changes to the 1-D model. Therefore, is

of interest to study if the 1-D model has the properties predicted by the 0-D models. Here

we discuss properties of the stationary and time-dependent solutions of the one-dimensional
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(continuous) model consisting of the continuity equations (3.1) and (3.2) for atoms and ions

with constant flow velocities va and vi, and the ionization rate β. These are the same as-

sumptions with which the original predator-prey model was derived. The stationary problem

is formulated as two coupled equations:

va
∂na

∂x
= −βnani, (3.13)

vi
∂ni

∂x
= βnani. (3.14)

The exact solution to this system is found in the form:

na,st(ξ) = na0

(
1 +

n0vi
na0va

)
1

(n0vi) / (na0va) exp (ξ) + 1
, (3.15)

ni,st(ξ) = n0

(
1 +

na0va
n0vi

)
exp (ξ)

exp (ξ) + (na0va) / (n0vi)
, (3.16)

where n0, na0 are values of ion density and atom density, respectively, at the left boundary,

and normalized length is ξ = x/l0, with l0 = viva/β (n0vi + na0va). It can be noted that

the solutions of the stationary problem depend only on two parameters, n0, na0. Typical

stationary solutions for vi/va = 10 are depicted in Figs. 3.1a and 3.1b by solid lines. Note

that the position of the crossing point, where the ion and neutral densities are equal, and the

localization of the ionization source βnna depend on the value n0: they move to the right

with decreasing n0, and goes to infinity for n0 → 0.

Numerical studies of the time-dependent equations (3.1) and (3.2) were performed with

fixed boundary values at the left n0, na0 and free boundary conditions (spatial second deriva-

tive is zero) on the right end. This analysis shows that all perturbations are damped and con-

verge to the stationary solutions given by equations (3.15) and (3.16), as shown in Fig. 3.1a

at different times. Thus, the 1-D predator-prey model with a constant spatial profile of

the ion velocity does not exhibit oscillatory or unstable behaviour, unlike zero-dimensional

predator-prey models. The 1-D continuum model presented here in some sense is similar

to the asymptotic low-frequency model derived in the limit n/Na ≪ 1 [46, 55], which also

predicts the neutral oscillations with the frequencies of the order of given by equation (3.7).

Contrary to [46, 55], our model does not show neutrally stable oscillations but only damped

modes.

66



0 5 10 15
ξ

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ti

es
/
n
a
0

ni

na

(a) n0/na0 = 0.05, l0 = 1.31 cm

0 5 10 15 20
ξ

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ti

es
/
n
a
0

ni
na

(b) n0/na0 = 0.0001, l0 = 1.96 cm

Figure 3.1: Stationary solutions given by Eqs. (3.13) and (3.14) are shown by solid
lines, with higher (a) and lower (b) ion density at the left boundary n0. The time
dependent solutions of Eqs. (3.1), and (3.2), converging to the stationary solution are
shown for the case (a) at three consecutive time steps t1 < t2 < t3, dot dashed (initial
condition), dashed, and dotted line, respectively.

One can envisage that the boundary value of plasma density could be perturbed, e.g. by

some sheath instability. Such perturbations may also arise in the experiments with segmented

anode [96], external modulations of the anode voltage [97], and two-stage thruster configu-

rations [98]. Therefore, it is interesting to investigate how this nonlinear system responds to

external perturbations of the ion density and whether such external perturbations may grow

in amplitude while propagating from the left boundary. We will impose harmonic external

modulations of the ion density at the left boundary in the form ni(0) = ni0 (1 + r sin 2πfextt),

where fext is the modulation frequency, with r = 0.15. We consider the 1-D continuum

model, Eqs. (3.1,3.2) with vi = 10va, ni0/na0 = 0.05, l0 = 1.31 cm, Fig. 3.1a, with the

simulation length 15l0. Since velocities of neutrals and ions are different, there are two

natural modes that can be excited during the external modulations, with the wavelengths

given with λa = va/fext and λi = vi/fext. We consider four values of the driving frequencies

fextl0/va = (0.1, 0.5, 1, 10). For these values, the corresponding natural wavelengths of the

neutral and ion characteristic wavelengths are λa = (10, 2, 1, 0.1)l0 and λi = (100, 20, 10, 1)l0,

respectively.

The resulting response of the system of Eqs. (3.1,3.2) under the external modulations of
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Figure 3.2: Instantaneous profiles of perturbed ion ñi (blue) and neutral ña (red) den-
sities for the various driving frequencies fextl0/va = (0.1, 0.5, 1, 10), shown, respectively,
in (a), (b), (c), (d). Three consecutive time snapshots t1 < t2 < t3 are shown for each
variable, depicted with the dot dashed line, dashed line, and solid line, respectively;
they divide one oscillation period in 3 equal intervals. Crossing point (of stationary ion
and atom densities profiles) location is shown with the black dashed line.
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the ion density is presented in Fig. 3.2 for the perturbed variables, defined as ñ = n − nst,

where nst is the corresponding stationary solution. It can be noted that in all cases ion

density perturbations grow in absolute values before reaching the crossing point and leaving

the ionization region, whereas the amplitude of neutral density perturbations decays, which is

expected in the ionization region. Note that while the absolute value of the perturbations of

the ion density seems increasing, the relative value ñ/nst does not grow. Thus, in the presence

of external ion density perturbations in the near-anode region, the system exhibit externally

driven oscillations that are advected along the channel but show a limited increase of the

amplitude. However, the atom response is slightly more complicated and besides the natural

mode can exhibit the nonlinear response (on ion natural wavelength). It is also affected

by the atom stationary profile (Fig. 3.1a), as atom perturbations decay rapidly after the

crossing point. It is seen that for the low frequency perturbations the natural atom mode is

excited (Fig. 3.2a), while for the higher frequencies the ion characteristic wavelengths become

more and more dominant in the atom response (seen gradually through Figs. 3.2b-3.2d). We

remind that the amplitude of the ion density perturbations was fixed in these cases. The

amplitude of the neutral density perturbations is maximal for the lower frequencies. We have

also investigated the case when the neutral density was modulated at the left boundary. Such

a system shows similar behaviour and does not show the unstable modes.

3.6 Ionization oscillations in the 1-D continuous model

with the ion back-flow in the near anode region

As it was discussed in the previous section, the reduced fluid model, described with Eqs. (3.1,

3.2), with spatially uniform profiles of vi, va, and β is stable. Here we will show that the same

system with spatial dependence of vi, when vi is negative near the anode, the so-called ion

back-flow, becomes unstable and exhibit self-consistent oscillations. The ion back-flow region

naturally forms in the presheath, a quasineutral region near the anode with the negative

electric field due to the electron diffusion [67, 68, 69, 70]. The positive density gradient near

the anode creates a strong electron flow to the anode. To maintain ambipolarity (the total

current remains uniform), the ion back-flow current occurs to compensate the increase of the
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electron current. The current ambipolarity is required to keep plasma quasineutral. This

process is somewhat similar to the formation of the electric field in the presheath region

near the plasma boundary where the electric field is induced to accelerate ions toward the

boundary (up to the Bohm velocity) to balance electron and ion losses.

In this configuration the only fixed boundary condition is a value of the neutral density

on the left, as their characteristics travel strictly to the right (atom velocity is a positive

constant). Ion density boundary condition is free on the left, ∂2
xni(0) = 0. First, we consider

the simple configuration with the velocity profile vi as a strictly linear function of the position.

The ionization rate β is taken uniform. One might argue the constant β is an unrealistic

assumption for a typical Hall thruster where electron energy near the anode is low due

to higher mobility, shaping the β profile; we consider these effects in Section 3.7 in the

comparison with the full fluid model. Recombination of plasma at the anode is not included

here: the ion flux converted to the neutral flux at the anode is not added to the neutral

flow. It can also be included, increasing the amplitude of oscillations, but it is not required

for the existence of the oscillations. An example of such oscillations shown for a typical

Hall thruster parameters (the stationary plasma thruster “SPT 100” [7]), with the channel

length 3 cm, ionization rate β = 9 × 10−14m3s−1, va = 150m/s. Atom density at the

anode na0 is fixed according to na0va = ṁ/Ama, assuming ṁ = 5mgs−1, Xenon atom

mass, and A = 12.75π cm2. For the simplicity, we assumed the linear ion flow velocity

profile vi = (2.5x− 1.5) km/s (x is in [cm]), with the ion back-flow extent Lb = 0.6 cm. The

resulting time and space evolution of ion and atom densities is shown in Fig. 3.3. The observed

frequency is 12.8 kHz, in the range of the values observed in experiments and simulations for

breathing mode.

Now, for the same setup with ion velocity profile in the form vi = (2.5x− 1.5) km/s (x is

in [cm]), we will show effects of the amplitude of the ionization rate β, which is still assumed

uniform here for simplicity. The ionization rate coefficient β needs to be sufficiently large to

support plasma discharge. Interestingly, in addition to a threshold β value for the discharge

to exist, there is also a threshold between stable and oscillatory plasma behaviour. In the

oscillatory regime, there is a value of β when the amplitude of the oscillations is the largest

(note that here we assume that β is constant along the channel). It shouldn’t be of surprise,
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(a) (b)

Figure 3.3: Evolution in space and time of atom (a) and ion (b) density, normalized
to na0.

as when the values of β are too high, the ionization takes place immediately near the left

end and so both density profiles have maximum values at the left end. The dependency of

the oscillation amplitude on β is shown in Fig. 3.4a, where the peak-to-peak amplitude of

the averaged in space density ⟨ni⟩x(t) is shown.

The frequency dependence on β is presented in Fig. 3.4b. If the ion back-flow region is

very short, i.e. vi(0) ≈ 0, the ionization mostly will occur at the anode for the same reasons,

and there would not be enough spatial separation between high and low atom density points.

Dependencies, similar to those shown in Figs. 3.4a and 3.4b, are also observed for different

values of the ion back-low extent Lb. They follow the same scaling as presented below in

Figs. 3.5b and 3.6.

The effect of the ion back-flow region is investigated further for our reduced model by

taking the ion velocity profiles with a variable ion back-flow extent. The Fig. 3.5a shows the

velocity profiles taken as parabolas specified with the three points, vi(0) = −1.5 km/s, vi(L) =

20 km/s, and vi(Lb) = 0 km/s, where Lb is the length of the ion back-flow region, the distance

from the anode to the transition point where the ion velocity reverse its sign. The value of Lb

was varied, with the system length set to 3 cm, the ionization rate β = 5× 10−14m3/s, atom

flow velocity va = 150m/s. Simulations using these velocity profiles reveal that oscillation
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Figure 3.4: Peak-to-peak values of averaged in space ion density ⟨ni⟩x(t) as a function
of ionization rate (a). The main frequency component of observed oscillations as a
function of the ionization rate (b).

frequency scales with the atom fly-by frequency va/Lb in the back-flow region, Fig. 3.5b. The

oscillations amplitude decreases with decreasing Lb and the oscillations disappear for Lb → 0,

as shown in Fig. 3.6. Also, no oscillations were observed for monotonically increasing ion

velocity profiles with vi(0) ≥ 0.

Zero-dimensional predator-prey models predict that the frequency depends on the exhaust

ion velocity. Here, we show that for our model this effect is very small and, mostly, the back-

flow region “defines” the frequency. Fig. 3.7a shows the family of the ion velocity profiles,

constructed in a similar manner (by a parabola) but keeping the back-flow length the same

(1 cm) and varying vi(L) = (14, 18, 22, 26) km/s. The resulting frequency for all these profiles

was found to be close to 10 kHz, Fig. 3.7b, predicted by the previous example in Fig. 3.5b

with the Lb = 1 cm.

The mechanism of the oscillations can be considered in three main stages, starting from

a stationary state in Fig. 3.1a, but with the ion velocity back-flow region. In the first

stage we observe enhanced ionization process in the region of plasma stagnation (vi ≈ 0).

The ionization process in this stage may be approximated as ṅi = βnina, ṅa = −βnina

(where ni, na are some average plasma and atom densities, respectively, in that region). In

this stage, effects of atom inflow and ion outflow are relatively small here. The ionization

72



0 1 2 3
Axial length, cm

0

5

10

15

20

V
el

oc
it

y
p

ro
fil

es
,

km
/s

Lb = 3 mm

Lb = 5 mm

Lb = 7 mm

Lb = 9 mm

Lb = 11 mm

(a)

0.4 0.6 0.8 1.0
Lb, cm

10

20

30

40

50

F
re

qu
en

cy
,

kH
z

Observed frequency

va/Lb

(b)

Figure 3.5: Velocity profiles (a) for a variable ion back-flow region Lb while the
exhaust velocity is fixed to 20 km/s (300 eV is a typical ion energy in the exhaust
plume of SPT100 [7]). The corresponding frequency (b) as a function of Lb in compare
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Figure 3.6: Peak-to-peak values of averaged in space ion density ⟨ni⟩x(t) as a function
of the ion back-flow region Lb. Oscillations disappear as Lb = 1mm goes to zero.
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Figure 3.7: Velocity profiles (a) and corresponding frequency (b) as a function of
vi(L), for the variable ion exhaust velocity vi(L) while keeping the back-flow region Lb

constant.

proceeds with the exponential rise plasma density ni ∼ exp (βnat) and depletion of atom

density. In the second stage, the newly created plasma peak splits and partially moves to the

anode (via back-flow) wiping down the rest of atoms near the anode. Finally, in the third

stage, the system enters the period of “regeneration” with both plasma and atom densities

low, while atoms slowly fill the region near the anode. The atom density remains higher

than the ion density, and the ion density balance is predominantly follows the equation

ṅi = βnina − γlossni, where γlossni represents the ion advection losses via the back-flow. In

this quasistationary state, there is no exponential rise of ionization but slow inflow of atoms

(to the right) filling this region toward the stagnation region. The third stage is also the

slowest and defines the breathing mode period, hence the backflow lengths defines the period

(Fig. 3.5b). Additionally, if the recombination at the anode is included, it increases a number

of atoms injected to the system for the stage three, and it increases the amplitude of the

oscillations.
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3.7 Reduced vs full self-consistent model

In this section we compare the reduced and full models for the breathing modes, and demon-

strate that our simple reduced model, Eqs. (3.1,3.2), reproduces well the results from the full

self-consistent time-dependent model [90]. First, we give a brief description of the full fluid

self-consistent model for low-frequency ionization oscillations.

3.7.1 Full self-consistent model

The full model of low-frequency axial plasma dynamics in Hall thruster is considered in

electrostatic and quasineutral approximation for three species: neutrals, ions, and electrons.

Our model is fully fluid both for the ion, neutral, and electron components. The electron

equations in general are similar to those used in Refs. [53, 55]. The full fluid model consists

of time-dependent PDE equations for neutral atom density na, plasma density n (ion and

electron), ion flow velocity vi, and electron temperature Te:

∂na

∂t
+ va

∂na

∂x
= −βnan, (3.17)

∂n

∂t
+

∂

∂x
(nvi) = βnan, (3.18)

∂vi
∂t

+ vi
∂vi
∂x

=
e

mi

E + βna (va − vi) , (3.19)

3

2

∂

∂t
(nTe) +

5

2

∂

∂x
(nvexTe) +

∂qe
∂x

= nvexE − nnaK− nW, (3.20)

where the electric field E is obtained from the electron momentum balance equation

vex = −µeE − µe

ne

∂(nTe)

∂x
, (3.21)

obtained with neglected electron inertia, where µe is the electron mobility across the magnetic

field (described below). Quasineutrality condition, along with the constraint
∫
L
Edx = U0

(U0 is the applied potential) leads to the total current JT = en (vi − ve)

JT =

U0 +

∫
L

0

(
vi
µe

+
1

n

∂pe
∂x

)
dx∫

L

0

dx

enµe

, (3.22)
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which is spatially uniform but may oscillate in time. Other quantities in the system (3.17-

3.20) are the constant atom flow velocity va, the ionization rate coefficient β (obtained with

BOLSIG+ [83] for Maxwellian EEDF using SIGLO database [82]), the elementary charge

e, the electron mass me, the ion (Xenon) mass mi = 131.293 amu, the anomalous energy

loss coefficient [53] W, the collisional energy loss coefficient K (also via BOLSIG+), and the

electron heat flux given by

qe = −5

2
µenTe

∂Te

∂x
. (3.23)

The electron transport across magnetic field is described in the form of the magnetized

mobility

µe =
e

meνm

1

1 + ω2
ce/ν

2
m

, (3.24)

where νm the total electron momentum exchange collision frequency, ωce = eB/me is the

electron cyclotron frequency. In this model νm is represented in the form as was adopted in

Ref. [52],

νm = νen + νwalls + νB, (3.25)

where the electron-neutral collision frequency νen, electron-wall collision frequency νwalls, and

anomalous Bohm frequency νB are given with:

νen = kmna, (3.26)

νwalls = α1× 107 [s−1], (3.27)

νB = (βa/16) eB/me. (3.28)

where km = 2.5 × 1013m−3s−1, α and βa are adjusting constants. The profile of external

magnetic field B is shown if Fig. 3.8a, with the channel’s exit in the peak of magnetic field

intensity, given by B = B0 exp (−(x− l)2/2δ2B), where l = 2.5 cm is the channel length and

δB defines a magnetic field profile width. This model use different parameters inside (x < l)

and outside (x ≥ l) the channel [61, 52, 99], the near wall conductivity contribution (3.27)

αin = 0.2, αout = 0, and the anomalous contribution (3.28) is set to βa,in = 0.1, βa,out = 1.

The anomalous electron energy loss coefficient [53] W is modeled as

W = νεε exp (−U/ε), (3.29)
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where ε = 3/2Te, U = 20V, and νε is electron energy anomalous loss coefficient. A constant

mass flow rate ṁ determines the value of na at the boundary together with the recombination

of plasma that flows to the anode, hence the boundary condition:

na(0) =
ṁ

miAva
− nvi(0)

va
, (3.30)

where A is the anode surface area of a thruster. Bohm type condition for ion velocity

can be imposed at the anode vi(0) = −bv
√
Te/mi, where bv = 0–1 is the Bohm velocity

factor which can be varied. Both anode and cathode electron temperature are fixed with

Te(0) = Te(L) = 2 eV. All other boundary conditions are free (spatial second derivative is

zero).

Following the LANDMARK benchmark [36] Test Case 3, we use the parameters that

result in bulk low-frequency oscillations, with the electron energy anomalous loss coefficient

inside the channel νε,in = 107 s−1 and outside νε,in = 0.4 · 107 s−1. The resulting plasma

currents evolution shown in Fig. 3.8b, assuming the typical inner and outer radius of a Hall

thruster (“SPT 100” [7]) R1 = 3.5 cm, R2 = 5 cm, respectively. The input atom mass flow

used in the simulation is ṁ = 5mgs−1 corresponds to I = ṁqe/mi = 3.67A. The average

ion current (to the exit plane) is 3.68A which is consistent with the mass flow rate. The

electron current (to the exit plane) is of the same order (or slightly larger). Other simulation

parameters for this test case are: δB,in = 1.1 cm, δB,out = 1.8 cm, A = π(R2
2 −R2

1), bv = 1.

The self-consistent fluid model used here is essentially based on the formulations and

parameters suggested in Refs. [53, 60, 52, 99], also see the LANDMARK benchmark [36]. The

fluid model has been compared against the hybrid model [52, 100]; both models demonstrate

similar results [90].

3.7.2 Comparison of the reduced model with predictions of the full

self-consistent model

We compare now results of the full fluid model (in the regime described above), with the

reduced model. In the full model the ion velocity profile vi and the ionization rate β profile

are self-consistent variables, and for the reduced model we take averaged in time profiles of

these variables, Figs. 3.9a and 3.9b. We also include the ion back-flow recombination to the
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Figure 3.8: The magnetic field profile (a) used in full fluid and hybrid simulations, with
the channel exit located 2.5 cm from anode (dashed line). Low-frequency oscillations
in time (b) of total current I, ion current Ii (at x = 5 cm), and electron current Ie (at
x = 5 cm) in the full fluid model using specified parameters.

atom boundary condition at the anode in the reduced model, described by Eq. (3.30), in

agreement with the full model.

Time evolution of na, ni, and the source S = βnani, are shown in Figs. 3.10a, 3.10d, and

3.10g, respectively. The same quantities from the reduced model are shown in Figs. 3.10b,

3.10e, and 3.10h. It is seen that the reduced model results in oscillatory behaviour, qualita-

tively reproducing the breathing mode oscillations, but with much higher amplitudes (about

one order) of evolving variables. The observed natural frequency in this model is also higher,

14.9 kHz, compared to 10.2 kHz in the full model.

The observed discrepancy can be explained by the absence of the electron temperature

evolution and lack of self-consistent ionization rate dynamics in the reduced model which

is known to affect the breathing mode characteristics, e.g. Ref. [101]. One observation

is that the average position of the source term S in our reduced model is closer to the

anode (Fig. 3.10h) (compared with the full model) that results in higher frequency. Higher

amplitude may also be explained by the shift of the ionization source toward the region with

higher ion back-flow velocity so that more ions return to the anode and recombine enhancing

the positive feedback loop. We found that simply lowering the values of the ionization rate,

precisely by taking 0.82β of the original averaged β profile (shown in Fig. 3.9b) agrees with
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Figure 3.9: Ion velocity (a) and ionization rate (b) coefficient profiles obtained from
the full fluid model as time-averaged over a few oscillation periods. They are used in
the reduced model as fixed profiles in time.

the full model much closer, see Figs. 3.10c, 3.10f, and 3.10i, with the oscillation frequency

of 11.8 kHz. While our intention is not really to achieve full quantitative agreement, this

exercise shows the sensitivity to the temperature effects. It is also possible that the strong

nonlinear dependence of the ionization rate on temperature may suggest some weighting

average for the ionization rate. We leave the investigation of the proper averaging technique

for future work.

To show that the atom velocity va plays a defining role in the observed oscillation fre-

quency, the full and reduced model (lower β) were compared against each other, Fig. 3.11.

Both full and reduced (with lower β) model show approximately linear behaviour for the

frequency, again suggesting the feedback loop mechanism supported by ion back-flow and

advection of the neutral atoms. Interestingly, the ion current amplitudes are comparable

between the full and reduced (lower β) models, Fig. 3.12.

3.8 Discussion and conclusions

In this paper, we have proposed a reduced continuum 1-D model with the ion velocity pro-

file that has an ion back-flow (toward the anode) region. The model consists of two one-

dimensional equations for coupled dynamics of the ion and neutral densities. While the 0-D
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(a) na (Full) (b) na (Reduced) (c) na (Reduced, lower β)

(d) ni (Full) (e) ni (Reduced) (f) ni (Reduced, lower β)

(g) Source (Full) (h) Source (Reduced) (i) Source (Reduced, lower
β)

Figure 3.10: Neutral density (a,b,c), ion density (d,e,f), and ionization source βnina

(g,h,i) for the full fluid model, the reduced model, and the reduced model with lower
values of β (see captions). Density values are normalized to 1 × 1019m−3, and source
values to 1× 1024m−3s−1. The spatial domain is limited to channel region only, 2.5 cm
from the anode.
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Figure 3.11: Oscillation frequency as a function of neutral velocity in full and reduced
(with lower β) fluid models.
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Figure 3.12: Temporal and spatial ion current dynamics in full model (a) and reduced
model with lower β (b), in Amperes (assuming cross section area A = 12.75π cm2).
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simplification of this model, commonly referred to as the predator-prey model, shows the

oscillations, the continuum 1-D model with a uniform ion velocity and boundary conditions

typical of Hall thruster show damped modes converging to the analytical stationary state.

Under externally imposed perturbations at the left boundary, the 1-D continuum model shows

limited convective amplification of the perturbation (in the region where the local value of

the neutral density is smaller than plasma density) and subsequent convection (with a slow

amplitude decay) where the ion and neutral density perturbations are mostly decoupled.

Therefore the models with the uniform ion velocity, in the absence of additional effects e.g.

such as temperature variations [47], do not predict the excitation of the breathing modes.

The key element of the proposed continuum model is the ion velocity profile that has an

ion back-flow (toward the anode) region. As it is shown here, such a system becomes unstable

and shows self-consistent nonlinear oscillations. The comparison between this reduced model

and the full self-consistent fluid model shows very similar characteristics for oscillations of the

ion and neutral densities, and ion current. We have investigated the scaling of the frequency

and amplitude of the oscillations as a function of the width of the back-flow region and neutral

flow velocity which show generic va/Lb dependence both in the reduced and full models. These

results suggest that the presence of the ion back-flow region may be a critical condition for

the breathing mode oscillations and the overlap of this region with the ionization region

creates the closed feedback loop necessary for the instability. These results also indicate that

the electron dynamics, in particular diffusion, which leads to the appearance of the back-

flow region, is important for the breathing mode. A number of full models, reporting the

breathing mode oscillations, include the electron diffusion either explicitly via the electron

fluid equations, such as full fluid [55] or hybrid [52] formulations, or via full kinetic treatment

as in the full kinetic (particle-in-cell) treatment [81]. The ion back-flow near the anode

occurs as a result of the electron diffusion ensuring the current conservation to maintain

quasineutrality. The ion stagnation in the back-flow region triggering enhanced ionization

is suggested as the mechanism for the instability. It is also worth noting that the electron

diffusion is also a reason for the appearance of the singular sonic point where the ion velocity

is equal to the local sound velocity, vi = cs. The smooth (regular) solution is obtained

when the sonic point is made regular by imposing some constraints on the current, mass flow
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rate, and plasma parameters. These constraints made singular point regular and play an

important role for the existence and characteristics of stationary solutions [69, 67, 102, 51].

As it was shown in [90, 103] the constraints indeed define the stability of the resulting profile

and characteristic frequency of the breathing mode.

One has to note, however, that low frequency ionization oscillations were also observed

in the models without the electron diffusion, and hence, without back-flow region [53, 104,

105, 106, 76]. It has been suggested [50] that the high frequency oscillations due to the

resistive axial modes [50, 107, 108] is a driving mechanism for a breathing mode. Alternative

mechanisms may be based on the temperature dependence of the ionization coefficient [47],

other electron temperature effects [109], and/or more complex interactions between the low

frequency modes involving ionization and higher frequency modes in the ion transit time

frequency range as it was suggested earlier [110, 90]. The simulations with the full model also

demonstrate the existence of two different regimes of the breathing mode [90], the so-called

solo regime, where only the low frequency mode present, and the regime with coexisting

low frequency and the high frequency ion transit time oscillations. The breathing mode

oscillations reproduced by our reduced model are similar to the solo regime, but are different

from the modes coexisting with high-frequency ion transit time oscillations. The existence

and nature of the breathing mode together with the well pronounced high-frequency mode

is an interesting question that will be addressed in future studies with the full model.

In summary, we would like to conclude that the importance of the reduced models is not

only in their ability to predict reasonably well some essential features of the ionization modes

in Hall thrusters but also, and perhaps, even more importantly, in pointing to some important

physics involved in the modes excitation and characteristics. The reduced models typically

involve a smaller number of adjustable parameters compared to the full models, e.g. as the

values of the anomalous mobility are poorly known. Therefore, the tests of the properties and

consequences of the reduced models in the experiments [97, 88, 89, 87] could be an effective

approach to test the crucial physics responsible for the breathing modes oscillations.
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Chapter 4

Plasma flow in the magnetic mirror with a

recycling wall

4.1 Introduction

Large linear fusion devices often use the magnetic expander (diverging magnetic field) on its

ends to distribute the output heat loads over the larger area [111]. It is called a divertor

for a linear fusion device. It serves a similar purpose as divertors in closed toroidal systems

but with a simpler construction and it is easily scalable for higher power outputs. The

schematic of a linear fusion device with the divertor and the wall is shown in Fig. 4.1, where

the “source” (or core) represents an arbitrary plasma confinement configuration, e.g. field-

reverse configuration (FRC) [112]. Hot plasma from the source leaks and accelerates through

the mirror throat and hits the wall. The direct electric contact with a material wall can be

used to control the overall potential (called biasing) and improve stability and confinement

[111]. This study aims to reproduce the possible dynamical plasma flow effects in magnetic

expander on time scales of ion bounce motion in such divertor configuration (neglecting ion

gyro-rotation and higher frequencies), especially due to the effects associated with neutral

atoms and collisions. Charge exchange (CX) and ionization create additional ion sources

in the near-wall region and lead to a turbulent behaviour (instability caused by counter-

streaming ions). Since we are not accounting for a detailed electron model, possible effects

of electron-electron streaming instabilities can not be observed. Slow plasma beams near the

wall decrease the overall potential drop and may lead to increased electron heat losses (due

to lower potential barrier entrapping electrons inside the core) and cooling of the core plasma

[113]. A closed particle drift in axisymmetric magnetic configurations, or the rotation in the
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azimuthal direction (may cause azimuthal currents and diamagnetic effects), is not taken into

account.

The light ions bombarding the material wall can induce a whole zoo of neutral atoms of

various energies. First, ions can be reflected via the backscattering from the material surface,

returning predominantly in the neutral state [114]; in our model, they all assumed neutral.

These reflected neutrals are of relatively high energy (which is some fraction of bombarded ion

energy), and thus we will call them energetic neutrals. Then, the cold atoms and molecules

are emitted via the desorption process. Desorbed atoms are of the wall temperature and

thus constitute the cold component. Desorbed molecules may undergo ionization and their

further dissociation creating the so-called Franck-Condon atoms, of 1 eV−4 eV energy (about

the energy of dissociation). In the energy range, Franck-Condon atoms stand between cold

atoms (of wall temperature) and energetic atoms due to reflection. Cold atoms have a larger

tendency to accumulate in the near-wall region. The CX and ionization can effectively create

a source of cold ions and electrons near the wall flowing in the opposite direction (to the

original plasma flow from the core). It is shown that a sufficiently dense cold ion beam (in

the opposite direction to the original ion flow) triggers an instability that results in turbulent

behaviour near the wall. As for the energetic neutral atoms, they quickly leave the system

without significant effects on the plasma flow (due to its low density).

In the present study, we focus on a more accurate model of atom yield from the recycling

wall and the study of its effects on the plasma flow. For this purpose, a simple and fast

hybrid model was developed that includes drift-kinetic ions, kinetic neutral atoms, and fluid

(Boltzmann) electrons. The plasma flow is modeled in the paraxial approximation [115],

resolving the particle dynamics along the magnetic field line with two-dimensional effects

(such as acceleration due to mirror force) via the conservation of magnetic flux. It includes

an emitting source (diffusive or specular reflection) for ions, model of atom recycling from

the material wall with the main atom sources, and the most probable collision processes (CX

and ionization). Heavy particles are modeled with the particle-in-cell (PIC) method. The

collision processes are simulated with the direct simulation Monte Carlo (DSMC), which, for

ion-neutral collisions (CX) occurs self-consistently with their distribution function shapes,

according to the supplied cross-section information. For ionization, the constant collision
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Figure 4.1: Magnetic divertor region schematic for a linear fusion device. Plasma
escaping the throat of the mirror expands and reaches the wall. Magnetic mirror
force confines the source particles and accelerates those escaping into the expander.
Quasineutral plasma forms the electrostatic potential (shown in orange), increasing ion
losses and confining electrons. Ions showed schematically with blue trajectories.

rate is assumed due to isotropic electrons. For a large part of the simulated domain, mean

free paths for collision processes will be large, on the scale of system size and higher; thus,

the DSMC method is justified in this regime.

This model is implemented in Fortran and MPI. The initial version was inspired by

the hybrid code developed by G. Hagelaar (LAPLACE, France) for the axial simulation of

Hall thrusters (used in Sec. 2). It was rewritten and adapted for the plasma acceleration in a

magnetic nozzle by M. Jimenez. It was later rewritten from scratch with added parallelization

and other features by two of us. The atom transport and DSMC collisions (CX and ionization)

were added as a part of my internship project at TAE Technologies.

4.2 Hybrid drift-kinetic model

Plasma flow is considered in the one-dimensional flux tube with the variable cross-section in

the so-called paraxial approximation, where the radial component of the magnetic field Br

is much smaller than the axial Bz. The model accounts for two-dimensional effects related

to compression and decompression of the plasma flux tube close to the axis. Electrons are

considered in the Boltzmann approximation with full plasma quasineutrality over the whole
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Figure 4.2: Main steps for one time iteration in the hybrid drift-kinetic model. DSMC
module usually skips some number of time steps (if collision frequencies are low).

domain (missing sheath potential drop), thus we focus on low-frequency plasma dynamics.

We consider ions in the drift-kinetic approximation, i.e. following its gyrocenters on time

scales larger than the ion gyro-frequency (averaged over gyrofrequency), and on spatial scales

larger than the ion gyroradius (neglecting gyroradius effects). The time scale of interest here

is the bounce motion of an ion in the large magnetic nozzle system, τ ∼ vz/L, e.g. for ion

energies ∼100 eV and L ∼ 1m, τ ∼ 1 µs. We assume that the magnetic moment is well

conserved for ions i.e. ρi < LB ≡ (∇B/B)−1 (magnetic field is close to homogeneous per

single ion rotation).

A single time iteration consists of injection of ions, evaluating plasma density, calculating

the potential profile via the Boltzmann relation, and integrating particle motions. When the

ions reach the material wall, neutral atoms are emitted in accordance with the atom transport

model (see Section 4.2.3). Collisions are processed at the constant time steps ∆tcoll (which is

typically larger than the simulation time step), but we let collisional cells coincide with the

PIC cells of size ∆x1. Schematic representation of time iteration is shown in Fig. 4.2. The

schematic of material wall transport and possible collision processes is shown in Fig. 4.3.

1Collision processes should satisfy ∆x/λmfp ≪ 1 and ∆tcollνcoll ≪ 1, where λmfp and νcoll are average
mean free path and average collision frequency, respectively [116].
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Figure 4.3: General schematic of atom transport with possible collision processes.

4.2.1 Ion dynamics

Ions are modeled in the drift-kinetic approximation. It implies the averaging over the ion

gyrofrequency (neglecting slower time dynamics), and considering spatial scales larger than

the ion gyroradius. With the magnetic moment conservation, ion gyrocenters experience the

electric field force and the mirror force:

mi
dvz
dt

= eEz − µ
∂B

∂z
, (4.1)

where the magnetic moment µ = miv
2
⊥/2B = const. The ion distribution function fi follows

∂fi
∂t

+ vz
∂fi
∂z

+
dvz
dt

∂fi
∂vz

= Ci,a (fi, fa) , (4.2)

where the collision operator Ci,a describes effects due to ionization and CX events, it depends

on both ion and atom distribution functions. We omit analytical form for Ci,a, it is accounted

with the DSMC algorithm.
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Source wall

Ions are injected from the left wall (source) with the half-Maxwellian distribution parallel to

magnetic field lines and isotropic Maxwellian for its perpendicular component:

fi (vz, v⊥) =
4n0√

πVTzV 2
T⊥

exp

(
− v2z
V 2
Tz

)
v⊥ exp

(
− v2⊥
V 2
T⊥

)
(4.3)

with vz > 0. While in z-direction we inject only in the half-space, an additional factor

of “2” ensures n0 =
∫
fidvzdv⊥. Here vTz and vT⊥ are parallel and perpendicular thermal

velocities, respectively, defined as vT =
√

2T/m (m is the ion mass), where the corresponding

temperatures defined as

Tz = 2

∫
mv′2z fdvzdv⊥, (4.4)

T⊥ =
1

2

∫
mv2⊥fdvzdv⊥, (4.5)

where v′z = vz − Vz (Vz is the average flow velocity).

Particles may be reflected back by the magnetic mirror force or the electrostatic potential

and reach the source wall. By default, we consider the simple absorption (source) wall.

Another option is to return these particles into the system, either with the pure specular

reflection (keeping the same magnetic moment and vz = −vz) or perform the diffuse reflection

(sample new velocities). Diffuse reflection imitates the collisional filling of the loss cone in the

source. A combination of both reflection regimes on the source wall (specular and diffusive)

is also possible.

4.2.2 Electron dynamics

During relatively slow ion bounce motion in the magnetic mirror, electron Coulomb collisions

quickly fill the electron loss cone and cause higher electron losses. It allows to consider

Maxwellian and isotropic electrons and, in the simplest case, use Boltzmann relation for

electrons [16]. Plasma quasineutrality gives rise to the electrostatic potential slowing electron

losses but expands the ion loss region in the velocity space (recall Fig. 1.5). Note that the

extent of this potential structure is much larger than the Debye length.
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The goal is to exploit the simple electron model, starting from the Boltzmann relation,

then include the finite electron current due to collisional effects (ionization). Future work is

left to include heating and dissipating effects for electrons (heat fluxes, collisional losses).

Current-free Boltzmann electrons

The simplest model is Boltzmann electrons, where the electric field is obtained from the

electron momentum:

0 = −enE − Te∇zn, (4.6)

and, additionally, the full quasineutrality is assumed, n = ne = ni. In this approximation

the density gradient generates the electric field that enforces equilibrium electron current (no

net force). Collisions are neglected in the electron momentum exchange; thus, the electron

current is undefined (infinite) in pure Boltzmann approximation.

Electron current and biasing

In the presence of high-density neutral regions (near the wall), electron-neutral (e-n) collisions

may not be negligible in the electron momentum balance. For Te = 200 eV, the ionization

rate is βion = 2.1× 10−14m3s−1 [117], and the estimated collision frequency due to ionization

is νen = βionna = 2.1 × 106 s−1 (for na = 1 × 1019m−3). Finally, the electron mean free

path estimated as λe ∼ vTe/νen ≈ 3m. It is comparable to the density inhomogeneity length

Ln ∼ 1m. Adding the electron-neutral collisional friction to Eq. (4.6) results in

−eneEz −∇zpe −meneνenvez = 0, (4.7)

where the atom flow velocity is neglected2. The electron flux is

nevez =
e

meνen
ne∇zϕ− 1

meνen
∇zpe. (4.8)

With the full quasineutrality, ne = ni, combining ion and electron continuity equations,

one obtains the divergence-free total current jz = e(nvi − nve):

∇z (jz/B) = 0, (4.9)

2High atom flow velocity may occur near the magnetic throat but the atom density there is orders lower
than near the wall and the collisional friction is negligible.
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which can be inverted to evaluate the electrostatic potential. The equation for the potential

reads

∇z

(
1

B

[
nvi −

e

meνen
n∇zϕ+

1

meνen
∇zpe

])
= 0, (4.10)

and can be solved with the fixed boundaries (Dirichlet condition), e.g. ϕ(0) = 0, ϕ(L) = V .

Another option is to fix the total current at some location, e.g. at the entrance jz(0) = jz0;

effectively it specifies the boundary condition for ∇zϕ(0) (Neumann condition).

4.2.3 Neutral transport

When light atoms hit a solid wall, they can be scattered from the material surface (after one

or multiple collisions) at a large enough angle to be effectively reflected. Another possibility

is entrapping inside the wall. In both cases, the energy lost by the incident particle due

to interaction with the wall can lead to the sputtering process (ejecting material atoms

from the surface). However, the reflection events dominate over sputtering for light ions

like Hydrogen (notable sputtering is caused by heavier ions). For example, the maximum

particle yield is only about 1% for De+ (Deuterium ion) and 0.3% for H+ (Hydrogen ion)

for bombardment of the titanium wall [118]. Thus, we will neglect the sputtering in the

neutral transport modeling. Besides the reflection, we include desorbed atoms (cold, of wall

temperature), and more energetic ones created due to molecular desorption and its further

ionization and dissociation, so-called Franck-Condon atoms of 1 eV − 4 eV. The latter are

included via a parameter without an actual model of the molecular dissociation. Due to the

general difficulties for accurate accounting of complex chemistry processes on the wall, the

desorption process is modeled empirically and controlled by the sticking coefficient and other

parameters (details are given below). We start with the reflection process.

Reflection

The reflection coefficients are available in the literature [114], calculated from both experi-

ments and simulations for a wide range of incident particles and materials. They are mainly

available as integral yield coefficients for the fraction of reflected particles RN and the frac-

tion of reflected energy RE (relative to the corresponding number and energy of incident
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Figure 4.4: Definition of angles for the reflection problem with incident and reflected
particle (this figure is drawn similarly as in Ref. [119]).

particles). Higher-dimensional information, such as the distribution function of the reflected

population (depends on the incident energy and incident angle), is only available for a limited

number of studies (and in the reduced form, as will be shown later), caused by a lack of such

data. While it is easier to collect it from a computer simulation, these simulations have to

be verified with the corresponding experimental data, which is costly and slow.

The following notation is used (following Ref. [119]) for the reflection problem. The

distribution function of reflected particles fR(E0, α;E, β, ϕ) is a function of energy E, the

reflected polar angle β and the reflected azimuthal angle ϕ; it depends on the incident energy

E0 and the incident polar angle α, see Fig. 4.4 (both α, β are measured with respect to the

surface normal).

Definitions of the number reflection coefficient RN and the energy reflection coefficient

RE:

RN =
1

N0

∫
fR(E0, α;E, β, ϕ)dE sin βdβdϕ, (4.11)

RE =
1

E0N0

∫
fR(E0, α;E, β, ϕ)EdE sin βdβdϕ, (4.12)

where N0 and E0 are the incident number of particles and their energy. It is seen that

RN/RE = E0/ĒR, (4.13)
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where ĒR is the average energy of the reflected particles. As expected, the relation between

RN and RE only contains information on average reflected energy. One can use RN and

RE to model atoms with discrete energy levels ĒR. Coefficients RN , RE are still functions

of (E0, α), but typically evaluated at normal incidence angle α = 0◦, only as functions of

the incident energy, which is useful for many applications. In our setup, the perpendicular

pressure of incident particles is low (in the end of expander region), and the normal incidence

is acceptable. The semi-empirical formula was proposed for both RN , RE which can be used

for a wide range of materials [114]:

RN (or RE) =
A1 lnA2ϵ+ e

1 + A3ϵA4 + A5ϵA6
, (4.14)

where A1−A6 are the fitting parameters (they differ for RN and RE), e is the base of natural

logarithms, and ϵ is the Tomas-Fermi reduced energy (sometimes Firsov screening length

is used, giving 10% smaller ϵ [119]). The reduced energy ϵ is the function of the incident

particle energy E0, its mass ratio with target material nuclei µ, and electric charges of both

the incident particle and the target nuclei (its atomic number) [114]. Coefficients A1 − A6

depend on the value of the mass ratio µ [114]. The reflection coefficients given by Eq. (4.14)

are shown in Figs. 4.5a and 4.5b, for the Hydrogen ion and various wall materials. A small

difference is seen between the results for Ti and Fe as a material wall occurs due to their

close atomic numbers.

Even though we assume the normal incidence, it is worth noting that the scaling ϵ cos2 α

can be used to include the dependence on the incident angle [119], simply by the substitution

ϵ → ϵ cos2 α in Eq. (4.14). For example, a high yield, up to 100% can be expected for the

grazing angles (α ≈ 90◦), as they mainly interact with the surface atoms, and almost any

scattering event will lead to reflection.

A potential problem with utilizing only the RE coefficient and thus ignoring the shape of

the distribution function for the reflected particles rises due to ignoring possible lower energy

particles in the distribution function. Slow atoms tend to accumulate near the wall and

potentially have a stronger effect on the accelerated plasma flow (as shown in the results).

The simplest extension to RE coefficient (adding one degree of freedom) would be the energy

distribution function FE(E) of the reflected particles (still integrated over polar and azimuthal
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Figure 4.5: Total (integral) reflection coefficients RN (a) and RE (b) as a function of
normal incident energy (in eV) for Hydrogen ion bombarding material wall (Li, Ti, or
Fe), obtained from Eq. (4.14) with appropriate coefficients taken from Ref. [114].

angles), defined as

FE(E) =

∫
fR(E0, α;E, β, ϕ)dE sin βdβdϕ, (4.15)

where FE depends on the incident energy E0 and the incident angle α. The empirical relation

for FE is proposed in Ref. [120]:

FE = A
[(
C +D(E/E0)

2
)
(B − E/E0) + exp

(
−(E/E0 −B)2/2σ2

)]
, (4.16)

where B,C,D, σ are the fitting parameters, available for the following pairs: (H+, Cu),

(He+, Cu), (He+, Ni), for the incident energies 1 keV, 5 keV, and the incident angles of

(0, 40, 60, 70, 80)◦ [120]. The coefficient A in Eq. (4.16) is found via
∫ E0

0

FEdE = N0RN , (4.17)

where N0 is the number of incident particles, and RN can be evaluated from Eq. (4.14). The

example distributions FE produced for the three different incident energies are depicted in

Fig. 4.6, for the (H+, Cu), normal incidence, and 1 keV incident energy. Here RN coefficients

were chosen according to the Eq. (4.16) for Hydrogen ions bombarding titanium wall, with

the non-positive function values capped to zero. The total distribution is simply the sum of

three, which can be used for further sampling of reflected particles. We use this model for the
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Figure 4.6: Examples of the reflected energy distribution function FE for neutrals
according to model in Ref. [120], for three incident particles with energies 600, 700, 800
eV, where coefficients in Eq. (4.16) are for (H+, Cu) (Hydrogen ions bombards Cu wall);
incident particle number N0 = 1.

energy distribution of the reflected atoms in the following way. On each time step, a number

of incident macroparticles bombarding the wall effectively define the total distribution by

adding all individual FE, given by Eq. (4.16). Then it is used to sample atom energies

(details on parallel and perpendicular velocities are following) with the numerical cumulative

distribution function method. Even though we are interested in the normal incidence, it is

worth noting that for the grazing angles, the shape of the distribution function FE peaks near

the incident energy (for the same reasons discussed above for the incident angle distribution)

[120].

The polar angle β essentially defines the ratio of parallel and perpendicular energy of

the reflected crowd. In our hybrid drift-kinetic model, the azimuthal angle ϕ is not resolved

(included in the perpendicular velocity). Hence, we are interested only in β and assume the

isotropic distribution for the azimuthal angle ϕ. Both experiments and simulations suggest

that the cosine distribution is a good approximation for the reduced energies below ϵ ≈ 10,

according to Ref. [119]. For example, for the pair (H+, Ti) this range translates to incident

energies below 20 keV which suffice our needs. Thus, we proceed by sampling the energy

from the distribution FE using Eq. (4.16) and then sampling the angle β for every particle
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from the cosine distribution.

Finally, as one could expect, there is evidence that not all of the reflected particles are in

the neutral state, as shown in Ref. [119] based on the experiment with Hydrogen bombarding

the stainless steel. Less than 15% of reflected particles are charged for the incident energies

below 10 keV (the fraction increases for higher energies), and less than for 1 keV. It suggests

that a parameter can be introduced to control the charge state of reflected particles.

Note that some ions from the original flow neutralize due to CX with slow atoms (espe-

cially near the wall) and bombard the wall. These fast neutrals accounted in the same path

as ions, and thus, contributes to the overall reflection rate [119].

Desorption, sticking coefficient

Additionally to relatively high-energy reflected particles, low-energy atoms “peels off” the wall

due to desorption. Due to their low velocity, these atoms can quickly accumulate in the near-

wall region and significantly affect plasma acceleration. Compared to the reflection model

described above, the desorption process will be modeled with a more qualitative, empirical

approach. Desorbed atoms are split into two components: wall-temperature (cold) atoms

and Franck-Condon (FC) atoms (with energies 1 eV − 4 eV, close to dissociation energy).

The idea is that during the particles-wall bombardment, in the equilibrium, the following

processes can occur:

1 = Pr + Pd + Pa, (4.18)

where Pr is the reflection ratio (same as RN coefficient, given previously), Pd is the total

desorption ratio, and Pa is the adsorption ratio (also called sticking coefficient). We assign

the constant isotropic temperatures for the low-energy (cold) and the FC atoms, Ta,c and

Ta,FC , respectively. The desorbed output further split with the coefficient PFC (0–1), defining

the probability of injecting a Franck-Condon atom3. For the total number of recycled particles

(reflected and desorbed), Eq. (4.18), the parameter R = Pd + RN is introduced similarly to

the DEGAS neutral model [121]; it effectively replaces Pa coefficient (Pa = 1 − R). Note,

that according to this model, the number of desorbed atoms depends on RN (Pd = R−RN),

3Using rejection method: a random number 0 ≤ r ≤ 1 is sampled: if r ≤ PFC , then atom with the
temperature Ta,FC sampled, otherwise with Ta,c.
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Lz (m) Γ0 (m−2s−1) Te (eV) Ti (eV) R PFC Ta,c (eV) Ta,FC (eV)

3.0 3× 1023 200 50 0.95 0.5 0.1 2.0

Table 4.1: Simulation parameters for the radial loss effects.

which evaluates consistently with incoming bombarding particle flux. If RN becomes smaller

(e.g., due to increased incident energy, Fig. 4.5a), the number of desorbed atoms increases.

Radial losses

Atoms from all sources described above can escape the simulation volume in the radial

direction (which is not resolved, but the particle’s perpendicular velocity allows to estimate its

radial dynamics). We add this effect by assigning the virtual radial coordinate to every atom

with the initial value r = 0m. Whenever a particle crosses the radial length Lr, it is removed.

First and foremost, the radial losses cause the significant drop of atom density stepping

from the wall. It can be seen in the simulations without collisions, only in the presence

of accelerated plasma flow and atoms caused by it in the equilibrium. Parameters of the

simulations are given in Tab. 4.1, with the various radial loss coefficients Lr = (1, 5, 10, 25) cm.

The resulting atom densities are shown in Fig. 4.7, where the second half of the channel is

shown (region from the mirror throat to the wall). Obviously, the losses significantly increase

when the Lr ≪ Lz (for isotropic atom population). Note that RN coefficient for the reflected

yield, Eq. (4.14), is evaluated for Hydrogen ions bombarding the titanium wall.

More detailed effects of the radial losses on the specific atom populations is shown for the

case with Lr = 10 cm (this value is used for all future simulations with collisions), on figures

with the atom distribution function fa in a few two-dimensional slices of its phase space

(which in general is four-dimensional, fa = fa(z, r, vz, v⊥)). Fig. 4.8a shows the distribution

of atoms in (r, z)-space. In Fig. 4.8b its shape in the space (v⊥, z) reveals the “chopping”

effect of the finite length Lr, i.e. only particles with the smallest perpendicular energy can

reach the left boundary. In Fig. 4.9a, fa(z, vz) shows that the cold atom component is able

to reach deeper into the channel. Finally, Fig. 4.9b shows fa(vz, v⊥) in the right-most cell

near the wall (z = L), where the radial losses did not contribute yet.

98



0.5 0.6 0.7 0.8 0.9 1.0
z/L

1015

1017

1019

n
a
,
m
−

3

Lr = 1 cm

Lr = 5 cm

Lr = 10 cm

Lr = 25 cm

Figure 4.7: Atom density profiles for the various radial loss coefficients Lr (radial
“wall”), demonstrating pure radial loss effect (without collisions).

100 200
z, cm

2

4

6

8

r,
cm

log10 fa(z, r), arb. units

−4

−2

0

2

4

(a)

100 200
z, cm

0.5

1.0

1.5

v ⊥
/c

s

log10 fa(z, v⊥), arb. units

−4

−2

0

2

4

(b)

Figure 4.8: Effect of radial atom losses with Lr = 10 cm shown in (z, r)-space (a)

and (z, v⊥)-space (b). Note that atom distribution function (arb. units) shown in loga-

rithmic scale. Atoms with higher perpendicular velocities (mostly those from reflected

population) leave the system faster (exactly in Lr/v⊥ seconds) and thus slow atom

component penetrates deeper into the channel (b).
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Figure 4.9: Effect of radial atom losses with Lr = 10 cm shown in (z, vz)-space (a)

and (z, v⊥)-space (b) at the end wall, z = L.

−2 0 2
vz/cs

100

102

104

V
D

F
,

ar
b

.
u

n
it

s

AVDF

IVDF
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Reflection (due to ion backscattering) leads to the higher-energy tail of distribution

function, while atoms due to desorption tend to accumulate, contributing to high atom

density.
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Figure 4.11: Charge-exchange cross-section for collision (H+, H) −→ (H, H+) (both
neutrals are in ground state), reaction 3.1.8 in Ref. [117].

4.2.4 Collisions

In the presence of the atom conglomerate described above, collisions between plasma species

and neutrals will occur (especially near the wall). Most probable events include charge

exchange (CX) due to ion-neutral and ionization due to electron-neutral collisions. Direct

simulation Monte Carlo (DSMC) algorithm is implemented for handling collisions with the

null collision method [116]. Since ions and neutrals are both kinetic, CX collisions will

be processed consistently with their distribution functions. For ionization, since electrons

assumed isotropic, Te = const, the constant value of the ionization rate is used, β = ⟨σv⟩ =
3.1 × 10−13m3s−1 (averaged over Maxwellian distribution for Te = 200 eV) [117]. CX cross-

sections for ion-neutral collisions, (H+, H) −→ (H, H+) taken from Ref. [117], reaction 3.1.8,

shown in Fig. 4.11.

Besides the statistical error present in DSMC (minimized by the increased number of

particles), there are spatial and time constraints that can lead to notable errors if violated

[116]. They are associated with the average mean free path λ and collision frequency ν.

∆xcoll ≪ λ and ∆tcoll ≪ 1/ν constraints. As it will be shown in the results, the smallest

values for λ well exceed the cell size (the smallest Knudsen numbers are ∼0.1). We further
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assume that collisional cells coincide with PIC cells ∆xcoll = ∆x (and call them just cells)4.

Also, the sub-cycling (integer) parameter Nsub,c is introduced for collisional time step, relating

it to the simulation time step as ∆tcoll = Nsub,c∆t.

Since collisions are calculated in every collisional cell, some particle tracking tool is re-

quired for efficient operation on particles corresponding to given cells. For this purpose, the

following particle tracking structure was implemented (generally, PIC structures that store

information about particles, such as coordinates and velocities, do not perform any sorting

in space, and it would be highly inefficient to use them for locating particles). The idea is to

use a two-dimensional structure that will store global particle indices for corresponding cells

(where a particle is currently located). Additionally, it stores the number of particles in the

corresponding cell. Then, during the DSMC process, it would be easy to access and sample

some number of particles (in a given cell) to check for a possible collision event. The presence

of large-scale difference in plasma density profile (and constant particle weight, like in our

approach) will make very wasteful use of memory if one uses a two-dimensional array. In the

magnetic mirror configuration, a large portion of particles are confined before the magnetic

throat, and near the wall, we may have particle density orders smaller than in the source.

Effectively, we implemented a two-dimensional array with the variable-size second dimension;

see the schematic in Fig. 4.12.

Finally, we briefly describe the DSMC algorithm with the null collision method. We

denote nt - the density of target particles (neutrals), and Ni is the number of incident particles.

The null collision method allows to avoid going through every possible pair of colliding

particles, evaluating individual probabilities and testing for a collision (e.g., by rejection

method), which is very costly. Instead, the maximum collision frequency νmax is estimated

over whole range of the parameter space (coordinate x and the relative velocity vr) [116]

νmax = max
x,vr

ntσ(vr)vr = max
x

(nt) max
vr

(σ(vr)vr) (4.19)

where σ is the cross-section and depends on vr. Then the maximum fraction of collisions

4In higher dimensional, more demanding simulations, one could benefit from implementing a separate
collisional grid, possibly non-uniform and/or adaptive to local values of λ.
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taking place during ∆tcoll is [116]

Pmax = 1− exp (−νmax∆tcoll), (4.20)

which includes real collisions and null collisions. With known Pmax one can simply sample

this fraction of particles and test for a collision type (among which is the null collision event,

i.e. collision does not occur). Instead of choosing the maximum collision frequency over all

space, Eq. (4.19), here it is assumed spatially dependent

νmax(x) = nt(x) max
vr

(σ(vr)vr), (4.21)

varied with the local target density nt. The value of maxvr(σ(vr)vr) gets updated every time

the larger value is observed. If there are few collision types, the total maximum collision

frequency is simply

νtot =
∑

i

(σvr)max,i, (4.22)

where (σv)max,i is the estimate of maximum collision rate for i-th reaction. It is then sub-

stituted to Eq. (4.20) to evaluate number of particle to sample. The number of possible

collisions Nc in a given cell is

Nc = ⌈PNp⌉, (4.23)

which is rounded to integer (ceiling operation); to compensate the rounding error, the cor-

rection (increase in this case) of the total collision frequency νtot is applied [35]:

ν ′
tot =

Nc

Np∆tcoll
, (4.24)

where Np is the number of incident particles. After that we select randomly Nc colliding

pairs and calculate (σ(vr)vr)j for jth collision type and evaluate the collision probability

as pj = (σ(vr)vr)j / (σ(vr)vr)
′

max,j (prime indicates corrected value). With all probabilities

known, the rejection method is applied to decide on a type of occurred collision. We ensure

that if a neutral particle is ionized, it could not be used for the CX in the same collision time

step. At the same time, no such restriction posed on the repeated CX or ionization followed

by CX.
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Figure 4.12: Schematic representation of data structure used for particle tracking
required for DSMC. The array of pointers of cells number size is allocated first. Then,
a dynamic array is allocated for each pointer, storing global particle indices (integers)
corresponding to this cell. The array size is controlled with the standard table-doubling
algorithm; thus, it adjusts to the local number density profile.

4.3 Results

Since the atom model has many empirical parameters, here we focus on establishing the main

effects and discuss its mechanisms. Hydrogen (with atomic mass 1.008) is assumed for ion

and neutral species. In all the following simulations, the magnetic field intensity is given by

B = a+ b exp

(
−(z − z0)

2

δ2BL
2

)
, (4.25)

where a = 0.1T, b = 0.6T, z0 = Lz/2, δB = 0.15, hence the mirror ratio R = 7. The profile

of the magnetic field is shown in Fig. 4.13.

First, plasma acceleration without atoms (and collisions) is shown to demonstrate the

skeleton of this model. The chosen parameters are following: system length 3m, constant

electron temperature Te = 200 eV, injected (half-Maxwellian) ion temperature Ti = 100 eV,

injected flux Γ0 = 1 × 1023m−2s−1. The result is the stationary quasineutral plasma flow

with a fraction of injected ions reflected due to the mirror force, with established quasineutral

potential structure. Ion (plasma) density shown in Fig. 4.14a is normalized to the injected

density

n0 = Γ0/v0, (4.26)
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Figure 4.13: Converging-diverging magnetic field profile with the magnetic throat at
the center, with mirror ratio R = 7, given by Eq. (4.25).

where v0 = vT i/
√
π is the average flow velocity for the half-Maxwellian distribution, Eq. (4.3).

Its value on the left boundary in the range 1–2 indicates the fraction of reflected ions. The

established total electrostatic potential drop is about 3.7 electron temperatures (i.e. e∆ϕ/Te)

which is ∼700V, Fig. 4.14b. The electrostatic potential here establishes according to the

Boltzmann electron model, Eq. (4.6), resembling the density shape. As will be shown in

the simulations with neutral transport, plasma density will increase in the expander region

(mainly close to the wall) as the new sources are effectively introduced via ionization and

CX. This will lead to the overall drop in the potential, which may be interpreted as poor

electron confinement in the source region.

Below we present the base case with collisions, defining the main sources of particles

(both ions and neutrals) near the wall and their main effects. After that, we demonstrate

how various parameters affect the overall solution, such as core ion temperature, the fraction

of desorbed atoms (cold vs. Franck-Condon), and the sheath effect.
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Figure 4.14: Spatial profiles of plasma density (a), electrostatic distribution (b), and

ion velocity (c) in whole domain for the case without atoms, pure plasma acceleration.

Note the transition through ion-sound velocity at around the maximum of magnetic

field (at the center); it is not precise (vi/cs = 1) due to our definition of c2s ≡ Te/mi,

neglecting ion temperature.
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Lz (m) Γ0 (m−2s−1) Te (eV) Ti (eV) R PFC Ta,c (eV) Ta,FC (eV)

3.0 3× 1023 200 100 0.95 0.5 0.1 1.0

Table 4.2: Simulation parameters for the base case with collisions.

4.3.1 Base case with collisions

Here, in addition to the full atom transport model (with radial losses), we include collisions

due to the CX and the ionization process, simulated with the DSMC algorithm. As noted

before, for isotropic electron temperature Te = const = 200 eV, the fixed ionization rate is

used, β = 3.1 × 10−13m3s−1 [117]. CX cross-sections for ion-neutral collisions, taken from

Ref. [117], reaction 3.1.8. The full list of parameters for this case is given in Tab. 4.2. This

case will be refereed as Base case in further experiments.

The main macroscopic quantities for this case presented in Figs. 4.15a-4.15c. Electrostatic

potential drops ∆ϕ decrease about two times (compared with the case with no atoms) due

to additional plasma sources (density) near the wall created by interaction with atoms.

The mean free path for atoms is smaller than that for ions, due to the low average velocity

of atoms, and higher collision frequency ( colliding with ions (CX) and electrons (ionization)).

We define the mean free path for atoms as

λa =
va

n (⟨σv⟩CX + ⟨σv⟩ion)
(4.27)

where va is the atom flow velocity, ⟨σv⟩ denotes the average collision frequency in a cell (CX

or ionization). In practice, collision rates can be obtained as ⟨σv⟩ = S/nani, where S [m3s−1]

is the source term, n is the plasma number density, na is the atom density.
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Figure 4.15: Spatial profiles of plasma and atom density (a), electrostatic potential

(b), and flow velocities of ions and atoms (c). Note that on average fast atoms were

able to penetrate and reach the source and left wall, contrary to the test run without

collisions, where we saw many slow atoms reach the source (who were lost here due to

shorter mean free path).

The mean free path for ions is similar:

λi =
vi

na⟨σv⟩CX

, (4.28)

with the ion flow velocity vi and atom number density na. Both λa, λi are depicted in

Fig. 4.16a in the near-wall region. As expected, λa is smaller, but both species near the wall
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are in the transition flow regime (Knudsen numbers between 0.1 and 10). The collision rate

for CX collisions is about 4× 10−14m3/s, two times of that for ionization, Fig. 4.16b.
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Figure 4.16: Knudsen number parameter for atoms and ions (a) and collision rate
due to charge exchange (b). Note, that ionization collision rate is fixed to βi = 2.1 ×
10−14m3/s due to isothermal electrons.

As we saw previously, the near-wall processes lead to a non-trivial atom source with atoms

in a wide energy range (depicted in Figs. 4.8a-4.9b). The main components are relatively

energetic reflected atoms, slower Franck-Condon atoms, and cold atoms of wall temperature.

Due to a shorter mean free path, cold atoms accumulate, responsible for high atom density

near the wall. With collisions, this picture becomes more complex, as seen in the plot of

the atom velocity distribution function (AVDF) in Fig. 4.17b. CX collisions create one more

atom component, fast atoms (of fast ion velocity) hitting the wall. As for ions, besides being

accelerated through the mirror ion flux, high-density slow ion sources appear due to CX and

ionization; see Fig. 4.17a for the ion velocity distribution function (IVDF). The slice of the

IVDF and the AVDF in the close vicinity to the wall (0.95L) is shown in Fig. 4.18. The slow

ion beam is effectively trapped (for one ion bounce motion) in this region as it reflects by

the magnetic mirror force and the electric field.
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Figure 4.17: Instantaneous plots of velocity distribution functions for ions (a) and

atoms (b) in (z, vz)-space.
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Figure 4.18: Velocity distribution functions for ions and atoms close to the wall (at

z = 0.95L).

110



4.3.2 Ion temperature effect
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Figure 4.19: Spatial profiles of plasma density (a), electrostatic potential (b), ion

velocity (c), and atom density (d). Note that atom density profile is shown in the near-

wall region, its value drop significantly into the channel and thus no collision effects

become negligible.

Increasing the ion temperature of the source was suggested previously [111] as the way to

reduce atom density near the recycling wall, based on the analytical estimates for a stationary

model. Here we present results for various injected ion temperatures Ti = (50, 100, 200) eV,

keeping other parameters the same as in Base case, Tab. 4.2. It is noted that the increased ion
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temperature improves the ion confinement, reducing the ratio of escaped particles reaching

the wall. This is mainly responsible for a lower yield near the wall. Figs. 4.19a-4.19d show

the resulted profiles for macroscopic variables. The atom density decreases with the increase

of ion temperature; this results in a lower plasma density near the wall. As a result, the

electrostatic potential drop across the whole domain is also larger for a higher temperature.
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Figure 4.20: Knudsen number for atoms (a) and ions (b) near the wall.

4.3.3 Instability induced by charged-exchange interactions with cold

atoms

We demonstrate the cases that result in ion-ion streaming instabilities. The counter-streaming

ion configuration is created by the accelerated original ion flow and the cold ion source (due

to CX and ionization) near the wall. The density of the cold ion source is proportional to

the atom density near the wall, which in turn is higher for the cold atom component, cold

desorbed atoms of wall temperature. In this model, it is controlled via the fraction of the

Franck-Condon atoms parameter PFC . It is varied as PFC = (0.2, 0.5, 0.8), while all other

parameters are kept the same as in Base case. The instability develops for PFC = 0.2, with

the largest number of the cold atoms, see IVDF and AVDF in Figs. 4.21a-4.21a. IVDF is

also plotted in the logarithm scale for better visualization, Fig. 4.22.
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Figure 4.21: Instantaneous plots of velocity distribution functions for ions (a) and

atoms (b) in (z, vz)-space, case for low fraction of Franck-Condon atoms, PFC = 0.2.
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Figure 4.22: Instantaneous plot of velocity distribution function for ions (z, vz)-space

(shown in logarithmic scale), case for low fraction of Franck-Condon atoms, PFC = 0.2.
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When the cold atom component is reduced with PFC = 0.8, the flow is stabilized, see the

AVDF and the IVDF plots in Figs. 4.23a and 4.23b. It is worth pointing out that the exact

quantity of the cold atoms is hard to predict in experiments.

The time-dependent behaviour of the main plasma parameters for these cases is demon-

strated with the media files supplemented with the dissertation; the files are also available

online at drive.google.com (hyperlink). The files are named nozzle_all_atoms_pfc0d.mp4,

where d represents the tenth decimal place for the fraction PFC .

The time-dependent evolution is shown for the following quantities, see Fig. 4.24. The

top left and top middle figures show the ion distribution function and the atom distribution

function, respectively. The top right figure shows the ion and atom densities, the left bottom

is for the ion flow velocity, and the middle bottom is for the electrostatic potential. The right

bottom figure shows the ion and atom velocity distributions near the recycling wall (z = L).

Note, that x-axes represent the spatial coordinate along a magnetic field line, normalized to

the system length on the phase space figures and in meters elsewhere.
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Figure 4.23: Instantaneous plots of velocity distribution functions for ions (a) and

atoms (b) in (z, vz)-space, case for high fraction of Franck-Condon atoms, PFC = 0.8.
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Figure 4.24: Single video frame from supplementary video files demonstrating tempo-

ral evolution of the main plasma quantities for the variable fraction of Franck-Condon

atoms PFC .

4.3.4 Sheath effect

This model does not resolve the Debye sheath near the wall with assumed quasineutrality.

It is included as a parameter ∆ϕD and its effect is studied with the three cases: ∆ϕD =

(0, 500, 1000) V (other parameter are identical to Base case). The added sheath further

accelerates ions upon their wall bombardment. This leads to decrease of reflection yield RN

(see Fig. 4.14), thus increasing slow desorbed atoms, due to the balance Eq. (4.18). As we

saw previously, the accumulation of cold atoms near the wall can initiate ion-ion instability.

Both cases with added sheath increase atom density near the wall and trigger the ion-ion

streaming instability. Spatial profiles show a close agreement between these cases, Figs. 4.25a

and 4.25b.

4.4 Summary and conclusions

Divertors for linear fusion devices are commonly designed as magnetic mirrors on both ends

of a device [112, 122]. They help confine the plasma and control the output power (spreading
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(a) (b)

Figure 4.25: Spatial profiles of atom density near the wall (a) and ion velocity in the
whole domain (b), demonstrating effect of sheath potential near recycling wall.

the energy flux into the larger wall area) by the diverging magnetic field lines – expander.

Thus, some plasma-wall contact is unavoidable and, in some cases, can be used to control

plasma potential in the whole system by wall biasing (e.g., for stabilization, confinement).

It is possible due to high electron mobility along magnetic field lines, making the system

global and potentially vulnerable to the perturbations near the wall. Plasma-wall interaction

leads to many effects. Here we focus on the effects related to the recycling of incoming

ions. A population of neutral atoms near the wall leads to additional ionization and plasma

sources that affect the plasma flow by decreasing the overall potential drop and excitation of

instabilities.

For this study, we constructed a hybrid model with drift-kinetic ions, kinetic atoms,

and the Boltzmann model for electrons. The atom transport includes relatively fast reflected

components and slower atoms due to the surface desorption. Atom collisions, charge exchange

(CX) with ions, and ionization by electron impact are also included. It is shown that atoms

due to desorption has the most significant direct effect due to small mean free paths. They

contribute to creating a high-density cold plasma source near the wall. The ions in this source

cannot penetrate deeply into the system as being reflected with both electric field and the

magnetic mirror force. Such an ion source decreases the overall plasma potential, which is

generally harmful to the whole device (increases electron losses from the source).
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One of the findings of this work is the possible excitation of the ion-ion streaming insta-

bility, leading to a high turbulence zone near the wall. The instability generally is triggered

with the sufficiently high density of the cold plasma source. For example, the direct way is

to increase the ratio of the cold atoms near the wall, leading to the high-density cold plasma

source, which is demonstrated in the results of this work. Thus, other mechanisms leading

to the increased cold atom population can potentially trigger the instability.

The overall number of recycled atoms is proportional to the incoming plasma flux (minus

portion defined by a sticking coefficient); thus, its reduction is beneficial for both confinement

and reduction of emitted atoms. We show that with the same incoming plasma flux but

increased ion temperature (in the source), the flux on the wall is smaller [115], and the atom

recycling also decreases. Thus, the plasma source generated near the wall is of relatively low

density, and the decrease in plasma potential drop (over the whole channel) is relatively low.

Among the whole population of atoms, reflected particles have large mean free paths and

thus low density; they are almost transparent for the original ion beam. But in the equilibrium

wall model, they affect the overall recycled balance, Eq. (4.14), thus “controlling” the portion

of desorbed atoms. This indirect mechanism is demonstrated in the example with added

sheath potential (on the recycling wall). Higher sheath potential increases ion bombardment

energy and thus decreases the reflection coefficient RN (Fig. 4.5a). We show that, indeed,

it can lead to the excitement of the ion-ion streaming instability: increased density of cold

atoms caused the cold ion beam with higher density.
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Chapter 5

Summary and conclusion

Plasma physics is a broad subject with numerous applications in the laboratory and

nature. Weakly coupled plasma is subject to complex collective effects (on time scales larger

than plasma frequency and length scales larger than Debye length) that bring a variety of

wave and nonlinear processes. In this thesis, I considered several nonlinear phenomena of

interest for electric propulsion (such as Hall thrusters) and fusion applications. Emphasis

is on the dynamic behaviour of plasma flow and instabilities, taking into account ionization

and other atomic processes such as charge exchange (CX) interaction.

A comprehensive numerical study of the low-frequency axial dynamics of Hall thrusters

was presented in Chapter 2. Breathing modes are low-frequency bulk plasma oscillations

observed in most Hall thrusters. They are commonly recognized today as having a clear

ionization footprint and scaling with atomic fly-by times, thus resulting in low-frequency

5-50 kHz oscillations (atom flow with ∼150m/s in ∼1 cm channel). Plasma and neutral den-

sity exhibit periodic replacements due to ionization, accompanied by oscillations of the total

current, thrust, and other important plasma parameters. Two models, full fluid and hybrid,

were employed to capture the low-frequency modes within the benchmarking LANDMARK

project [36]. We identified two regimes with the breathing modes present: one with the pure

breathing mode of high-amplitude, and the second regime where the breathing mode is of

lower amplitude co-exist with the higher frequency resistive modes. Both models confirmed

these two regimes. During the benchmark study, it was shown that the ion pressure could

not be neglected in the fluid model in the presence of the resistive modes (for their accurate

representation). Additionally, the ion heating effect caused by the resistive modes was ob-

served, suggesting that the ion energy balance equation should be resolved in the fluid model.

For the case with the pure (solo) breathing mode, it was found that near-anode dynamics
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play a key role; it was investigated further.

In Chapter 3 we propose a mechanism for the solo breathing mode regime, highlighting

the importance of the ion backflow region, which complements the common picture of the ion-

ization nature of breathing modes. The ion backflow is the region with a negative ion velocity

near the anode (with a negative electric field); it is formed due to the large contribution of the

electron diffusion to the total current. Using a simplified (reduced) fluid model, employing

only continuity equations for ions and atoms (resolving time and axial space coordinates),

we show that the ion backflow gives rise to periodic low-frequency oscillations that scale with

the size of the ion backflow region. Feeding our reduced model with the actual velocity and

ionization rate profiles from more complete models (obtained in the previous Chapter), we

show confident similarity in the density behaviours, thus isolating the mechanism for ion

and atom dynamics in the presence of a large presheath region. This region is similar to

the presheath region near the plasma-wall boundary, but the mechanism is different. The

presheath obtained in this model occurs in a purely quasineutral plasma. The electric field

toward the anode appears due to a density gradient in the anode region providing the ad-

ditional current, so the negative electric field is induced to maintain quasineutrality. This

study demonstrates that electron diffusion cannot be ignored in models of axial dynamics of

a Hall thruster. A presence of a self-consistent presheath region can destabilize low-frequency

modes. Standard zero-dimensional predator-prey models miss this mechanism and do not

predict the instabilities.

Dynamic behaviour of plasma flow is important for many other applications, in particular

for open-mirror-based fusion systems. A particular topic considered in Chapter 4 is related

to a divertor in open-ended large-scale fusion devices. The converging-diverging magnetic

field (magnetic mirror) is used to confine the plasma in the fusion core. Inevitably, plasma

leakage (losses in a magnetic mirror) through the ends of the mirror trap create flows accel-

erated to supersonic velocities (in established global electrostatic potential structure). The

plasma (ion) flow to the wall is accompanied by the wall recycling process in which ions

bombarding the wall are neutralized and returned back to plasma. Then the near-wall region

becomes contaminated with neutral atoms of various energy. These neutrals can interact

with ions via the CX process resulting in the ion streams of different energy, which modifies
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the global electric field and produce two-stream instabilities. The hybrid model with drift-

kinetic ions, fluid (Boltzmann) electrons, and kinetic neutral atoms was developed to study

such processes, global plasma flow in the magnetic mirror, and near-wall atomic interactions.

CX and ionization collisions are simulated via the direct simulation Monte Carlo (DSMC)

method. The collision events in this setup are rare, with Knudsen numbers in the range

0.1-10. Thus, the DSMC method is justified for the accurate evaluation of collision rates

in regimes with non-Maxwellian distributions. We demonstrate its initial capabilities on a

few test cases of divertor configuration and full atom transport model. The model predicts

some results reported before, e.g. that high ion energy in the source reduces the neutral

emission and improves confinement. Additionally, we demonstrate a possible development

of the ion-ion streaming instability due to the low-energy ion source arising via neutral CX

and ionization. It is shown that a large fraction of slow atoms (due to desorption) present

near the wall effectively triggers the instability. Thus removal of this atom component can

be beneficial for the device operation.

Results of additional exploratory studies related to Hall thruster modeling are presented in

Appendices. In Appendix A a model of dynamic anomalous electron mobility is formulated,

which explicitly takes into account the dependence of electron mobility on the local value

of the electric field. In Appendix B one-dimensional fluid model extension is presented,

supplementing electron inertial effects to the drift-diffusion electron model. Appendix C

the system of full nonlinear fluid equations with ionization is formulated for two-dimensional

case (axial-azimuthal). In Appendix D, a simple control algorithm based on the proportional-

derivative controller is demonstrated; its proof of principle is shown for stabilization of the

breathing mode by modulation of the applied potential.
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Appendix A

Dynamic anomalous resistivity (Chodura)

The Bohm mobility was used in our models for electron anomalous current in the axial
model of a Hall thruster. The anomalous current is often due to azimuthal microinstabilities,
e.g. electron-cyclotron drift instability [123, 124, 125, 11, 39, 40, 42]. The semi-empirical
Chodura anomalous resisitivity was proposed earlier [126], which can be expressed as the
collision frequency

νch = cωpi

(
1− exp

(
− Vd

fcs

))
, (A.1)

where ωpi =
√

e2n/ε0mi, Vd = E/B, cs =
√

Te/mi, c and f are free parameters. The
anomalous collision frequency depends on the electric field, plasma density, and electron
temperature that all are dynamic variables. The Chodura collision frequency can be added
in the same way as Bohm diffusion, into classical cross-field mobility expression, Eq. (3.24).
One can account νch only for a region in space with vd/cs > 1. One can also introduce a time
lag of the order 1/ωpi, as a typical time required for such instabilities to grow.
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Appendix B

Electron inertia

Account for electron inertia effects is important for more accurate prediction of the resis-
tive modes [64].

∂ve

∂t
+ ve · ∇ve =

e

me

∇ϕ− ωceve × b− 1

neme

∇pe − νve, (B.1)

One evaluates the electron drift velocity from Eq. (B.1) by multiplying by b×:

ve⊥ = vE + vpe −
ν

ωce

b× v⊥ − 1

ωce

(
∂ve

∂t
+ ve · ∇ve

)
, (B.2)

which, expanded in a small parameter 1/ωce gives [38]:

ve⊥ = vE + vpe + vI + vν , (B.3)

where in the right-hand side the drifts due to ExB, magnetic, inertial, and due to collisions,
respectively, expressed as

vE =
e

ωceme

b×∇ϕ, (B.4)

vpe =
1

ωceneme

b×∇pe, (B.5)

vν =
ν

ωce

b× (vE + vpe) , (B.6)

vI = − 1

ωce

b×
[
∂

∂t
(vE + vpe) + (vE + vpe) · ∇ (vE + vpe)

]
, (B.7)

withve ≈ vE+vpe used in the inertial drift velocity. Diagram with directions of drift velocities
is shown in Fig. B.1.

x

z

−y

E,∇pe

B0

vE,vpe

Figure B.1: Drift directions.
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Neglecting density gradients in other than axial direction, with electric field along x-
direction, and magnetic field along z, we have:

vex = vIx + vνx, (B.8)

where
vIx = − 1

ωce

∂

∂t

(
µeEx −

µe

ene

∂pe
∂x

)
, (B.9)

and thus
vex = µeEx −

µe

ene

∂pe
∂x

− 1

ωce

∂

∂t

(
µeEx −

µe

ene

∂pe
∂x

)
, (B.10)

where µe = νc/ωceB0. Quasineutrality leads to divergence-free total current

∂

∂x

[
nµeEx −

µe

e

∂pe
∂x

+ nvi −
∂

∂t

(
nµeEx −

µe

e

∂pe
∂x

)]
= 0, (B.11)

obtained by the addition of electron and ion continuity equations. Now, with some re-
arrangement one can write

∂η

∂t
= η +

∂

∂x
(nvi) , (B.12)

where
η =

∂

∂x
(nµeEx −

µe

e

∂pe
∂x

), (B.13)

rewritten for potential the inversion problem is

η = −nµe
∂2ϕ

∂x2
− µe

e

∂2pe
∂x2

, (B.14)

where ϕ is found by inverting Eq. (B.14) with the boundary conditions ϕ(0) = U0, ϕ(L) = 0.
In summary, compared to the axial model without electron inertia, here we obtain an

additional time-dependent equation (B.12) and inversion problem for the potential is modified
to Eq. (B.14).
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Appendix C

Two-dimensional extension (axial-azimuthal) of fluid

model with ionization

One-dimensional fluid model for the axial direction of a Hall thruster, developed in Chap-
ters 2,3, use the phenomenological model for anomalous electron current. Here we formulate
two-dimensional equations that include the azimuthal (periodic) direction. The goal is to cap-
ture the physics of electron current more accurately, with the instabilities in the azimuthal
direction defining the axial electron mobility. Previously, nonlinear axial-azimuthal fluid
simulations were performed for perturbed variables [38], assuming constant gradients within
stationary equilibrium profiles, also without neutral dynamics and ionization processes.

Here I present the mathematical formulation of the 2-D fluid model in full variables,
with neutral atoms and ionization. Here the electron energy is assumed constant; it should
be included in the time-dependent element of the model, similarly to Eq. (2.6). Cartesian
coordinates x, y, z represent the axial, azimuthal, and radial direction of a Hall thruster,
respectively. Ion dynamics described with the continuity and the momentum balance equa-
tions:

∂ni

∂t
+∇ · (nivi) = βnnni, (C.1)

∂vi

∂t
+ vi · ∇vi =

e

mi

E+ βnnvi. (C.2)

Electrons are represented only with the momentum balance equation (neglecting inertia):

0 = eEx −
∂xpe
ni

+ ωcevy + νvx, (C.3)

0 = eEy −
∂ype
ni

− ωcevx + νvy, (C.4)

which results into

ve = µe∧E×B+ µeE− µe

ni

∇pe −
µe∧

ni

∇pe ×B, (C.5)

where

µe∧ =
e2

m2
eν

2

1

1 + ω2
ce/ν

2
=

e

mν
µe, (C.6)

and µe is the classical expression for cross-field electron mobility (3.24). If ionization frictional
force βnnve is included in Eqs. (C.3,C.4), ionization frequency βnn adds up to ν, so ν →
ν+βnn. Also, it can be noted that in absence of collisional effects (ν = 0), Eq. (C.5) reduces
to ve = vE + vpe, where vE is the E × B drift velocity, vpe is the diamagnetic drift velocity.
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Continuing with the model, subtracting electron and ion continuity equations and including
the Poisson equation ∇2ϕ = 4πe (ni − ne) gives

1

4πe

∂∇2ϕ

∂t
+∇ · (nve − nvi) = 0, (C.7)

and substituting electron drift velocity (C.5) one can solve
1

4πe

∂η

∂t
− nµeη −∇ (nµ) · ∇ϕ+∇ · (µe∇pe)−B0

{
nµe∧, ϕ

}
−

−B0

{
µe∧, pe

}
−∇ · (nvi) = 0, (C.8)

where the operator {.} denotes the Poisson brackets. Along with time dependent equations
for η = ∇2ϕ, it needs to be inverted (with proper boundary conditions) for evaluation of
potential ϕ. The full normalized system of equations: (stars are omitted, normalization
scheme is given below)

∂nn

∂t
+ va · ∇nn = −βnnni, (C.9)

∂ni

∂t
+∇ · (nivi) = βnnni, (C.10)

∂vi

∂t
+ vi · ∇vi = E+ βnnvi, (C.11)

1

4π

∂η

∂t
− nµeη −∇ (nµ) · ∇ϕ+∇ · (µe∇pe)−

{
nµe∧, ϕ

}
−

−
{
µe∧, pe

}
−∇ · (nvi) = 0, (C.12)

where ∇2ϕ = η is solved (inverted) at every time step. Boundary conditions in axial direction
for η are fixed are fixed to η(0, y) = η(Lx, y) = 0. Note that despite neglected electron
inertia, the above system is non-quasineutral. In quasineutral approximation, one obtains
the following equation for the electric potential:

−∇ · (nµ∇ϕ) +∇ · (µe∇pe)−∇ · (nµe∧∇ϕ×B)−
∇µe∧ · ∇pe ×B−∇ · (nvi) = 0, (C.13)

which is solved as the boundary value problem, with the specified potential ϕ(0, y) = U0,
ϕ(Lx, y) = 0.

Normalization scheme

System length Lx (in axial direction) and ion-sound velocity cs =
√
Te/mi for a typical

electron temperature, Te = 20 eV, are chosen as basis for normalization. They form the
characteristic frequency f0 = cs/L. Densities are normalized to the neutral density at the
anode N0 = na(0, t) for a given flux (without recombination effect). Normalization scheme:

t∗ = f0t, x∗ =
x

L0

, E∗ = E
eL0

miV 2
0

, j∗ =
j

eN0V0

, µ∗
e = µe

mif0
e

, β∗ =
βN0

f0

where mi is the ion mass, e is the elementary charge. Normalization for η and µe∧:

η∗ =
ηeL2

0

miV 2
0

, µ∗
e∧ =

µe∧m
2
i f

2
0

e2
. (C.14)
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Appendix D

Stabilization of axial modes with circuit control

algorithms

Hall thrusters operate in regimes that may be ineffective or prone to various oscillations
(such as breathing modes). One can approach this issue by introducing a control or search
algorithm for specific external parameters, such as applied voltage, magnetic field, input mass
flow, etc., to obtain a better operation regime. The problem can be formulated in finding a
specific set of fixed external parameters (by performing a search in parameter space), or more
generally, to vary them dynamically in time, to achieve some goal “on the go”. The desired
goal or working regime can be a regime with constant power, constant current, maximum
efficiency, thrust, etc.

Figure D.1: Total current as a function of time. Dashed line represent a time when
PD control was turned ON.

Here, a simple PD (proportional-derivative) controller is applied to the model of breathing
mode recovered in the fluid model, given in Chapter 2, Case 2. We only will dynamically
control the applied voltage U0, Eq. (2.16), in order to keep the constant total power P , which
generally depends on time as P = ITU0(t). The error function is defined as

e(t) = P − U0(t)I(t), (D.1)

where U0(t) and I(t) are instantaneous applied voltage and total current in the system,
respectively. The value of P is fixed, it is chosen as P = IavU0, with the average current
resulted from natural breathing oscillation Iav and U0 = 300V. Finally, the applied voltage
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U0(t) is adjusted dynamically accordingly to the PD algorithm:

U0(t) = Kpe(t) +Kd
de(t)

dt
, (D.2)

where Kp, Kd are proportional and differential coefficients, respectively. The second term of
the right-hand side is discretized as Kd(e(t) − e(t −∆t)), where ∆t = 0.4µs. Interestingly,
we obtained a fully stationary solution by applying the PD controller to the oscillatory
(breathing) model, see Fig. D.1. The applied voltage is adjusted in such a way to keep the
power constant, and it stabilizes the breathing mode. Note that if PD control is switched
off after the stationary state is achieved, the oscillations will start shortly thereafter. We
believe this can be used to study the excitation mechanisms of such oscillatory behaviour
(e.g., measure its linear growth rate).
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