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Abstract

Under extreme conditions such as temperature and pressure, the chemical bonding, electronic

structures and properties of materials undergo significant changes that leads to the discovery

of new and unusual chemical species not obtainable at ambient conditions. Hence, chemical

bonding plays a significant role in the description of systems in physics, solid state chemistry,

material science etc. This makes the study and immense understanding of the structure

and chemical bonding of solids significant and constitutes one of the main objectives of

this thesis. The second part of this thesis employed state-of-the-art ab initio molecular

dynamics simulation to reconstruct the phase transition in elemental Cs. Also, the Bethe-

Salpeter Equation (BSE) was used to calculate the X-ray Absorption Spectra (XAS) and Non-

Resonant Inelastic X-ray Scattering (NRIXS) spectra of crystalline ice Ih and compressed

water.

In the first project, the structure and bonding analysis of K2Ag and K3Ag intermetallics

were studied at 4.0GPa and 6.4GPa respectively by employing all available bonding analysis

methods. Analysis of the K2Ag reveal the K atom transfers electrons to the Ag atom and

forms K-K, K-Ag and Ag-Ag closed shell interactions with the K-Ag being the strongest

bond interaction present in the compound. Contrary to the K2Ag, topological analysis of

the K3Ag yielded no Ag-Ag bond interaction. This is due to the very large bond length of

the first nearest neighbour Ag-Ag interaction. All the plane wave and localized basis set

dependent bond analysis methods employed gave consistent results. However, the projected

density of state (PDOS) computed using the localized basis set method implemented in the

LOBSTER code should always be checked against the PDOS calculated using a plane wave

method before validating the crystal orbital overlap population (COOP) and crystal orbital

Hamiltonian population (COHP) results from the LOBSTER code. In summary, the results

from this study show that, all the bonding analysis techniques should be carefully applied

when treating high pressure systems, due to the extensive modification of the electron density

on application of pressure. Hence, a naive localized description is not appropriate and may

lead to erroneous interpretation.
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The second project focused on the analysis of bonding in the three phases of Na-Au inter-

metallics following the benchmark established in the first project. Analysis of the phase I

Na2Au structure at 0.83GPa revealed the presence of non-nuclear maximum (NNM) in the

structure commonly known as electrides. The obtained NNMs were found to form off the

Na atoms in agreement with the experimental maximum entropy method (MEM) analysis.

The experimental structure of the Phase II Na3Au intermetallics was found to have either a

trigonal Cu3As or hexagonal Cu3P-type structure. The two structures could not be distin-

guished from experiment and DFT equations of state. However, through topological analysis

of both structures, only the tetragonal structure does satisfy the Morse sum and is thus said

to be the accurate phase II structure as it is topologically stable. Further analysis of the

topologically stable phase II structure at 2GPa and the phase III Na3Au at 51.7GPa yielded

no NNMs. This implies the Na-Au intermetallics are stabilized by decreased localization of

electrons at the interstitial sites at high pressure, contrary to elemental alkali metals that

show increased localization of interstitial electrons at high pressure. Finally, Bader’s quan-

tum theory of atoms in molecule (QTAIM) revealed all the bond interactions present in the

structures are closed shell interactions.

The third project reconstructs the phase transition paths of elemental Cs around the complex

Cs-III in other to define the transition mechanism. In addition, topological properties of the

Cs-II, Cs-III and Cs-IV structures were examined and the result show electrides in the three

phases. The molecular dynamics results reveal the transition in the Cs-III→ Cs-IV and Cs-II

→ Cs-III transformations are typical crystalline solid-solid transitions with no evidence of

melting in the transition states. In addition, the transformation mechanism observed in the

Cs-III → Cs-IV is not martensitic ( i.e a transformation that occurs through a diffusionless

cooperative motion of all the atoms in a transformation region) rather it occurs through

nucleation and growth. The Cs-II → Cs-III transformation on the other hand was found

to occur through a cooperative motion of all the atoms in the super cell. Also the results

suggest existence of a very large activation barrier for the reverse transformation to Cs-II

from a backward (i.e Cs-III → Cs-II) transition.
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In the final project, BSE method was employed to calculate the XAS and NRIXS of crys-

talline ice Ih and compressed water at different momentum transfer values. Theoretical spec-

tra computed using snapshots from the PICMD simulation performed here yield results in

good agreement with experiment for both water and ice Ih. Further analysis of the trajecto-

ries revealed the water maintain approximate tetrahedral coordination and not dramatically

different from crystalline ice. Also the results show dense water form interpenetrating hy-

drogen bonds by compressing the second nearest neighbour water molecules into the first

coordination shell similar to the behaviour of high density ice.
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Chapter 1

INTRODUCTION AND THEORETICAL

METHODS

Materials under extreme conditions such as high temperature and high pressure undergo

significant changes in their chemical bonding, electronic structures and properties which leads

to discovery of unusual chemical species not obtainable at ambient conditions. Over the last

decades, high pressure research have enormously advanced, thanks to the development of

various experimental pressure devices such as diamond anvil cell (DAC) [12, 13, 14, 15, 16, 17]

and progress in many essential techniques such as X-ray and neutron scattering, infrared and

Raman spectroscopy, needed to characterize new compounds. Contrary to experiments where

high pressure is not easy to reach and control in a DAC, numerical simulations are fast, of

low-cost and adjusting pressure can be straightforwardly achieved by varying the unit cell

size. Recent software advancements and increased computational power have put numerical

simulations at the forefront of the exploration of physics, chemistry, material science etc.

under high pressure. First principle computer simulation methods have over the years played

a key role in the exploration and guiding of experiments under pressure with tremendous

increase in the accuracy of predicted physical properties and complexity of materials able to

be studied. High pressure materials studies involves decrease in atomic volume and increase

in the electronic density thus changing the structure and chemical bonding of the system

which plays a significant role in the description of systems in physics, solid state chemistry,

material science etc. This makes the study and immense understanding of the structure and

chemical bonding of solids significant and constitutes one of the main objectives of this thesis.

In the well known molecular orbital (MO) theory, atomic orbitals of comparable energy

and identical symmetry overlap to form molecular orbitals. For two atomic orbitals, the
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orbital overlap can occur in two ways depending on the phase relationship of the atomic

orbitals, where an orbital’s phase is a direct consequence of the wave-like properties of elec-

trons [18]. The orbital phase can be denoted by a plus or minus sign (the signs does not

have any physical meaning by itself except when overlapping orbitals to form a molecular

orbital). During atomic orbital overlap, same-sign orbitals overlap constructively to form a

bonding orbital while a destructive overlap (formed by orbitals of different sign) constitute

the antibonding orbital. Figure 1.1 is a molecular orbital diagram of the H2 molecule and

show the electrons from each hydrogen atom constructively overlap to form a lower energy

molecular orbital known as a σ bond (in wave function representation ψσ = c1ψ
a
1s + c2ψ

b
1s is

the wavefunction of the bonding orbital where c1 and c2 are positive expansion coefficients of

each atomic wavefunction ψa1s and ψb1s respectively). On the other hand, the higher energy

σ∗ is the antibonding orbital with ψσ∗ = c1ψ
a
1s − c2ψ

b
1s. Also the bond order (BO) is simply

the difference between bonding electrons and antibonding electrons divided by two because

a bond consist of two electrons i.e BO = ((number of bonding electrons) - (number of anti-

bonding electrons))/2. At high pressure, bonding description is not as trivial as the simple

H2 molecular orbital description. This is mostly due to the modification of atomic orbital by

application of pressure and thus electrons are widely delocalized.

Figure 1.1: Schematic of the molecular orbital of H2. The black arrows represents the
electrons while σ and σ∗ are bonding and antibonding molecular orbitals respectively.
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However, there are currently several computational approach to analyze the structure

and bonding in periodic solid state systems, some of which include, Electron Localization

function (ELF) based on Density Functional Theory (DFT), Natural Bond Orbital (NBO)

analysis [19, 20, 21, 22, 23], Solid State Adaptive Natural Density Partitioning (SSAdNDP)

[24], Maximally Localized Wannier Functions (MLWF) [25], Crystal Orbital Hamiltonian

Population (COHP) analysis [26] and Quantum Theory of Atoms in Molecules (QTAIM)

[27, 28, 29, 30]. The aforementioned methods have been employed in this thesis and are

described in the preceding sections. The atom which is made up of electrons and nuclei

holds the underlying science while studying any material. A system of electrons and nuclei

is governed by the Schrödinger equation postulated by Erwin Schrödinger in 1925 and is

represented mathematically as

Ĥ(r, R)Ψ(r, R) = EΨ(r, R) (1.1)

where r and R are the electronic and nuclear coordinates respectively, Ĥ is the Hamiltonian

of the system, E the energy and Ψ the many-particle wave function. Hence one can obtain

the electronic structure of the system by solving the Schrödinger equation associated with

the electronic molecular Hamiltonian defined in Eq.1.1. The dynamics of the system obey

the time-dependent Schrödinger equation which has the form:

Ĥ(r, R, t)Ψ(r, R, t) = i~
∂

∂t
Ψ(r, R, t) (1.2)

The general Hamiltonian of the system in atomic units is given by Eq.1.3

Ĥ = −1

2

Nn∑
I=1

∇2
I +

Nn∑
I=1

Nn∑
J>I

ZIZJ
1

|RI −RJ |

− 1

2

Ne∑
i=1

∇2
i +

Ne∑
i=1

Ne∑
j>i

1

|ri − rj|
−

Ne∑
i=1

Nn∑
J=1

ZJ
1

|ri −RJ |

(1.3)

where R and r are the nuclear and electronic coordinates respectively, Nn and Ne are the

number of nuclei and electrons, and Z is the atomic number. The first term in Eq.1.3 is the
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nuclear kinetic energy (Tn), the second term is the nuclei-nuclei Coulomb repulsion (Vnn),

the third term is the electron kinetic energy (Te), the fourth term is the electron-electron

Coulomb repulsion (Vee) and finally the last term represents the nuclei-electron potential

(Vne).

This Schrödinger equation is a second order differential equation in 3Nn and 3Ne coordinates,

hence it is difficult to solve analytically except for some special cases such as particle in a box,

harmonic oscillator and hydrogen atom. Certain approximations have to be made in order

to solve it for a system of Ne electrons and Nn nuclei. One of the first approximations made

was the Born-Oppenheimer (BO) approximation which was introduced by Max Born and J.

Robert Oppenheimer in 1927 [31]. The central claim of this approximation was that given

a system of Nn nuclei and Ne electrons, the movement of the electrons and nuclei can be

separated because the mass of the electrons is very much smaller than that of the nuclei and

their velocities are consequently much larger than that of the nuclei. Hence, as a consequence

of their approximation, one can thereby describe the electronic structure independent of the

nuclei and allow the electrons to relax to optimal eigenstates even before the nuclei move to

the next arrangement. The Hamiltonian in Eq. 1.3 reduces to an electronic Hamilonian of

the form:

Ĥe = −1

2

Ne∑
i=1

∇2
i −

Ne∑
i=1

Nn∑
J=1

ZJ
1

|ri −RJ |
+

Ne∑
i=1

Ne∑
j>i

1

|ri − rj|
(1.4)

The kinetic energy of the nuclear Coulomb potential can now be considered to be constant

for a given nuclear configuration within the Born-Oppenheimer approximation. Also, the

electronic motion in an external potential are said to be due to Coulomb interactions between

the electrons and the nuclei. Hence, the simplified electronic Hamiltonian presented in Eq.1.4

depends only parametrically on the nuclear coordinates. Following the advent of the Born-

Oppenheimer approximation, several methods have been developed to solve the electronic

Schrodinger equation and some of the methods which make different approximations to solve

this Ne electrons and Nn nuclei system include: the Density based methods such as Density

Functional Theory etc.
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1.1 Density Functional Theory (DFT)

In DFT, the problem is redefined in a computationally different manner. Instead of the wave

function , density functional theory allows us to express the properties of an atom or molecule

in terms of the electron density which is a much simpler object than the wavefunction. The

equations for determining the orbitals are called the Kohn-Sham equations:

[−1

2
∇2 −

∑
A

ZA
1

| r −RA |
+

∫
ρ(r′)

1

| r − r′ |
dr′ + Uxc(r)]φi = εiφi (1.5)

Where the exchange potential and the electron correlation are embedded in Uxc(r). The

theorem of Hohenberg-Kohn is the basic foundation of the density functional theory [32].

1.1.1 Hohenberg-Kohn Theorem

The theorem states that the external potential v(r) in an N-electron system is a unique func-

tional of the ground state electron density ρ(r) apart from a trivial additive constant [32].

In other words the density determines everything about the system. The proof that v(r) is

a unique functional of ρ(r) apart from a trivial additive constant was shown by Hohenberg-

Kohn [32] as follows:

let the Hamiltonian of an N electron system subject to an external potential v(r) and

Coulomb repulsion be written as

H = T + V + U (1.6)

where,

T ≡ 1
2

∫
∇ψ∗(r)∇ψ(r)dr, V ≡

∫
v(r)ρ(r)dr and U = 1

2

∫ ρ(r)ρ(r′)
|r−r′| drdr

′

The electronic density ρ(r) in the ground state Ψ is given by

ρ(r) =
∑
i

|Ψi(r)|2 (1.7)
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Assume there are two distinct potentials v(r) and v′(r) with distinct Hamiltonians H and

H ′ but having the same density ρ(r), with ground state energies and wavefunctions given by

E0, ψ(r) and E ′0, ψ′(r) respectively. From the Schrödinger equation

H ′ |Ψ′〉 = E ′0 |Ψ′〉 (1.8)

applying 〈Ψ′| to the above equation yields

〈Ψ′|H ′ |Ψ′〉 = E ′0 〈Ψ′| |Ψ′〉 (1.9)

by orthornormality of the wavefunction 〈Ψ′| |Ψ′〉 = 1

⇒ E ′0 = 〈Ψ′|H ′ |Ψ′〉 (1.10)

Similarly,

E0 = 〈Ψ|H |Ψ〉 (1.11)

⇒ E ′0 = 〈Ψ′|H ′ |Ψ′〉 (1.12)

by the minimal property of the ground state we have that;

E ′0 = 〈Ψ′|H ′ |Ψ′〉 < 〈Ψ|H ′ |Ψ〉 (1.13)

rewriting Eq.1.6 in terms of H ′ and subtracting the two we have

H ′ = H + V ′ − V (1.14)

substituting the above equation for H ′ in Eq.1.13 we have;

E ′0 < 〈Ψ|H + V ′ − V |Ψ〉 (1.15)

6



so that,

E ′0 < E0 +

∫
[v′(r)− v(r)]ρ(r)dr (1.16)

interchanging primed and unprimed quantities we find in exactly the same way that

E0 < E ′0 +

∫
[v(r)− v′(r)]ρ(r)dr (1.17)

Adding these two equations (Eq.1.16 and Eq.1.17) gives:

E0 + E ′0 < E0 + E ′0 (1.18)

which is a contradiction. Thus two distinct potentials cannot give the same electron density

and the same number of electrons. This implies that ρ(r) determines N and a unique V and

hence determines the Hamiltonian and therefore all the wavefunctions and all the energies.

1.1.2 Kohn-Sham Formalism

Here, the total energy is expressed as a functional of the density:

E[ρ] = Ts[ρ] +

∫
vextρ(r)dr + EH [ρ] + Exc[ρ] (1.19)

where Ts is the kinetic energy that can be written in terms of the Kohn-Sham orbitals as:

Ts[ρ] =
N∑
i=1

∫
drφ∗i (−

1

2
∇2)φi(r) (1.20)

vext is the external potential on the system and EH is the Coulumb (or Hartree) energy:

EH =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

| r − r′ |
(1.21)

Exc is the exchange-correlation energy. Kohn-Sham equations are obtained by the variation
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of the total energy with respect to a set of orbitals to give the Kohn-Sham potential [33],

veff (r) = vext(r) +

∫
ρ(r′)

| r − r′ |
dr′ +

δExc[ρ]

δρ(r)
, (1.22)

where vxc(r) = δExc(r)
δρ(r)

is the exchange-correlation potential. Thus the equation satisfied by

the system can be written as:

(−1

2
∇2 + veff (r))φi(r) = εiφi(r). (1.23)

In contrast to the first three terms on the right hand side of equation (1.28) for which the

exact analytic dependence on ρ could be determined, the analytic form of the ρ dependence

of Exc[ρ] is not known. In practice, certain approximations are used for the expression of

Exc[ρ]. It is important to note that orbitals are still used in DFT calculations because there

is no good kinetic functional.

1.2 Exchange-Correlation Approximations

As previously noted above, lack of knowledge on the exact value of the exchange-correlation

functional is one of the main challenges faced in the application of density functional theory.

However, several approximations have been developed to represent the exchange-correlation,

hence, a concise discussion of the most widely used; Local Density Approximation (LDA) [34]

and Generalized Gradient Approximation (GGA) [35, 36] is presented here. The local density

approximation is the simplest approach used to represent the exchange-correlation energy in

density functional approximation. In the LDA approximation, the homogeneous density ρ0 in

the exchange-correlation energy density of the homogeneous electron gas εhomxc (ρ0) is replaced

by the inhomogeneous density ρ(r):

εLDAxc (ρ(r)) = εhomxc (ρ0) |ρ0=ρ(r) . (1.24)
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Thus the exchange-correlation energy functional now has the form;

ELDA
xc [ρ(r)] =

∫
εLDAxc ρ(r)d3r. (1.25)

Due to the fact that the LDA approximation was derived from the uniform electron gas

model, it was saddled with some limitations mostly for covalent materials with rapidly varying

electron densities.

EGGA
xc [ρ↑, ρ↓] =

∫
εxc(ρ↑, ρ↓,∇ρ↑ ,∇ρ↓)ρ(r)d3r (1.26)

Hence, since real materials have a strong varying density, the generalized gradient approx-

imation functional was introduced and is written as a combination of the local electron

density and the spatial variation in the electron density which is expressed as the den-

sity gradient [35, 36]. The general form of the functional is given in equation 1.26. The

Perdew–Burke–Ernzerhof (PBE) [37] formalism of the GGA have been used in all the calcu-

lations performed here.

1.3 Natural Bonding Orbital (NBO) and Adaptive Nat-

ural Density Partitioning (AdNDP)

The natural bonding orbital (NBO) analysis by Weinhold [19] constructs the Lewis structure

of a given molecule in an a priori manner and being extremely computationally efficient,

the method is the first choice in dealing with the widest range of systems [38]. NBOs are

important because they provide a valence bond-type description of the wavefunction in re-

lation to the classical Lewis structure concepts [19]. Lots of literature [39, 40, 41, 42] have

shown that combination of the localized and delocalized (aromatic/antiaromatic) description

can consistently explain structures and properties of the main group element and transition

metal clusters. From a computational point of view, the adaptive natural density partitioning

(AdNDP) is a generalization of Wenhold’s NBO analysis.
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If the first order density operator is given by

γ(1|1′) = N

∫
ψ(1, 2, . . . , N)ψ∗(1′, 2, . . . , N)d2. . .dN (1.27)

where 1 and 1′ are abbreviations for x1 and x1
′ and the matrix element (expectation value)

of Eq.1.27 is

Pkl =

∫
χ∗k(1)γ(1|1′)χl(1′)d1d1′ (1.28)

then γ(1|1′) can be expanded in a complete orthonormal basis set of atomic orbitals {χk} as

follows

γ(1|1′) =
∑
kl

Pklχk(1)χ∗l (1
′) (1.29)

The set of atomic hybrids which form bond orbitals χk with maximum occupancy should be

considered optimal because approximate wavefunctions constructed from the found χk will

best overlap the original wavefunction [38].

Based on the condition of maximum occupancy, the search for maximum occupancy hybrids

can be performed numerically but it’s a computationally expensive procedure, so an alterna-

tive approach is used.

The density matrix is represented in the block form

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P 11 P 12 . . . P 1N

P 21 P 22 . . . P 2N

. . . . . . . . . . . .

P i1 P i2 . . . P iN

. . . . . . . . . . . .

PN1 PN2 . . . PNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.30)

where block Pjj corresponds to the jth atomic block. If we consider the density due to the

valence electrons, the eigenvalue problem of the form

Pjjh
(j)
l = n

(j)
l Sjjh

(j)
l (1.31)
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gives n
(j)
l close to 2, hence the eigenvector h

(j)
l can be seen as describing a lone pair on center

j. Note Pjj is the density matrix sub-block on the jth center, Sjj is overlap matrix, h
(j)
l and

n
(j)
l are the lth eigenvector and eigenvalue of Pjj respectively. Vectors available for bonding

with other centers are identified by their eigenvalues which are significantly less than 2.By

diagonalizing the matrix sub-blocks, including the centers of interest and corresponding off

diagonal blocks, these vectors can be recovered i.e 2 × 2 sub-blocks of the form

P (ij) =

P ii P ij

P ji P jj

 (1.32)

can reveal 2c-2e bonds between centers i and j (eigenvectors h
(ij)
l with eigenvalues n

(ij)
i close

to 2), 3 × 3 sub-blocks

P (ijk) =


P ii P ij P ik

P ji P jj P jk

P ki P kj P kk

 (1.33)

can reveal 3c-2e bonds between centers i, j and k and so on.

After n-center eigenvectors (on the centers i, j, . . . k-total n) are obtained, there is need to

deplete the full density matrix P from the density associated with the found bonding objects

(n centers eigenvectors with eigenvalues close to 2)

P̃ ≡ P − n(ij...k)
l h

(ij...k)
l h

(ij...k)
l (1.34)

After depletion the search for (n + 1)-center occurs without mixing near degenerate n- and

(n + 1)-center eigenvectors.

So, NBOs are obtained as local block eigenfunctions of the one-electron density matrix and

have optimal convergence properties for describing the electron density. The implementation

of the algorithm for the search of n-center 2-electron bonding objects is called adaptive natural

density partitioning. AdNDP is based on the diagonalization of the n-atomic sub-block of

the density matrix (full or depleted) of N -atomic molecular system in the basis of natural

atomic orbitals (NAO) [38]. These NAOs are localized 1-center orbitals that can be described

as the effective natural orbitals of an atom in its molecular environment.
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1.4 Bloch Functions and Wannier Functions

Periodic boundary conditions are often used in electronic structure calculations. The one

particle effective Hamiltonian H then commutes with the lattice translation operator TR,

allowing one to choose as common eigenstates the Bloch orbitals |ψnk〉:

[H,TR] = 0⇒ ψnk(r) = unk(r)eik·r (1.35)

where unk(r) has the periodicity of the Hamiltonian and ψnk(r) is called the Bloch wave

function[25].

To get a localized wave packet in real space requires the use of a very broad superposition in

K space. But K lives in the periodic Brillouin zone, so the best we can do is to choose equal

amplitudes all across the Brillouin zone. Thus, we can construct

w0(r) =
V

(2π)3

∫
BZ

dKψnk(r) (1.36)

where V is the real-space cell volume and the integral is carried over the BZ. The above

Eq.1.36 can be interpreted as the Wannier functions (WFs) located in the home unit cell.

We can insert a phase factor eik·R into the integrand in Eq.1.36, where R is a real-space

lattice vector. Hence in Dirac Bra-Ket notation we can write,

|Rn〉 =
V

(2π)3

∫
BZ

dKe−ik·R |ψnk〉 , (1.37)

where Rn is the WF in cell R associated with band n. The inverse transform of Eq.1.37

reads

|ψnk〉 =
∑
R

eik·R |Rn〉 (1.38)

The transformations of Eqs. 1.36 and 1.37 constitute a unitary transformation between Bloch

and Wannier states. Hence we can define the Wannier function as unitary transformation of

Bloch function [43].
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1.4.1 Gauge Freedom

The presence of a “gauge freedom” that exists in the definition of the ψnk makes the theory

of Wannier functions more complex. Thus, we can replace

|ψ̃nk〉 = eiφn(k) |ψnk〉 (1.39)

Which in general can be written as

|ψ̃nk〉 =
J∑

m=1

U (k)
mn |ψmk〉 (1.40)

Here U
(k)
mn is a unitary matrix of dimension J that is periodic in k (it mixes the Bloch states

at each k).

1.4.2 Wannier Functions via Projection

A simple yet often effective approach for constructing a smooth gauge in k, and a correspond-

ing set of well-localized WFs, is by projection [25]. One starts from a set of J localized trial

orbitals gn(r) corresponding to some rough guess for the WFs in the home unit cell and are

projected onto the Bloch manifold at wave vector k to obtain;

|φnk〉 =
J∑

m=1

|ψmk〉 〈ψmk| |gn〉 , (1.41)

which are typically smooth in k space.

The overlap matrix (Sk)mn = 〈φmk| |φnk〉V = (A†kAk)mn is then computed and used to

construct the Löwdin-orthonormalized Bloch-like states which now have a smooth gauge in

k. In addition, the projection window has to be chosen appropriately. One point to consider

while making a choice of energy window is the total number of initial projection orbitals. For

example, if the initial guess orbital is ”s, p” for a two atom system, then the total number of

wannier orbitals is eight based on the chosen projection orbitals. Hence, the chosen energy
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window should contain at least eight bands to ensure accurate wannier orbitals are produced.

|ψ̃nk〉 =
J∑

m=1

|φmk〉 (S1/2
k )mn

1.5 Crystal Orbital Hamiltonian Population (COHP)

Following Mulliken’s pioneering work [30] on electron assignment to bonds and to atom

centers, several methods for electron partitioning in molecules have evolved. Within non-

variational extended Huckel theory, Hughbanks and Hoffmann introduced a tight binding

method with overlap which they called the Crystal Orbital Overlap Population (COOP)

[44, 45]. In the COOP method, having calculated the band structure, the Mulliken’s overlap

population technique is then applied to a crystal measuring the bonding by c∗µcνSµν where

cν is the coefficient and Sµν is the overlap integral with positive, zero and negative overlaps

implying bonding, nonbonding and antibonding respectively [46, 26]. The dependence of

the COOP method on the basis set makes it not ideal for bonding description within first

principle Density Functional Theory (DFT) [26]. Hence, the need for a bonding descriptor

within first principles DFT led to the development of Crystal Orbital Hamiltonian Population

(COHP) [26] method, which partitions the energy other than electrons but then similar to

the COOP method since it also extracts information on the chemical interaction in a system

from the band structure. A comprehensive review of the various applications of the COHP

method can be found in ref.[47].

1.6 Quantum Theory of Atoms in Molecules (QTAIM)

Baders Quantum theory of Atoms in Molecules (QTAIM) have made quantum mechanical

description of molecular structures possible [27, 28, 29, 30]. QTAIM extracts bonding infor-

mation from the electron density of the molecular system. Both theoretical and experimental

electron densities have been shown to give information on the chemical bonding in molecular

systems [48, 49, 50, 51]. QTAIM identifies where the gradient of the electron density vanishes

i.e. ∇ρ(rc) = 0. These special points rc are called critical points (CPs) and are characterized
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by their rank and signature labelled as (ω, σ). The rank of a CP corresponds to the number

of non-zero curvatures (eigenvalues of the Hessian matrix) of ρ(rc) at the CP, while the sum

of the signs of the curvatures of ρ(rc) at the CP denotes its signature. CPs of rank three

are topologically stable and have four possibilities, which are (3, -3), (3,-1), (3, +1) and (3,

+3) [27]. The (3, -3) CP is a local maximum with all curvatures negative and is called a

nuclear CP. For (3, -1), the density parallel and perpendicular to a plane is a maximum and

minimum respectively and is called a bond CP. On the other hand, for (3, +1) CP, density

parallel and perpendicular to a plane is a minimum and maximum respectively and is called

a ring CP. The (3, +3) CP is a cage CP with all curvatures positive. The different criteria

for use of other important topological parameters at the critical point such as density (ρ),

Laplacian (∇2ρ), potential energy (V), kinetic energy (G), and the local energy densities (H)

for bonding description have been summarized in previous reports [52, 53] and are defined

as:

V (r) =
~2

4m
∇2ρ(r)− 2G(r) (1.42)

where

G(r) =
3

10
(3π2)2/3ρ5/3(r) +

1

6
∇2ρ(r) (1.43)

and

H(r) = V (r) +G(r) (1.44)

The signs and magnitude of the aforementioned topological parameters collectively give an

insight on the nature and type of bond interaction present in the compound been studied.

For example, typical shared interactions are indicated by a large density (ρ > 0.1), negative

laplacian (∇2ρ < 0) and negative local energy density (H < 0) at the bond critical point.

On the other hand, closed shell interactions are defined by small density (ρ < 0.2), positive

laplacian (∇2ρ > 0) and positive local energy density (H > 0) at the bond critical point. The

kinetic and potential energies at the bond critical points are always positive and negative

respectively.
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1.7 Green Function Based Methods

Excited state properties and spectroscopic experimental results are accurately studied and

interpreted respectively using the Greens function theory [54].

In the Lehman representation, the Green function is given by

G(r, r′, ω) =
∑
i

fi(r)f ∗i (r′)
ω − εi − iη

−
∑
a

fa(r)f ∗a (r′)
ω − εa + iη

(1.45)

where η is a positive infinitesimal.

The poles of the Green function εa = E(N + 1, a)−E(N, 0) and εi = E(N, 0)−E(N − 1, i)

are the electron addition and electron removal energies i.e energy levels for the unoccupied

and occupied states respectively. Where E(N + 1, a), E(N − 1, i) and E(N, 0) represents the

total energies of the (N+1)-electron system in it’s ath quantum state, (N-1)-electron system

in it’s ith quantum state and N-electron system in it’s ground state respectively.

Single particle like framework is achieved in practical applications by the introduction of the

concept of Quasiparticle (QP).The self energy operator Σ includes electron correlation and

relaxation effect. The self energy distinguishes the QPs from bare particles (subject to only

Hartree potential). The QP equation which has a Schrodinger like form reads

H0(r)fn(r, ω) +

∫
Σ(r, r′, ω)fn(r′, ω)dr′ = En(ω)fn(r, ω) (1.46)

1.7.1 GW Approximation

The many-body perturbation theory gives access to the excited state properties not ob-

tainable from the ground state electron density. The central variable of this theory is the

time ordered Green function G(rt, r′t′) which contains the excitation energies and lifetimes.

Observeables measured from the ground state electron density can be extracted from the

Green function in addition to the excited state properties, though the complex nature of the

Green function makes its application to calculate ground state properties very rare [55]. The

acronym ’GW’ represents an approximation to the self energy, where G describe the evolu-

tion of a particle in an interacting system and is called the one body Greens function and W
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stands for the linear response dynamically screened Coulomb interaction. One can simply

describe the GW as an approximation to the self energy. To find an accurate expression for

the self energy operator (Σ), Hedin [56, 57] proposed a set of five equations which can be

solved iteratively as shown in fig.1.2.

Figure 1.2: Schematic of the iteration using Hedin’s equations and Dyson’s equation.
Adapted from Ref. [1]

With the vertex evaluated at a single point (Γ = δδ) only we have

G = G0 +G0ΣG (1.47)

W = ν + νPW (1.48)

Σ = iGW (1.49)

P = −iGG (1.50)

Γ = δδ (1.51)
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Where G is the one-body Green’s function, P is the polarization operator, W is the dynam-

ically screened Coulomb interaction and Γ is the vertx function. From the first iteration of

the Hedins equations, the self energy becomes the GW. The Equation 1.49 to 1.51 is the GW

approximation.

1.7.2 Bethe-Salpeter equation

Inclusion of vertex corrections becomes very important to account for electron hole interaction

when considering absorption spectra [54]. To achieve this, the Hedin’s equation has to be

iterated for the second time.

Starting from Σ = iGW and the vertex equation

Γ = 1 +
δΣ

δG
GGΓ (1.52)

where
δΣ

δG
= iW + iG0

δW

δG
' iW (1.53)

Hence the vertex equation becomes

Γ ' 1 + iWGGΓ (1.54)

introducing 4 point equations i.e 4P (1234), 4W (1234) = W (12)δ(13)δ(24) and 4P0(1234) =

P0(12)δ(13)δ(24), the Bethe-Salpeter equation for the polarizability can be derived and yields

4P = 4P0 + 4P0K
4P (1.55)

where the Kernel K is composed of the screened potential W and bare potential V electron

hole attraction and exchange terms respectively represented as

K(1234) = δ(12)δ(34)V (13)− δ(13)δ(24)W (12) (1.56)

In practical calculations, the eigenfunctions and eigenvalues of an effective two-particle exci-

tonic Hamiltonian constitutes the absorption spectrum [54]. Details of the derivation can be
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found in ref.[58].

1.8 X-ray absorption spectroscopy (XAS) and X-ray

Raman Scattering (XRS)

X-ray absorption spectroscopy (XAS) is an element specific method which probes the density

of unoccupied electronic states of a material by exciting an electron from the occupied to

empty state as shown in fig.1.3 using energy tunable high intensity photon source such a

synchrotron radiation [59]. The electron excitation requires absorption of a photon with

energy higher than or equal to the binding energy of the electron. The X-ray Absorption Fine

Structure (XAFS) spectra is composed of two regions at lower and higher energies referred

to as X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine

Structure (EXAFS) respectively. The XANES and EXAFS provide electronic properties and

structural information respectively [60]. XANES absorption cross section for transition from

the initial to the final state of a system is given by the Fermi golden rule as

σ(ω) ∝
∑
f

|Mi−→f |2δ(Ei − Ef + ω) (1.57)

and satisfy the dipole selection rule ∆l = ±1 with the spin conserved (∆S = 0). Mi−→f in

equation1.57 is the matrix element of the transition between the initial and final states. For

XAS it’s a dipole of the form

Mi−→f = 〈ψf |ε̂ ·R|ψi〉 (1.58)

where ε̂ and R are the polarization direction and position operator respectively.

Unlike XAS, X-ray Raman Scattering (XRS) is a non resonant inelastic x-ray scattering

(NRIXS) process of core electron excitation. In XRS, an inelastically scattered photon of

energy ω1 resulting from the interaction of an incident photon of energy ω0 with the electrons

of a sample, transfers ω = ω0 − ω1 and q = k0 − k1 energy and momentum respectively to

the sample. Where k0 and k1 are incident and scattered photon momenta respectively. A

measure of the inelastically scattered particle is the doubly differential cross-section (DDCS)
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Figure 1.3: Schematic of X-ray Absorption Spectroscopy. The incoming photon (hv)
excites the the core electron to the unoccupied state.

given by
d2σ

dΩdω1

=

(
dσ

dΩ

)
Th

S(q, ω) (1.59)

where
(
dσ
dΩ

)
Th

is the thompson scattering cross section and S(q, ω) is a property of the many

body system known as the dynamical structure factor which is independent of the external

probe and contains information on the excitation spectrum of the system. From the Fermi’s

golden rule, excitation of a many body particle ground state |i > into all final states |f >

reads

S(q, ω) =
∑
i,f

Pi| < f |
∑
j

exp(iq · rj)|i > |2δ(Ei − Ef + ω) (1.60)

where Pi is the probability of finding the system in the initial state |i > and the energy

conservation is ensured by the delta function. The transition in Eq.1.60 can be Taylor

expanded to yield

exp(iq · r) ≈ 1 + iq · r− (q · r)2

2
+ . . . (1.61)

The first term in Eq.1.61 is always zero and at low q it’s evident that Eq.1.61 approximates

as a dipole only (the second term) and the XRS becomes equivalent to XAS. As q increases,
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the quadrupole term becomes important because the XRS spectra depends on all the angular

momentum projections of the density of state. For example, for the case of oxygen K-edge in

H2O, only the s and p-type density of state significantly contribute to the XRS spectra [9].

1.9 Molecular Dynamics

Molecular Dynamics (MD) technique which was pioneered in the 1950s by Alder and Wain-

wright [61, 62] and Rahman [63] has become a great tool in the simulation of matter and its

dynamics. The understanding and prediction of structure, dynamical properties and func-

tion of molecular systems to date are owing to this great simulation technique which is a

key tool as we also seek to enable predictive molecular design. The structure and dynamics

of systems impossible to solve analytically can be greatly studied using simulation methods

whose results help to interpret experimental data in terms of molecular motions. Just like

in real experiments, the first step in an MD simulation is sample preparation which in this

case is the electronic structure of the system under consideration with initial conditions set.

This is followed by an equilibration run and finally the production run where the measure-

ments of the desired physical quantities are taken. The MD method involves numerically

solving the Newtonian equations of motion of a set of N particles in volume V. MD was

originally formulated in the microcanonical ”NVE” ensemble i.e an ensemble in which the

number of particles N, the volume V and the total energy E of the system remains constant

over time. Subsequently, attempts to correctly generate other ensembles such as the NVT

ensemble (where the simulation temperature T remains constant, in place of the original con-

stant energy formulation of MD) during MD simulations were made, with the first successful

attempt made by Andersen in his 1980 seminal paper [64]. Prior to Anderson’s seminal work,

constant temperature MD simulation was obtained by Woodcock through an ad hoc manner

scaling of the particle velocity [65]. Broughton et al.[66] evaluated the effect of this aver-

age temperature driven ad hoc velocity rescaling at regular intervals and showed that this

method breaks the energy conservation in a system and contains discontinuous changes at

the scaling intervals. Following the advent of Langevin dynamics, another pre-1980 attempt

at the MD temperature control was made [67], here the particles were assumed to undergo a
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collision with much lighter ones, which represents the heat bath, with the collisions described

by a friction term and a random force added to the classical equation of motion. This dy-

namics gives a canonical distribution without conserving energy due to the contact between

the heat bath and the system Hamiltonian [67]. The friction coefficients using this method

can be really large which leads to unreliable dynamics [68]. Andersen’s thermostat which

accurately generates the NVT ensemble also uses a stochastic heat bath with the velocities

of randomly selected colliding particles (i.e particles colliding with the heat bath) sampled

from the Maxwell-Boltzmann distribution according to certain probability [64]. The ther-

mostat reported in 1984 by Berendsen et al. [69] which uses the weak-coupling method is

another common choice. This scheme does not follow a well defined ensemble and may lead

to problems such as flying-ice-cube effect which violates the equipartition of energy [70]. The

introduction of an extended Lagrangian by Nosé [71] subsequently refined by Hoover [72]

correctly yields the canonical ensemble which makes it a more reliable method for simulating

the NVT ensemble. The Nosé-Hoover method was faced with the problem of ergodicity at

some difficult cases, such as harmonic systems. In other to overcome this problem of er-

godicity, several extensions were made to the Nosé-Hoover method with the most notable

one by Martyna et al. [73] where they coupled each thermostat to one or more additional

thermostats which they called the Nosé–Hoover chains (NHCs). The NHCs addresses the

ergodicity problem at an increased complexity in the algorithm. Here we focus the discussion

on the velocity rescaling, Langevin, Andersen, Berendsen and NHC thermostat approaches

which are commonly used presently.

1.10 Thermostat algorithms

The movement of particles in a system of N particles of fixed volume V is governed by the

Newton’s equations.

mi
d2qi
dt2

= F i = −∂Φ

∂qi
(1.62)

where qi is a coordinate of particle i, F i is the force on particle i and Φ is the potential.

This equation can be written in a canonical form using coordinate qi and momentum, pi in
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the form
dqi
dt

=
pi
mi

dpi
dt

= F i = −∂Φ

∂qi
(1.63)

These equations are numerically solved following the trajectory of every particle in the system

using computers. All the thermodynamic and structural information of the system of N

particles are then extracted from this trajectory. Dynamical information can also be obtained

from the MD simulation.

The equation of motion in both forms 1.62 and 1.63 conserve the total energy of a system.

Thus, MD formulation is by default in the microcanonical ensemble. Direct comparison of

MD in the NVE ensemble with experiment is difficult because laboratory experiments are

performed at constant temperature and pressure which is not possible in the NVE ensemble

since we can’t know the temperature until the simulation is done. We relate the temperature

T to the mean kinetic energy (KE) from the equipartition theorem as

〈∑
i

p2
i

2mi

〉
=

3

2
NkT. (1.64)

From Eq. 1.64, the temperature T is obtained only after we calculate the mean KE at the

end of the simulation. To overcome these limitations, we resort to constant temperature

simulations. Over the years, several modifications have been made to the equation of motion

in a bid to correctly achieve a constant temperature MD simulation, we briefly review these

methods and their algorithms.

1.10.1 Velocity rescaling

The first constant temperature algorithm proposed by Woodcock [65] used a velocity scaling

method. Here, the KE is scaled to the desired value by multiplying the particle velocity with

a common factor at every time step of the simulation. Using the leap frog algorithm [74], the

coordinate qi(t+ ∆t) and momentum pi(t+ ∆t
2

) at times t+ ∆t and t+ ∆t
2

respectively can

be obtained from the knowledge of the coordinate qi(t) and momentum pi(t− ∆t
2

) at times

t and t− ∆t
2

respectively. Where ∆t is the time step with the force Fi calculated at time t.
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The updated coordinates and velocities now reads

vi

(
t+

∆t

2

)
= vi

(
t− ∆t

2

)
+

(
Fi(t)

mi

)
∆t (1.65)

qi (t+ ∆t) = qi (t) + vi

(
t+

∆t

2

)
∆t (1.66)

From Eq. 1.65 and 1.66, we still obtain the equation of motion

dvi
dt

=
F i

mi

(1.67)

dqi
dt

= vi (1.68)

Woodcock corrected the estimated velocity at time t + ∆t
2

to satisfy a constraint of the

constant kinetic energy,

v∗i

(
t+

∆t

2

)
= svi

(
t+

∆t

2

)
(1.69)

where s is the scaling factor which can be obtained from

∑
i

mi

2
(vi
∗
(
t+

∆t

2

)
)2 = s2

∑
i

mi

2
(vi

(
t+

∆t

2

)
)2 =

g

2
kT (1.70)

The parameter g is essentially equal to the number of degree of freedom of the physical

system.

Hence,

s =

[
gkT∑

imi

(
vi
(
t+ ∆t

2

))2

] 1
2

(1.71)

The updated coordinate at t+ ∆t now has the form

qi (t+ ∆t) = qi (t) + vi
∗
(
t+

∆t

2

)
∆t (1.72)

This velocity scaling method was shown to yield discontinuous trajectories in phase space

at the scaling interval [66]. It only yields the correct coordinate space canonical distribution
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when the scaling is performed at every time step and has an accuracy of order ∆t [75].

1.10.2 Langevin

In the Langevin dynamics [67], a canonical ensemble is achieved by assuming the particles

collide with much lighter particles which represents the heat bath. A friction −γipi and a

random force ηi(t) which describe these collisions is added to the equation of motion which

are coupled Langevin equations

mi
d2qi

dt2
= −∂H

∂qi

−miγi
dqi

dt
+ ηi(t) (1.73)

Where the first, second and third terms of Eq.1.73 correspond to the standard interaction

term calculated during the simulation, the damping used to tune the viscosity of the bath

and Gaussian random variable with zero mean. The magnitude of this random variable is

given by

〈
ηi(t)ηi′ (t

′
)
〉

= 2miγikBTδii′δ(t− t
′
) (1.74)

The coupling strength of the physical system to the heat bath is given by the damping

constant γi and T represents the temperature of the bath. Careful considerations are to be

made when choosing the damping constant. Schneider and Stoll [67] require the choice of

damping constant satisfy

τch >>
1

γi
>> τc (1.75)

this is necessary to nearly realize energy conservation using the Langevin dynamics. Where

τch is the equilibrium chain lenght and τc is the characteristic times of the dynamics.

It is important to note that the Langevin thermostat was combined with the Parrinello-

Rahman [76, 77] method to generate the isobaric isothermal (NPT) ensemble used for the

molecular dynamics simulation performed in this work. The equations of motion for the ionic

and lattice degrees of freedom in the Parrinello and Rahman method are derived from the
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Lagrangian in Eq. 1.76.

L
(
s, h, ṡ, ḣ

)
=

1

2

N∑
i=1

miṡ
†
iGṡi − V (s, h) +

1

2
WTr(ḣ†ḣ)− pextΩ (1.76)

where si is a position vector of atom i in fractional coordinates, h is the matrix formed by

lattice vectors, pext is the external pressure, Ω represents the cell volume, G can be defined

as G = hth and W is a constant with the dimensionality of mass.

1.10.3 Andersen

In the formulation of Anderson thermostat [64], he introduced a stochastic force to the Hamil-

tonian equation of motion which causes a random collision of the atoms with an imaginary

heat bath at the desired temperature. The Hamiltonian equations of the N particles in

volume V are given by;
dqi

dt
=
∂H

∂pi

=
pi

m
(1.77)

dpi

dt
= −∂H

∂qi

(1.78)

with the stochastic collision term added to the dpi

dt
equation. It’s important to note each

instantaneous collision term only affects the momentum of one particle. The time evolu-

tion of the state of the system between successive stochastic collisions follow Eq.1.77 and

1.78. The collision times are usually chosen before the simulations by generating intervals

between successive particle collisions or choosing which particles undergo a collision within a

small interval of time using random numbers in both cases. The momentum of the colliding

particle after collision is randomly and instantaneously chosen from a Maxwell-Boltzmann

distribution at the desired temperature T. Due to the instantaneous collision, the Anderson’s

thermostat can greatly affect dynamical properties, hence, it’s mainly recommended to use

only when interested in structural properties of the system under consideration [78].
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1.10.4 Berendsen

This thermostat which is also known as weak coupling thermostat was introduced by Berend-

sen [69]. It’s very similar to the velocity rescaling method of Woodcock [65]. Unlike Wood-

cock’s method which abruptly rescales the velocity to the target kinetic energy, the Berendsen

method includes a relaxation time to slowly equilibrate the system to the target tempera-

ture. Berendsen assumed a weak coupling of the system to a heat bath with a heat transfer

coupling constant or time scale τ related to the velocity rescaling factor s as

s2 = 1 +
δt

τ

(
T

Tinst
− 1

)
(1.79)

Where, δt is the simulation time step and τ ranges from 0.1 to 0.4ps for δt = 1fs. Similar to

the velocty rescaling method, energy fluctuations are not correctly captured in the Berendsen

thermostat. It does not also yield accurate canonical ensemble and is known to lead to

problems such as flying-ice-cube effect which violates the equipartition of energy [70], so it is

not recommended.

1.10.5 Nosé-Hover chains (NHCs)

At constant temperature, energy fluctuation is allowed in other to correctly simulate the

system. Nose [71] used the idea of extendend Lagrangian to achieve constant tempera-

ture formulation. Andersen [64] in his constant temperature formalism first introduced this

method of extended Lagrangian. The idea here is to extend a physical system to a single sys-

tem consisting of a physical system and an external system, the external system is very small

unlike the macroscopic reservoir. The extended system still follow the conservation laws but

the total energy of the physical system fluctuates [75]. Nose introduced a degree of freedom

s to the physical system of time, coordinates and momentum t
′
, q

′

i and p
′

i respectively. He

also introduced virtual variables t, qi and pi related to the real (primed) time, coordinate

and momentum by

q
′

i = qi (1.80)
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p
′

i =
pi

s
(1.81)

t
′

=

∫
dt

s
(1.82)

the real velocity v
′

i of particle i is obtained by multiplying a scaling factor s to a virtual

velocity vi,

v
′

i = svi (1.83)

These transformations can be basically thought of as an infinitesimal time scaling of the

form.

dt
′
=
dt

s
(1.84)

An extended system of N particles and degree of freedom s has a Lagragian in terms of the

virtual variables of the form

LN =
N∑
i=1

mi

2
s2q̇2

i − φ(q) +
Q

2
ṡ2 − gkT ln s (1.85)

where mi is the mass of the real system, g is the degree of freedom of the physical system,

However, its exact value will be chosen to satisfy the equilibrium of a canonical distribution.

T is the temperature of the heat bath and Q is an effective mass associated with s. The

conjugate momenta corresponding to qi and s are given by

pi =
∂LN

∂q̇i
= mis

2q̇i (1.86)

ps =
∂LN

∂ṡ
= Qṡ (1.87)

from which the extended system Hamiltonian can be written as

HN =
N∑
i=1

p2
i

2mis2
+ φ(q) +

p2
s

2Q
+ gkT ln s (1.88)
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The first and second terms in Eq.1.88 corresponds to the kinetic energy and the potential

energy of the physical system of interest. The third and last terms correspond to an added

degree of freedom, where ps is a conjugate momentum of s. We’ve replaced the momentum pi

with a real momentum p
′
i = pi/s everywhere it’s expected to appear. The total Hamiltonian

in Eq.1.88 remains conserved in the total extended system, but that of the physical system

Eq.1.89 can fluctuate and the energy distribution follow the canonical distribution.

H0 =
N∑
i=1

p
′2
i

2mi

+ φ(q
′
) (1.89)

By using the extended Hamiltonian, the equations of motion are obtained via canonical

equations as
dqi
dt

=
∂HN

∂pi
=

pi
mis2

(1.90)

dpi
dt

= −∂HN

∂qi
= − ∂φ

∂qi
(1.91)

ds

dt
=
∂HN

∂ps
=
ps
Q

(1.92)

dps
dt

= −∂HN

∂s
=

∑ p2
i

mis2
− gkT
s

(1.93)

For more convenient application to simulations, the equations of motion Eq.1.90 to Eq.1.93

can be transformed to equations with the real variables [71], using the basic relations Eq.1.80

to Eq.1.82 between the real and virtual variables and introducing an additional relation

p
′

s =
ps
s

(1.94)

the transformed equations with the real variables reads

dq
′
i

dt′
= s

dq
′
i

dt
= s

dqi
dt

=
pi
mis

=
p
′
i

mi

(1.95)
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dp
′
i

dt′
= s

d

dt

(pi
s

)
=
dpi
dt
− 1

s

ds

dt
pi = − ∂φ

∂q
′
i

− 1

s

ds

dt′
p
′

i (1.96)

ds
′

dt′
= s

ds
′

dt
= s

ds

dt
= s

′2p
′
s

Q
(1.97)

dp
′
s

dt′
= s

d

dt

(ps
s

)
=
dps
dt
− 1

s

ds

dt
ps =

(∑
i
p
′2
i

mi
− gkT

)
s

− 1

s

ds

dt′
p
′

s (1.98)

Hoover [72] noted that introduction of a new variable

ζ =
1

s

ds

dt′
= s

p
′
s

Q
(1.99)

simplifies the transformed equations of motion to

dq
′
i

dt′
=

p
′
i

mi

(1.100)

dp
′
i

dt′
= − ∂φ

∂q
′
i

− ζp′i (1.101)

d ln s
′

dt′
= ζ (1.102)

dζ

dt′
=

(∑
i
p
′2
i

mi
− gkT

)
Q

(1.103)

This simplified form is commonly known as the Nose-Hoover thermostat [79]. Eq.1.100 and

Eq.1.101 are similar to the equations of motion of a body with a frictional force ζ, but the

frictional force in this case can either be positive or negative hence, it is not a constant.

This thermostat is one of the most commonly used and widely implemented thermostat.

However, it sometimes yields ergodicity problem for smaller systems [78]. This ergodicity

problem was addressed by the method of Martyna et al. [73] which involves chaining the

thermostats. Hence, most of the implementation of this thermostat now use the Nose-Hover
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chains (NHCs).

1.11 Path integral Molecular Dynamics

The Feynman’s imaginary time path integral theory which maps a quantum system into P

copies of a classical subsystem called beads that interact with each other through harmonic

springs, forms the bedrock of path integral (PI) simulations. Path integral Molecular Dy-

namics (PIMD) is one of the PI simulation technique where statistical averages are computed

by using molecular dynamics as the sampling technique. The need to accurately account for

the quantum nature of nuclear motions, which greatly describes the structure, stability and

thermodynamic properties of condensed matter systems led to PIMD [2]. Given a quantum

system, all we do in PI simulation is to first make a replicated necklace-like classical copies

of the quantum system with identical statistical behaviours. Then molecular dynamics is

employed to compute the statistical averages of the classical system which corresponds to

the statistical averages of the original quantum system. The path integral representation of

the partition function of an N particle system is given by

ZP =
N∏
I=1

[(
MIP

2πβ~2

) 3P
2
∫
dR

(1)
I · · ·

∫
dR

(P)
I

]
exp−βW (1.104)

with

W =
P∑
s=1

N∑
I=1

MI

2
ω2

P

(
RI

(s) −RI
(s−1)

)2

+
P∑
s=1

1

P
V
(
RI

(s), . . . ,RN
(s)
)

(1.105)

where RN
(s) represents the nuclear coordinate of particle I at time s, V(R) represents the

interatomic interaction and the chain frequency ωP =
√

P/β~. It is important to note that

the path periodicity R(0) = R(P) is maintained. By close observation, one can tell Equation

1.104 has the same form as the partition function of a classical system of NP particles with

an effective potential of W defined above. Hence, a quantum ensemble of N particles is similar

to a classical ensemble of NP particles with interactions defined by Equation 1.105 and they

become identical as P→∞. This classical isomorphism makes it possible for us to perform
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constant temperature molecular simulation of the NP particle system with sufficiently large

P value, and the obtained ensemble belongs to the original N particle quantum system.

Details of the theoretical formulation of PI simulations can be found in ref. [2, 80].

Figure 1.4: Schematic illustration of the translation of a (A) wavefunction represen-
tation to the corresponding (B) path integral representation for a water molecule. The
number of beads for the path integral representation is four i.e P = 4. Adapted from
ref. [2]

A schematic representation of the path integral of a water molecule using four beads (P =

4) is shown in Figure 1.4. Each atom is represented by beads one to four, the solid lines

indicate the physical interactions of an atom within the same beads while the dashed lines

indicate the harmonic nearest neighbour bead interaction [2].

In this thesis, the path integral centroid molecular dynamics (PICMD) approach developed

by Cao and Voth [81] have been employed. The centroid variable q0 [82] of the path represents

the imaginary time average of a particular closed Feynman path q(τ), and is simply the zero

frequency Fourier mode of that path, i.e.,

q0 =
1

~β

∫ ~β

0

dτq(τ) (1.106)

The corresponding quantum mechanical centroid density ρc(qc), can be defined for the path

centroid variable qc. Where qc is the path sum over all paths having their centroids fixed
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at a point in space [82]. Hence, the formal imaginary time path integral expression for the

centroid density in one dimension is given by;

ρc(qc) =

∫
· · ·
∫

Dq(τ)δ(qc − q0) exp{−S[q(τ)]/~} (1.107)

Where S[q(τ)] is the imaginary time action functional and the quantum partition function

is then obtained by the integration of the centroid density over all possible positions of the

centroid as shown in Eq. 1.108.

Z =

∫
dqcρc(qc) (1.108)

It is important to note that the particle (or coordinate) density is different from the centroid

density, the former is the diagonal element of equilibrium density matrix in the coordinate

representation, while the later does not have a similar physical interpretation. However, both

densities yield the the quantum partition function when integrated [81, 83, 84].
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1.12 Software Used in This Thesis

The objective of this thesis is to interpret the electronic structure and detailed bonding

properties of simple materials by employing all the available theoretical bonding analysis

methods. The first principle calculations involving DFT were performed using the VASP

code [85]. In addition, local structure probing using X-ray absorption spectroscopy and

X-ray emission spectroscopy were performed using the OCEAN code [86]. The SSAdNDP

code [24] was used to search for localized and delocalized n center 2 electron (nc-2e) bonds.

The wannier90 code [87] interfaced with VASP was used to obtain the band structure from

a GW [88] calculation, disentangle the various bands and generate the Wannier orbitals

corresponding to the disentangled bands. Further bonding information was obtained from

the energy band structure by calculating the COHP as implemented in the Local Orbital

Basis Suite Towards Electronic Reconstruction (LOBSTER) program [89]. The topological

analysis, evaluation of crystal voids with procrystal density [90] and search for non-nuclear

maxima (NNM) were performed using the Critic2 program [91] and bond orders were obtained

using Chargemol programs [92].

1.12.1 VASP

VASP stands for Vienna Ab-initio Simulation Package, is a first-principle simulation package

designed for atomic scale materials modelling such as electronic structure calculations and

quantum-mechanical molecular dynamics. Determination of the electronic ground state in

VASP is done through an iterative matrix diagonalization schemes coupled to highly effi-

cient Broyden and Pulay density mixing schemes in other to speed up the self-consistency

cycle. Plane wave basis sets are used for materials modelling in VASP. The Blochl’s pro-

jector augumented-wave (PAW) method which is a frozen core electronic method is also

implemented in VASP [93].
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1.12.2 Wannier90

The Wannier90 code is primarily used to construct Maximally Localized Wannier Functions

(MLWFs) from a set of Bloch energy bands that may or may not be mixed with other bands

[43]. The local environments of these MLWFs can be exploited to compute band-structure,

density of state and Fermi surfaces at reasonable computational cost. These MLWFs are

constructed by minimizing it’s total spread which is done in the real space of unitary matri-

ces that describe rotations of the Bloch bands at each k-point. This MLWFs construction

mechanism makes wannier90 code independent of the basis set used in the underlying calcu-

lation from which the Bloch states were obtained and hence, it can be directly linked to any

electronic structure code.

1.12.3 Critic2

The critic2 code [91] provides an interface to many solid-state electronic structure programs is

primarily designed for the analysis and representation of solid-state electron densities based

on Bader’s Quantum Theory of Atoms in Molecules (QTAIM) . This program integrates

atomic basins of the electron density and searches for special points called critical points

where derivatives of the electron density is zero. Critic2 is not limited to QTAIM analysis, it

can also extract non-covalent interaction (NCI) plot, Hirshfeld charges etc. It also serves as

a handy tool for arithmetic manipulations on fields defined in real space and to inter-convert

between crystal structure and field file formats.

1.12.4 NBO

The natural bond orbital (NBO) code utilizes the first-order reduced density matrix of

the wavefunction, and transforms it into localized one-center (“lone pair”) and two-center

(“bond”) elements of the Lewis bonding picture [19]. The program first determines the nat-

ural atomic orbitals (NAOs), natural hybrid orbitals (NHOs), natural bond orbitals (NBOs),

and natural localized molecular orbitals (NLMOs), and then uses these to perform natural

population analysis (NPA) and so on. The NBOs are eigenfunctions of the density matrix,

and are said to be “natural” in the sense of Löwdin, because they have optimal convergence
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properties for describing the electron density [94].

1.12.5 SSAdNDP

The solid state adaptive natural density partitioning (SSAdNDP) is an extension of the Ad-

NDP to periodic systems. The electronic structure of periodic systems are mostly described

in the reciprocal space [95], hence orbitals from an electronic structure calculation of a peri-

odic system are represented on a grid of points spanning the Brillouin zone (reciprocal space

equivalent of the unit cell), known as k-space, yielding a set of density matrices P k,AO. In

SSAdNDP, the set of P k,AO are transformed to their corresponding natural atomic orbital

basis P k,NAO [96]. The new P k,NAO is now Fourier transformed to it’s corresponding basis

in real space P 0s,AO which is now used as the starting density to search for localised bonding

orbitals as explained in section 1.3.

It is necessary to note that SSAdNDP is aimed at accounting for all electrons within the

central unit cell, this is necessary to account for the symmetrically equivalent bond between

atom i in unit cell −s and atom j in unit cell 0. Hence Identifying both bonds leads to double

counting, but the contribution of both hybrids in the central unit cell must be depleted to

prevent inclusion of either in an n+ 1-center bond [24].

1.12.6 LOBSTER

The Local Orbital Basis Suite Towards Electronic Reconstruction (LOBSTER) program is

designed to extract bonding information from the energy band structure of solids by means of

density functional electronic structure calculations. This energy resolved method is known as

the Crystal Orbital Hamiltonian Population (COHP) [26]. The COHP analysis is a theoreti-

cal bond detecting tool for solids which partitions the band structure energy into orbital-pair

interactions. The COHP diagram shows region of bonding, non-bonding and anti-bonding

within a specific energy range.
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1.12.7 PICMD

The Path Integral Centroid Molecular Dynamics (PICMD) simulations carried out in this

work were performed using an in-house, parallelised MD code that employed the Thole-type

interaction potential for water (TTM2.1-F) model simulated in an NVT ensemble. PICMD

replaces each quantum particle with a p-harmonic-beads ring-polymers (p ≥ 16) and formu-

lates the equation of motion with the centroid of the harmonic ring [97]. In this work, 16

beads were used to mimic the quantum nature of each hydrogen and oxygen atom. The code

was originally written by Dr. Burnham and modified to run on MPI by Dr. Yong Xue.

1.12.8 OCEAN

The OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE)

code where NBSE refers to the NIST BSE solver, is a first-principles code based on both

DFT and BSE. It calculates core level excitation by solving the BSE numerically [86]. It

first sets up and parses the input files, then it performs an atomic calculation to construct

optimal projector functions (OPFs) similar to the PAW method which orthorgonalizes the

valence and core states, followed by a DFT calculation.

Unlike other current codes where the frozen core hole approximation is made, the OCEAN

code considers both electron-electron correlation (GW approximation) and electron-hole in-

teractions (BSE) which is expensive to compute, but the code reduces the time required

to calculate the screening response to the core hole by treating it as an atomic problem

since the screening is highly localized around the excited atom. The electron-electron prob-

lem is limited by the range, so one select a cutoff to eliminate numerous small excitations.

Hence the electron hole attraction is screened using the Random Phase Approximation (RPA)

χ0 = iGG, where χ0 is the response function which is unique to each atomic site. The screen-

ing method implemented in the OCEAN code makes it an excellent choice for computing core

excitation spectra (XAS and XRS) using all the atoms in the model. Finally it solves the

BSE in a CNBSE directory.
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Chapter 2

Structure and Bonding Analysis of K2Ag and

K3Ag

2.1 Introduction

In solid-state science, one of the main goals is to design and create materials with desired

electronic and structural properties. These properties often change in response to variations

in external conditions such as temperature and pressure. Hence, it is essential to have an

immense understanding of the structure of solids and the chemical bonding which favours

the aggregation of atoms into structures. Atomic orbital hybridization and the number of

valence orbitals available for bonding formulates the concept of directional chemical bonds

and structural prediction of elemental solids [98]. A recent review on the high pressure

crystal structures and properties from a chemical perspective can be found in Ref.[99]. The

development of diamond anvil cell (DAC) techniques have made high pressure attainable

experimentally up to 1,000GPa [12, 13, 14, 15, 16, 17]. Theory on the other hand is able to

probe pressure ranges beyond present experimental capabilities, thanks to several computer

simulation methods such as DFT [32]. This possibility of attaining high pressure theoretically

and experimentally has driven research into several vast areas, one of such research areas

which is of immense interest is the development and synthesis of unusual compounds that

have atypical stoichiometries different from common textbook stoichiometries and not also

obtainable at ambient conditions. For instance, rather than forming H2S, hydrogen and

sulphur have been found to form an atypical H3S stoichiometry under pressure and this H3S

was found to be superconducting with a critical temperature, TC as high as 203K [100, 101].

Similarly, a large variety of unusual compounds have been predicted or synthesized under high
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pressure and have been summarized in the recent review paper of Miao et. al [13]. Following

the discovery of several unusual compounds with non-intuitive structural modifications, it

is obvious how greatly pressure can modify and enrich chemistry. These enormous progress

in the synthesis and discovery of high pressure compounds by experiment and theory have

called for great advancement of conceptual frameworks which includes our understanding of

the chemical bonding, related to the orbital hybridization and modification of matter under

pressure [99, 13]. Under compression, the size and electron concentration of alkali metals

change enormously. This unique property results in the significant change of the solid sate

chemistry of these elements, which in turn favours the formation of alkali-metal transition

metal alloys at elevated pressures. The relative accessibility of intermetallic compounds made

them gain practical use long before they got recognized as chemical objects. These set of

intermetallic compounds follow the usual valence rules and are formed by elements around

the Zintl line (the line between group 13 and 14 ) on the periodic table or left of it i.e down

to group one [102]. In the early 1930s, Eduard Zintl [103] first discovered phases with a

crystal structure of the NaTi type that constitute a special group of intermetallic compounds

which F. Laves [104] called Zintl phases [105]. These Zintl phases are special intermetallic

compounds because they can simply be understood by recognized valence rule known as

the Zintl-Klemn concept [106]. Zintl noted that the structure of these Zintl phases were

characterized by total electron transfer to the more electronegative element in the structure

and hence form ionic structures. Contrary to the Zintl phases, the definition of Lave phases

(classified by AB2 intermetallics) follow the general Pearson rule which defines the number

of homonuclear bonds per atom within the anionic part of a crystal structure [107]. A recent

review of the functional and structural applications of Lave phases is summarized in Ref.

[108]. Elemental potassium have been reported to undergo up to 6.7 times change in the

volume when compressed from ambient pressure to 112GPa [109]. This large compressibility

of K is accompanied by electronic structure changes. Miedema’s rule [110, 111] which govern

the formation of intermetallic phases states that elements of similar valence electron density

and a large electronegativity difference (∆χ) are more likely to form thermodynamically

stable alloys. Hence, intermetallics involving alkali metals such as K, Rb, Cs and transition

metal such as Ag, and Ni are not obtainable at ambient conditions because they possess
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much smaller charge densities relative to transition metals. However, it has been shown that

these alkali metals of K, Rb, Cs can assume transition metal characteristics as a consequence

of their pressure induced s→ d hybridization [112, 113]. Occupation of the d band of these

alkali metals at elevated pressures enable the formation of complex intermetallic phases.

Figure 2.1: A typical electron localization function of Fd-3m diamond at 0.8 isovalue.

For example, Atou et. al. [114] reported the formation of two alkali metal-transition metal

compounds, K3Ag and K2Ag. These compounds were reported to rapidly form at room

temperature upon compression of stoichiometric mixtures of the elements at 6.1GPa - a pres-

sure far less than the 26GPa required for the s to d transition in elemental alkali metals.

Hence, the aim of this work is to provide a chemical interpretation of the potassium sil-

ver intermetallics while also benchmarking accurate high pressure description of bonding by

employing all the known bonding analysis methods. It may be of interest to know that at

ambient pressure, bonding analysis is pretty straightforward because the electrons can be

easily localized to create a bonding picture. Let’s take for instance, the simple case of the

structure of diamond which has a face centered cubic structure with Fd-3m space group.

The crystal structure of diamond is well understood with the carbon atoms forming tetra-

hedral co-ordinations as can be seen in Figure 2.1. The C atoms are said to be covalently

bonded as evident from the electron localization function (ELF) with the electrons localized
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along the C-C bonds at 0.8 isovalue. On the other hand, as pressure increases, the structure,

bonding features and electronic states of matter also changes which makes structural descrip-

tion from a bonding perspective non-trivial. Following laid down rules used to rationalize

the aforementioned pressure induced modifications, several previously discovered structures

from experiments or computations were found to agree with expectations of close-packing

and homogeneity [115, 116, 117]. That is, a wide variety of the known compounds greatly

becomes more homogeneous in response to pressure while also exhibiting several features

which includes the compression of longer and weaker bonds to a greater extent, increased

coordination number, adoption of close-packed structures, attaining higher symmetries and

in addition show insulator-metal transition due to the delolalization of their electrons at el-

evated pressure [115, 116, 117]. However, several stoichiometric compounds whose structure

and bonding cannot be intuitively understood have been observed, one of such compounds

are the K3Ag and K2Ag stoichiometric mixtures of potassium and silver which have been

studied in this chapter. More also, it is important to point out that not all matter becomes

more homogeneous under pressure. For instance, it has been shown that many metals, such

as Li and Na, assume complex open structures which exhibit a decrease in conductivity un-

der high pressure [118, 119]. Recent experimental and theoretical studies are beginning to

remarkably show that the geometries and properties of observed stoichiometric compounds

are impacted profoundly, much more than could have been previously anticipated. Some of

the said compounds often take up really surprising and non ideal structural and bonding

schemes. A typical example is a classes of compounds composed of electrides i.e compounds

where electrons are so localized that they even detach from all atoms and accumulate in the

interstitial sites [120, 121]. Thus, there are large variety of stoichiometric structural com-

positions with unpredictable properties found at high pressure which makes high pressure

chemistry complex. Hence, there is need for a benchmark of bonding and structural descrip-

tion of high pressure stoichiometric compounds which motivated this study of unmixable K

and Ag that forms K3Ag and K2Ag compounds on the application of pressure.

This chapter discussed the common bonding analysis methods applied to interpret the elec-

tronic structure and bonding of the K3Ag and K2Ag alloys reported by Atou et. al. [114].

The methods employed are based on two approaches, first the plane wave basis set methods
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(Quantum theory of Atoms in Molecules (QTAIM) and wannier orbitals) and the localized

basis set dependent methods (Natural Bond Orbital Analysis (NBO), Solid State Adaptive

Natural Density Partitioning (SSAdNDP), Crystal Orbital Overlap Population (COOP) and

the Crystal Orbital Hamiltonian population (COHP)). As already established above, the

need for a complete description of the electron transfer which favours the K3Ag and K2Ag

intermetallic formation stems from the fact that at ambient pressure K and Ag are immis-

cible, however, they form compounds on the application of pressure. We found that these

bonding analysis techniques must be applied with care due to the extensive modification of

the electron density on application of pressure. Hence, a naive localized description is not

appropriate and may lead to erroneous interpretation.
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2.2 Computational Details

All structural optimizations, charge densities and electronic band structures were calculated

using the Vienna ab initio Simulation (VASP) code [85] and Projector Augmented plane

Waves (PAW) potential [93]. The K potential employed 3p6 4s1 as valence states while the

Au potential employed 4d10 5s1 as valence states, with the Perdew-Burke-Ernzerhof (PBE)

exchange correlation functional [37]. In other to get a real space description of the bonding,

the plane wave calculations were projected into a localized atomic orbital picture. Search

for localized and delocalized multicenter (n center 2 electron) bonds were done using the

Solid State Adaptive Natural Density Partitioning (SSAdNDP) code [24]. The Gaussian type

atom centered basis set used for the projections included many empty and diffuse orbital with

exponents less than 0.1 in other to ensure that the density matrix used in the search for multi-

center bonds accurately mimics the plane wave results. The wannier90 code [87] interfaced

with VASP was used to obtain the band structure from a GW [88] calculation, disentangle the

various bands and generate the Wannier orbitals corresponding to the disentangled bands.

Further bonding information was obtained from the energy band structure by calculating

the COOP and COHP as implemented in the Local Orbital Basis Suite Towards Electronic

Reconstruction (LOBSTER) program [89]. The topological analysis were performed using the

Critic2 program to obtain all the bond critical points (BCPs) and the topological properties

at the found BCPs [91]. In addition, the bond orders were obtained using the density derived

electrostatic and chemical (DDEC6) method implemented in the Chargemol programs [92].

All visualizations were done using Visualization for Electronic Structure Analysis (VESTA)

[122].

2.3 Results and Discussion

2.3.1 Hexagonal P6/mmm K2Ag

We start with a description of the K2Ag which has a hexagonal P6/mmm structure. This

structure has a first nearest neighbour distance of 3.44Å between the Ag atoms at 4.0GPa
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and form layered chains stacked along the crystallographic a axis as shown in Figure.2.2a.

The second nearest neighbour distance at the same pressure has an Ag-Ag distance of 5.54Å

and form hexagonal planes of Ag atoms stacked along the crystallographic c axis with an

interlayer spacing of 3.77Å evident in Figure.2.2b. Similarly, the K atom in this structure

form graphitelike sheets intercalated between the Ag hexagonal sheets. Having understood

the atomic arrangements in the structure, further analysis were performed to interpret the

chemical bonding by employing all available bonding analysis methods.

Figure 2.2: Crystal structure of hexagonal P6/mmm K2Ag with the K atoms in purple
and Ag atoms in silver

Figure 2.3: Disentangled band structure and corresponding Wannier orbitals of hexag-
onal P6/mmm K2Ag centered on the Ag atom.
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Previous report by Tse. et. al. [123] have investigated the role or individual contributions

of the Ag and K atoms to the total band structure. By comparing the band structure

of the total K2Ag and corresponding hypothetical �2Ag with the K atoms removed, the

authors reported that the K atoms do not appreciably contribute to the occupied energy

levels and fairly contribute to the bonding. Hence, to determine if the K atoms are truly

spectators in the K2Ag intermetallics, the K2Ag have been extensively studied here. The

disentangled band structure and corresponding wannier function of the K2Ag at 4.0GPa is

shown in Figure 2.3. From the energy corrected band structure, we notice some band mixing

on the Γ point and we can also tell the structure is metallic with the band crossing at the

fermi level (0eV). To accurately disentangle the bands in the lower valence state, we employ

a projection based method with the inner and outer disentanglement energy windows set to

-6eV and 0eV respectively. As can be seen in Figure 2.3, the obtained wannier orbital from

this disentanglement shows that the band mixing are primarily due to s and d orbitals of Ag

atom. The localized bands between -4eV and -5.2eV corresponds to the 5d orbitals of the Ag

atoms which are lone pairs and do not contribute to the bonding in the structure. Similarly,

we proceed to disentangle the bands around the Fermi level by freezing states up to the Fermi

level, with the inner and outer energy window in this case set to -2eV and 4eV. It is important

to note that the choice of disesntanglement window greatly determines the projection quality.

We explored several energy windows and ensured the chosen inner and outer windows contains

the total number of desired wannier functions. The obtained wannier functions around the

Fermi level are mostly p-orbitals centered on the Ag atom as shown in Figure 2.3. Hence,

from the obtained wannier orbitals, we can tell the band structure of the K2Ag is primarily

dominated by s p and d orbitals of the Ag atom with very minimal contributions from the

K atom. This finding, corroborates with previous reports but still insufficient to completely

answer the question ”what is the role of K and bonding nature of K2Ag?”. To further answer

the aforementioned question, the Natural Bond Orbital (NBO) and Solid State Adaptive

Natural Density Partitioning (SSAdNDP) methods were employed to probe the existence

of Ag-Ag, K-Ag and K-K bond interactions in the hexagonal K2Ag intermetallics. It is

important to first note that NBO’s are localized few-center orbitals (i.e typically one or two

center, but occasionally more) which truly presents a compact description of the Lewis-like
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molecular bonding pattern of an electron pair [19]. This method is a basis set dependent

method which require an optimal choice of the basis set to accurately project results from

a plane wave calculation into a localized orbital picture. For this reason, several tests were

performed on the potassium silver intermetallics to find an optimal basis set that accurately

projects the plane wave result with minimal spread. Occasionally, manual modifications had

to be made to the Gaussian basis set parameters in other to include diffuse orbital but still

tight and make it more flexible in other to accurately and completely reproduce the results

from the plane wave calculation. Plane wave DFT calculation was first performed on the

hexagonal P6/mmm K2Ag structure at 4.0GPa, then a quadruple-zeta Atomic Orbital (AO)

basis set such as the def2-QZVP [124, 125, 126] was used to represent the projected plane

wave density into Natural Atomic Orbital (NAO) basis with a projection spillover of the

order 10−2. The NBO hybridization for the s, p and d orbitals of Ag are 1.64, 0.64 and 10

electrons respectively while that of the K atom are 0.29, 0.24 and 0.02 electrons for the s,

p and d orbitals respectively. It is evident from the NBO hybridization of the K and Ag

atoms that there is indeed an electron transfer from the K atoms to the Ag atoms. However,

the electrons donated by the K atom does not go to the p orbital of Ag alone, rather it fills

the s orbital of Ag as well. Having obtained the orbital occupancy from the NBO analysis,

the resulting density matrix from the projection of the plane wave result to NAO basis was

further analyzed by using the SSAdNDP to search for muti-center two electron bonds (i.e nc -

2e− bonds) where number of centers can be 1,2,3. . . ,n. The 2c - 2e− bond search recovers the

Ag-Ag, K-Ag and K-K bonds with occupation numbers way less than two electrons as shown

in table 2.1. The low occupation number makes sense since the K2Ag binary is metallic and

at elevated pressure with the electrons more delocalized.

2c-2e− Bond Occupation Number (ON)

Ag-Ag 0.96

K-Ag 0.94

K-K 0.62

Table 2.1: Solid State Adaptive Natural Density Partitioning (SSAdNDP) analysis
of K2Ag .
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Atom Bader Charge NBO Charge DDEC6 Charge

Ag -1.171 -0.961 -1.018

K +0.585 + 0.480 +0.509

Table 2.2: Bader, natural bond orbital (NBO) and density derived electrostatic and
chemical (DDEC6) charge analysis of K2Ag.

Figure 2.4: Bond critical points of hexagonal P6/mmm K2Ag. Colour code; Purple=K
atom, Silver=Ag atom and Black=Bonds critical point.

In other to account for the electron sharing, we computed the Bader charges on the Ag

and K atoms summarized in table 2.2. Due to the higher electronegativity of silver, it is

expected that the potassium atoms donate electrons to the silver as in this case each K

donates about +0.585 electrons to the Ag atom. The Bader charges indicate electrons have

been transferred from K to Ag in the K2Ag intermetallics, this supports the already recovered

bonding interactions using the SSAdNDP. Other charge analysis methods such as the NBO

and the density derived electrostatic and chemical (DDEC6) [92] were also employed to

extract the atomic charges of K and Ag in the K2Ag as shown in table 2.2. The DDEC6

have been employed in this work because, in addition to atomic charges, it also gives a

comprehensive description of the bond order which is an indicator of the bond strength. The

magnitude of the obtained atomic charges from all three charge analysis methods slightly

differ from each other, however this is not a problem because the charges are partitioned
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differently in NBO, Bader and DDEC6 methods, hence the important thing to check is the

trend of the obtained charges which has to be consistent. As can be seen in table 2.2, the

Bader, NBO and DDEC6 charges reveal the K atom is the electron donor while Ag is the

electron acceptor, hence there is a consistent trend in the charge transfer from all methods.

Quantum mechanical description of molecular structures have been simplified by the Baders

Quantum theory of Atoms in Molecules (QTAIM) [27, 28, 29], which we have introduced in

chapter one. QTAIM identifies points where the gradient of the electron density vanishes i.e.

∇ρ(rc) = 0 , these special points rc are called critical points (CPs) and are characterized by

their rank and signature labelled as (ω, σ). The rank of a CP corresponds to the number of

non-zero curvatures (eigenvalues of the Hessian matrix) of ρ(rc) at the CP, while the sum

of the signs of the curvatures of ρ(rc) at the CP denotes its signature. The charge density

at the critical point (ρ(rBCP )) and its Laplacian (∇2ρ(rBCP )) are valuable pieces to reveal

essential information about the strength and type of interaction. The absolute magnitude

of the charge density at the bond critical point indicates the relative strength of the bond

while its Laplacian characterizes the nature of interatomic interaction between the bonding

atoms. A negative Laplacian at the bond critical point is an indicator of a covalent bonding

interaction while a positive Laplacian may be attributed to a closed shell interaction. Several

other topological parameters such as the potential energy density (V(rBCP )), kinetic energy

density (G(rBCP )) and total energy density (H(rBCP )) at the bond critical points are also

essential quantities in the characterization of the bonding strength and type. In other to

visualize the bonds in the K2Ag intermetallics, there is need for topological analysis from

QTAIM to obtain the bond critical points. From the critical point analysis, we obtained

three non-equivalent bond critical points with the critical point list and bond orders shown

in table 2.3. The obtained critical points satisfy the Morse sum (nuclear - bond + ring -

cage = 0) and the topological distribution is valid [127]. The densities (ρ(rBCP ) at the bond

critical point are relatively small with all the Laplacian (∇2ρ(rBCP )) at the bond critical

points being positive which indicate charge depletion in the bond critical point and suggest a

closed shell interaction between the atoms. A visual representation of the bond critical points

(black colour) in the unit cell is shown in Figure 2.4. The corresponding bond orders for the

Ag-Ag, Ag-K and K-K bonds are summarized in table 2.3. From the computed bond order
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using the DDEC6 method, the Ag-Ag bond has the largest bond order which is almost twice

that of the Ag-K interaction. The density at the bond critical point (ρ(rBCP ) which is also

an indicator of bond strength can be seen to follow the same trend as the actual calculated

bond order.

Bond d(Å) Bond Order ρ(rBCP ) ∇2(rBCP ) V G H G/ρ

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (Ehe
−1a3

0)

Ag-Ag 3.437 0.296 0.015 0.017 -0.007 0.006 -0.001 0.366

Ag-K 3.626 0.106 0.008 0.018 -0.004 0.004 0.001 0.476

K-K 3.191 0.072 0.007 0.032 -0.004 0.006 0.002 0.847

Table 2.3: Characterization of atomic interaction in K2Ag from QTAIM. Where a0

and Eh are bohr and hartree units respectively.

The Crystal orbital Hamiltonian population analysis (COHP) method was employed to iden-

tify the orbital contributions to the bonds from a localised basis set picture. The COHP

is a local basis set method which partitions the bands-structure energy in terms of orbital

pair contribution by projecting the results from a plane wave calculation into linear com-

bination of atomic orbitals (LCAO) [89]. Thus, one can easily identify regions of bonding

and antibonding from an energy-resolved COHP(E) plot. Given that this method have been

previously applied to partition band structure of solid state systems [128], we apply it to

further extract bonding information from the bandstructure of the K2Ag. Having obtained

an ≈ 99% overall projection of the plane wave orbitals to localized orbitals using the projec-

tion scheme defined in ref.[128] as implemented in the LOBSTER code [89]. A comparison

of the plane wave and LCAO orbital decomposed density of state from VASP and LOB-

STER respectively is necessary to ensure the true valence orbitals of the K and Ag atoms

are completely reproduced. In addition, it is also important to check the individual band

overlaps at each K-point to ensure the diagonals are approximately one. This band overlap

check was done for all the K-points for each of the atoms in the K2Ag intermetallics. Figure

2.5 shows the projected desity of state (PDOS) of the K atom using a plane wave method

(VASP) and basis set method (LOBSTER). The PDOS from the plane wave method show
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very little d contribution of K around the Fermi level, this d orbitals were missing from the

LOBSTER PDOS due to the fact that the default basis set programmed into the code for K

does not contain d orbitals of K and LOBSTER has a fixed basis set which can’t be modified

by the user. Also, the 3p DOS from the basis set method is extremely small compared to

the plane wave method. However, the s DOS profiles from both methods are qualitatively

similar. Similar check for DOS reproducibility of the Ag with a basis set that employed 4d

5p 5s orbitals as the projection orbitals was performed as shown in Figure 2.6. The s p and

d orbitals in the valence state agree qualitatively as well.

Figure 2.5: Projected density of state (PDOS) of K in the hexagonal P6/mmm K2Ag
using LOBSTER and VASP
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Irrespective of the slight variations in the orbital decomposed DOS of the K and Ag using

the localized basis set method compared with the plane wave method, a comparison of the

total density of state using both methods agree qualitatively and quantitatively up to the

Fermi level as shown Figure 2.7. This stunning agreement prompt the question ”when can

the LOBSTER results be trusted?”.

Figure 2.6: Projected density of state (PDOS) of Ag in the hexagonal P6/mmm K2Ag
using LOBSTER and VASP
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Figure 2.7: Total density of state (PDOS) of the hexagonal P6/mmm K2Ag using
LOBSTER and VASP

Having performed several checks and tests summarized in Appendix A, the recommendation

derived is that, irrespective of the projection accuracy from plane wave to LCAO, the accurate

way to validate the projected localized orbitals is by comparing the orbital decomposed

density of state which gives a quantitative description of how the projected orbitals mimics

the original Bloch orbitals. The refine energy resolved -COHP plots of the Ag-Ag, Ag-K and

K-K interactions were calculated and shown in Figure 2.8. The positive and negative -COHP

axis denotes bonding and anti-bonding regions respectively.
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Figure 2.8: Crystal orbital Hamiltonian Population (COHP) of hexagonal P6/mmm
K2Ag. The positive and negative -COHP axis denotes bonding and ant-bonding regions
respectively.

Figure 2.9: Crystal orbital overlap Population (COOP) of hexagonal P6/mmm K2Ag.
The positive and negative COOP axis denotes bonding and ant-bonding regions respec-
tively.
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For the Ag-Ag interaction, the 4d orbitals of Ag are non-bonding as they constitutes bonding

and anti-bonding states between -3.8eV and 5.8eV. The Ag-Ag bonding interaction is mostly

due to silver 5p orbitals. A similar analysis show the K-Ag bond interaction is primarily

formed by the 4s and 5p orbitals of K and Ag respectively, where a combinations of all

the Ag projected orbitals with the 3p orbital of K constitute the anti-bonding states. Also

Figure 2.8 shows that the bonding interaction between the K atoms is mostly formed by

the 4s orbitals of K. The 3p-3p contribution can be seen to be nearly zero similar to the 3p

projected density of state for the K atom using the basis set method. The obtained results

here suggest that the K atoms significantly contribute to the bonding and stability of the

K2Ag. It is important to note that the integrated crystal orbital Hamiltonian population

(ICOHP) can provide information on the bond strength but cannot be regarded or treated

as the actual bond order. Hence, the bond orders presented in table 2.3 reveal that the

Ag-Ag is the strongest bond in the P6/mmm K2Ag intermetallics followed by the K-Ag

bond. Similar to the COHP method, the COOP is able to also extract bonding information

from the overlap population by partitioning the electron number. The positive and negative

COOP regions corresponds to the bonding and anti-bonding regions respectively. Hence, the

calculated COOP for the K2Ag is plotted in Figure 2.9 and the COOP plot also shows that

the Ag-Ag interaction is mostly due to the 5p orbitals of Ag while the K-Ag interaction is

formed by the 4s and 5p orbitals of K and Ag respectively. Some K-K bonding interaction

is also observed around the Fermi level similar to the COHP result. Therefore, the COOP

also emphasizes that the K atoms play a significant role in the structure. Hence, the NBO,

SSAdNDP, COOP, COHP and QTAIM methods employed to interprete the K2Ag structure

all suggest that the K atom significantly contribute to the bonding of the intermetallics and

are thus not spectators in the structure as suggested by the previous report [123]. Similar

analysis have also been employed to interpret the higher pressure cubic structure (K3Ag) of

the potassium silver intermetallics at 6.4GPa.
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2.3.2 Cubic Fm-3m K3Ag

Unlike the low pressure hexagonal structure, at 6.4GPa K3Ag crystallizes in the BiF3 struc-

ture type with Fm-3m space group. In the FCC sublattice the K atoms occupy the octahedral

and tetrahedral sites as shown in Figure 2.10. The nearest neighbour Ag-Ag distance here

has an exceptionally long length of 5.4Å but similar to the second nearest neighbour Ag-Ag

distance of the K2Ag at 4.0GPa. The first nearest neighbour K-K separation of 3.39Å in the

K3Ag at 6.4GPa is 10% shorter than the K-K separation found in elemental K at the same

pressure [114]. These unusual features of the K3Ag prompts the need for a detailed study of

its electronic structure and bonding pattern.

Figure 2.10: Crystal structure of primitive Fm-3m K3Ag with the K atoms in purple
and Ag atoms in silver

Figure 2.11 shows the disentangled band structure and corresponding wannier orbitals of the

cubic K3Ag at 6.4GPa. The lower non-dispersive bands between -4.5eV and -5eV corresponds

to the doubly degenerate (eg) and triply degenerate (t2g) 4d orbitals of the Ag which do not

contribute to the bond. Unlike K2Ag where we noticed an s and d orbital mixing in the

lower valence states, the Ag s orbital of the K3Ag is completely isolated from the d band

of Ag with an energy separation of about 1eV. So far, the extracted wannier orbitals in

the lower valence level of the K3Ag reveals the band structure of this cubic phase of the

potassium silver intermetallics is dominated by orbital contributions from the Ag atom. This

may indicate that the K atoms are insignificant to stabilize the structure. However, using an
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inner and outer energy windows of -1eV and 2eV respectively, with the frozen state set to

the Fermi level (i.e only states up to the Fermi level are included in the wannierization), the

wannier orbitals extracted from the upper valence state and lower conduction bands reveal

significant contribution of the K atoms to the bonding states with the obtained wannier

orbitals showing a possible s, p and d hybrid orbitals of K formed by the dz2 and dx2−y2

orbitals of the potassium atom.

Figure 2.11: Disentangled band structure and corresponding Wannier orbitals of cubic
Fm-3m K3Ag

The character of Wannier functions have been previously reported to relate to the degree

of s-p(-d) hybridization and reflect possible muti-center bonds in solids [129]. In addition

to the obtained wannier orbitals of K, the upper valence and lower conduction states of

the K3Ag also contains p orbitals of Ag. Unlike the K2Ag where primarily p orbitals of

Ag dominated the bonding state, the K3Ag in addition shows significant contributions from

the K atom as well. Having revealed the character of wannier orbitals corresponding to the

various bands in the band structure, an orbital decomposed bonding description is necessary

to ascertain the validity of the extracted wannier orbitals. Using a quadruple-zeta Atomic

Orbital (AO) basis set, PW density results of the cubic K3Ag structure were projected into

Natural Atomic Orbital (NAO) basis with a projection spillover of the order 10−2. The

calculated NBO orbital hybridization for the s, p and d orbitals of Au are 1.55, 0.11 and 10
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electrons respectively while that of the K atom are 0.22, 0.29 and 0.02 electrons for the s, p

and d orbitals respectively. Following the recovery of the orbital occupancy from the NBO

analysis, the SSAdNDP was employed to search for muti-center two electron bonds (i.e nc

- 2e− bonds) using the resulting density matrix from the projection. The SSAdNDP bond

search recovers the Ag-K2, Ag-K1 and K2-K1 which are 2c - 2e− bonds with occupation

numbers way less than two electrons as shown in table 2.4, where K1 and K2 are the two

unique K atoms occupying the Oh and Td point groups respectively. No Ag-Ag bond was

found from the SSAdNDP search.

2c-2e− Bond Occupation Number (ON)

K2-Ag 1.00

K1-Ag 0.94

K1-K2 0.67

Table 2.4: Solid State Adaptive Natural Density Partitioning (SSAdNDP) analysis
of K3Ag .

Bader charge analysis shown in table 2.5 for the K3Ag intermetallics at 6.4GPa reveals

electron transfer from the electropositive K atoms to the more electronegative Ag. Each

K atom contributes approximately +0.5e− to the silver atoms. A comparison of the Bader

charges obtained from the low pressure K2Ag and higher pressure K3Ag reveals an ≈ 13%

decrease in the Bader charge of each K atom and an ≈ 30% increase in the Bader charge

of Ag as the pressure increased from 4.0GPa in K2Ag to 6.4GPa in the K3Ag intermetallics.

Atomic charges from NBO and DDEC6 analysis are also presented in table 2.5. Though the

magnitude of the charges from all three methods slightly vary, they all follow the same charge

transfer trend and collectively reveal significant charge transfer from the K atom to the Ag

atom as also observed in the lower pressure K2Ag structure. The observed charge transfer

trends for both cases are consistent with the electronegativity difference of the K and Ag

atoms.
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Figure 2.12: Bond critical points of cubic Fm3m K3Ag. Colour code; Purple=K
atom, Silver=Ag atom and Black=Bonds critical point.

Atom Bader Charge NBO Charge DDEC6 Charge

Ag -1.531 -1.311 -1.361

K1 +0.519 + 0.451 +0.411

K2 +0.506 +0.430 +0.474

Table 2.5: Bader, NBO and DDEC6 charge analysis of K3Ag intermetallics.

Bond d(Å) Bond Order ρ(rBCP ) ∇2(rBCP ) V G H G/ρ

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (Ehe
−1a3

0)

Ag-K2 3.393 0.195 0.012 0.025 -0.006 0.006 0.000 0.513

Ag-K1 3.918 0.070 0.008 0.009 -0.002 0.002 0.000 0.307

K2-K1 3.393 0.076 0.006 0.018 -0.003 0.004 0.001 0.590

Table 2.6: Characterization of atomic interaction in K3Ag from QTAIM. where K1
and K2 are the two unique K atoms occupying the Oh and Td point groups respectively

Using the Quantum theory of atoms in molecule (QTAIM) method of Bader [27, 28, 29] for

the topological analysis of K3Ag, we obtained a set of complete critical point list that satisfy

the Morse sum (nuclear - bond + ring - cage = 0) for periodic crystals [127]. Three of the
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critical points are bond critical points which have been tabulated in table 2.6 along side the

bond orders and topological parameters. The densities (ρ(rBCP ) at the bond critical point

are fairly small for the second nearest neighbour Ag-K1 distance as well as the K2-K1 bond

interaction. This density at the bond critical point (ρ(rBCP ) is also an indicator of bond

strength and can be seen to follow the same trend as the actual calculated bond order given

in table 2.6. From the computed bond order, the Ag-K2 bond has the largest bond order

which is over twice that of the Ag-K1 and K2-K1 interactions. All the Laplacian (∇2ρ(rBCP ))

at the bond critical points given in table 2.6 are positive which indicate charge depletion in

the bond critical point and suggest a closed shell interaction between the bonding atoms.

A plot of the bond critical points (black colour) in the unit cell of the K3Ag is shown in

Figure2.12. The corresponding bond orders calculated using DDEC6 for Ag-K2, Ag-K1 and

K2-K1 bonds are shown in table 2.6. It is important to note that topological analysis show

no evidence of a covalent Ag-Ag bond interaction in the K3Ag intermetallics at 6.4GPa. In

other to obtain an orbital decomposed description of the bond interactions present in the

K3Ag structure, the COOP and COHP methods have been employed to define which orbitals

are responsible for the bonding and anti-bonding states in the K3Ag intermetallics. The 3p

4s and 4d 5p 5s orbitals of K and Ag atoms respectively were used as projection orbitals to

represent the plane wave result in the form of an LCAO as incorporated in the LOBSTER

program [89]. As already established from the K2Ag studies, it is important to compare the

PDOS of the individual atoms using the plane wave and LCAO method in other to quantify

the completeness of the projection and choice of projection orbitals. Hence, following a good

projection of 99% accuracy, the band overlap at each K-point was examined to ensure the

diagonals are close to one, after which a comparison of the PDOS was done for the K and

Ag atoms in the K3Ag intermetallics. Figure 2.13 represents the PDOS of K computed using

the plane wave (VASP) and the basis set (LOBSTER) methods.
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Figure 2.13: Projected density of state (PDOS) of K in the cubic Fm-3m K3Ag using
LOBSTER and VASP
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Figure 2.14: Projected density of state (PDOS) of Ag in the cubic Fm-3m K3Ag using
LOBSTER and VASP

The LOBSTER PDOS excluded the 3d orbitals of K due to the limitation in the default

basis set, hence, it only reproduces the 4s orbital density of state (with that of the 3p very

low when compared to the plane wave method). However, the integrated number of electrons

from the LOBSTER and plane wave method PDOS agree with each other. Similarly, the Ag

PDOS using both methods are very similar below the Fermi level (Figure 2.14). Irrespective
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of the difference in the PDOS from LOBSTER when compared to the plane wave result,

the total density of state from both methods is practically indistinguishable below the Fermi

level that is responsible for chemical bonding (i.e the upper valence state from -5eV to 0eV)

(Figure 2.15). The calculated COHP for the three possible bonding interactions formed in

the K3Ag is given in Figure 2.16.

Figure 2.15: Total density of state of the cubic Fm-3m K3Ag using LOBSTER and
VASP
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Figure 2.16: Crystal orbital Hamiltonian Population (COHP) of cubic Fm-3m K3Ag.
The positive and negative COHP axis denotes bonding and ant-bonding regions respec-
tively.

Figure 2.17: Crystal orbital overlap Population (COOP) of cubic Fm-3m K3Ag. The
positive and negative COOP axis denotes bonding and ant-bonding regions respectively.
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As noted earlier, the positive and negative -COHP axis corresponds to the bonding and

anti-bonding regions respectively. For the Ag-Ag interaction, we observe the 5s-5s and 4d-

4d interactions show anti-bonding peak before the bonding peak which contradicts basic

chemistry (i.e ideally, it should be bonding before anti-bonding), hence we liken this to an

artifact in the computation of the Ag-Ag Hamiltonian population. In other to validate this

reasoning, we compare COHP with the COOP of the Ag-Ag interaction shown in Figure 2.17.

As can be seen from the COOP, the 5s is completely anti-bonding as expected. Surprisingly,

the COOP reveals no Ag-Ag bonding interaction in the K3Ag. However, the COHP and

COOP both show that the K3Ag forms strong K-Ag bonds through the 4s and 5p orbitals of K

and Ag respectively with a relatively weak K-K bonding interaction formed by the 4s orbitals

of K. This result suggest that regardless of the predominance of the Ag atoms in the valence

state of the K3Ag band structure (Figure 2.11), the structure is not entirely stabilized by the

formation of covalent Ag-Ag bond interaction. Instead it is primarily stabilized through the

formation of stronger K-Ag bonds. In general all the methods applied here yield consistent

results and confirm that the K atoms are not spectators in the intermetallics as proposed

earlier, although there is a significant electron transfer from K to Ag. As a result the K-Ag

bond interaction dominate the electronic K3Ag structure with bond order of 0.195. Hence,

its reasonable to say, a 2-center-2-electron K-Ag bond is the primary bond interaction of the

K3Ag cubic structure.

2.4 Conclusion

The electronic structure and bonding nature which favours the formation and stability of

unusual K2Ag and K3Ag intermetallic compounds under compression as reported by Atou

et. al. [114] have been extensively studied here. All available plane wave and localized

basis set dependent bonding analysis methods such as Wannier functions, Quantum theory

of atoms in molecule (QTAIM), Natural Bond Orbitals (NBO), Solid State Adaptive natu-

ral density partitioning (SSAdNDP), Crystal Orbital Hamiltonian Population (COHP) and

Crystal Orbital Overlap Population (COOP) have been employed to interprete the so called

chemical bonding in the K2Ag and K3Ag intermetallics at 4.0GPa and 6.4GPa respectively.
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The obtained wannier orbitals from the disentangled band structure of the intermetallics

show that at low pressure s, p and d orbitals of Ag primarily dominate the band structure

of K2Ag. However, at higher pressure the K atom begins to significantly contribute to the

valence bands of K3Ag thereby forming some kind of s, p and d hybrid orbitals. The NBO

analysis reveal the nature of the orbital hybridization in both structures and confirms the

electron transfer from the K atom to the 5s orbitals of the Ag atom. Search for multi-center

bonds yields three 2c-2e− bonds for the K2Ag which includes Ag-Ag, Ag-K and K-K interac-

tions. Surprisingly, multi-center bond search of K3Ag yield no Ag-Ag bond interaction, only

Ag-K2, Ag-K1 and K1-K2 bonds were recovered. The topological analysis using the QTAIM

method of Bader recoveres similar bond interactions in the low and high pressure structures.

All bonding interactions in K2Ag and K3Ag are closed shell, where the closed shell interac-

tions in this case can be due to ionic interaction, like in NaCl or very weak covalency as a

result of very small density at the bond critical point. In addition, the bond critical points

are closer to the alkali atom in K2Ag and K3Ag. The COHP and COOP performed with

LOBSTER code also support the Ag-K bond interactions are between 5p of Ag and 4s of K

in both structures. However caution has to be taken when extracting bonding information

at high pressure using the COHP and COOP methods implemented in the LOBSTER code.

Following an accurate projection to the LCAO basis, hence, the recommendation from this

study is that one compares the LOBSTER extracted PDOS of each atom with the PDOS

computed from a plane wave calculation in other to validate the projection quality. In the

past, other theorists only compare the total density of states but this can be misleading as

this study have proven that, irrespective of the orbitals included in the projection, the total

density of state will always agree with the plane wave total DOS. A comparison of the Bader

charges obtained from the low pressure K2Ag and higher pressure K3Ag reveals an ≈ 13%

decrease in the Bader charge of each K atom and an ≈ 30% increase in the Bader charge

of Ag as the pressure increased from 4.0GPa in K2Ag to 6.4GPa in the K3Ag intermetallics.

Finally, all these bonding analysis techniques must be applied with care when treating high

pressure systems due to the extensive modification of the electron density on application of

pressure. Hence, a naive localized description is not appropriate and may lead to erroneous

interpretation.
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Chapter 3

Bonding in the Three Phases of Na-Au

Intermetallics

3.1 Introduction

The understanding of the structure and bonding of intermetallic phases is challenging [130].

Accurate description of the electronic structure of alkali metals by the nearly free electron

(NFE) model at ambient conditions gives them the name “simple” metals [131]. The physi-

cal and chemical properties of alkali metals, such as electronic density, electronic structure,

etc. are greatly altered by pressure [132, 133, 134]. Under compression, atomic orbitals

of alkali metals are modified and cause s-p, s-d or p-d hybridization of the orbitals result-

ing in a series of pressure induced phase transitions to form complex low symmetry struc-

tures [120, 135, 136, 137, 138, 139, 140, 141, 142, 143]. Physical properties such as reduced

melting temperatures [136, 138, 144], superconductivity [145, 146, 147] and metal to insu-

lator/semiconductor transitions [120, 137, 138, 139, 148] emerge as a consequence of these

pressure induced phase transitions and the NFE model fails at these extreme conditions. Bi-

nary phases of alkali metals and gold previously studied have shown unusual and intriguing

electronic properties [132, 149]. In the early 20th century, Zintl et al.[103] obtained a black

deposit from an ammonia solution of sodium by adding Au, which they claimed to be NaAu

compound. An understanding of the orbital hybridization in these intermetallics will help

explain the formation of alkali metal transition metal alloys at high pressure. There are cur-

rently several computational approach to analyze bonding in periodic solid state systems in

a chemical perspective. These include, Natural Bond Orbital (NBO) analysis [23, 20, 21, 22],

Solid State Adaptive Natural Density Partitioning (SSAdNDP) [24], Maximally Localized
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Wannier Functions (MLWF) [25], Crystal Orbital Hamiltonian Population (COHP) analysis

[128] and Atoms in Molecules [27, 28, 29, 150]. NBO analysis constructs real space repre-

sentation of localized bonding and lone pair orbitals from the density matrix of an electronic

structure calculation [94]. These natural orbitals are the eigen-orbitals of the first order

density matrix [151]. The SSAdNDP is an extension of AdNDP to periodic systems and

offers description of Lewis-like multi-center (nc-2e−) bonds. SSAdNDP have been applied

to different periodic systems of various structural complexities and have correctly identified

the bonding motifs in them [24]. Bonding in periodic systems have also been analyzed us-

ing MLWF [152, 153, 25]. Here a unitary transformation of the band structure to a set of

functions localized within a single unit cell is performed via Wannier transform. Wannier

functions can thus be said to be obtained from Fourier transformation of the Bloch functions.

A review on the applications and properties of MLWF can be found in ref [25]. Following

Mulliken’s pioneering work [30] on electron assignment to bonds and to atom centers, several

methods for electron partitioning in molecules have been proposed. Within non-variational

extended Huckel theory, Hughbanks and Hoffmann introduced a tight binding method with

overlap which they called the Crystal Orbital Overlap Population (COOP) [44, 45]. In the

COOP method, having calculated the band structure, the Mulliken’s overlap population

technique is then applied to a crystal measuring the bonding by c∗µcνSµν (where c∗µ and cν

are the coefficients and Sµν is the overlap integral) with positive, zero and negative overlaps

implying bonding, nonbonding and antibonding respectively [46, 26]. The dependence of

the COOP method on the basis set makes it non-ideal for bonding description within first

principle Density Functional Theory (DFT) [26]. Hence, the need for a bonding descriptor

within first principles DFT led to the development of Crystal Orbital Hamiltonian Population

(COHP) [26] method, which partitions the energy other than electrons but then similar to

the COOP method since it also extracts information on the chemical interaction in a system

from the band structure. A comprehensive review of the various applications of the COHP

method can be found in ref.[47]. Baders Quantum theory of Atoms in Molecules (QTAIM)

have made quantum mechanical description of molecular structures possible [27, 28, 29, 30].

QTAIM extracts bonding information from the electron density of the molecular system.

Both theoretical and experimental electron densities have been shown to give information on
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the chemical bonding in molecular systems [48, 49, 50, 51]. QTAIM identifies points where

the gradient of the electron density vanishes i.e. ∇ρ(rc) = 0, these special points rc are called

critical points (CPs) and are characterized by their rank and signature labelled as (ω, σ). For

the bond critical points reported here, the rank and signature are 3 and -1 respectively which

implies the density parallel and perpendicular to a plane is a maximum and minimum respec-

tively. The different criteria for use of other important topological parameters at the critical

point such as density (ρ), Laplacian ∇2ρ, potential energy (V), kinetic energy (G), and the

local energy densities (H) for bonding description have been summarized in previous reports

[52, 53] and are defined in chapter one.

Recently, Takemura and Fujishisa [132] have synthesized Na-Au intermetallic compounds

under high pressure at room temperature. Their study yielded four intermetallic phases

up to 60GPa. The phase I (Na2Au), with the tetragonal CuAl2 type structure, phase II

(Na3Au) with trigonal Cu3As or hexagonal Cu3P-type structure, phase III (Na3Au) with

cubic BiF3 type structure and finally phase IV which is said to be structurally disordered.

Following the Miedema’s rule [110, 111], the sodium and gold are unmixable due to the

difference in their valence elctron density. However, they form intermetallic compounds under

compression as reported by Takemura and Fujishisa [132]. Having used the Natural Bond

Orbital Analysis (NBO), Solid State Adaptive Natural Density Partitioning (SSAdNDP),

Quantum theory of Atoms in Molecules, Crystal Orbital Overlap Population (COOP) and

the Crystal Orbital Hamiltonian population (COHP) analysis to accurately interpret the

electronic structure and bonding of the K3Ag and K2Ag alloys reported by Atou et. al.

[114], the same methods have been employed here to interpret the structure and chemical

bonding in the three phases of the Na-Au intermetallics reported by Takemura and Fujishisa

[132] and also search for electron localizations in non-nuclear positions in the crystal which

are sometimes called electrides. The results reveal, from simple topological analysis of the

electron density one can distinguish between two structures that cannot be differentiated by

comparing equation of states computed with highly accurate DFT method. This chapter

describes the electronic structure and bonding nature of the topologically stable sodium gold

intermetallics.
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3.2 Computational Details

Structural optimizations, charge densities and electronic band structures were calculated us-

ing the Vienna ab initio Simulation (VASP) code [85] and Projector Augmented plane Waves

(PAW) potential [93]. The Na potential employed 2p6 3s1 as valence states while the Au

potential employed 5d10 6s1 as valence states, with the Perdew-Burke-Ernzerhof (PBE) ex-

change correlation functional [37]. The Solid State Adaptive Natural Density Partitioning

(SSAdNDP) code [24] was used to search for localized and delocalized n center 2 electron

(nc-2e) bonds. A projection algorithm was used to mimic the Plane Wave Density Functional

Theory (PW DFT) in a localized Atomic Orbital (AO). The wannier90 code [87] interfaced

with VASP was used to obtain the band structure from a GW [88] calculation, disentangle the

various bands and generate the Wannier orbitals corresponding to the disentangled bands.

Further bonding information was obtained from the energy band structure by calculating the

COHP as implemented in the Local Orbital Basis Suite Towards Electronic Reconstruction

(LOBSTER) program [89] which projects PAW functions onto localized slater type orbitals.

The topological analysis, evaluation of crystal voids with procrystal density [90] and search

for non-nuclear maxima (NNM) with the Yu-Trinkle algorithm [154] were performed using the

Critic2 program [91] and bond orders were obtained using the density derived electrostatic

and chemical (DDEC6) method implemented in the Chargemol programs [92]. All visual-

izations were done using Visualization for Electronic Structure Analysis (VESTA) [122] and

Visual molecular dynamics (VMD) [155] programs.
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3.3 Results and Discussion

3.3.1 Na2Au Phase I

Phase I of the sodium gold binary, denoted as Na2Au, has a tetragonal unit cell (I4/mcm)

with four formula units (Z = 4). Experimental charge density analysis of the I4/mcm Na2Au

performed at different pressures by Dr. Jianbao Zhao using the Maximum Enthropy Method

(MEM) is shown in Figure 3.1. At 0.21GPa, the charge density around the Na atom can

be seen to have a cylindrical shape which tends to break up at 0.83GPa with some of the

electrons occupying the non-nuclear positions as can be clearly seen in the 2D plot of the

charge density along the 001 plane at 0.83GPa (Figure 3.1). To quantify and understand the

non-nuclear maximum (NNM), plane wave DFT calculation was first performed on the Phase

I lattice structure at 0.83GPa using a large charge density grid. The charge density obtained

was used to perform QTAIM topological analysis to extract the critical points. From the

topological analysis, three non-equivalent bond critical points were obtained with bond orders

and the topological parameters at the critical point given in table 3.1. All the Laplacian (∇2

(rBCP )) at the bond critical points are positive which indicate charge depletion in the bond

critical point and suggest a closed shell interaction between the atoms. The density at the

bond critical point (ρ(rBCP )) is an indicator of bond strength, hence, it shows the Au-Au

bond is the strongest interaction followed by the Na-Au bond interaction in agreement with

the computed bond orders. Integration of the atomic basins using the Yu-Trinckle algorithm

[154] yields one NNM occupying four symmetry equivalent sites shown in blue in Figure

3.2. The procrystal density plot recovers the NNM as can be seen in Figure 3.2a. Similarly,

the Electron Localization Function (ELF) [156] plot of the I4/mcm Na2Au at 0.45 isovalue

indeed show electrons in the non-nuclear positions and correspond with the NNM position

from the topological analysis (Figure 3.2b). Further investigation indicates the NNMs lie on

a hexagonal plane formed by the first and second nearest neighbour Na atoms as can be seen

in Figure 3.2c and 3.2d. In agreement with MEM analysis, the topological analysis revealed

the NNMs were formed from the Na atoms. Burdett and McCormick [156] have shown that

ELF values below ELF=0.5 can be interpreted as representing regions between atomic shells
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or regions where the nodal contributions to ELF far outweighs the contribution of the density,

therefore, the electron density is small in these regions [156]. Hence, the NNMs recovered

from the topological analysis and MEM analysis are simply regions of low electron density

in the Na2Au intermetallics. A plot of the bond critical points is shown in Figure 3.3.

Figure 3.1: Three dimensional and corresponding two dimensional (along the 001
plane) charge density analysis of I4/mcm Na2Au using the Maximum Enthropy Method
(MEM).

Bond d(Å) Bond Order ρ(rBCP ) ∇2(rBCP ) V G H G/ρ

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (Ehe
−1a3

0)

Au-Au 2.770 0.830 0.056 0.098 -0.056 0.0413 -0.014 0.7415

Na-Au 3.010 0.190 0.013 0.049 -0.008 0.010 0.002 0.756

Na-Na 3.400 0.060 0.005 0.001 -0.001 0.001 0.000 0.156

Table 3.1: Topological properties of Na2Au Phase I at the bond critical points from
QTAIM at 0.83GPa. Where a0 and Eh are bohr and hartree units respectively.
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Figure 3.2: Analysis of Na2Au phase I at 0.83GPa. (a) Procrystal density in yellow
superposed with the NNMs in blue (b) ELF at 0.45 isovalue (c and d) hexagonal rings
of Na. Atom colour: Na = red, Au = gold and NNM = blue

Figure 3.3: Bond critical points (BCPs) plot of the Na2Au phase I at 0.83GPa. Atom
colour: Na = red, Au = gold and BCPs = black

Having recovered the NNM from QTAIM analysis, the calculated plane wave orbitals were

projected to atom center basis with the def2-QZVP [124, 125, 126, 157, 158, 159] atomic

orbital basis set. The overall projection spillover is less than 10−2 and the NBO orbital

occupancy for the Au s, p and d orbitals are 0.99, 0.79 and 9.85e− respectively. This roughly

corresponds to an atomic electron configuration of 5d10 6s1 6p1 for the Au atom. Meanwhile,

the natural orbital population on the Na atom are 0.27, 0.86 electrons for the s and p orbitals

respectively. Having obtained the orbital occupancies from the NBO analysis, SSAdNDP
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was employed to analyze the density matrix for chemical bonding patterns. The SSAdNDP

general search yields 44 1c-2e− bonds (lone pairs), where 24 of the lone pairs are 2p orbitals

centered around the Na atoms and the other 20 are completely 5d orbitals centered around

the Au atoms with occupation numbers (ON) of approximately 1.99 and 1.97 electrons on

the sodium and gold atoms respectively. Further search for multi-center bonds yields two

symmetry nonequivalent 2c-2e− bonds which include Au-Au and Na-Au with occupation

numbers (ONs) of approximately 1.33 and 1.05 electrons respectively. No sensible Na-Na

bond interaction was recovered from the localized multi-center bond search owing to the

fact, the Na-Na bond from the topological analysis had an extremely low density at the

critical point (table 3.1). Disentangled Wannier band structure and corresponding Wannier

orbitals were obtained by disentangling the valence band as shown in blue in Figure 3.4, with

inner and outer energy windows of -7.08eV and 1.92eV respectively and the frozen state at

the fermi level (0eV). From the disentangled valence bands, the bond between the Au atoms

was obtained and found to be similar to the 2c-2e− Au-Au bond from the SSAdNDP search

(Figure 3.4). Localized 5d Wannier orbitals centered around the Au atom as shown in Figure

3.4 were recovered from the lower valence bands. These 5d Wannier orbitals of Au can be

seen to correspond with the 5d lone pairs of Au from the SSAdNDP search that do not take

part in the bonding.

Atom Bader Charge NBO Charge DDEC6 Charge

Na +0.664 +0.369 +0.457

Au -1.332 -0.739 -0.914

Table 3.2: Bader, natural bond orbital (NBO) and density derived electrostatic and
chemical (DDEC6) charge analysis of Na2Au at 0.83GPa.

To describe electron sharing in Na2Au, charge analysis calculations were performed and the

corresponding Bader, NBO and DDEC6 charges on the Na and Au atoms are compared

in table 3.2. Due to the higher electronegativity of gold, it is expected that the Na atoms

donate electrons to the gold as in this case all the charge analysis method employed follow

similar trend with each Na atom donating electrons to the Au atoms. Having identified the

atomic nature at the Na and Au atoms in Na2Au, an orbital decomposed description of the

bond interaction using the COHP method, which partitions the bands structure energy in

73



Figure 3.4: Disentangled band structure, corresponding Wannier orbitals and SSAd-
NDP plots of the phase I Na2Au centered on the Ag atom.

terms of orbital pair contribution by projecting the results from a plane wave calculation

into linear combination of atomic orbitals (LCAO), was performed. As already established

in chapter two, a comparison of the plane wave and LCAO orbital decomposed density of

state is essential in view of the deficiency with the default basis set available in LOBSTER,

to ensure that the true valence orbitals of the Na and Au atoms are completely reproduced.

Figure 3.5 shows the Na and Au PDOS computed using the plane wave and LCAO methods.

The comparison show the Au PDOS are qualitatively similar whereas for Na PDOS, inclusion

of empty 3p orbital seems to yield erroneous result for the LOBSTER code. The reason being

that a common set of Slater orbitals were used to represent the p orbitals for Na (i.e the 3p

components is basically the same as the core 2p). Irrespective of the choice of projection

orbitals, the total DOS qualitatively and quantitatively agree as can be seen in Figure 3.6

for the Phase I Na2Au. Hence, comparing just the total DOS can be misleading as already

established in chapter two. It is important to note that all the plane wave to localized

orbital projections performed here had a projection accuracy of 99% and in addition, the

band overlaps were manually examined and all the diagonals were close to one.
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Figure 3.5: Projected density of state of Au and Na using the plane wave and local
basis set methods for the Na2Au Phase I.

The COHP analysis between the nearest neighbors Au-Au, Na-Au and Na-Na interactions

with bond lengths 2.77Å, 3.01Å and 3.40Å respectively are shown in Figure3.7. The positive

and negative –COHP axis represent the bonding and anti-bonding regions respectively. The

Au-Au COHP show the bond interaction is primarily due to the 6p orbitals. Figure3.7 also

shows some bonding between the Na-Au, since the 3p introduces an artifact, the Na-Au

bond is mostly due to the 2p and 6s orbitals of Na and Au respectively. However, the Na-

Na COHP show very weak bond interaction between the Na atoms in the Phase I Na2Au

which also agrees with the very low density at the Na-Na bond critical point obtained from the

topological analysis. Hence, all the plane wave and localized orbital bonding analysis methods

employed here accurately described the Phase I Na2Au structure at 0.83GPa. Although the

LOBSTER only provide a qualitative picture at the best. Similar methods have been applied

to study the Phase II and Phase III structures in the preceding section.
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Figure 3.6: Total density of state of the phase I, phase II and phase III sodium gold
intermetallics at 0.83GPa, 2GPa and 51.7GPa respectively.

Figure 3.7: Crystal orbital Hamiltonian Population (COHP) of Na2Au phase I at
0.83GPa. The positive and negative -COHP axis denotes bonding and ant-bonding
regions respectively.
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3.3.2 Na3Au Phase II

X-ray diffraction analysis of Phase II sodium gold intermetallics (Na3Au) found the space

group could be either trigonal Cu3As or hexagonal Cu3P-type structure. Despite great efforts,

Takemura and Fujishisa [132] could not determine which structure was correct, neither could

both structures be distinguished from DFT equation of state (Figure 3.8). However, MEM

analysis of the charge density by Dr. Jianbao Zhao reveal the trigonal structure (P-3c1) yield

unrealistic charge density as shown in Figure 3.9a whereas that of the hexagonal structure

(P63cm) yielded a more reasonable charge density given in Figure3.9b. This suggested the

hexagonal P63cm Na3Au structure of the Phase II is the accurate structure. To validate the

MEM results, topological analysis of both Cu3As and Cu3P-type structures were performed

using a very dense charge density grid from a plane wave DFT calculation at 2GPa. Regard-

less of the grid dimension used, topological analysis of the trigonal (Cu3As-type) structure

failed to satisfy the Morse sum (nuclear - bond + ring - cage = 0) [127]. On the other hand

the hexagonal structure satisfies the Morse sum. Hence, the trigonal structure is topologi-

cally unstable. This is in agreement with the MEM analysis and corroborates the fact that

the topologically stable P63cm structure is the accurate Phase II structure.

Figure 3.8: Density functional theory calculated equation of state of the experimental
P63cm and P-3c1 Na3Au phase II structures. As can be seen from the plot, both
structures are indistinguishable as their equation of state overlap.
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Figure 3.9: MEM analysis of the (a) trigonal Cu3As and (b) hexagonal Cu3P-type
structure

Figure 3.10: Bond critical points (BCPs) plot of the Na3Au phase II at 2GPa. Atom
colour: Na = red, Au = gold and BCPs = black

The Phase II Na3Au structure has six formula units (Z=6) per unit cell containing four

symmetry nonequivalent Na atoms with a hexagonal unit cell (P63cm) optimized to 2GPa

have been used for the bonding analysis here. Bond critical points obtained from QTAIM

topological analysis is given in table 3.3. Eight unique bond critical points were obtained

between the Au and four different Na atoms in the structure as summarized in table 3.3.

All the Laplacian (∇2 (rBCP )) at the bond critical points are positive which indicate charge

depletion in the bond critical point and suggest a closed shell interaction between the atoms.
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A plot of the obtained critical point in the hexagonal Phase II Na3Au unit cell is shown in

Figure3.10.

Bond d(Å) Bond Order ρ(rBCP ) ∇2(rBCP ) V G H G/ρ

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (Ehe
−1a3

0)

Au-Na1 2.892 0.272 0.016 0.061 -0.011 0.013 0.002 0.0.820

Na2-Au 2.929 0.272 0.015 0.066 -0.011 0.0114 0.003 0.913

Au-Na4 2.966 0.254 0.014 0.052 -0.009 0.011 0.002 0.783

Au-Na3 2.963 0.254 0.014 0.046 -0.009 0.010 0.001 0.704

Na3-Au 2.979 0.255 0.014 0.044 -0.008 0.010 0.001 0.686

Au-Na4 3.044 0.216 0.013 0.046 -0.008 0.010 0.002 0.752

Na3-Au 3.396 0.124 0.009 0.018 -0.004 0.004 0.001 0.471

Na4-Au 3.682 0.070 0.007 0.010 -0.002 0.002 0.000 0.333

Table 3.3: Topological properties Na3Au Phase II at the bond critical points from
QTAIM at 2GPa. Where Na1, Na2, Na3 and Na4 are the four unique Na atoms
occupying the 2a, 4b, 6c and 6c atomic sites respectively

DFT calculation on Phase II was followed by NBO of the hexagonal Phase II Na3Au obtained

from the projection using a def2-QZVPD basis set [124, 125, 126, 157, 158, 159]. The resulting

NBO occupancy for the s, p and d orbitals of Au are 1.14, 0.86 and 9.92 electrons respectively

showing Au 5d10 6s1 6p1 configuration. The NBO population of the Na atom are 0.31 and

0.44e− for the s and p orbitals respectively, there is a small but not insignificant occupancy

of the Na 3p orbital. SSAdNDP analysis yields 84 1c-2e− bonds, where 54 of the lone pairs

are 2p orbitals centered around the Na atoms and the other 30 are completely 5d orbitals

centered around the Au atoms with ONs of approximately 1.99 and 1.97 electrons on the

sodium and gold atoms respectively. Further search for multi-center bonds recovers the Na-

Au bonds with an occupation number of 1.21 electrons. The valence and lower conduction

bands shown in red in Figure 3.11 were Wannierised with inner and outer energy windows of

-1.679eV and 6.181eV respectively with the frozen state at the Fermi level (0eV). It has been

shown by Marzari et. al. [25], that freezing the Fermi level ensure only the selected bands

below the Fermi level are Wannierised. From the disentangled valence bands, we obtained

2p Wannier orbitals of the Au atoms shown in Figure 3.11. Wannierising the lower valence
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band ( in blue colour) yields localized 5d and 6s orbital mixing with the orbitals centered

around the Au atom (Figure3.11). The Bader charges on the Na and Au atoms shown in

table 3.4 is consistent with the higher electronegativity of Au since it gains electron from the

Na atoms.

Atom Bader Charge NBO Charge DDEC6 Charge

Na1 +0.631 +0.249 +0.492

Na2 +0.663 +0.285 +0.499

Na3 +0.671 +0.315 +0.483

Na4 +0.658 +0.302 +0.486

Au -1.981 -0.890 -1.466

Table 3.4: Bader, natural bond orbital (NBO) and density derived electrostatic and
chemical (DDEC6) charge analysis of Na3Au Phase II at 2GPa .

Figure 3.11: Disentangled band structure and corresponding Wannier orbitals of
hexagonal P63cm Na3Au Phase II centered on the Au atom.
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Figure 3.12: Projected density of state of Au and Na using the plane wave and local
basis set methods for the Na3Au Phase II.

The computed Na and Au PDOS using the plane wave and projected LCAO methods are

compared in Figure 3.12, the computed Au PDOS qualitatively agree for both methods.

Attempt to include the empty 3p orbital once again yield erroneous result for the LOBSTER.

However, the choice of projection orbitals has no major effect on the total DOS as can be seen

in Figure 3.6. One must be cautious to interpret the p bonding of Na. The COHP analysis

between the nearest neighbor Au-Au, Na-Au and Na-Na interactions with bond lengths

5.095Å, 2.89 Å and 3.34 Å respectively is show in Figure 3.13. Contrary to the Phase I, the

strong bonding character in the Phase II is observed between the Na-Au bond. The positive

and negative –COHP axis represent the bonding and anti-bonding regions respectively. Au-

Au COHP actually indicate no Au-Au bond interaction due to the inverted order of the

bonding and anti-bonding orbitals as previously explained in chapter two. Hence, the primary

bonding interaction is between the Na-Au, since the inclusion of Na 3p orbital introduces an

artifact, the Na-Au bond is mostly due to the 3s and 6p orbitals of Na and Au respectively.

However, there is no Na-Na bond interaction in the Phase II Na3Au which also agrees with

the topological analysis, SSAdNDP and Wannier analysis.
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Figure 3.13: Crystal orbital Hamiltonian Population (COHP) of Na3Au phase II at
2GPa. The positive and negative -COHP axis denotes bonding and ant-bonding regions
respectively.

3.3.3 Na3Au Phase III

The high pressure Phase III Na3Au was formed at about 3.6GPa and remains stable up to

about 54GPa. This structure has a cubic unit cell (Fm-3m) with four formula units (Z=4).

The experimental electron density line profile at different pressures given in Figure3.14a

reveal the electron density around the Au atom increases with increased pressure while that

of the Na decreases with increased pressure. Similar trend can also be seen from Figure3.14b

which show the experimental charge density plot at 51.7GPa and suggest electron transfer

from the Na to the Au atom. Following the successful structural and bonding description

of the lower pressure Phase I and Phase II using the plane wave and localized basis set

dependent methods, the phase III structure at 51.7GPa have been used for analysis here.

A def2-QZVPD atomic basis set was utilized to project the plane wave to localized atomic

orbitals. The natural bond orbital occupancy for the s, p and d orbitals of Au are 1.22, 0.94

and 9.99 electrons respectively, indicating a 5d10 6s1 6p1 configuration. The NBO population

of the Na atom are 0.41 and 0.18 e− for the s and p orbitals respectively. Therefore there are
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lesser electrons in the Na 3p orbital. SSAdNDP search for localized bonding orbitals yield

56 1c-2e− bonds with occupation numbers (ON) of approximately 1.987, 1.984 and 1.962

electrons on the 4b Na, 8c Na and Au atoms respectively. 36 of the lone pairs are 2p orbitals

centered around the Na atoms and the other 20 are completely 5d orbitals centered around

the Au atoms. Further search for nc-2e− bonds with n > 1 yielded three unique two center

two electron bond interactions which include the Au-Na1, Au-Na2 and Au-Au bonds, where

Na1 and Na2 are the two unique Na atoms occupying the 4b and 8c atomic sites respectively.

No Na-Na bond was found from the multi-center bond search.

Figure 3.14: Experimental (a) Electron density line profile of phase III Na3Au at
different pressures and (b) Charge density plot of Na3Au phase III at 51.7GPa

All the bond interactions recovered from SSAdNDP analysis have occupation numbers close to

1.8e−. Topological analysis of Phase III Na3Au found three bond critical points summarized

in table 3.5. The obtained bond critical points correlates with the three unique two center two

electron bonds recovered from the multi-center bond search. From the topological parameters

at the bond critical point, the Phase III sodium-gold intermetallics at 51.7GPa is primarily

composed of closed shell interactions evident from the positive laplacians with no Na-Na

bond interaction present in the binary. The Au-Au bond length increased by 51% in the

phase III when compared to the phase I. Meanwhile the first nearest neighbour Au-Na bond

length in phase II decreased just by about 16% as the structure is compressed to 51.7GPa in

the phase III. From the visual representation of the bond critical points (Figure3.15), each
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Na atom occupying the 8c atomic site is bonded to the four Au atoms forming a tetrahedral

coordination which suggest the Na-Au are bonded through a hybridization of the s and p

orbitals of Na and Au respectively.

Bond d(Å) Bond Order ρ(rBCP ) ∇2(rBCP ) V G H G/ρ

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (Ehe
−1a3

0)

Au-Na1 2.980 0.130 0.019 0.057 -0.012 0.013 0.001 0.692

Au-Na2 2.580 0.266 0.031 0.137 -0.029 0.032 0.003 1.033

Au-Au 4.208 0.040 0.015 0.013 -0.006 0.005 -0.001 0.320

Table 3.5: Topological properties of Na3Au Phase III at the bond critical points from
QTAIM at 51.7GPa. Where Na1 and Na2 are the two symmetry nonequivalent Na
atoms.

Figure 3.15: Bond critical point plot of the Na3Au at 51.7GPa (a) 001 plane of the
unit cell and (b) a subsection of the unit cell. Atom colour: Na = red, Au = gold and
BCPs = black

To further interprete the bonding in phase III Na3Au, Wannier orbitals were obtained from

the disentangled valence and lowest conduction band using an inner and outer energy win-

dows of -3.0eV and 5eV respectively with the frozen state at the fermi level (0eV). The

wannierization yielded 5p orbitals centered around the Au atom as shown in red in Figure

3.16. Similarly, Wannierisation of the lower valence band yielded localized 5d and 6s orbital

mixing similar to the Phase II, with the orbitals centered around the Au atom as shown in
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Figure 3.16. These 5d Au Wannier orbitals correspond with the 5d Au lone pairs from the

SSAdNDP search. Atomic charges of the Au and two symmetry nonequivalent Na atoms

are summarized in table 3.6. The more elctronegative Au atom gains electrons from the

Na atoms which supports the line profile electron density from experiment shown in Figure

3.14a. All the charge analysis methods employed show similar trend for the charge transfer

between the Na and Au atoms in Phase III Na3Au.

Figure 3.16: Disentangled band structure and corresponding Wannier orbitals of
Fm3m Na3Au phase III centered on the Au atom.

Atom Bader Charge NBO Charge DDEC6 Charge

Na1 +0.632 +0.412 +0.526

Na2 +0.629 +0.330 +0.664

Au -1.890 -1.073 -1.853

Table 3.6: Bader, natural bond orbital (NBO) and density derived electrostatic and
chemical (DDEC6) charge analysis of Na3Au Phase III at 51.7GPa .

Topological analysis on phase III at 51.7GPa yields no non-nuclear maximum (NNM). Hence,

contrary to pure alkali metals which show increased localization of the interstitial electrons
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at high pressure due to the core-valence overlap [160, 121], the sodium-gold intermetallics

studied here show decrease in the localized interstitial electrons at high pressure. Similar

trend was recently observed for sodium-potassium system by Frost et. al. [161], the authors

attributed the reduced localization to the unusual structure of the NaK system they found.

This is obviously not the case for the Na-Au system, instead the high electronegativity of

gold contributes to the reduced localization of interstitial electrons at higher pressure.

Figure 3.17: Projected density of state of Au and Na using the plane wave and local
basis set methods for the Na3Au Phase III.

By comparing the Na and Au PDOS computed using the plane wave and LCAO methods,

the computed Au PDOS from LOBSTER show qualitative agreement to the plane wave

result. On the other hand, although the Na PDOS for the 3s orbital profile is reproduced,

the inclusion of the 3p orbital of Na simply collapsed to the 2p as found in the plane wave
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PDOS. Although the agreement between the PDOS from the plane wave and localized orbital

basis set method are not perfect, their total DOS greatly agree as can be seen in Figure 3.6

for the Phase III Na3Au. As already established in chapter two, the agreement between the

total DOS can be misleading and should not be a yardstick for validating projection accuracy

from plane wave to localized basis. Assuming there is no Na 3p contribution to the bonding

due to the small NBO population, the COHP analysis yields a qualitative description of the

interaction between the neighbor Au-Au, Na-Au and Na-Na shown in Figure 3.18. The result

show no Na-Na bond interaction and the Na-Au bond is formed by the 3s and 6p orbitals of

Na and Au respectively. This description is consistent with the QTAIM analysis.

Figure 3.18: Crystal orbital Hamiltonian Population (COHP) of Na3Au phase III
at 51.7GPa. The positive and negative -COHP axis denotes bonding and ant-bonding
regions respectively.
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3.4 Conclusion

All the different computational approaches earlier introduced have been applied to the topo-

logically stable phase I (Na2Au), hexagonal phase II (Na3Au) and cubic phase III (Na3Au)

sodium gold binaries to explore the bonding nature of these intermetallics. The trigonal

Cu3As-structure type of the phase II was found to be topologically unstable with the Morse

sum not equal to zero, hence, only the hexagonal Cu3P-type structure phase II which satisfies

the Morse sum have been studied here. Maximum Enthropy Method (MEM) analysis of the

experimental diffraction pattern also confirms the hexagonal phase II structure as the cor-

rect structure. Bonding nature of stable phase I, phase II and phase III sodium gold binaries

at 0.83GPa, 2GPa and 51.7GPa respectively have been studied here using the conventional

bonding theories to interpret the structure of these Na-Au alloys at high pressure. Topological

analysis of the phase I structure found one non-nuclear maximum (NNM) and three unique

bond critical points which includes Au-Au, Na-Au and Na-Na bond interactions. The posi-

tive laplacians at the obtained bond critical points indicated the bonds were typical closed

shell interactions. Also, the NNM occupied four symmetry equivalent sites in the crystal

structure. These NNMs were also recovered from the electron localization plot but with an

isovalue of 0.45. Hence, the NNMs recovered from the topological analysis and MEM analysis

are simply regions of low electron density in the Na2Au intermetallics. NBO analysis of the

Na2Au structure revealed electron transfer from the Na to the Au atoms which is consistent

with the electronegativity difference between the Na and Au atoms. Also, the SSAdNDP

search for multi-center bonds in the phase I structure yields two symmetry nonequivalent

2c-2e− bonds which include Au-Au and Na-Au with occupation numbers (ONs) of approx-

imately 1.33 and 1.05 electrons respectively. The low ON of the bonds correlates with the

low densities at the bond critical points from the topological analysis. Wannierization of

the valance band from the band structure also recovered the bond between the gold atoms.

The COHP analysis of the bonds revealed the orbitals responsible for the individual bond

interactions. The Au-Au COHP show the bond interaction is primarily due to the 6p orbitals

of Au while the Na-Au bond is mostly due to the 2p and 6s orbitals of Na and Au respec-

tively. However, transition from phase I to the phase II structure breaks the Au-Au and
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Na-Na bonds evident in phase I, leaving the Na-Au bonds as the only bonding interaction

stabilizing the phase II structure. Search for multi-center bonding in the phase II structure

recovered the Na-Au bonds with an ON of 1.21 electrons. Topological analysis of the phase

II revealed these Na-Au bonds are closed shell interactions with low densities at the bond

critical point. Similar to the phase II, the lower conduction band and valence band of the

Phase III structure is primarily p-orbitals centered around Au, with only Na-Au and weak

Au-Au bonding interactions obtained from the topological analysis. Analysis of the densities

at the bond critical points for the phase I, phase II and phase III Na-Au bonds, reveal an

increase in charge concentration at the BCPs at increased pressure. In addition, the bond

critical points are closer to the alkali atom in the three phases of Na-Au intermetallics. Bader

charge analysis of the three phases confirms the electron transfer from Na to Au which is

expected from the electronegativity difference of the atoms. Atomic basin integration of the

phase II and III using the Yu-Trinkle algorithm yields no NNMs unlike the phase I. Hence,

contrary to pure Alkali metals which show increased localization of the interstitial electrons

at high pressure, due to the core-valence overlap [160, 121], the sodium-gold intermetallics

studied here show decrease in the localized interstitial electrons at high pressure. Similar

trend was recently observed for sodium-potassium system by Frost et. al. [161], the authors

attributed the reduced localization to the unusual structure of the NaK system they found.

This is obviously not the case for the sodium-gold system, instead the high electronegativity

of gold contributes to the reduced localization of interstitial electrons at higher pressure.

Hence, decreased localization of interstitial electrons at increased pressure can be said to

favor the formation and stability of alkali metal transition metal alloys.
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Chapter 4

Transition path, electronic structure and

bonding of Cs-II to complex Cs-III and

Cs-III to Cs-IV

4.1 Introduction

Under extreme conditions such as high temperature and high pressure, the chemical bonding,

electronic structures and properties of materials can undergo significant changes that leads to

unusual chemical species which can otherwise not be reached at ambient conditions. Cesium

metal has long attracted attention due to its unusual sequence of phase transition under

pressure [162]. At ambient pressure, Cs metal assumes the body-centered cubic (BCC)

structure and abbreviated as Cs-I. By displacement and electrical resistance measurements

at room temperature, Bridgman [163] discovered two phase transitions of Cs which are the

BCC Cs-I to face-centered cubic (FCC) Cs-II at 2.37GPa with relative volume V/V0 =

0.63 and the Cs-II to Cs-III at about 4.22GPa with relative volume V/V0 = 0.455. Using

in situ high-pressure X-ray diffraction, Hall et. al. [164] confirmed the FCC structure

assigned to Cs-II and they also showed that the Cs-II to Cs-III transition is an isostructural

transition. Hence, the Cs-III was believed to retain the same FCC structure as Cs-II but with

a considerably smaller lattice constant, at the time Cs and Ce are the two elements known

to undergo an isostructural phase transition under pressure [162]. Takemura et. al. [165]

discovered the tetragonal Cs-IV which forms at 4.3GPa with relative volume V/V0 = 0.418.

The Cs-IV transforms to Cs-V at about 12GPa [166] and is said to become superconducting

in this vicinity [167], which makes it the first known superconducting alkali metal. The Cs-V
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remains stable up to about 70GPa where it transforms to the double hexagonal close packed

Cs-VI [168].

Over the years, pressure driven electronic transition where the 6s valence electrons were trans-

ferred to the more localized 5d-like state was used to explain the unusual properties of Cs. For

example, the high compressibility of cesium below 10GPa [169], apparent isostructural phase

transition [164], anomalous decrease in coordination number with increasing pressure (from

12 in Cs-II and Cs-III to 8 in Cs-IV) [165], observed anomalous melting curve [170, 171],

resistivity [171, 172, 173] and optical properties [174]. The possibility of the FCC to FCC

transition of Cs has been a subject of discussion as several ab initio computational studies

conclude that Cs-III cannot assume the FCC structure [175, 176] and the computed FCC

Cs-III is at a density far greater than the observed [177]. Contrary to the simple FCC struc-

ture previously reported by Hall et. al. [164], single crystal x-ray diffraction study of Cs-III

at room temperature by McMahon et. al. [178] revealed a complex orthorhombic (space

group C2221) structure with 84 atoms in the unit cell. Since after the double hexagonal

close packed Cs-VI was discovered, no other new phase of the Cs metal was found at higher

pressure until recently Guan et. al. [179] predicted a post double hexagonal close packed

cesium structure which they found with a crystal structure searching technique. The new

post Cs-VI structure of Guan et. al. [179] was predicted to form above 180 GPa with just

0.3% volume reduction associated with the transformation. The newly reported phase of the

Cs metal is said to have the same crystal symmetry and atomic arrangements with the low

pressure FCC Cs-II. However, the bonding in the high pressure FCC phase is through the

d electrons, unlike the low pressure Cs-II. Crystalline solid - solid transitions are one of the

consequence of a change in pressure or temperature of a crystalline solid causing it to trans-

form to another crystalline solid [180]. These transitions are referred to be first-order with a

discontinuity in the volume, enthalpy and entropy due to modifications to the crystal packing

or arrangement. However, the magnitude of the crystal packing changes in these solid - solid

transformations are very much smaller compared to those that occur in transformations from

crystalline solid to liquid. Crystalline forms of water and carbon are typical examples of solids

commonly known to undergo crystalline solid - solid transitions [181, 182]. There is a need

for comprehensive understanding of the transformation mechanisms because they often help
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determine the material properties [183]. Other transitions like amorphous to crystalline or

even crystalline to amorphous which find great application in fields like the pharmaceuticals

have also been reported in metals [184, 185]. Understanding of the atomistic mechanisms of

solid - solid phase transitions are still lagging due to the complexity of these transitions, it

is also difficult to investigate them experimentally in most cases [183]. Although, colloidal

model systems [186] were used in the past to directly observe the movement of the particles

through a video microscopy, this model was developed in an attempt to circumvent the lim-

itations of an atomistic understanding of solid - solid phase transitions. However, computer

simulations, such as ab initio molecular dynamics, could help to resolve these issues and have

been previously applied to describe the transition path of solids [187, 188, 181]. Over the

years, constant pressure and temperature molecular dynamics simulations have proven to be

suitable for phase transition studies. Though, the realistic timescales of these transitions far

exceeds the few nanosecond (ns) time scale achieved in molecular dynamics and is one of the

challenges faced by such constant pressure and temperature molecular dynamics methods

[187]. The use of elevated pressures and sometimes temperatures are able to circumvent

this limitation by modifying the kinetics. However, excessively strong driving may affect

the mechanism of the transition process, hence, over-pressurization of the system should be

avoided as much as possible [189]. Recently, Zhu et. al. [190] reported a mechanism of the

graphite to diamond transition at high temperature by employing a large-scale molecular

dynamics (MD) simulation. These previous studies validated the applicability of molecular

dynamics for studying the atomistic mechanisms of phase transition. Hence, of interest in

this work is the complex orthorhombic Cs-III of 84 atoms reported by Hall et. al. [164] and is

said to be stable between 4.2GPa and 4.3GPa after which it transforms to Cs-IV which has a

more simpler tetragonal structure. Over the years, no detailed study have been performed to

theoretically reconstruct this complex Cs-III to Cs-IV and the Cs-II to Cs-III transitions nor

critically explain the electron transfer in these structures. A clear knowledge of the structure

and bonding nature of Cs-II, Cs-III and Cs-IV is critical for understanding the structural

formation of complex Cs-III and likely help to explain its narrow stability pressure range.

Through molecular dynamics simulation, the transition paths of the Cs-II → Cs-III and Cs-

III→ Cs-IV have been explored here in other to define the transition mechanism. In addition,
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the electron density topological property of the Cs-II, Cs-III and Cs-IV structures have been

studied. The results reveal the transition in the Cs-III to Cs-IV and the Cs-II to Cs-III

transitions are typical crystalline solid-solid transitions with no evidence of melting found in

the transition states. From the molecular dynamics simulation snapshots, the transformation

mechanism observed in the Cs metal is martensitic ( i.e a transformation that occurs through

a diffusionless cooperative motion of all the atoms in a transformation region) for Cs-II →

Cs-III transformation whereas the Cs-III → Cs-IV transition occurs through nucleation and

growth. Also the results suggest existence of rather large activation barrier for the reverse

transition to Cs-II by decompression ( Cs-III → Cs-II ).

4.2 Computational method

Structural optimizations, charge densities, density of state and ab initio molecular dynamics

(AIMD) were performed using the Vienna ab initio Simulation (VASP) code [85] and Projec-

tor Augmented plane Waves (PAW) potential [93]. The Cs potential employed 5s, 5p and 6s

as valence states, with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional

[191]. The optimized 84 atoms Cs-III crystal structure was used as the starting configuration

for the Cs-III→ Cs-IV molecular dynamics (MD). An 84 atom Cs-II cell in the FCC geometry

arranged in a body-centered hexagonal axis system was also used for the compression (Cs-II

→ Cs-III) and decompression (Cs-III → Cs-II) MD simulations. All the simulations were

performed in an isobaric-isothermal ensemble (NPT) and the Langevin thermostat was used

to control the temperature [67]. Using a timestep of 2fs a run of 40ps was first performed to

equilibrate the thermodynamic parameters. This was then followed by a production run of

80ps for the Cs-III to Cs-IV transition and a 160ps run for the compression (Cs-II→ Cs-III)

and decompression (Cs-III → Cs-II) transition paths. To analyse the electronic structures,

topological analysis was performed using the Critic2 program [91]. All visualizations were

done using Visualization for Electronic Structure Analysis (VESTA) [122] code.
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4.3 Results and discussion

4.3.1 Cs-III → Cs-IV transition path

Pressure driven solid - solid phase transitions can be categorized into two mechanisms. A

reconstructive transformation, where large changes such as breakage and formation of bonds

take place at the transition. The second type is displacive transition, where only little

changes to the atomic positions are observed at the transition, and is often accompanied by

a small strain [192]. The Cs-III → Cs-IV have been investigated first because we believe

it has a simpler pathway for transformation from a complex to much simpler structure. To

reveal the type of phase transitions and the atomistic details of the transition path, ab initio

molecular dynamics (AIMD) simulation was performed in the NPT ensemble with a Langevin

thermostat [67] for temperature control.

The phase transition from the complex orthorhombic Cs-III to the tetragonal Cs-IV (Figure

4.1d ) reported experimentally at 4.3 GPa have been reconstructed theoretically here using ab

initio molecular dynamics simulation method. The experimental Cs-III shown in Figure 4.1a

and 4.1c was used as the starting configuration for the MD simulation. The experimental

Cs-III crystal structure [164] is composed of four alternating layers of Cs atoms (Figure 4.1a

), Figure 4.1b shows one layer of the Cs-III structure projected on the (010) plane. The

red arrow and question mark in Figure 4.1 present the scientific question answered in this

section ”how does the Cs-III transform to the Cs-IV?”. Figure 4.2. shows the evolution of

the thermodynamic parameters during the simulation. As can be seen from Figure 4.2a, the

mean pressure was maintained at 60 kbar which is in the region where Cs-IV is stable. Also

the insert in Figure 4.2a is a snapshot of the last configuration after 120 ps. It is important to

note that the simulation temperature in other to recover this Cs-III → Cs-IV transition was

set to 400 K which is slightly below the thermodynamic melting point of Cs at the simulated

pressure. The studied system was found to remain a solid, perhaps due to the well known

overheating effect in a NPT or NVT simulation. The time evolution of the temperature

is also given in Figure 4.2b and it shows the fluctuations in the simulation temperature is

reasonable and within the desired temperature. An obvious discontinuity is observed in the

94



free energy close to 30 ps as indicated by the dashed arrow in Figure 4.2c. It is important to

note that the free energy in VASP is computed from the electron entropy [85]

Figure 4.1: (a) (100) plane projection of experimental Cs-III structure (b) (010) plane
projection of one layer of the Cs-III structure (highlighted by the pale red arrow) (c)
Cs-III structure projected down the a axis (d) view down the a axis of experimental
Cs-IV structure. The red question mark and arrow presents the scientific question
answered in this section ”how does the Cs-III transform to another crystalline Cs-IV?”.

Randomly selected configurations around the discontinuity were then analyzed by quenching

the structure at 0K through geometry optimization. The procedure is akin to the charac-

terization of inherent structure of a liquid [193, 194, 195, 196, 197]. However, the optimized

structures were found to still maintain the Cs-III structure but with a 9.5% reduction in

volume. This slight volume decrease is also evident from the time evolution of the volume

as there exist a dip in the volume around the same simulation time where the free energy is

discontinuous as indicated by the arrow in Figure. 4.2d. In addition to the thermodynamic

parameters, the time evolution of the lattice vectors provide information on the structural

distortion and angles can provide insights on the studied transition.
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Figure 4.2: Thermodynamics parameters of Cs-III NPT simulation at 60 kbar (a)
Pressure (b) Temperature (c) Free Energy (d) Volume. The insert in (a) is an optimized
snapshot at 120 ps while the red arrows indicate discontinuous regions.

As can be seen in Figure 4.3a the c axis of the Cs-III structure increased with a slight

discontinuity around 80ps after which it remained fairly constant. The a axis decreased at a

fairly constant rate with time and becomes almost constant after 80ps. The b axis remains

fairly constant throughout the simulation. The evolution of the cell angle given in Figure 4.3b

show that the β (angle between a and c) and γ (angle between a and b) angles simultaneously

decreased with time and become fairly constant after around 80ps. However, the α (i.e angle

b and c) angle show an abrupt increase from 900 to 980 at around 50ps simulation time, and

then remains constant. This substantial change in the α angle suggested the phase change

in the crystal primarily occurred on the bc (100) plane. To further validate this reasoning,

randomly selected snapshots throughout the simulation were extracted and examined for the

evidence of a phase transition to Cs-IV.
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Figure 4.3: Time evolution of Cs-III NPT simulation at 60Kbar for the (a) lattice
parameters (b) angles

The (100) plane of the starting Cs-III configuration is shown in Figure 4.4a. The other

snapshots in Figure 4.4b, 4.4c, 4.4d, 4.4e and 4.4f are optimized configurations after 10ps,

20ps, 40ps, 80ps and 120ps respectively. The atomic motion and rearrangement of the Cs

atoms with increased simulation time can be seen in Figure 4.4. Optimized configurations

after 10ps and 20ps shown in Figure 4.4c and 4.4d, respectively, still retain remnant features

of the starting Cs-III configuration, but the Cs atoms are slightly displaced. However, after

40ps, periodicity of the Cs-III structure seems to be lost completely and regions of disorder

and some order separated by a dash line can be seen in Figure 4.4d.

As will be discussed below, longer simulation reveal a clear interface showing the nucleation

and growth of Cs-IV crystal in the (100) plane as depicted by the red circle in Figure 4.4e.

The nucleation was initiated at 80ps corresponding to the region where fluctuations in the free

energy and volume becomes relatively stable (see Figure 4.2c and 4.2d). Also the formation

of the crystalline Cs-IV on the (100) plane of the Cs-III is consistent with the observed large

increase of the α angle over time (Figure 4.3b). Extended simulation run up to 120ps revealed

more nucleation and growth of Cs-IV and gradually spreading through the simulation box.

Also, coexistence of Cs-IV and Cs-III is evident in the quenched configuration after 120ps

as can be seen in Figure 4.3f. Similar nucleation process have been previously reported for

some other crystalline solids like the graphite to diamond transition reported by Khaliullin

et. al. [181].

97



Figure 4.4: (100) plane projection of (a) the starting Cs-III Structure and Optimized
Cs-III snapshots at (b) 10ps (c) 20ps (d) 40ps (e) 80ps (f) 120ps. N.B The disordered
portion in (f) looks denser than the ordered portion. This is due to the illusion created
by the displaced underneath atoms in the top layer of the projection. The red dash
markings separate regions of order and disorder on the optimized snapshots.

To monitor the time evolution of the atomic positions, the root mean squared displacement

(RMSD) of the Cs atoms throughout the simulation was computed and depicted in Figure

4.5 as a function of time. The red arrows in Figure 4.5 indicate discontinuous points after a

relatively steady displacement. At 25ps, the examined snapshot still maintained the period-

icity of Cs-III structure. After 45ps, the Cs atoms had a fairly constant displacement for 20ps

and the optimized snapshots in this region differed from the initial structure but had not

transformed to the desired Cs-IV. However, ordered Cs atom regions suspected to be Cs-IV

began to appear after 80ps (Figure 4.4e). Hence, the type of phase transition that takes
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place as the Cs-III transforms to Cs-IV is a reconstructive phase transition as the transition

path shown in Figure 4.4 features some significant bond breaking and formation also evident

from the large displacement of the Cs atoms throughout the simulation.

Figure 4.5: Time evolution of Cs atom displacement for the Cs-III→ Cs-IV transition.
The red arrows indicate discontinuous regions after a relatively steady motion.

Figure 4.6: Comparison of (a and b) optimized 120ps Cs-III structure with the (c)
experimental Cs-IV structure. The ordered region of the extracted Cs-III snapshot can
be seen to match the Cs-IV structure.
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Figure 4.7: Projected density of state of (a) Cs-III and (b) Cs-IV. The s-d transition
is evident as the d orbitals can be seen to dominate the valence states in Cs-IV unlike
the Cs-III where s is the dominant orbital.

Figure 4.6 shows a comparison of the optimized configuration after 120ps with the (100)

plane of the experimental Cs-IV structure. An enlarged periodic region of the 120ps Cs-

III configuration is shown in Figure 4.6b. When compared with Figure 4.6c, which is the

crystal structure of Cs-IV, a perfect agreement is observed. Thus the nucleation formed

from the NPT molecular dynamics simulation on Cs-III indeed resulted in the crystalline Cs-

IV. The Cs-III to Cs-IV transformation is a growth process that forms through systematic

rearrangement of the Cs atoms by increasing the c-axis while uniformly reducing the a and b

axis to accommodate the tetragonal Cs-IV structure. Crystal structures which have trigonal-

prismatic motifs are known to show dominance of d-electrons bonding [198]. Cs-IV which

has triangular and square arrangement of the Cs atoms (Figure. 4.6) is also expected to

reflect the dominance of bonding via the d-electrons near the Fermi energy. The electronic

structure is examined by comparing the projected densities of state (pDOS) of Cs-III to that

of Cs-IV (Figure. 4.7). From the pDOS, the Cs phases are metallic. On closer examination

of the orbitals near the Fermi level, it is evident in Cs-III that the valence states and lowest

conduction states are dominated by the 6s orbital with low lying 5d and 6p orbitals. In

comparison to the pDOS of Cs-IV shown in Figure. 4.7b, the d population are dominant in

the valence state. This implies an s-d band transition has indeed occurred as the complex

Cs-III transforms to simple open structured Cs-IV.
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4.3.2 Compression (forward) Cs-II → Cs-III transformation

Following the study on the reconstruction of Cs-III to Cs-IV transition, NPT molecular

dynamics simulation method was applied in an attempt to investigate the simple FCC Cs-II

to the complex Cs-III (compression or forward) transition. The red arrow and question marks

in Figure 4.8 presents the scientific question of this section ”how does the FCC Cs-II transform

to a complex orthorhombic Cs-III structure?”. Figure 4.8a shows the crystal structures of the

initial Cs-II configuration used in the NPT molecular dynamics simulation. For the forward

transition, the starting configuration is an 84 atom simulation cell constructed from the FCC

Cs-II structure, Figure 4.8a and commensurate with the Cs-III structure (Figure 4.8b). The

shaded purple arrow highlights one layer of the Cs-III structure projected on the (010) plane.

Figure 4.8: Snapshots of (a) starting Cs-II configuration for the NPT molecular
dynamics simulation projected down the a axis (b) (100) plane of the experimental Cs-
III structure (c) single layer of the Cs-III structure plotted on the ac plane. The purple
arrow indicate the extracted layer while the red arrow and question marks present the
scientific question ”how does the Cs-II transform to the complex Cs-III?”.
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The relevant thermodynamics parameters of the NPT molecular dynamics simulation for the

forward transition (i.e compression from Cs-II) is presented in Figure 4.9. The simulation

pressure was set to 42kbar, which is the pressure at which the Cs-III was observed from

experiment. As expected, Figure 4.9a shows the mean pressure is maintained at the desired

pressure of 42kbar. The temperature was controlled using a Langevin thermostat [67], and

maintained at 275K as shown in Figure 4.9b. A rise in the free energy was observed at 25ps

(indicated by the red arrow in Figure 4.9c) and then dropped to an almost constant value

at 60ps. This change is accompanied with a reduction in volume in the same region (Figure

4.9d).

Figure 4.9: Thermodynamics parameters of the NPT molecular dynamics simulation
for the forward (Cs-II→ Cs-III) transition (a) Pressure (b) Temperature (c) Free Energy
(d) Volume. The red arrows indicate discontinuous regions.
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Figure 4.10: Evolution of the (a) lattice vectors and (b) angles of the NPT molecular
dynamics simulation for the forward transition (i.e Cs-II - Cs-III)

Temporal variations of the lattice vector and angles for this compression (Cs-II → Cs-III) is

depicted in Figure 4.10a and 4.10b respectively. The a and c lattice vectors decreased slightly

near the 30ps where the free energy and volume drastically changed. However, after 35ps,

the a and c lattice vectors become stabilized. In contrast to the a and c axis, no significant

change is observed for the b lattice vector, implying that there was little variation along the

b axis with time. The temporal evolution of the lattice angles shown in Figure 4.10b define

α, β and γ angles of the lattice plane. The γ angle remained fairly constant throughout the

simulation. In comparison, the β angle slightly decreased from 920 to 860 in the first 40ps

and then remained almost constant. However, the α angle was found to decrease from 900

to 800 in the first 12ps, it then increased to 1020 and becomes steady after 60ps. The root

mean squared displacement was examined to evaluate how far the atoms had deviated from

the original starting configuration.

First the average displacement (RMSD) of the Cs atoms were examined as a function of

time (Figure 4.11). The Cs atoms moved 1.5Å from their initial position in the first 40ps and

maintained a fairly constant displacement for additional 50ps after which it increased to 1.7Å

and then remained constant for the remainder of the simulation. To check if the Cs atom

displacements has led to the eventual Cs-II to Cs-III transformation, random configurations

were selected every 20ps from the MD trajectory ( i.e at 20ps, 40ps, 60ps, 80ps, 100ps,

120ps, 140ps, 160ps, 180ps and 200ps). Each extracted snapshot was quenched to 0K by
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performing a geometry optimization. It is important to note that the axis system between

the experimental Cs-III and the reconstructed structure from Cs-II changed (i.e Cs-II a

corresponds to Cs-III b and Cs-II b corresponds to Cs-III a, the c axis remains unchanged).

The (010) plane of the experimental Cs-III structure (one layer highlighted by the purple

arrow in Figure 4.8) formed on the (100) plane of the Cs-II supercell. Hence the (010) and

(100) planes of the experimental Cs-III and simulated Cs-II snapshots have been examined

for phase transition here.

Figure 4.11: Time evolution of the Cs atom displacement for the Cs-II → Cs-III
transition. The red arrows indicate regions before steady displacement of the Cs atoms.

A comparison of one layer of the Cs-III (010) plane, Figure 4.12a and (100) plane of optimized

snapshots from the Cs-II → Cs-III NPT molecular dynamics is presented in Figure 4.12b-k.

After 20ps, two sections of the Cs atoms distinguished by a horizontal drift of the upper

section along the b axis is observed in the selected snapshot shown in Figure 4.12b. The

atoms maintained similar arrangements at 40ps as can be seen in Figure 4.12c. From 60ps,

the (100) plane of extracted snapshots begin to show similar atomic arrangement as the (010)

plane of the Cs-III. These regions of similar Cs atom local environment are marked in red in

Figure 4.12. Closer examination of the 200ps snapshot (Figure 4.13b) reveal the c axis tilts

by 200 while the Cs atoms makes a 300 tilt similar to the tilt angle of the Cs atoms in the

experimental Cs-III structure shown in Figure 4.13a.
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Figure 4.12: (a) One layer of Cs-III (010) plane and (100) plane of the optimized
Cs-II → Cs-III NPT configurations extracted after (b) 20ps (c) 40ps (d) 60ps (e) 80ps
(f) 100ps (g) 120ps (h) 140ps (i) 160ps (j) 180ps (k) 200ps. The red circles mark regions
of similar Cs atom arrangements compared to the experimental Cs-III structure in (a).

Figure 4.13: (a) One layer of experimental Cs-III (010) plane and (b) (100) plane of
the optimized Cs-II→ Cs-III NPT configurations extracted after 200ps. The tilt angles
of the Cs atoms in both snapshot is identical which indicates the obtained structure at
200ps is the transformed Cs-III structure.
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Figure 4.14: Projection down the c axis for (a)Initial Cs II structure used for the
molecular dynamics (MD) simulation and (b) Optimized snapshot after 200ps for the
Cs-II→ Cs-III transformation. The arrows point to the (100) planes of the highlighted
layers.

Figure 4.15: (a and b) The (100) plane of two adjacent layers of the optimized Cs-II
→ Cs-III NPT configuration extracted after 200ps. Note the differences in the tilted
angle.
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A distinct feature of the Cs-III structure is that the Cs atoms are not co-planer in the layers.

After 200ps, one snapshot was extracted and quenched to 0K. Projected view of the optimized

snapshot showing five layers of Cs atoms in Figure 4.14b. Note that the top and bottom

layers corresponds to the same layer i.e the layers highlighted blue (Figure 4.14b). Hence,

there are four layers of Cs atoms (highlighted blue, pink, yellow and purple in Figure 4.14b)

in the optimized snapshot similar to the experimental Cs-III (i.e the experimental Cs-III

consists of four alternating Cs atom layers). Closer examination of the (100) plane of each

layer show the non-coplanar Cs atom feature i.e the Cs atoms in each layer are not co-planer.

This is confirmation that the final Cs-II snapshot in Figure 4.14b is transformed Cs-III.

As already noted earlier, the unit cell of the experimental Cs-III is composed of four identi-

cal layers of alternating orientations (Figure 4.1a). Similar feature was also observed in the

extracted snapshots from the NPT molecular dynamics simulation of Cs-II → Cs-III trans-

formation (Figure 4.14). Two adjacent layers of the 200ps snapshot are compared in Figure

4.15. The tilting of the respective planes are the same as observed in the experiment [178].

Figure 4.16: Comparison of the projected density of state of (a) Cs-II and (b) Cs-III.
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A comparison of the Cs-II and Cs-III projected density of state in Figure 4.16a and 4.16b

show the 6s orbital still dominates the valence states. This suggest that the s-d transition

from Cs-II to Cs-III is not completed, although there are notable increase in the d-DOS

near the Fermi level. Finally, the 300 inclination and alternating layer arrangement of the

Cs atoms observed in the optimized molecular dynamics snapshot (Figure 4.13b and 4.15)

confirms the Cs-II has transformed to Cs-III and the transformation does not occur through

nucleation and growth (Figure 4.12). Instead this Cs-II → Cs-III transformation occurs

through a cooperative motion of the Cs atoms, hence, it is a martenistic transformation. In

addition, due to the 1GPa stability window of the Cs-III, the backward transformation (i.e

decompression from Cs-III to Cs-II) was performed and is summarized below.
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4.3.3 Decompression (backward) Cs-III → Cs-II transformation

Having recovered the Cs-III from a forward transformation (i.e compressing Cs-II→ Cs-III),

similar methods have been applied to reconstruct the Cs-II from a reverse transformation

path (i.e decompressing Cs-III → Cs-II). From experiment [178], Cs-III is only stable within

a very small pressure range from 4.2GPa to 4.3GPa. From the extrapolation of the phase

boundaries, Ref. [199] shows Cs-III will disappear around 170K and the Cs-II to Cs-IV

transition become direct. This observation indicates the energetics from the Cs-II to Cs-III

and Cs-II→ Cs-IV may be very competitive. Hence, it is relevant to investigate the possibility

of the reverse transformation i.e Cs-III → Cs-II at 300K. The backward transformation was

simulated using an NPT ensemble at 30Kbar in an attempt to recover the Cs-II structure

from the 84 atoms Cs-III structure shown in Figure 4.8b.

Figure 4.17: Thermodynamics parameters of the NPT molecular dynamics simulation
for the backward (Cs-III → Cs-II) transition (a) Pressure (b) Temperature (c) Free
Energy (d) Volume
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The relevant thermodynamics parameters from the simulation of the Cs-III → Cs-II trans-

formation are presented in Figure 4.17. The simulation temperature was controlled using a

Langevin thermostat [67] with the mean temperature maintained at the desired temperature

of 300K as evident in Figure 4.17b. Contrary to the Cs-III → Cs-IV and Cs-II → Cs-III

transitions where a very significant change was observed in the free energy around 30ps, the

Cs-III → Cs-II on the other hand does not show such spikes in the free energy. Instead, the

free energy drops within the aforementioned simulation step as evident in Figure 4.17c. These

aforementioned trend in the free energy is valid because the Cs-III → Cs-II transformation

is from a high density Cs-III to a lower density Cs-II structure. Temporal evolution of the

lattice vectors and angles from the decompression are presented in Figure 4.18a and 4.18b

respectively. The a and b lattice vectors remains fairly constant throughout the simulation,

only the c axis greatly decreased as the structure evolved with time. The angles between the

lattice vectors on the other hand fluctuate throughout the simulation.

Figure 4.18: Evolution of the (a) lattice vectors and (b) angles of the NPT molecular
dynamics simulation for the backward transition (i.e Cs-III → Cs-II)

The α angle (i.e angle between the b and c axis) decreased quickly to 820 after 150ps simula-

tion time and remained fairly constant. The β (i.e angle between the a and c axis) and γ (i.e

angle between the a and b axis) angles maintained similar trend with both angles increasing

as the simulation evolved. The distortions to the lattice angles observed in the Cs-III→ Cs-II

transformation differ from those seen in the Cs-II → Cs-III transformation. These trend in

the lattice angles for the reverse transformation are expected because the Cs-III structure is

being decompressed to 30Kbar in an attempt to recover the Cs-II.
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Figure 4.19: Displacement the Cs atoms in the Cs-III → Cs-II transition. The mean
displacement remained fairly constant after 160ps.

The average deviation of the Cs atoms from their original positions in the decompression

transition is shown in Figure 4.19. The plot shows the atomic displacement increased steadily

with time until 120 - 130ps and then remained fairly constant. Random configurations

were selected from the Cs-III → Cs-II transition NPT molecular dynamics trajectory at

40ps, 100ps, 140ps and 200ps and quenched to 0K. The optimized configurations at 40ps,

100ps, 140ps and 200ps are presented in Figure 4.20a, 4.20b, 4.20c and 4.20d respectively. A

close examination of the structure revealed similar local environment of the Cs atom when

projected down the (100) plane. The orange patches on the optimized configurations shown

in Figure 4.20 highlights the local environment of the Cs which forms a hexagonal-like Cs

atom ring network. However, the Cs atoms which form the ring networks are not co-planer.

Close examination of the 200ps snapshot reveal three regions separated by the red dashed

line in Figure 4.21a. The intermediate region in Figure 4.21a show some ordered layers of Cs

atoms while the other two layers lack periodicity. Figure 4.21b show the projection of the

ordered region on the (100) plane, it also show a hexagonal-like Cs atom network. However,

the local environment of the Cs atoms in Figure 4.21c still differ from that of the Cs-II.
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Figure 4.20: Optimized snapshots from the Cs-III → Cs-II transition after (a) 40ps
(b) 100ps (c) 140ps (d) 200ps simulation time.

Figure 4.21: Optimized snapshot extracted from the Cs-III → Cs-II NPT molecular
dynamics simulation trajectory after 200ps. (a) projection down the b axis showing
three regions (b) (100) plane and (c) (010) plane of the ordered region.
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Hence, the Cs-II was not recovered from the 200ps simulation. This suggests the activation

barrier for the reverse (Cs-III → Cs-II) transformation is larger. This is to be expected,

as the energy barrier for the reverse transition is the sum of the activation energy for the

forward transition from Cs-II → Cs-III and the energy difference between Cs-III and Cs-

II. Furthermore, previous reports have noted that, because DFT-based molecular dynamics

(MD) simulation are restricted to systems of a few hundreds of atoms, one of it’s obvious

drawback is that the simulated phase transition collectively occur, with all chemical bonds

reconstructed simultaneously across the simulation box thereby causing an increase in the

activation barrier and makes the transition less frequent [187, 188, 189, 181, 200]. The

compression (Cs-II → Cs-III) and decompression (Cs-III → Cs-II) transition paths studied

here show transformations that occur through a cooperative motion of all the Cs atoms in the

simulation cell, which is a typical characteristics of a martensitic transformation. Previous

reports have shown that solid - solid transitions can either follow a diffusive nucleation

or various diffusionless martensitic transitions that also involves breaking and formation of

bonds [201]. Hence, unlike the Cs-III → Cs-IV transition which occur through nucleation

and growth of the Cs atom, the Cs-II→ Cs-III and Cs-III→ Cs-II transitions occur through

a martensitic transformation.
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4.3.4 Electron Density Topological Analysis

The quantum theory of atom in molecule (QTAIM) topological analysis method developed

by Bader [150, 27, 28, 29] have been used to quantify electrides in molecular and periodic

systems [202, 203]. The QTAIM have also been used in Chapter two and three of this thesis

to describe the bonding of high pressure intermetallic structures. Hence, similar methods

have been employed in this chapter to analyze the electron density topology of the Cs-II, Cs-

III and Cs-IV structures. Topological analysis of the Cs-II which has a face centered cubic

structure was analyzed at 3GPa. The analysis revealed one non-nuclear maximum (NNM)

present in the Cs-II structure occupying four symmetry equivalent point (Figure 4.22a). The

QTAIM analysis also yielded bond critical points (BCPs) between the Cs atoms with the

topological properties at the Cs - Cs bond critical point presented in table 4.1. The low

density (ρ(rBCP )) and positive Laplacian (∇2ρ(rBCP )) and local energy density (H) at the

BCP indicates the bond is a closed shell interaction. The BCPs are represented by the black

dots in the Cs-II structure while the NNMs are the blue circles shown in Figure 4.22a. By

integrating the atomic basin using the Yu-trickle algorithm [154], the volume of the NNM and

Cs atom are 2.53(a.u)3 and 411.85(a.u)3 respectively. In addition, the integrated charges are

8.99e− and 0.01e− for the Cs and NNM respectively. Though the volume at the NNM position

is small compared to the Cs atom, there is some transfer of electrons to the intersticial sites.

The Cs-II has never been previously reported to have an electride, hence, the results of the

topological analysis presented here are new. However, this observation has been reprted in

elemetal Li at ambient pressure [204]. In other to further probe the presence of the NNMs

in Cs-II, the electron localization function (ELF) was plotted and superposed with the NNM

positions from the QTAIM analysis as shown in Figure 4.22b. At the 0.7 isovalue plotted

here, the ELF can be seen to localized in the NNM position, hence, validating the results

from the topological analysis. In addition, the absence of ELF maxima along the Cs-Cs bond

axis support the QTAIM analysis of a weak closed shell interaction.
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Figure 4.22: (a) Cs-II topological graph showing the bond critical points in black and
NNMs in blue (b) ELF of Cs-II at 0.7 isovalue superposed with the NNMs in blue

Critical Point d(Å) ρ(rBCP ) ∇2ρ(rBCP ) V G H Int. Vol.

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (a3
0)

Cs 411.85

NNM 2.53

Cs - Cs 4.428 0.004 0.006 -0.001 0.001 0.0002

Table 4.1: Topological properties of Cs-II at the nuclear (Cs and NNM) and bond (Cs
- Cs) critical points. Where only the integrated volume have been reported for Cs and
the non-nuclear maximum (NNM) because the density (ρ), Laplacian (∇2ρ), potential
energy (V), kinetic energy (G), and local energy densities (H) are not important at the
nuclear positions.

The complex orthorhombic Cs-III structure at 4.2GPa have been analyzed here. The ELF

using an isovalue of 0.92 is plotted in Figure 4.23. The plot reveals electron localization in

the interstitial sites of the Cs-III structure. The ELF projection along the 100 plane suggest

that each lobe of the electrides forms from nearest neighbour Cs atoms as can be seen in

Figure 4.23a. Also the projected view presented in Figure 4.23b reveal the electrides localize

in the inter Cs. layers The complex nature of the Cs-III 84 atoms structure makes it difficult

to perform the topological analysis. However, the ELF can be used to validate the presence

of electrides. Hence, the large isovalue of the localized electrons in the Cs-III implies that
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the Cs atoms transfer the electrons to the interstitial regions of the structure. As discussed

above, this is due to the small participation of the Cs 5d near the Fermi level.

Figure 4.23: Electron localization function (ELF) of Cs-III at 0.92 isovalue for the
(a) 100 plane and (b) projected view. Colour code; green = Cs atoms, yellow = ELFs.

To understand the electron distribution from the 84 atom Cs in Cs-III to the 4 atom Cs

in Cs-IV, the electron density topology of Cs-IV was analyzed. The topological analysis

finds three unique non nuclear maximums (NNMs) and symmetry inequivalent bond critical

points between the NNMs (table 4.2). No bond critical point (BCP) was found between

the Cs atoms. Analysis of ρ and ∇2ρ at the bond criical points reveal the NNMs form a

covalent bond interaction though the magnitude of ρ at the BCP is less than that of a true

covalent bond. Figure 4.24 is a plot of the NNMs and bond critical points superposed with

the electron localisation function (ELF) of the Cs-IV structure. The blue atoms are the

NNMs (electrides) while the black atoms are the bond critical points between the NNMs

(Figure 4.24) as obtained from the topological analysis. Further analysis of the ELF plotted

in Figure. 4.25 reveals a wavelike localisation of electrons in the Cs-IV. The plot of the

ELF is in exact agreement with the electron density distribution reported earlier [205, 206].

By superposing the electron localisation from the ELF with the NNM positions from the

topological analysis shown in Figure 4.24. It is found that the NNMs occupy the vertexes

of the electride wave pattern and BCPs are located between the NNMs. This observation

shows unequivocally that the electrides are interacting with each other.
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Figure 4.24: (a) Repeated structure of Cs-IV
showing the NNMs in blue, BCPs in black, Cs
atom in green and ELF at 0.64 isovalue in yellow

Figure 4.25: (b) 0.64 ELF plot of Cs-IV

Figure 4.26: Cs-IV (a) Topological volume (colours denote different NNM’s) (b)
(1,0,0) projection (c) (1,0,0) plane showing the NNM’s in blue
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Critical Point d(Å) ρ(rBCP ) ∇2ρ(rBCP ) V G H Int. Vol.

(ea−3
0 ) (ea−5

0 ) (Eh) (Eh) (Eh) (a3
0)

Cs 0.012

NNM1 49.87

NNM2 36.94

NNM3 1.571

NNM2 - NNM2 1.867 0.006 -0.005 -0.001 -0.0001 -0.001

NNM1 - NNM2 1.969 0.006 -0.002 -0.001 0.0002 -0.001

NNM3 - NNM1 1.230 0.002 -0.014 0.001 -0.0022 -0.001

Table 4.2: Topological properties of Cs-IV at the nuclear (Cs, NNM1, NNM2 and
NNM3) and bond critical points. Where only the integrated volume have been reported
for Cs and the non-nuclear maximum (NNM) because the density (ρ), Laplacian (∇2ρ),
potential energy (V), kinetic energy (G), and local energy densities (H) are not impor-
tant at the nuclear positions. NNM1, NNM2 and NNM3 are the three non-nuclear
maximum occupying different symmetry sites.

Previous charge density analysis of Cs-IV found the wavelike interstitial electrons due to the

Cs s-d hybridization [206]. The bonding between the Cs 5d localized the electrons in the void

space forming the NNMs (electrides). The topological analysis of the Cs-IV reported here

show no Cs-Cs bond, instead the covalent interaction is between the interstitial NNMs. The

absence of Cs-Cs bond critical points in the Cs-IV implies that the structure is stabilized

through the formation of covalently bonded NNMs. Hence, unlike the Cs-II and Cs-III struc-

tures where some Cs-Cs bond interactions exist, the Cs-IV primarily consists of covalently

bonded NNMs with no Cs-Cs bond interaction. It is also evident from Figure 4.24 that

the NNMs adopt the triangular-prismatic arrangements with the Cs atoms intercalated in

the NNM triangles. Analysis of the Cs-IV topological volume defined by Bader [27] (Figure

4.26a) shows crystal voids at the Cs atom positions indicating almost total electron transfer

from the Cs to the interstitial regions. The Bader volume (i.e volume enclosed by zero flux

surface) is around the NNM positions represented by the colour gradients in Figure 4.26a.

This is consistent with the integrated volumes from the topological analysis summarized in

table 4.2 and also supports the critical point analysis which revealed no bonding between the
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Cs atoms. Thus, the Cs atoms are stabilized in the Cs-IV by forming Cs+ ions and localised

the electrons as electrides formed from the overlap of the Cs d orbitals. The blue NNM

positions in Figure 4.26c corresponds to the region of finite volume shown in the topological

graph.

4.4 Conclusion

Density functional theory (DFT) based NPT molecular dynamics simulation method applied

here succeeded to reproduce the complex Cs-II → Cs-III and Cs-III → Cs-IV transitions

through a compression. The Cs-III → Cs-IV transition path was obtained from a 120ps

NPT molecular dynamics simulation run with the temperature and pressure set to 400K

and 60Kbar. The Cs-IV began to crystallized after about 80ps. At 120ps, over half of the

Cs-III crystal structure had transformed into the tetragonal Cs-IV structure. Analysis of

the quenched configuration after 120ps revealed that the Cs-IV forms off the complex Cs-

III structure through nucleation and growth of the Cs atoms at high pressure without any

evidence of melting in the transition state. Having examined the Cs-III → Cs-IV transition

path, the same method was applied to reconstruct the forward or compression (Cs-II →

Cs-III) and backward or decompression (Cs-III → Cs-II) transformations. For the forward

transition, an 84 atom Cs-II simulation cell commensurate with the Cs-III cell was used as

the starting configuration for the molecular dynamics run. Snapshots from the simulation

trajectory were extracted and quenched through structural optimization at 0K. The optimized

configurations extracted every 20ps from the 200ps simulation were examined. The Cs-III

began to form on the (100) plane of the Cs-II molecular dynamics snapshots after 60ps. At

200ps the c lattice vector and the Cs atoms in the layers tilt by 200 and 300 respectively

in other to accommodate the transformation to Cs-III. The Cs atom moved cooporatively

throughout the process, with no evidence of melting in the transition state. The results show

the Cs-II → Cs-III transformation is a martenistic transition. The optimized configurations

from the backward transition MD simulation show similar local features i.e each of the Cs

atoms formed a hexagonal ring on the (010) plane with a central Cs atom connected to the

other six Cs atoms which formed the hexagonal ring. However, the Cs atom local environment
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for the optimized snapshot is different from that of the expected Cs-II structure. The MD

simulation did not show the Cs-III structure transform to Cs-II after 200ps. It is perhaps

because the Cs-III → Cs-II reverse transition path has a high activation barrier. In addition

to reconstruct the transformation paths, topological analysis of the Cs-II, Cs-III and Cs-IV

structures were performed based on Bader’s Quantum theory of atoms in molecules method.

The results reveal that the three Cs structures studied here all possess electrides. The

topological volume of the interstitial electrons increased as the structure transformed to Cs-

IV. Hence, the presence of the localized electrons at non-nuclear positions in the Cs metal

can be thought of as a consequence of the progressively s and d orbital mixing of the Cs

atom.
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Chapter 5

X-ray Absorption Spectra (XAS) and Non-

Resonant Inelastic X-ray Scattering (NRIXS)

of Water and Ice Ih

5.1 Introduction

Water is the most abundant liquid on Earth and is essential for supporting life. Though water

have been extensively studied for many years, the basic structural and dynamical properties

are still not well understood [207, 208, 209, 210, 211, 212, 213]. Under ambient condition,

water molecules are believed to form tetrahedral coordination with four neighbours through

hydrogen bonds [214]. Tetrahedral coordination was also observed for the solid phase ice

1h. In the liquid state, this hydrogen bond network was not destroyed but fluctuate on

a picosecond to nanosecond time scale due to disruptions from thermal fluctuations [215].

The understanding of the structure of liquid water at the molecular level is elusive and

remains at the centre of scientific debate. One of the primary question ”is the local structure

of water ring-and-chain like or tetrahedral”? [216, 217]. Hence, advances in theory and

experiment are needed. Accurate description of the nature of liquid water from electronic

structure measurements has been a subject of great interest for many years. Information

on the electronic structure of matter has been greatly obtained from X-ray Absorption Near

Edge Structure (XANES) spectroscopy also known as XAS [218]. XAS has proven to be

a great technique for electronic structure studies due to the element specificity and orbital

selectivity. Non-Resonant Inelastic X-ray Scattering (NRIXS) can be shown to be similar to

XAS at low momentum transfer q from the Fermi’s golden rule. Replacement of the dipole
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transition operator d = ε·r with the momentum translation operator d = exp(iq·r) makes the

XAS different from NRIXS. However, at small momentum transfer value q, NRIXS becomes

comparable to XAS because a Taylor expansion of the operator exp(iq · r) only the dipole

term is retained. Through a DFT calculated X-ray absorption spectroscopy (XAS) of a model

water cluster, an alternative description of water at ambient condition which was proposed

to have an asymmetric hydrogen bond coordination with one donating and one accepting

H-bond suggested by Wernet et. al. [214]. The water molecule in the proposed structure

have a polymeric linkage which favours the formation of hydrogen bonded rings and chains

[214]. However, the unusual thermodynamic properties of water can not clearly be associated

to this kind of ring and chain network [219]. For example, water reaches a density maximum

at 40C. Tetrahedrally coordinated liquids are known to exhibit a density maximum which has

however not been found in liquids containing only two hydrogen bonds per molecule, hence

the density maximum property of water was said to be a consequence of the open nature

of its quasi-tetrahedral structure [220]. Connections have been made between the theory of

ambient liquid water and regions of deeply supercooled water where two structurally distinct

forms of water such as the low-density liquid (LLD) and high-density liquid (HDL) have been

proposed to exist [221, 222]. The LDL was said to have a tetrahedral coordination while the

HDL possessed an asymmetric local hydrogen bond coordinationn which features weakened or

broken hydrogen bonds and a distorted first hydration shell [5]. Though fluctuations between

the LDL and HDL structural species can explain some anomalous properties of water, the

true structure of liquid water is still being debated. X-ray absorption spectroscopy (XAS)

which excites core electrons to unoccupied states can serve as a structural probe since the

electronic character of unoccupied states are sensitive to the local geometry of the structure.

The XAS of water from both theory and experiment have shown that the spectrum can be

divided into three regions; a pre-edge region at 535eV, main edge region centered at 537eV

and the post edge region around 541eV. The pre-edge region is said to be a signature of

distorted hydrogen bonds. The spectral features at the main edge region is suggested to

reflect a collapse in the water second hydration shell and sensitive to the hydrogen bond

distortions in liquid water [223, 224]. The observed pre-edge feature in the liquid water XAS

is relatively strong when compared with the XAS of crystalline ice [214]. On the other hand,
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X-ray Raman spectroscopy (XRS) study of condensed phases of water by Tse. et. al [225]

found the pre-edge spectral feature existed in both water and crystalline ice. Hence, the local

environments should be similar and led to the conclusion that the pre-edge feature of water

is not a reliable indicator of the magnitude of local disorder within the hydrogen bonded

network. Several theoretical approximations, such as transition-potential density functional

theory (TP-DFT) [5, 226, 227], complex polarization propagator density functional theory

(CPP-DFT) [5], time-dependent density functional theory (TDDFT) [228] etc. have been

applied to model the XAS of liquid water. All the aforementioned theoretical methods only

gave a qualitative interpretation of the pre-edge, main-edge and post-edge features of the

absorption spectra but none could accurately reproduce the experimental spectrum [5]. It

is obvious that accurate theoretical prediction of the water XAS spectrum is still a major

challenge [229]. To understand the structural properties of liquid water, there is a need to

identify the reason for the failures of the simulated spectra. Given that water coordination

in the liquid state is not rigid, a reliable way to calibrate XAS calculations would be to

calculate the absorption spectra of the well known hexagonal ice Ih in which the crystal

structure is not disputed [230]. Surprisingly, calculations of the XAS of ice Ih has not been

performed until very recently. The structure of Ice Ih is composed of a tetrahedral oxygen

atom coordination, with each oxygen connected to its nearest neighbour through hydrogen

bonds. Several experimental XAS spectrum of hexagonal ice have been reported for either

ice grown on different substrates or the bulk ice phase [231, 225, 232, 4, 233, 234, 235].

All XAS measurements of hexagonal ice gave qualitatively similar spectral profile with slight

difference in the intensities and relative ratios of the peaks at the three regions of the spectra.

These slight variations are either due to the different sample preparation methods or the

experimental methods employed [4]. Only recently XAS of hexagonal ice Ih was computed

by Zhovtobriukh et. al. [5] using four different water models with increasing oxygen and

proton disorder. The authors employed transition-potential half-core-hole approximation

and the complex polarization propagator approaches to compute the excitations employing

localized basis set based on density functional theory (TP-DFT and CPP-DFT). Results from

the 32 cluster water model yield spectra in poor agreement with the experimental spectrum

of ice Ih. The authors attributed the disagreement to either the cluster size or structures they
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used for their calculations [5]. The Bethe-Salpeter Equation (BSE) method which takes into

account core-hole and electron-electron correlation has not yet been widely applied to water

is an effective way to address this challenge, though it is computationally very demanding. In

this work, the BSE method have been employed to predict theoretical absorption spectra and

compare with experimental results. The objective is to better understand the local structure

of liquid water and provide insight on the proper modelling of water and hexagonal ice Ih

from theory. For this purpose, crystalline ice Ih in which the crystal structure is well known

have been used to benchmark the theoretical method in this work using advanced electron

structure method. We found a reasonable agreement of the theoretical and experimental

XAS on ice Ih. Consequently, the BSE was used to calculate the XAS of liquid water to shed

light on the local structure of liquid water which has been debated for several years. This

chapter reports the calculated absorption spectra of crystalline ice Ih, and compressed liquid

water and how they compare with experiments.

5.2 Computational Methods

Core level BSE method implemented in the OCEAN code [86] was used for all XAS and

NRIXS calculations. Each spectrum was averaged over 18 photon directions for the NRIXS

at a chosen momentum transfer values (q) and only three photon directions for the XAS.

It is important to note that all DFT calculations in OCEAN employed the local density

approximation (LDA) functional because it is the only density functional implemented. Ice

Ih configuration with 96 molecules collected from an Ab initio Molecular Dynamics (AIMD)

simulation of Ref. [7] using an opt-PBE-vdW functional was used for the initial XAS and

IXS calculations. To account for nuclear quantum motion of the hydrogen atoms, the AIMD

96 molecules ice Ih configuration of Ref. [7] was used as starting configuration for a series of

Path integral centroid molecular dynamics (PICMD) in the canonical (NVT) ensemble. The

PICMD were performed at 200K with 16 beads to mimic the quantum particle and a 0.01fs

time step. One configuration was extracted every 150ps from the 600ps PICMD simulation

and used to calculate the XAS and IXS of crystalline ice Ih. For the liquid water, a 64 molecule

water model was used for the XAS and IXS calculation. The PICMD calculation for the
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liquid water was performed at 300K for 10 different pressure points again using 16 beads and

a time step of 0.01fs. X-ray absorption spectroscopy (XAS) and Non-resonant Inelastic X-ray

Scattering (NRIXS) of three randomly selected Path Integral Centroid Molecular Dynamics

(PICMD) configurations at each pressure were calculated. For each pressure, average XAS

over the three different configurations were computed. Additional analysis was performed

on the PICMD trajectories at each of the pressure points to interpret the local structure

of compressed liquid water. An efficient way to execute the OCEAN code is provided in

Appendix C.

5.3 Results and Discussion

The objective of the present study is to probe the structure of compressed water at room

temperature and to compare with the known structures of high pressure ices. It is known

that in dense ice starting from ice-VI, interpenetrating hydrogen bond networks are formed

from the second nearest neighbour water molecules [11, 7, 236].

Figure 5.1: Phase diagram of water adapted from Ref. [3]. The red dotted line shows
the direction of compression.

A phase diagram of water under pressure is shown in Figure 5.1. It shows that when ice

is compressed at 250K, it undergoes a sequence of crystal-crystal transformation Ih → III
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→ V → VI [3]. Each crystalline phase has their own unique structure. However, when

ice V transformed to ice VI, the hydrogen bond network of water changed from a single

to an interpenetrating network. Therefore the scientific question to be answered in this

work is ”does the structure of compressed water follow a similar structural transformation

as compressed ice?”. The compression condition of the liquid water calculations follows the

experimental work performed by our collaborators. A water model was been compressed up to

10Kbar as water crystallize into ice VI above 10Kbar at room temperature. As already noted

in the introduction, it is essential to validate the theoretical procedure from the calculation

of the XAS of the well established hexagonal ice Ih structure [230]. This was followed by the

calculations of the XAS and NRIXS of compressed water.

5.3.1 Ice Ih

Figure 5.2a show the (001) plane of the crystalline ice Ih structure optimized from an AIMD

calculation [7]. The calculated XAS and IXS spectra performed using this crystal structure is

presented in Figure 5.2b. The IXS was performed at three different momentum transfer values

(i.e, 2.5Å−1, 4.5Å−1 and 6.5Å−1). The computed spectrum reproduced the three regions of

ice Ih XAS. Namely, a pre-edge region at 535eV, main edge region centered at around 537eV

and a post edge region around 541eV. The q dependence of the absorption edge at the pre-

edge region is evident in Figure 5.2b. As q increased, the intensity of the pre-edge region

also increased with the intensity at q=2.5Å−1 very similar to the XAS. This similarity to the

XAS spectrum is verified as IXS is comparable to XAS at a small momentum transfer values

because the Taylor expansion of the momentum translation operator d = exp(iq · r) can be

approximated to a dipole operator similar to XAS.

Comparison of the ice Ih XAS based on the AIMD optimized structure together with other

theoretical and experimental [4] results are shown in Figure.5.3a. The BSE calculated XAS

spectra compares well with the theoretical results of Zhovtobriukh et. al. [5]. Even though

both theoretical spectra agree with each other, the predicted spectra is still not consistent

with experiment as both show sharp peaks not observed in the experiment. Zhovtobriukh

et. al. [5] attributed the inability of the transition-potential density functional theory (TP-

DFT) [5, 226, 227], nor the complex polarization propagator density functional theory (CPP-
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Figure 5.2: (a) Crystal structure of AIMD ice Ih structure and (b) corresponding
XAS and IXS theoretical spectra of the AIMD ice Ih structure computed from BSE
(OCEAN).

DFT) [5] method, to reproduce the experimental spectrum to the limited size of the water

cluster models. Another factor is that the CPP and TP density functional methods used are

dependent on the choice of localized basis sets. In the previous study, the authors tested

several basis sets before settling for the individual gauge for localised orbitals (IGLO-III)

[237] basis to describe core relaxation and the 19s19p19d [238] even-tempered basis which

they used for the calculations of the absorption spectra. In comparison, the BSE method

employed in this study used a plane wave expansion which is almost close to a complete basis

set. Furthermore, periodicity of crystalline ice Ih is properly accounted in our calculation.

However, as shown in Figure 5.3 the BSE calculation still obviously failed to reproduce

the experimental XAS spectrum. Having validated the BSE method from comparison with

previous results, we sought to explain the discrepancy with experiment. One possibility is

whether the inclusion of local distortions by considering the dynamics of the atoms in the ice

Ih model would improve the agreement. For this purpose, a Path Integral Centroid Molec-

ular Dynamics (PICMD) simulation was carried out. A constant temperature PICMD was

performed at 200K with 16 beads for both the hydrogen and oxygen atom using a time step

of 0.01fs. The simulation temperature was controlled using a Nose Hover thermostat. The

volume was adjusted manually until the stress on the model is isotropic and close to 0GPa.
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Figure 5.3: Comparison of XAS of ice Ih from BSE (OCEAN) with experimental
results of ref.[4] and theoretical data of ref.[5].

The resulting density of 0.916g/cc is in remarkable agreement with experiment. Figure 5.4

shows the relevant thermodynamic parameters extracted from the simulation. The relatively

large fluctuations in the pressure is due to the lack of a barosat. The inset in Figure 5.4a is

a plot of the position of the instantaneous beads in the (001) plane at 150ps. The O-O, O-H

and H-H radial distribution functions shown in Figure 5.5 were computed from the PICMD

trajectories to examine the structural properties of ice Ih. A comparison of the O-O RDF

with results of ref. [6] computed from the classical MD with a similar Thole-type model

potential (TTM3-F model) on crystalline ice Ih is given in Figure 5.6. Both RDFs from

the PICMD and TTM3-F model agree well with each other and the slight difference in the

intensities of the RDF at the peak positions are perhaps due to the temperature difference

(i.e the PICMD was performed at 200K and the TTM3-F model was performed at 230K).

This temperature dependence of the crystalline ice Ih RDF peak intensities at the first and

second coordination shells have been previously reported by Lindberg and Wang [239]. They

introduced an electrostatic switching procedure to systematically generate ice configurations

at various temperatures and the calculated RDFs of the ice structures at the different tem-

peratures indeed revealed the peak intensities decreases with increase in temperature [239].

However, the authors also identified a hydrogen bond defect at temperatures above 200K

which they could not classify as either a D defect (i.e two protons present in the hydrogen
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bond) or an L defect (i.e no proton present in the hydrogen bond). Similar analysis were

not performed. Nevertheless, the trend of the 200K ice Ih RDF reported here is also consis-

tent with previous reports [239]. Therefore, the ice structures from the PICMD simulation

preserves the crystalline ice Ih local structural properties.

Figure 5.4: Thermodynamic parameters from the PICMD simulation of crystalline
ice Ih.

The XAS spectrum computed from the optimized static AIMD configuration (Figure5.7a)

is compared to the present PICMD simulation in Figure5.7b, 5.7c, 5.7d and 5.7e at 150ps,

300ps, 450ps and 600ps respectively. Close examination of each configuration reveal the

reorientation of the hydrogen atoms are slightly different for each structure. The calculated

XAS and IXS spectra corresponding to the snapshots of the ice Ih structures are presented

in Figure 5.8. At 150ps, the computed XAS and IXS of the PICMD configuration shown

in Figure 5.8b also show the sharp peaks that were present in the absorption spectrum

calculated using the AIMD configuration (Figure 5.8a) have been broadened significantly.

Hence, including temporal local distortions in the model through an MD simulation brings

the spectra in closer agreement with experiment (Figure 5.8). The peak intensity between

537eV and 539eV increased in the PICMD configurations as shown in Figure 5.8b, 5.8c,

5.8d and 5.8e when compared to that of the static structure optimized by AIMD shown

in Figure5.8a. Moreover, the X-ray absorption spectra computed by BSE using PICMD

snapshots reproduce the prominent pre-edge feature. Furthermore, the intensity in the region

between 536eV to 541eV increased substantially and bring the theory in better agreement

with experiment.
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Figure 5.5: Radial Distribution Functions (RDF) of crystalline ice Ih computed from
PICMD at 200K (a) Hydrogen - Hydrogen (b) Oxygen - Oxygen (C) Oxygen - Hydrogen
and (d) stacked plot of the three RDFs.

Figure 5.6: Comparison of oxygen - oxygen radial distribution function (gOO(r)) of
ice Ih PICMD and TTM3-F model [6].
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Figure 5.7: 001 plane of the ice Ih crystal structures (a) from AIMD and from PICMD
simulation after (b) 150ps (c) 300ps (d) 450ps and (e) 600ps.

Figure 5.8: Corresponding XAS and IXS of the ice Ih structures in Figure5.7.
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Figure 5.9: Comparison of the ice Ih XAS from individual snapshot of the PICMD
configurations and the average (a) waterfall plots (b) overlaid plots.

Figure 5.10: BSE calculated XAS of ice Ih computed from the AIMD optimized
structure and compared with the average BSE calculated XAS of the ice Ih PICMD
snapshots (see text).
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To closely examine the spectral changes due to the PICMD configurations, the XAS of indi-

vidual snapshot of the PICMD configuration and the averaged XAS were compared in Figure

5.9. Where run 1, run 2, run 3 and run 4 corresponds to the XAS computed using extracted

PICMD configurations shown in Figure5.7b, 5.7c, 5.7d and 5.7e respectively. The spectral

features around 537eV and 539eV can be seen to vary slightly for each of the configurations.

This small change is due to the difference in the slight core-hole correlation introduced by

the different configurations. A comparison of the ice Ih XAS computed using the static

(AIMD) configuration and the average XAS of the four different PICMD configurations is

shown in Figure 5.10. Apart from the obvious broadening of the peak, the average PICMD

XAS spectrum can be seen to shift slightly to lower energy near the post-edge region. It

should be noted that some of the difference may be attributed to the different densities,

the optimized density of the AIMD (0K) static structure using PBE functional is 1.156g/cc

as compared to the PICMD (200K) structure of 0.916g/cc. To understand the difference

between the structures from static and dynamic simulations, extracted snapshots of local

structure of the same oxygen from the two calculations are shown in Figure 5.14. As can

be seen in Figure5.14, the central oxygen atom O4 is tetrahedrally coordinated to four first

nearest neighbour oxygen atoms through two donating and two accepting hydrogen bonds

which is the generally accepted structure of crystalline ice Ih [214, 230]. By comparing the

bond angle the central oxygen (O4) makes with the oxygen of the acceptor hydrogen atoms

i.e O3-O4-O7, the PICMD angle 109.240 is just 1% less than that of the static structure.

However, the bond angle the reference oxygen of the donating hydrogen atoms make with O2

and O19 is 108.310 and 104.740 for the AIMD and PICMD structures respectively and the

angle of the PICMD configuration is 3.3% less than that of the AIMD and approximately

4.4% less than the angle of a perfect tetraheral. In addition, from Figure 5.14 the measured

bond length between the acceptor hydrogen and the central oxygen atoms (i.e Hacceptor - O4)

for the static (AIMD) and dynamic (PICMD) structures are 1.539Å and 1.757Å respectively;

similarly that of the donor hydrogen of the central oxygen atom and O19 (i.e Hdonor - O19)

for AIMD and PICMD structures are 1.533Å and 1.727Å respectively. The difference in the

hydrogen bond lengths are consistent with the density difference between the structures i.e

the static AIMD structure is denser than the dynamic (PICMD) structure. Probability of
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the O-O-O angular distribution in the modeled PICMD ice Ih trajectory was computed and

is shown in Figure 5.13a. The O-O-O angles spread between 1000 and 1300 with the highest

probability at around 1090 which is the expected tetrahedral angle for ice Ih.

Figure 5.11: Local structure of the ice Ih AIMD configuration compared to that of
the PICMD. The angles indicate the O-O-O bond angle.

Figure 5.12: Schematic illustration of the hydrogen bond local environment of a water
molecule with oxygen 0 as the central atom. Where the four hydrogen bonded molecules
(1–4) to 0 are the first nearest neighbours of 0 and oxygen 5 forms the second nearest
neighbour of 0 which can be both hydrogen bonded and non-hydrogen bonded to 0.
Adapted from ref. [7].

A schematic representation of the nearest neighbour water is shown in Figure 5.12. The oxy-

gen one to four (O1, O2, O3 and O4) are the first nearest neighbour oxygen atoms of oxygen
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zero, while oxygen five (O5) is the second nearest neighbour that forms interpenetrating hy-

drogen bonds. The probability of hydrogen bonded (phb) and probability of non-hydrogen

bonded (pnhb) second nearest neighbour water molecule in the ice Ih was computed and is

presented in Figure 5.13b. The almost negligible pnhb compared to phb shows the second

nearest neighbour water molecules form no interpenetrating H-bond network in ice Ih. This

observation agrees with a previous report [7].

Figure 5.13: (a) Probability of the angular distribution of the O-O-O angle in ice Ih
and (b) probability of hydrogen bonded (phb) and non hydrogen bonded (pnhb) second
nearest neighbour water molecule in the ice Ih.

Figure 5.14: Comparison of the averaged ice Ih XAS computed from BSE (OCEAN)
with the experimental data of Sellberg et. al.[4].
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The XAS averaged over the four PICMD configurations using BSE method was plotted

together with the experimental results of Sellberg et. al.[4] recorded at T = 232K on a thin

ice film embedded between two Si3N4 windows in Scanning Transmission X-ray Microscopy

(STXM) mode. The BSE calculated XAS presented here show better agreement with the

experimental result compared to previous theoretical studies [5]. However, the calculated

XAS here still fails to completely reproduce the entire observed spectrum. The post-edge

maximum in the BSE spectrum is shifted to a lower energy and the bandwidth is narrow. The

discrepancy is likely related to the lack of high energy continuum orbitals in the calculation

and perhaps the LDA approximation. To the best of our knowledge, the BSE calculated XAS

of ice-Ih reported here is the best available theoretical spectrum on ice-Ih. Having obtained

XAS specta of ice-Ih in better agreement with experiment using the BSE implemented in the

OCEAN code, similar method have been applied to model the liquid water in the preceding

section.
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5.3.2 Water

The calculation of accurate theoretical XAS spectrum is dependent on the underlying method

employed and has posed a major challenge [229]. This project is initiated in order to help

interpret the local structure of high pressure water from comparison to the XRS spectra

measured by our group and collaborators. To optimize computational resources, the use of

optimum parameters for the calculation is paramount. Hence, using one of the configurations

from previous AIMD on water [240], we tested the convergence of some essential parameters.

The test for the number of band convergence is shown in Figure 5.15a. As can be seen from

the normalized plots with the axis shifted to align with the pre-edge peaks, the number of

empty states included in the calculation changes the spectral features hence there is need

to select an appropriate number of empty bands. Since the pre-edge region is the primary

interest here i.e region between 534eV and 536eV, the 1024 bands appeared to be sufficient

and was used for preceding calculations. After the computation of the ground state with DFT,

the OCEAN BSE code performs a core-hole potential screening calculation. Therefore, we

tested the convergence of the k-points used for the core-hole screening. Figure 5.15b, shows

the XAS of the water model using a 2 × 2 × 2 and 3 × 3 × 3 k-point grids. No significant

difference can be seen from the plot, hence a 2 × 2 × 2 mesh is sufficient. Test on the

convergence of the k-points used for the BSE calculation was also performed (Figure 5.15c).

Again, there is no significant difference between the 12×12×12 and 16×16×16 k-point set.

Therefore, a 12×12×12 is sufficient for this system. Having completed the convergence test,

the oxygen K-edge XAS and NRIXS at 0 kbar averaged over three water configurations at

different momentum transfer values (q = 2.5Å−1, 4.5Å−1 and 6.5Å−1) were calculated. The

results are presented in Figure 5.16a. It shows that intensity of the pre-edge peak increases

as q increases which reflects the q dependence of the pre-edge peak. The intensity of the

high energy region is underestimated, as mentioned above, this is as a result of the neglected

continuum states due to core ionization. To improve the agreement with experiment at the

high energy region, a correction in the form of an arctan step function was added to account

for the transition of the ejected photoelectron to the continuum [241]. As shown in Figure

5.16b, the post-edge becomes broader and in better agreement with experiment.
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Figure 5.15: XAS of water (a) using different bands. (b) with different screening
k-point grid (c) with different BSE mesh sizes.

Figure 5.16: (a) XAS and NRIXS of water at 0kbar (b) Background corrected XAS
at 0kbar.

For comparison, the non-resonant inelastic X-ray spectra (NRIXS) of water were computed at

different momentum transfer (q) with snapshots extracted from the earlier AIMD simulation

at 300K [240]. They are compared with experimental spectra in Figure 5.17 (the solid and

dotted spectral lines are theory and experiment respectively). The theoretical spectra can be

seen to reproduce the major spectral features in the pre-edge, main-edge and post edge regions

in agreement with the experimental spectra. Intensity of the pre-edge region can be seen to

increase with increased momentum transfer value (q) as observed in the ice Ih presented in

the previous section. XAS of water have been computed from several theoretical methods

which also yielded spectras in agreement with experiment [225, 242, 243, 244]. However,
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there is limited studies on the effect of nuclear motion on the local structure of compressed

water. Only recently did Zhaoru et. al. [245] investigate the role of nuclear quantum effect

on the spectral features of water using a 128 water molecule supercell at different pressures.

Their results revealed that the inclusion of the nuclear quantum effect introduced important

effects to the spectra on both the energies and line shape [245].

Figure 5.17: Comparison of the Experimental (doted lines) and BSE based (solid
lines) inelastic X-ray scattering (IXS) spectra of water at different momentum transfer
values.

Figure 5.18: Time evolution of thermodynamic parameters from the PICMD simula-
tion of water. (a) Pressure (b) Energy
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Previous reports of the role of nuclear quantum effect on hydrogen bond fluctuations can

be found in Ref. [246, 247, 248, 249]. In the present study, the nuclear quantum effects

at different pressures were accounted for by performing a path integral centroid molecular

dynamics (PICMD) simulation using a 64 water molecule model. Figure 5.18 shows the

relevant thermodynamic parameters extracted from the PICMD simulation at 9.874Kbar. As

discussed earlier, the large pressure fluctuation is due to the absence of a barostat. However,

the pressure and energy fluctuate within a mean value.

Figure 5.19: Density pressure plot (a) 3rd order polynomial fit of obtained PICMD
pressure (b) comparison with experiment [8].

The theoretically optimized densities of the PICMD water model at different pressures were

compared with the experimental densities in Figure 5.19b. The results show good agreement

within the error estimates. The error bars were estimated by averaging over the density of the

entire trajectory after equilibration. The deviation of the calculated density at high pressure

from experiment is suspected to be due to the fact that the TTM2.1-F model used was only

parameterized for water at ambient condition [97]. Nonetheless, the theoretical density of

water reported here are within the experimental errors and, to the best of our knowledge,

the best available theoretical densities of water at high pressure. Another way to validate

the accuracy of the modeled water structure is by computing the radial distribution function

(RDF). Hence, the radial distribution function of the PICMD water at different pressure was

computed and is shown in Figure 5.20.
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Figure 5.20: Pressure dependence of the oxygen - oxygen radial distribution function
of obtained PICMD water.

Previous reports have shown that the O-O radial distribution function of water at around

3.3Å and 4.5Å increases and decreases respectively with respect to pressure [250, 251]. Sim-

ilar features were observed in the RDF computed from the trajectories of the PICMD water

model at different pressure shown in Figure 5.20. Also the two crossing (isobetic) points at

3.8Å and 5.2Å were also observed in the experimental RDF measured up to 7.7kbar [250, 251].

This is due to compression of the second coordination shell into the first shell. At 9.874Kbar,

the highest pressure studied here, the water is so dense that the RDF at the second coordi-

nation shell water merged with the first coordination sphere. This decrease of correlation at

4.5Å is due to the presence of interpenetration of hydrogen bond network. Previous report

have shown the decrease to apparently indicate weakening of the tetrahedral nearest ordering

in the water molecule due to compression [251]. Having verified the quality of the simulated

structures of high pressure water, BSE calculations were employed to calculate the X-ray ab-

sorption spectroscopy (XAS) and Non-resonant Inelastic X-ray Scattering (NRIXS). At each

pressure three randomly selected PICMD configurations were used. Moreover, for NRIXS,

three different momentum transfer values (q = 2.5Å−1, 4.5Å−1 and 6.5Å−1) were computed

for each configuration and averaged over 16 photon directions for each q.
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Figure 5.21: (a) BSE based XAS of water at selected pressure studied here (b) Ex-
perimental near-edge spectra of water modified from Ref. [9]. Note the ambient and
0.25GPa data are experimental results of Ref. [10].

The XAS spectrum is the average of three different snapshots (Figure 5.21a). The experimen-

tal XRS of compressed water in 5.21b showed the pre-edge peak intensity slightly increased as

the pressure increased from 0.27 to 0.47GPa (Figure 5.21b) [9]. The authors compared their

results with an earlier XRS results reported in Ref. [10] which showed no significant change

in the pre-edge feature of the spectra as the pressure increased from ambient to 0.25GPa

(Figure 5.21b). Fukui et. al. [9] attributed the discrepancy between their results and that

of Ref. [10] to be due to the error of pressure determination or difference in experimental

details. However, XAS calculation of water performed here from 0.04GPa to 0.99GPa (Figure

5.21a) show that the spectral features at the pre-edge region (noted by the blue dashed lines

in Figure 5.21a) as well as the features at the post-edge region only change slightly with

pressure. Similar to the XAS, the NRIXS spectra averaged over the same configurations at

each q (i.e 2.5Å−1 and 6.5Å−1) was computed (Figure 5.22a and Figure 5.23a ). It can be

seen that high pressure water show the intensity of the pre-edge peak is dependent on the

momentum transfer and the pressure.

Figure 5.22 show a comparison of the low q inelastic X-ray scattering (IXS) spectra of water

with the experimental low q (where q=3.1Å−1 for ice Ih and q=4.2Å−1 for ice VI, VII and

VIII) IXS of ice at different pressures. It is pertinent to note that ”there is a large density

difference” between ice Ih (at 0Kbar) and high pressure ice VI (at 17Kbar) [11] is 0.45g/cc

(Figure 5.22b and Figure 5.23b).

142



Figure 5.22: Comparison of (a) BSE based inelastic X-ray scattering (IXS) spectra of
water at different pressures computed at low momentum transfer value (q = 2.5Å−1 )
and (b) Experimental IXS spectra of ice adapted from ref. [11] computed at q=3.1Å−1

for ice Ih and q=4.2Å−1 for ice VI, VII and VIII.

This large density difference is reflected in the shift of the spectra to higher energy as ice Ih

is compressed to ice VI. On the other hand, further compression from VI→ VII→ VIII, the

positions of the respective absorption edges remain unchanged. However, the spectral shape

and features changed slightly with pressure as can be seen in Figure 5.22b. The density

difference between ice VI (at 17Kbar) and ice VIII (at 22Kbar) is 0.25g/cc [11]. For the

compressed water (Figure 5.22a), the calculated density difference between the 0.383Kbar

and 9.874Kbar structures is 0.18g/cc which is 33% less than the density difference between

ice VI and VIII. In addition, the peak positions in the calculated IXS spectra of high pressure

water remain largely unchanged as observed in the ice when compressed from ice VI to ice

VIII (Figure 5.22b). The IXS spectra of water (5.22a and 5.23a) and ice (5.22b and 5.23b) at

small and large q only differ at the pre-edge region i.e the peak intensities become stronger.

The observed changes in the spectral features of the ice was attributed to the increased

coordination via an approaching second coordination shell [11] and have been shown to form

interpenetrating hydrogen bonds [236]. The most significant difference in the spectral profile

is the gradual increase of the intensity in the post-edge region relative to the edge region.

In high pressure ice VI and ice VII, the XAS spectra is similar to that of compressed water.
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The BSE calculated spectra also show relative increase of the post-edge peak intensities.

Since there is a large difference in the densities of experimental high pressure ices with the

compressed water studied here, we cannot draw a conclusion on the similarities or differences.

We have to wait for the analysis of the NRIXS spectra recently measured in the same pressure

range.

Figure 5.23: Comparison of (a) BSE based inelastic X-ray scattering (IXS) spectra of
water at different pressures computed at high momentum transfer value (q = 6.5Å−1 )
and (b) Experimental IXS spectra of ice adapted from ref. [11] computed at q=9.4Å−1

for ice Ih, ice VI, VII and VIII.

Figure 5.24: (a) probability of non hydrogen bonded (pnhb) second nearest neighbour
water molecule in the PICMD water at different pressures and (b) Probability of the
angular distribution of the O-O-O angle in the low pressure and high pressure water.
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To understand how the change in the water spectra relates to the local structure and hy-

drogen bond network, the probabilities of hydrogen bonded (phb) and non-hydrogen bonded

(pnhb) second nearest neighbour water were computed. The O-O-O angular distribution

of the low pressure and high pressure PICMD water shown in Figure 5.24b reveal the lo-

cal water environment is tetrahedral coordinated at low pressure and the local structure is

maintained (Figure 5.24b). The pressure dependence of the pnhb second nearest neighbour

water molecule is given in Figure 5.24a. The bond at the peak maximum is shifted to shorter

distance in response to the compression. For example, the O· · ·O distance at the maximum

shifted by 0.3Å from 0.383Kbar to 9.874kbar. Finally, the probability of non-hydrogen bond

second nearest neighbour water molecule also increased with pressure (Figure 5.24a). This

indicates the crowding into the coordination shell by the second nearest neighbour water. The

approaching second nearest neighbour water form interpenetrating hydrogen bond networks

similar to compressed ice [7, 11, 236].
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5.4 Conclusion

The X-ray absorption spectra (XAS) and Non-Resonant Inelastic X-ray scattering (NRIXS)

of crystalline ice Ih and water have been studied using the Bethe-Salpeter Equation (BSE)

method implemented in the OCEAN code. The calculated XAS on an AIMD optimized crys-

talline ice Ih structure gave absorption spectra similar to previously calculated theoretical

spectra of Zhovtobriukh et. al [5]. The calculated spectra consist of sharp spikes that are

not present in the experimental XAS spectra of crystalline ice Ih and failed to reproduce the

true experimental spectra of ice Ih. However, accounting for the nuclear quantum effect by

a path integral centroid molecular dynamics (PICMD) simulation, the BSE XAS spectrum

improved substantially and became comparable to experiment. The local structure of the

PICMD configurations employed in the calculation were then examined. The hydrogen bond

analysis revealed that the PICMD ice Ih configurations consist of continuous hydrogen bond

network with no interpenetrating H-bonds formed by the second nearest neighbour water

molecules. For liquid water, PICMD simulation was performed on a 64 water model at ten

different pressure points. The calculated XAS using both previous AIMD and the present

PICMD trajectories are comparable and agree with experiment apparently. The atomic mo-

tions masked the difference for the classical (AIMD) and quantum (PICMD) structures. In

one sense, this observation is similar to the crystalline ice Ih calculations in which reasonable

agreement with experiment are obtained if the atomic dynamics are considered. Also, the

probability of hydrogen bonded and non hydrogen bonded second nearest neighbour anal-

ysis revealed the compressed water structures behave like high density crystalline ice with

interpenetrating hydrogen bond network from the compression of the second coordination

shell into the first nearest neighbour shell. Hence, the spectral fingerprints of compressed

water i.e features of the calculated spectra support the suggestion that there is an increased

coordination by approaching second nearest neighbour water molecules.
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Chapter 6

CONCLUDING REMARKS

The central aim of this work is to benchmark the applicability of all available bonding anal-

ysis methods to interpret the structure, electronic structure and electronic spectra of simple

materials at high pressure. In addition, the reconstructive phase transition of elemental Cs

around the complex Cs-III to interpret the electronic structure and nature of transforma-

tion, and finally the last part of this work focused on the study of the local structure of

compressed water and crystalline ice-Ih. The theoretical methods employed are based on

first principles density functional theory (DFT), molecular dynamics (MD) and path integral

centroid molecular dynamics (PICMD).

Chapter 1 gave a brief introduction to the thesis subject, followed by a discussion of the

fundamental theories behind the computational tools employed for all the calculations.

Chapter 2 benchmarked the applicability of all available bonding analysis methods to describe

the unusual potassium silver intermetallics formed under compression with stoichiometries

K2Ag and K3Ag. Analysis of the K2Ag revealed that the K atom transfers electrons to the Ag

atom and forms K-K, K-Ag and Ag-Ag bond interactions with the K-Ag being the strongest

bond present in the compound. Contrary to the K2Ag, bond analysis of the K3Ag yielded

no Ag-Ag bond interaction. This is due to the very large separation of the first nearest

neighbour Ag-Ag. All plane wave and localized basis set dependent bond analysis methods

employed yielded consistent results, however, the projected density of state (PDOS) com-

puted using the LOBSTER code should always be checked against the PDOS from the plane

wave method before trusting the crystal orbital overlap population (COOP) and crystal or-

bital Hamiltonian population (COHP) results from the LOBSTER code. In summary, all the
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bonding analysis techniques should be carefully applied when treating high pressure systems,

due to the extensive modification of the electron density on application of pressure. Hence,

a naive localized description is not appropriate and may lead to erroneous interpretation.

Chapter 3 reported the description of the electronic structure and bonding of the three phases

of sodium gold intermetallics following the benchmark established in chapter two. Analysis

of the phase I Na2Au structure revealed the presence of electrons in non-nuclear positions

of the structure commonly known as electrides. These NNMs were found to form from the

Na atoms in agreement with the experimental maximum entropy method (MEM) analysis.

The experimental structure of the Phase II Na3Au sodium gold intermetallics was said to

have trigonal Cu3As or hexagonal Cu3P-type structure. The two structures could not be

distinguished from DFT calculated equations of state. However, the topological analysis

results presented here revealed the trigonal structure failed to satisfy the Morse sum whereas

the tetragonal structure does satisfy the Morse sum and is thus said to be topologically stable

and as well the accurate phase II structure. Further analysis of the topologically stable Na3Au

phase II and phase III structures yielded no NNMs. Finally, Bader’s quantum theory of atoms

in molecule (QTAIM) revealed all the bond interactions present in the structures are closed

shell interactions.

Chapter 4 reported the reconstruction of the transformation paths from Cs-II → Cs-III and

Cs-III → Cs-IV to define the transition mechanism. In addition, the topological properties

of the Cs-II, Cs-III and Cs-IV structures were reported. The results reveal the transition

in the Cs-III to Cs-IV and the Cs-II to Cs-III transitions are typical crystalline solid-solid

transitions with no evidence of melting in the transition states. From the molecular dynamics

simulation snapshots, the transformation mechanism observed in the Cs-III - Cs-IV is not

martensitic ( i.e a transformation that occurs through a diffusionless cooperative motion of

all the atoms in a transformation region) rather it occurs through some kind of nucleation

and growth. The Cs-II - Cs-III transformation on the other hand was found to occur through

some kind of cooperative motion of all the atoms in the super cell. Also the results suggest

existence of a very large activation barrier for the reverse transformation to Cs-II from a

backward (i.e Cs-III → Cs-II) transition.
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Chapter 5 employed the Beth-Salpeter Equation (BSE) method to calculate the X-ray absorp-

tion spectra (XAS) and Nuclear Resonant inelastic X-ray scattering (NRIXS) of ice Ih and

compressed water at different momentum transfer values. Theoretical spectra computed us-

ing snapshots from the PICMD simulation performed here yielded results in good agreement

with experiment for both water and ice Ih. Further analysis of the trajectories revealed the

water maintain approximate tetrahedral coordination and not dramatically different from

crystalline ice. Also the results showed that compressed water form interpenetrating hy-

drogen bonds by compressing the second nearest neighbour water molecules into the first

coordination shell similar to the behaviour of high density ices.

6.1 Outlook

Based on the research results of this thesis, there are several interesting future works that can

be explored. For instance chapter two and three highlighted the limitation of the localized

basis set dependent method employed in the LOBSTER code. Future work can be done

to incorporate a more flexible basis set that can allow user modifications of the choice of

projection orbitals. Also, the structure and bonding nature of intermetallic phases can be

described following the benchmark results from chapter two and three of this thesis.

In chapter four, the inability of the standard DFT molecular dynamics to fully reconstruct

the reverse (Cs-III → Cs-II) transformation path is as a result of the large activation barrier

of the transformation. Also the limited simulation box size attainable in standard DFT

molecular dynamics have been previously noted to be one of the limitations of reconstructing

phase transitions. However, these limitations can be circumvented through machine learning

metadynmics simulation which can accommodate thousands of atoms in the simulation cell

[252, 253, 200]. Hence, more work can be done using machine learning metadynamics method

to reconstruct the backward (Cs-III → Cs-II) transformation.

Finally, since the OCEAN BSE code uses the local density approximation (LDA) as the

functional for DFT, more work can be done to include a better functional like the generalized

gradient approximation (GGA). In addition, a machine learning based method can also be
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employed to overcome the system size limitation of standard DFT. Taking into account the

aforementioned future works will greatly improve the theoretical XAS spectra agreement

with experiment.
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Näslund, T. K. Hirsch, L. Ojamäe, and P. Glatzel et al. The structure of the first
coordination shell in liquid water. Science, 304:995–999, 2004.

[215] M. Chen, H. Ko, R. C. Remsing, A. M. F. Calegari, B. Santra, Z. Sun, A. Selloni,
R. Car, M. L. Klein, J. P. Perdew, and X. Wu. Ab initio theory and modeling of water.
Proceedings of the National Academy of Sciences, 114:10846–10851, 2017.

[216] T. Head-Gordon and M. E. Johnson. Tetrahedral structure or chains for liquid water.
Proceedings of the National Academy of Sciences, 103:7973–7977, 2006.

[217] L. B. Skinner, J. C. Benmore, J. C. Neuefeind, and J. B. Parise. The structure of water
around the compressibility minimum. The Journal of Chemical Physics, 141:214507,
2014.

[218] L. A Naslund, J. Luning, Y. Ufuktepe, H. Ogasawara, Ph. Wernet, U. Bergmann,
L. G. M. Pettersson, and A. Nilsson. J. Phys. Chem. B, pages 13835–13839, 2005.

[219] J. D. Smith, C. D. Cappa, B. M. Messer, W. S. Drisdell, R. C. Cohen, and R. J.
Saykally. Probing the local structure of liquid water by x-ray absorption spectroscopy.
The journal of physical chemistry. B, 110:20038–20045, 2006.

[220] C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J. C. Tucker. Water and
its anomalies in perspective: tetrahedral liquids with and without liquid-liquid phase
transitions. invited lecture. Phys. Chem. Chem. Phys., 2:1559–1566, 2000.

164



[221] P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley. Phase behaviour of metastable
water. Nature, 360:324–328, 1992.

[222] M. Osamu and E. S. Harry. The relationship between liquid, supercooled and glassy
water. Nature, 396:329–335, 1998.

[223] A. Nilsson and L. Gunnar M. Pettersson. The structural origin of anomalous properties
of liquid water. Nature Communications, 6, 2015.

[224] C. J Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn, L. Simonelli, S. Huo-
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Appendix A

Supporting information for Chapter two

Presented here in Figure A.1 and A.2 are the total and projected density of states of
the K2Ag and K3Ag respectively, to further establish the importance of using the projected
density of state to validate the LOBSTER projections instead of the total density of state. As
can be seen from the figures, the total density of states always agree but plotting the PDOS
reveal that inclusion of the 4p yields negative DOS which implies the projection orbitals used
is not correct. Hence it’s necessary to correlate the PDOS from LOBSTER with the PDOS
from a plane wave calculation before using the COHP and COOP results.

Figure A.1: (a and b) Total and Projected density of state (PDOS) of K in the
hexagonal P6/mmm K2Ag using LOBSTER with 3p 4s projection orbitals for K and
(b and c) Total and Projected density of state (PDOS) of K in the hexagonal P6/mmm
K2Ag using LOBSTER with 3p 4s 4p projection orbitals for K
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Figure A.2: (a and b) Total and Projected density of state (PDOS) of K in the cubic
K3Ag using LOBSTER with 3p 4s projection orbitals for K and (b and c) Total and
Projected density of state (PDOS) of K in the cubic K3Ag using LOBSTER with 3p
4s 4p projection orbitals for K
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Appendix B

Supplementary Information for Chapter Three

Figure B.1: DFT band structure of the tetragonal I4/mcm Na2Au Phase I.

170



Figure B.2: DFT band structure of the hexagonal P63cm Na3Au Phase II.
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Figure B.3: DFT band structure of the cubic Fm-3m Na3Au Phase III.
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Appendix C

Additional information for Chapter Four

C.1 Effective way to run the OCEAN code

The ocean is an ab initio Density Functional Theory (DFT) based code that numerically
solve the Bethe-Salpeter Equation (BSE) for calculations of core-level spectra [86]. There
are several steps involved in the process of running the ocean code as the code uses a variety
of compiled programs and scripts. However, the entire processes is primarily driven by simply
running the main script ocean.pl. Due to the fact that most of the ocean code stages require
only a single processor, running the parent ocean.pl script can be very inefficient for a system
of many atoms. Hence, from my experience using the code, I will highlight some tips on how
to run all the stages independently and more efficiently. For a system of very large number
of atoms, the calculation requires a large number of bands, hence the DFT stage is one
of the most expensive stages to run. The first tip is to run the ocean.pl with the desired
number of processors (usually very large) and track the calculation until the DFT stage is
completed. After the DFT stage, stop the calculation because most of the stages from this
point require fewer or single processors. Having completed the DFT stage, navigate to the
”Common” directory and edit the para prefix file by reducing the number of processors to
around 32CPUs or less. Then change to the SCREENING directory and run the screen.pl in
this directory. Once the screening stage is completed, change to the ”CNBSE” directory. This
stage of the calculation requires only one CPU and is also one of the most time consuming
stage. Hence, run the cnbse mpi.pl with only one core in the CNBSE directory. The process
can take over 5 days depending on the number of atoms the spectra has to be computed for.
Following the aforementioned steps reduces the risk of wasting computer resources and failed
calculations.
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