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Abstract

Cardiac electrophysiology studies the electrical activity of the heart. Researchers from different fields are

working together to model and simulate the electrical activity in the heart. Such simulations may lead to

help cardiologists to treat a patient’s heart condition with better techniques and diagnoses.

Mathematical models of cardiac electrophysiology are described by a system of partial differential equa-

tions (PDEs) and a non-linear system of ordinary differential equations (ODEs). One way to reach real-time

simulation of the electrical activity of the heart is through more efficient time integration of these ODEs.

Larger time steps lead to more efficient computations provided the solutions remain accurate enough. Pro-

ducing the largest stable time step for solving these ODEs is a daunting task. Usually, trial and error is used

to get the largest stable time step, but it is time consuming. In this thesis, we propose a new efficient method

to find the largest stable time step to solve these ODEs efficiently.

In this thesis, we present thirty-seven cardiac cell models. We compare, the forward Euler method,

the explicit midpoint method, the four-stage, fourth-order Runge–Kutta method, the two-stage, first-order

Runge–Kutta–Chebyshev method, the three-stage, first-order Runge–Kutta–Chebyshev method, the three-

stage, third-order strong-stability-preserving Runge–Kutta method, and the four-stage, third-order strong-

stability-preserving Runge–Kutta method based on their largest stepsize, mixed root mean square errors, and

CPU time to solve the cardiac cell models. From the theoretical largest stepsize results, the forward Euler

method outperforms all the other methods considered on all thirty-seven cardiac cell models. Next to the

forward Euler method, the two-stage, first-order Runge–Kutta–Chebyshev method outperforms all the other

methods considered on thirty-seven cardiac cell models.

From the experimental largest stepsize results, the forward Euler method outperforms all the other meth-

ods considered on all thirty-seven cardiac cell models. Next to the forward Euler method, the two-stage,

first-order Runge–Kutta–Chebyshev and the explicit midpoint methods outperform all the other methods

considered on thirty-six cardiac cell models and one cardiac cell model, respectively.

Also, we solve the monodomain problem coupled with FitzHugh–Nagumo model using the forward Euler,

the two-stage, first-order Runge–Kutta–Chebyshev method, and the three-stage, first-order Runge–Kutta–

Chebyshev method in one, two, and three dimensions. We compare these methods based on their theoretical

largest stepsize, experimental largest stepsize, CPU time, and mixed root mean square errors. From these

results, the three-stage, first-order Runge–Kutta–Chebyshev method outperforms all the other methods over

a one-dimensional problem, a two-dimensional problem, and a three-dimensional problem.
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1 Introduction

Every year people die from cardiovascular disease. In 2008, an estimated 30% of all deaths worldwide were

due to cardiovascular disease [1, 35]. Currently, due to the coronavirus (COVID-19) pandemic, thousands

of people are dying worldwide. This virus can infect the heart muscle; see Figure 1.1. The death rate for

COVID-19 patients with pre-existing heart disease is far higher than among other patients [34]. As a result

of COVID-19, the worldwide mortality rate associated with cardiovascular diseases will likely increase from

the percentage mentioned above.

Figure 1.1: Illustration of a neon purple coronavirus cell in the center of a heart outline [4].

These days, we can design the shape of planes and automobiles using finite element simulations; see

Figure 1.2. These simulations predict how the planes and automobiles behave in wind and thunder instead

of putting them in the wind and thunder. These results are the motivation for the researchers from computer

science, engineering, mathematics, and physiologists to work together to model and simulate the electrical

activity in cardiac cells. This computer simulation may lead to help the cardiologists to treat a patient’s heart

condition with better techniques and diagnosis, for example, in the form of more accurate electrocardiogram

(ECG) analysis.

Figure 1.2: Finite element models of airbus and Ford taurus car [56, 58]
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Cardiac electrophysiology studies the electrical activity of the heart. Mathematical models and numerical

simulations of cardiac electrophysiology are valuable for studying heart development and disorder. These

models are described by a system of partial differential equations (PDEs) and a non-linear system of ordinary

differential equations (ODEs). These systems of ODEs are used to model the electrical activity in the

cardiac cells. This thesis proposes a new efficient method to minimize the time required to perform cardiac

simulations.

Over the most recent two decades, the modeling and simulating the electrical activity in the heart have

advanced quickly. Currently, high-resolution simulation of the human heart with great detail and accuracy

level can now be carried out. However, it is still slower than real-time despite using 16,384 computer nodes

and 1,572,864 supercomputer cores [43, 45].

One way to reach the real-time simulation of the electrical activity of the heart is through more efficient

time integration. Usually, time integration is done with a constant step size, and to maximize the size of the

step while maintaining sufficient accuracy, trial and error is used, but it is inefficient and leads to sub-optimal

stepsizes. These sub-optimal stepsizes are either too large and lead to a divergence of the time integration,

or they are too small and lead to solutions that are too accurate, and this leads to long computational times.

To overcome these problems, we propose a new efficient method to find the largest stepsize that will yield a

desired accuracy.

1.1 Contributions of the thesis

In this thesis, we examine time integration methods for cardiac cell models. These methods are the forward

Euler (FE), the explicit midpoint (EMP), the four-stage, fourth-order Runge–Kutta (RK4), the two-stage,

first-order Runge–Kutta–Chebyshev (RKC(2, 1)), the two-stage, first-order Runge–Kutta–Chebyshev (RKC(3, 1)),

the three-stage, third-order strong-stability-preserving (SSP(3, 3)), and the four-stage, third-order strong-

stability-preserving (SSP(4, 3)) methods. We propose a new efficient methodology to find the largest con-

stant stepsize of these methods to meet a given tolerance. Also, we solved the monodomain model using the

FE method, the RKC(2, 1), and the RKC(3, 1) based on their theoretical largest stepsize and experimental

largest stepsize. We determine the largest stepsize of the time integration method based on its stability region

and the eigenvalues computed from the Jacobian matrix of a system of ODEs. This avoids trial and error to

find the experimental largest stepsize.

1.2 Structure of the thesis

In chapter 2, we present background on the electrical activity in the heart and the mathematical model of

cardiac cell and myocardial tissue. In chapter 3, we present the numerical methods used to solve cardiac

cell models and the monodomain model. We also give the procedure to find the largest stable time step

of the method to solve the systems of ODEs. In chapter 4, we present a numerical experiment for solving
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cardiac cell models using the FE, the RKC(2, 1), the RKC(3, 1), the SSP(3, 3), the SSP(4, 3), the EMP, and

RK4 methods and simulation of the monodomain model using FE, RKC(2, 1), and RKC(3, 1) methods. In

chapter 5, we summarize the conclusions of these works and make suggestions for future work. Appendix A

provides complete results of Table 4.2, Table 4.3, and Table 4.4. Appendix B provides reference solutions

used for one-dimensional, two-dimensional, and three-dimensional monodomain problem.
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2 Background

2.1 Heart

The heart is an important organ because it carries oxygen and nutrients to different parts of the body; see

Figure 2.1. For instance, the brain is the central organ of the human nervous system. It gets a supply of

oxygen and nutrients when the heart carries out its responsibility. So without the heart, these capacities

would fall flat. If the heart fails, the entire body will shut down rapidly.

Figure 2.1: Heart [3]

The right and left atria and the right and left ventricles are the chambers of the heart. The electrical

heart system is fundamental for the heart to work those activities efficiently [23]. The heart’s pumping action

is regulated by pacemaker cells that administer regular, spontaneous electrical impulses. These impulses are

transmitted to nearby muscle cells, which then contract together as a unit to make the heart pump.

2.2 Cardiac muscle cells

Cardiac muscle is made up of specialized muscle cells, called cardiomyocytes. The cells appear Y-shaped

in the Figure 2.2 because they are connected end to end, and some are branched. They are all electrically

connected. One of the cells is stimulated, that signal will travel to all of the other cells. There are two types

of cells in the cardiac muscle known as cardiomyocytes and cardiac pacemaker cells. The cardiomyocytes
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are found in the chambers of the heart. They contract and relax to allow blood to enter and exit the

heart. Cardiac pacemaker cells are specifically found on the walls of the right atria. They are responsible for

initiating action potentials at a regular pace. The five phases of the action potential (see Figure 2.3) in the

membrane of cardiac cell are presented below [5]:

1. Phase 4 (Diastole): This is known as resting membrane potential.

2. Phase 0 (Depolarization): The sodium channels open, and sodium ions (Na+) enter the cell.

3. Phase 1 (Early repolarization): The potassium channels open, and potassium ions (K+) exit the

cell.

4. Phase 2 (Plateau phase): Both the potassium channels and calcium channels are open. Potassium

ions (K+) exit the cell at the same time calcium ions (Ca2+) enter the cell. This restores the potential.

5. Phase 3 (Delayed repolarization): Calcium channels close slowly while potassium channels remain

open. Potassium ions (K+) continue to move out of the cell, causing repolarization.

Figure 2.2: Cardiac muscle cell [61].
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Figure 2.3: The action potential in the membrane of the cardiac cell [59]. Pacemaker cells and muscle
cells show different kinds of action potential patterns.

2.2.1 Cell models

In this thesis, we present 37 cardiac cell models of different species, for example, human, pig, and mouse.

Each model describe the electrical activity of the cardiac cells. FitzHugh–Nagumo (FHN) [22] is a model

of nerve membrane and the simplest model with two ODEs. Bondarenko et al. [11] is the model of mouse

ventricular myocyte action potential and the largest model with 41 ODEs.

The Luo-Rudy (1991 model)

Luo and Rudy developed the Luo–Rudy model [36] in 1991. They updated the preexisting guinea pig ventric-

ular action potentials model of Beeler–Reuter (1977) [10]. The Luo–Rudy model (1991) is the most widely

used cardiac cell model in research. It makes it possible to simulate cardiac myocytes’ excitation-contraction

in different conditions; for more details see [37, 38]. Figure 2.4 shows the ionic current flows across the cell

membrane of the Luo–Rudy model.
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Figure 2.4: The ionic current flows across the cell membrane of Luo-Rudy(1991) model [2].

Winslow et al. (1999) model

Winslow, Rice, Jafri, Marban, and O’Rourke developed the model of Winslow et al. [68] in 1999. They

developed a model of canine ventricular tissue. The model of Winslow et al. (1999) are among the more

advanced cardiac cell models available; for more details see [68]. Figure 2.5 shows the ionic current flows

across the cell membrane of the model of Winslow et al. (1999).

Figure 2.5: The ionic current flows across the cell membrane of the model of Winslow et al. (1999)

[2].
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2.3 Bidomain model

The bidomain model represents the electrical activity of the whole heart. The bidomain domain consists

of two parts: the cardiac cell called the intracellular domain, and the extracellular domain which is the

space surrounding the intracellular domain. The cell membrane divides these domains. The bidomain model

describes the potential difference across this cell membrane. This model consists of an ODE, a nonlinear

PDE, and a linear PDE and is given by [63]

∂s

∂t
= f(s, v, t), (2.1)

χCme
∂v

∂t
+ χIion(s, v, t) + Istim(x, t) = ∇ · (MI∇v) +∇ · (MI∇uE) , (2.2)

0 = ∇ · (MI∇v) +∇ · ((MI + ME)∇uE) , (2.3)

with boundary conditions on ∂Ω is given by

n̂ · (MI∇v + MI∇uE) = 0,

n̂ · (ME∇uE) = 0,
(2.4)

where n̂ is the unit outward normal of the domain and ∂Ω is the domain of the boundary.

Table 2.1: Parameters of the bidomain model.

v the transmembrane potential

uE the extracellular potential

MI and ME conductivity tensors

s a vector of state variables from the cell model

χ the area of cell membrane per unit volume

Cme the capacitance of the cell membrane per unit area

Istim, f , and Iion dependent on the particular cell model used

2.4 Monodomain model

The bidomain model is challenging for mathematical computation and analysis. We can simplify this model

to a monodomain model by assuming MI = λME . This monodomain model is given by

∂s

∂t
= f(s, v, t), (2.5a)

χCme
∂v

∂t
+ χIion(s, v, t) + Istim(x, t) =

λ

1 + λ
∇ · (MI∇v) , (2.5b)

with boundary conditions on ∂Ω is given by

n̂ · (MI∇v) = 0,
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where n̂ is the unit outward normal of the domain and ∂Ω is the domain of the boundary.

It is not easy to find λ that satisfies the assumption mentioned above in real life. This assumption

hides critical electrophysiological phenomena because it assumes tissue is isotropic (the conductivities are

homogeneous in all directions) [63].
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3 Numerical Methods

In this chapter, we present the time integration methods used to solve the ODEs and the finite element

method to solve PDEs.

3.1 Explicit Runge–Kutta Methods

Explicit Runge–Kutta (RK) methods are used in the approximation solutions of systems of ODEs [8]. The

general form of an s-stage explicit RK method applied to an initial-value problem (IVP),

dy

dt
= f (t,y) , y (t0) = y0, where y(t) =


y1(t)

y2(t)
...

ym(t)

 , (3.1)

given as follows:

yn+1 = yn + ∆t

s∑
i=1

biki, where ki = f

tn + ci∆t,yn + ∆t

i−1∑
j=1

aijkj

 , i = 1, 2, ..., s. (3.2)

The general form of (3.2) can be represented by its Butcher tableau [30].

0 0 0 . . . 0 0

c2 a21 0 . . . 0 0
...

...
...

...
...

...

cs as1 as2 . . . ass−1 0

b1 b2 . . . bs−1 bs

3.1.1 Stability analysis

To illustrate the stability of time integration methods, we use the following test function:

dy

dt
= λy, y (t0) = y0 and λ ∈ C. (3.3)

We implement ERK to (3.3) yields

yn = R(z)ny0, where R(z) = 1 + zbT(I− zA)−1(1, 1, . . . , 1)T is a stability function and z = λ∆t.
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To have a bounded numerical solution, we must ensure |R(z)| ≤ 1 and the stability domain of the time

integration method given as follow

S := {z ∈ C : |R(z)| ≤ 1}.

In this thesis, we are dealing with 37 non-linear systems of cardiac cell models, so we have generalized the

stability analysis from equation (3.3) to the non-linear system equation (3.1). The right-hand side of the

non-linear systems of equation (3.1) are linearized by using a Taylor expansion about the point (t∗,y∗)

du

dt
= f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(u− y∗) +O(| u− y |2). (3.4)

By ignoring the higher-order terms, the equation (3.4) becomes

du

dt
= f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(u− y∗). (3.5)

In the stability analysis of (3.1), we check the difference of two solutions of (3.1) is bounded. Let v and w

satisfy (3.5). Then
dv

dt
= f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(v − y∗) (3.6)

and
dw

dt
= f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(w − y∗). (3.7)

The difference of (3.6) and (3.7) becomes

dv

dt
− dw

dt
=

[
f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(v − y∗)

]
−
[
f(t∗,y∗) +

∂f

∂y
(t∗,y∗)(w − y∗)

]
, (3.8)

after the cancellation of the term f(t∗,y∗) from right hand side of (3.8) and it becomes

dv

dt
− dw

dt
=
∂f

∂y
(t∗,y∗)(v −w). (3.9)

Let ỹ = v −w and (3.9) becomes
dỹ

dt
=
∂f

∂y
(t∗,y∗)ỹ. (3.10)

The partial derivative ∂f
∂y (t∗,y∗) represent the Jacobian matrix

J =
∂f

∂y
=


∂f1
∂y1

· · · ∂f1
∂ym

...
. . .

...

∂fm
∂y1

· · · ∂fm
∂ym

 , where y =


y1

y2

...

ym

 and f =


f1

f2

...

fm

 .

We assume J is diagonalizable. Therefore, we can write J as

J = PDP−1, (3.11)

where D is a diagonal matrix with the eigenvalues of J and P is an invertible matrix consisting of the

eigenvectors of D. We replaced J by PDP−1 and (3.10) becomes

dỹ

dt
= PDP−1ỹ. (3.12)
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Let ˜̃y = P−1ỹ. Then (3.12) can be rearrange as follows

d(P˜̃y)

dt
= PD˜̃y. (3.13)

Using P−1P = I, then (3.13) becomes

d˜̃y

dt
= D˜̃y. (3.14)

All of the differential equations in the system (3.14) are fully decoupled. Then we can write each component

in the form

d˜̃yi
dt

= λi ˜̃yi, where λi eigenvalue of D. (3.15)

The equation (3.15) has the same form of equation (3.3), so we can apply stability analysis of (3.3) to (3.15).

3.1.2 FE Method

The forward Euler (FE) method is the simplest explicit RK method. The order, Butcher tableau, stability

region, and stability formula of this method are given in Table 3.1.

FE

Order Butcher Tableau Stability Region Stability Formula

One
0 0

1
{z ∈ C : |z + 1| ≤ 1}

Table 3.1: The order, Butcher tableau, stability region, and stability formula of FE.

3.1.3 EMP Method

The explicit midpoint (EMP) method is also known as the modified FE method [8]. The order, Butcher

tableau, stability region, and stability formula of this method are given in Table 3.2.
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EMP

Order Butcher Tableau Stability Region Stability Formula

Two

0 0 0

1/2 1/2 0

0 1

{
z ∈ C :

∣∣ 1
2z

2 + z + 1
∣∣ ≤ 1

}

Table 3.2: The order, Butcher tableau, stability region, and stability formula of EMP.

3.1.4 RK4 Method

The four-stage, fourth-order RK (RK4) is known as the classical RK method [8]. The order, Butcher tableau,

stability region, and stability formula of this method are given in Table 3.3.

RK4

Order Butcher Tableau Stability Region Stability Formula

Four

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

{
z ∈ C :

∣∣ 1
24z

4 + 1
6z

3 + 1
2z

2 + z + 1
∣∣ ≤ 1

}

Table 3.3: The order, Butcher tableau, stability region, and stability formula of RK4.

3.1.5 SSP Methods

The strong-stability-preserving (SSP) ERK methods were previously known as total-variation-diminishing

time integration methods [25]. These time integration methods preserve the strong stability property

‖yn+1‖ ≤ ‖yn‖ , of the FE method [26]. These methods are useful, especially in solving hyperbolic par-

tial differential equations, because they have non-linear stability properties [60]. We can write an s-stage

13



explicit SSP methods (3.2) in the following form:

y0 = yn,

yi =

i−1∑
j=0

(αijyj + ∆tβijf(yj)) , for i = 1, 2, . . . , s,

yn+1 = ys,

(3.16)

where all αij and βij are non-negative and αij = 0 only if βij = 0 , and for consistency
∑j−1
j=0 αij = 1. This

form is known as Shu–Osher form [25]. Because the αij and βij are non-negative, the equation (3.16) is a

convex combination of forward Euler step, ∆t is replaced with modified stepsizes of
βij

αij
∆t. The coefficient βij

can be negative, in which case the function f must be modified to account for a downwinded discretization;

for more details see [57]. Next, we present two SSP RK methods.

SSP(3, 3) method

The three-stage, third-order strong-stability-preserving (SSP(3, 3)) method is broadly known as the Shu–

Osher method [25]. It is probably the most popular and commonly used SSP method [25]. The order,

Butcher tableau, stability region, stability formula, coefficients of αij and βij [60] of this method are given

in Table 3.4.

SSP(3,3)

Order Butcher Tableau Stability Region Stability Formula

Three

0 0 0 0

1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

{
z ∈ C :

∣∣ 1
6z

3 + 1
2z

2 + z + 1
∣∣ ≤ 1

}

Stage αij βij Consistency

Three

1 0 0

3/4 1/4 0

1/3 0 2/3

1 0 0

3/4 1/4 0

1/3 0 2/3

∑j−1
j=0 αij = 1, i = 1, 2, . . . , s

Table 3.4: The order, Butcher tableau, stability region, stability formula, αij , and βij of SSP(3, 3).

SSP(4, 3) method

The SSP(4, 3) gives improved stability over SSP(3, 3). The order, Butcher tableau, stability region, stability

formula, coefficients of αij and βij [60] of SSP(4, 3) method are given in Table 3.5.
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SSP(4,3)

Order Butcher Tableau Stability Region Stability Formula

Three

0 0 0 0 0

1/2 1/2 0 0 0

1 1/2 1/2 0 0

1/2 1/6 1/6 1/6 0

1/6 1/6 1/6 1/2

{
z ∈ C :

∣∣ 1
48z

4 + 1
6z

3 + 1
2z

2 + z + 1
∣∣ ≤ 1

}

Stage αij βij Consistency

Four

1 0 0 0

0 1 0 0

2/3 0 1/3 0

0 0 0 1

1/2 0 0 0

0 1/2 0 0

0 0 1/6 0

0 0 0 1/2

∑j−1
j=0 αij = 1, i = 1, 2, . . . , s

Table 3.5: The order, Butcher tableau, stability region, stability formula, αij , and βij of SSP(4, 3).

3.1.6 RKC Methods

The Runge–Kutta–Chebyshev (RKC) methods are explicit stabilized RK methods [29]. These methods are

explicit one-step methods with extended stability domains along the negative real axis.

For stiff problems, the standard RK methods are not efficient because they have severe stability con-

straints. For semi-discrete parabolic problems, implicit methods can be computationally expensive in higher

dimensions. However, RKC methods are useful for such problems because they extend the real stability inter-

val with a length proportional to s2, where s is the number of stages, using the shifted Chebyshev polynomial

as the stability polynomial. This polynomial is given as follows:

Ps(z) = Ts

(
1 +

z

s2

)
, βr = 2s2,

where [−βr, 0] is the largest segment of the negative x-axis belongs to the stability region S, and Ts(z) is the

Chebyshev polynomial defined by

Ts(z) = cos(s arccos(z)), z ∈ C.

The s-stage RKC method [29] is written as

yn0 = yn,

yn1 = yn + µ̃1∆tf(tn + ck∆t,yn0),

ynj = (1− µj − νj)yn + µjyn,j−1 + νjyn,j−2 + µ̃j∆tf(tn + ck∆t,yn,j−1) + γ̃jyn+1, for j = 2, 3, ..., s,

yn+1 = yns,
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and,

µ̃1 = b1u1, µj =
2bju0

bj−1
, νj =

−bj
bj−2

, µ̃j =
2bju1

bj−1
, γ̃j = −aj−1µ̃j , aj = 1− bjTj(u0).

For an s-stage, first-order RKC method, the parameters w0, w1, and bj , are defined as,

w0 = 1 + ε/s2, w1 = Ts(w0)/T ′s(w0), where ε is the damping parameter,

and,

bj =
1

Tj(w0)
.

Damping parameters implemented to the RKC method to overcome a small imaginary perturbation on

z might lead to instability [29]. These damping parameters extended the stability region and reducing the

intersection of the stability region with the negative x-axis; see Figure 3.1 and Figure 3.2. For practical

problems, a convenient choice for ε studied in [29] is 0.05.

RKC(2, 1)

The order, Butcher tableau, stability region, and stability formula of two-stage, first-order Runge–Kutta–

Chebyshev (RKC(2, 1)) method are given in Table 3.6.

RKC(2,1)

Order Butcher Tableau Stability Region Stability Formula

One

0 0 0

1/4 1/4 0

1/2 1/2

{
z ∈ C :

∣∣ 1
8z

2 + z + 1
∣∣ ≤ 1

}

Table 3.6: The order, Butcher tableau, stability region, stability formula of RKC(2, 1).

RKC(3, 1)

The order, Butcher tableau, stability region, and stability formula of three-stage, first-order Runge–Kutta–

Chebyshev (RKC(3, 1)) method are given in Table 3.7.
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RKC(3,1)

Order Butcher Tableau Stability Region Stability Formula

One

0 0 0 0

1/9 1/9 0 0

4/9 2/9 2/9 0

1/3 4/9 2/9

{
z ∈ C :

∣∣ 4
729z

3 + 4
27z

2 + z + 1
∣∣ ≤ 1

}

Table 3.7: The order, Butcher tableau, stability region, stability formula of RKC(3, 1).

Figure 3.1: Stability regions of RKC(2, 1)

method without damping parameter and with

damping parameter.

Figure 3.2: Stability regions of RKC(3, 1)

method without damping parameter and with

damping parameter.

3.2 The theoretical largest stepsize

In this subsection, we propose a new efficient method to find the theoretical largest stepsize of a time

integration method to solve the given system ODEs.
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The stability region of the time integration method is |R(z)| ≤ 1 where |R(z)| is a complex polynomial,

for example, see Figure 3.3. We determine the theortical largest stepsize of the time integration method

based on its linear stability region and the eigenvalues computed from the Jacobian matrix of a system of

ODEs.

Figure 3.3: Stability regions and their complex polynomials of time integration methods.

The procedure used to find the largest time step is summarized in the following steps:

Step 1: Compute boundary values of stability region. The boundary of the stability region is the set of

all z such that R(z) is on the unit circle.

R(z) = eiθ, (3.17)

for some θ ∈ [0, 2π]. To compute the values of z of equation (3.17) analytically is a tedious task.

However, we can solve it easily numerically using MATLAB’s built-in roots function. This gives us the

boundary values of the stability region.

Step 2: Compute eigenvalues from the Jacobian matrix. We use the following procedure to find the

eigenvalues:

1. We generate the reference solution for (3.1) by using MATLAB’s built-in ode15s function. This

function used the following syntax:

[T,y] = ode15s(@f(t,y), [t0:∆t∗:tf ], 'RelTol', 1e–12, 'AbsTol', 1e–12),

where f(t,y) is the RHS of (3.1), t0 is the initial time, tf is the final time, and ∆t∗ is the time

interval at which eigenvalues are stored. This value is chosen small enough to capture the evolution

of the eigenvalues.

2. We use the reference solution to compute the Jacobian matrix. Then, we compute the eigenvalues

from the Jacobian matrix.

for i=t0:∆t∗:tf do

Get the current y values from the reference solution,

yref = y(i+ 1, :).
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We use the current reference solution to compute f(t,y),

fcurrent = f(t∗,yref). where t∗ = t0 + i∆t∗.

We compute the current Jacobian matrix using MATLAB’s built-in numjac function,

[jac, fac] = numjac(@f(t,y), t∗,yref,fcurrent, 'thresh', 1e–12, fac, [ ],S, 0),

which numerically approximates the Jacobian matrix of ∂f
∂y . The column vector thresh

gives a threshold of importance yref (i.e, yref(i) with |yref(i)| ≤ thresh(i) is considered not

important). The column fac is working storage. On the first call, we assign fac to []. This

does not change the returned value between calls. The matrix S is a non-empty sparse matrix

of zeros and ones. A value of 0 for S(i, j) means that element j of the vector f(t,y) does not

depend on element i of vector y.

We compute eigenvalues using MATLAB’s built-in eig function on the Jacobian matrix,

eigenvalues(i+ 1, :) = eig(jac).

end for

Step 3: Scaling the eigenvalues. We scale each eigenvalue to the nearest boundary of the stability region.

1. The stability region is a set of values of z = λ∆t such that |R(z)| ≤ 1. We are trying to bring

the value of λ∆t to the boundary of the stability region of the time integration method because

this is the largest stable time step. We scale each eigenvalue λi, i = 1, 2, . . . ,mn∗, where n∗ =(
tf−t0
∆t∗ + 1

)
is the number of steps taken, computed from Step 2 to the boundary of stability

region using the formula, ∆ti =
∣∣∣ zjλi

∣∣∣, j = 1, 2, ..., n (n is the number of numerical roots of (3.17)

used for plotting the boundary of the stability region). We use the following procedure to get

stable time steps by bringing the eigenvalues to the nearest boundary of the stability region:

a. Find the nearest point. We use MATLAB’s built-in dsearchn function to find the nearest

point of the eigenvalue to boundary values of the stability region. The dsearchn(boundary

values of the stability region, λi) gives the indices of the nearest point.

b. Determine the stable step size. We get the stable step size by scaling the eigenvalues

to the nearest boundary; see Figure 3.4.

∆ti =

∣∣∣∣The nearest point on the boundary to λi
λi

∣∣∣∣ (3.18)
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λi
Shortest distance

The nearest point on the boundary to λi

Figure 3.4: The figure shows the shortest distance between the eigenvalue and the boundary values

of the stability region of the time integration method.

2. The minimum of stable time steps computed from equation (3.18) gives us the theoretical largest

stable stepsize. The theoretical largest stepsize is

∆tmax = min(∆ti), i = 1, 2, . . . ,mn∗. (3.19)

3.2.1 Measuring the accuracy

In this subsection, we are interested in measuring the accuracy of the numerical solution. In this thesis, we

use the following accuracy measurement, which is called MRMS error [41]:

[MRMS]y :=

√√√√ 1

N

N∑
i=1

(
ŷi − yi
1 + |ŷi|

)2

, (3.20)

where yi is the numerical solution and ŷi is the reference solution to yi at time point i and N is the number

of solution points. The [MRMS]v measure is based on a combination of relative error and absolute error.

This error norm gives more satisfactory results than the Relative Root Mean Squared (RRMS) error [41]. We

used an [MRMS]v of 5% as acceptable for the cardiac cell model simulation and the monodomain simulation,

The procedure used to an acceptable [MRMS]v is summarized in the following steps:

Step 1: Reference solution: We generate a reference solution by using a MATLAB’s built-in ode15s function

and lowering the error tolerances for successive approximations until two approximations are identical

for at least ten significant digits at 100 equally spaced output points in time.

Step 2: Numerical solution: Using the theoretical largest stepsize (∆tmax), we generate a numerical solution.

Step 3: Interpolation of the numerical solution: Using linear interpolation, we construct 100 new data

points from the numerical solution.

Step 4: Calculate MRMS: We calculate [MRMS]v by using equation (3.20).

Step 5: Checking the accuracy: If the [MRMS]v is less than or equal to 0.05, then we have achieved an

acceptable [MRMS]v.
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Step 6: Extrapolation: If the [MRMS]v greater than 0.05, then we scale the ∆tmax by using extrapolation:

∆tmaxNew
= ∆tmax

(
0.05

[MRMS]v

)1

p
, p is the order of time integration method.

Step 7: Repeats steps: Repeat Step 2 to Step 6 until we satisfy Step 5.

3.3 Experimental largest stepsize

In this section, we present a method to find the experimental largest stepsize of a time integration method

to solve a given system ODEs to within a specified [MRMS]v.

The procedure used to find the experimental largest stepsize is summarized in the following steps:

Step 1: Reference solution: We generate a reference solution by using a MATLAB’s built-in ode15s function

and lowering the error tolerances for successive approximations until two approximations are identical

for at least ten significant digits at 100 equally spaced output points in time.

Step 2: Starting time step: We use the theoretical largest stepsize as a starting time step to compute the

experimental largest stepsize.

Step 3: Tune time step: The time step value is incremented or decremented until the [MRMS]v tolerance is

satisfied. If the time step value has dbe digits before the decimal point and d digits after the decimal

point (say 0.a1a2 . . . ad), then the time step is changed by 10−d (0.00 . . . 1d). If the [MRMS]v is greater

than 0.05, we decrement the time step value by 10−d. If the [MRMS]v is less than 0.05, we increment

the time step by 10−d. This gives us a new time step value of (0.a1a2 . . . (ad−1)) or (0.a1a2 . . . (ad+1))

and using this time step, we do one simulation and check the accuracy. If the accuracy is satisfied, we

are done. If not, we repeat the process by decrementing or incrementing the new time step.

Step 4: Numerical solution: Using a given time step, we generate a numerical solution.

Step 5: Interpolation of the numerical solution: Using linear interpolation, we construct 100 new data

points from the numerical solution.

Step 6: Calculate MRMS: We calculate [MRMS]v by using the linear interpolation of the numerical solution

and reference solution.

Step 7: Experimental largest stepsize:

if the [MRMS]v is equal to 0.05 then

this gives us the experimental largest stepsize such that [MRMS]v equal to 0.05.

else if the [MRMS]v is less than 0.05 then

i. the time step is incremented as described in Step 3. We increment the time step to check if

there is a larger stable time step with less than 0.05 [MRMS]v.
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ii. Using the new time step, repeat Step 4 to Step 6 to check MRMS error greater than

0.05.

if the MRMS error is less than 0.05 then

we increment the time step as described in Step 3 and repeat Step 4 to Step 6.

end if

else

i. The time step is decremented as described in Step 3. We decrement the time step to check

if there is a smaller time step with less than 0.05 [MRMS]v.

ii. Using the new time step, repeat Step 4 to Step 6 to check the [MRMS]v less than 0.05.

if the [MRMS]v is greater than 0.05 then

we decrement time step as described in Step 3 and repeat Step 4 to Step 6.

end if

this new time step is the experimental largest stepsize such that [MRMS]v is less than 0.05.

end if

3.4 Fully discrete first-order Godunov operator-splitting method

for the monodomain model

The monodomain model consists of systems of non-linear ODEs of equation (2.5a) coupled with a PDE

equation (2.5b). Solving this model numerically is a daunting task because of its complexity. Using the

operator splitting method, this complex system of the model can be split into two smaller parts that can be

easier to solve. There are operator splitting methods higher than order two, but they need negative time

stepsizes [70]. These time stepsizes may lead to instability for operator splitting methods [55]. For this

thesis, we apply a first-order operator splitting method called Godunov splitting. This method solves the

monodomain PDE and the coupled ODE model into the two steps [63]:

1. Using the initial conditions vn and sn, solve the system of ODEs arising from the cell models for

t ∈ [tn, tn + ∆t] to obtain v
(1)
n+1 and s

(1)
n+1:

∂s

∂t
= f(s, v, t), (3.21a)

∂v

∂t
= − 1

Cme
Iion(s, v, t). (3.21b)

2. Solve the PDE, using v
(1)
n+1 as the initial condition, for t ∈ [tn, tn + ∆t] and the boundary conditions
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n̂ · (MI∇v) = 0, to obtain vn+1:

χCme
∂v

∂t
=

λ

1 + λ
∇ · (MI∇v) , (3.22)

3.4.1 Spatial discretization

In this subsection, we semi-discretize (3.22) in space, using the finite element method.

The meshes (x0 < x1, . . . , < xN ) is quasi uniform if there exists a number C > 0, independent of

h = xN−x0

N and i such that

h

hi
≤ C, as N →∞, where i = 1, 2, . . . , N, and hi = xi − xi−1.

We first define the L2(Ω) space over the open and bounded domain Ω as follows:

L2(Ω) =

{
w :

∫
Ω

w(X)w(X) dX <∞
}
.

The L2 inner product over the domain Ω is defined as follows:

〈w, u〉 =

∫
Ω

w(X)u(X) dX, ∀w, u ∈ L2(Ω).

The Sobolev space H1(Ω) is defined as follows:

H1(Ω) = {w ∈ L2(Ω) : ∇w ∈ L2(Ω)},

and the variational formulation of the problem (3.22) is defined as follows: find v(x, t) ∈ H1, for each t, such

that 〈
χCme

∂v

∂t
, w

〉
=

〈
MI∇v,

λ

1 + λ
∇w
〉
, ∀w ∈ H1.

Finite element method

We use a continuous, piecewise-linear finite element over a quasi-uniform mesh of Ω, so vh : [0, T ] → Kh

satisfies 〈
χCme

∂vh
∂t

, w

〉
=

〈
λ

1 + λ
∇ · (MI∇vh) , w

〉
, ∀w ∈ Kh, (3.23)

where, Kh = {u ∈ H1(Ω) : u|k ∈ polynomial of degree ≤ K}. This Kh space is spanned by basis functions

Φi, i = 0, 1, 2, . . . , Nx + 1, where Nx is the total number of interior nodes, defined as follows:

Φi(x) =


x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

xi+1−x
xi+1−xi

, x ∈ [xi, xi+1],

0, otherwise,
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Φ0(x) =


x1−x
x1−x0

, x ∈ [x0, x1],

0, otherwise.

and,

ΦNx+1(x) =


x−xNx

xNx+1−xNx
, x ∈ [xNx , xNx+1],

0, otherwise.

The one-dimensional, two-dimensional, and three-dimensional semi-discrete schemes for the equation (3.23)

given as follows:

1. In one dimension, we write the vh for each fixed t, of the basis functions as follows:

vh(x, t) =

Nx+1∑
i=0

vi(t)Φi(x),

where {Φi}Nx+1
i=1 a basis for Kh where Nx is the total number of interior nodes. We insert this basis

function into equation (3.23) and choose w = Φj to find the following equivalent equation

χCme

Nx+1∑
i=0

∂vi
∂t

〈
Φi,Φj

〉
= −

Nx+1∑
i=0

vi(t)

〈
MI

(
dΦi
dx

)
,

λ

1 + λ

(
dΦj
dx

)〉
, for j = 0, 1, . . . , Nx+1. (3.24)

Define one vector and two matrices v, Ax, and AIx as follows:

v = (vi)(Nx+2)×1, [Ax]ij =

〈
Φi,Φj

〉
(Nx+2)×(Nx+2)

, [AIx ]ij =

〈
MI

(
dΦi
dx

)
,

λ

1 + λ

(
dΦj
dx

)〉
(Nx+2)×(Nx+2)

.

Therefore, equation (3.24) becomes

χCme
∂v

∂t
Ax = −v(t)AIx . (3.25)

2. In two dimensions, we write the vh for each fixed t, of the basis functions as follows:

vh(x, y, t) =

Ny+1∑
i=0

Nx+1∑
j=0

vi,j(t)Φi(x)φi(y),

where {Φi}Nx+1
i=0 and {φj}

Ny+1
j=0 basis for Kh where Nx and Ny is the total number of interior nodes in

x-direction and y-direction. We insert this basis function into equation (3.23) and choose w = Φlφk to

find the following equivalent equation

χCme

Ny+1∑
i=0

Nx+1∑
j=0

∂vi,j
∂t

〈
Φjφj ,Φlφk

〉
= −

Ny+1∑
i=0

Nx+1∑
j=0

vi,j(t)

〈
MI

(
dΦi
dx

)
φj ,

λ

1 + λ

(
dΦl
dx

)
φk

〉

−
Ny+1∑
i=0

Nx+1∑
j=0

vi,j(t)

〈
MIΦi

(
dφj
dy

)
,

λ

1 + λ
Φl

(
dφk
dy

)〉
,

for l = 0, 1, . . . , Nx + 1 and k = 0, 1, . . . , Ny + 1.

(3.26)
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Define one vector and four matrices v, Ax, AIx , Ay, and AIy as follows:

v = (vi,j)(
(Nx+2)(Ny+2)

)
×1
, [Ax]il =

〈
Φi,Φl

〉
(Nx+2)×(Nx+2)

, [AIx ]il =

〈
MI

(
dΦi
dx

)
,

λ

1 + λ

(
dΦl
dx

)〉
(Nx+2)×(Nx+2)

,

[Ay]jk =

〈
φj , φk

〉
(Ny+2)×(Ny+2)

, [AIy ]jk =

〈
MI

(
dφj
dy

)
,

λ

1 + λ

(
dφk
dy

)〉
(Ny+2)×(Ny+2)

.

Therefore, equation (3.26) becomes

χCme
∂v

∂t
(Ax ⊗Ay) = −v(t) (AIx ⊗Ay)− v(t)

(
Ax ⊗AIy

)
. (3.27)

where ⊗ denotes the Kronecker product of two matrices [6].

3. In three dimensions, we write the vh for each fixed t, of the basis functions as follows:

vh(x, y, z, t) =

Nz+1∑
i=0

Ny+1∑
j=0

Nx+1∑
`=0

vi,j,`(t)Φi(x)φi(y)ϕ`(z),

where {Φi}Nx+1
i=0 , {φj}

Ny+1
j=0 , and {ϕ`}Nz+1

`=0 basis for Kh where Nx, Ny, and Nz is the total number

of interior nodes in the x-direction, y-direction, and z-direction. We insert this basis function into

equation (3.23) and choose w = Φlφkϕp to find the following equivalent equation

χCme

Nz+1∑
i=0

Ny+1∑
j=0

Nz+1∑
`=0

∂vi,j,`
∂t

〈
Φiφjϕl,Φlφkϕp

〉
= −

Nz+1∑
i=0

Ny+1∑
j=0

Nz+1∑
`=0

vi,j,`(t)

〈
MI

(
dφj
dx

)
φjϕ`,

λ

1 + λ

(
dφl
dx

)
φkϕp

〉

−
Nz+1∑
i=0

Ny+1∑
j=0

Nz+1∑
`=0

vi,j,`(t)

〈
MIΦi

(
dφj
dy

)
ϕ`,

λ

1 + λ
Φl

(
dφk
dy

)
ϕp

〉

−
Nz+1∑
i=0

Ny+1∑
j=0

Nz+1∑
`=0

vi,j,n(t)

〈
MIΦiφj

(
dϕ`
dz

)
,

λ

1 + λ
Φlφk

(
dϕp
dz

)〉
,

for l = 0, 1, . . . , Nx + 1, k = 0, 1, . . . , Ny + 1, and

p = 0, 1, . . . , Nz + 1.

(3.28)

Define one vector and six matrices vm, Ax, AIx , Ay, AIy , Az, and AIzas follows:

v = (vi,j,n)(
(Nx+2)(Ny+2)(Nz+2)

)
×1
,

[Ax]il =

〈
Φi,Φl

〉
(Nx+2)×(Nx+2)

, [AIx ]il =

〈
MI

(
dΦi
dx

)
,

λ

1 + λ

(
dΦl
dx

)〉
(Nx+2)×(Nx+2)

,

[Ay]jk =

〈
φj , φk

〉
(Ny+2)×(Ny+2)

, [AIy ]jk =

〈
MI

(
dφj
dy

)
,

λ

1 + λ

(
dφk
dy

)〉
(Ny+2)×(Ny+2)

,

[Az]np =

〈
ϕn, ϕp

〉
(Nz+2)×(Nz+2)

, [AIz ]np =

〈
MI

(
dϕn
dz

)
,

λ

1 + λ

(
dϕp
dz

)〉
(Nz+2)×(Nz+2)

.
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Therefore, equation (3.28) becomes

χCme
∂v

∂t
(Ax ⊗Ay ⊗Az) = −v(t) (AIx ⊗Ay ⊗Az)− v(t)

(
Ax ⊗AIy ⊗Az

)
− v(t) (Ax ⊗Ay ⊗AIz ) .

(3.29)

3.4.2 FE method

To define the one-dimensional, two-dimensional, and three-dimensional fully discrete scheme of the first-order

Godunov operator-splitting method for the monodomain model of equations (3.21) and (3.22), we discretize

equation (3.21) and the semi-discretization of (3.25), (3.27), and (3.29) using the FE method defined by the

Butcher tableau in Table 3.1.

3.4.3 RKC(2, 1) method

To define the one-dimensional, two-dimensional, and three-dimensional fully discrete scheme of the first-order

Godunov operator-splitting method for the monodomain model of equations (3.21) and (3.22), we discretize

equation (3.21) and the semi-discretization of (3.25), (3.27), and (3.29) using the RKC(2, 1) method defined

by the Butcher tableau in Table 3.6.

3.4.4 RKC(3, 1) scheme

To define the one-dimensional, two-dimensional, and three-dimensional fully discrete scheme of the first-order

Godunov operator-splitting method for the monodomain model of equations (3.21) and (3.22), we discretize

equation (3.21) and the semi-discretizzation of (3.25), (3.27), and (3.29) using the RKC(3, 1) method defined

by the Butcher tableau in Table 3.7.

3.4.5 Richardson Extrapolation

We generate a reference solution for equations (3.21) and (3.22) by using Richardson extrapolation [12].

Using this method, we generate high-order accuracy results of monodomain problems using the RKC(3, 1)

method. The procedure used to generate the reference solution of the monodomain problem is summarized

in the following steps:

step 1: Numerical solution of half step size : First, we solve the monodomain problems using the

RKC(3, 1) method in a step-doubling manner.

R(i, 0) = v(X,∆t/2i), i = 1, 2, . . . , r, where r is the number of time step refinements.

Each time we increase the accuracy of the numerical solution by one order, at the cost of one new

R(i, 0) computation with a smaller ∆t.
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step 2: Extrapolation: We use the extrapolation formula to improve the first-order numerical solution to

more accurate solutions. For each fixed j (j = 1, 2, . . . , r), we computed

R(i, j) =
2jR(i, j − 1)−R(i− 1, j − 1)

2j − 1
, i = 1, 2, . . . , r.

3.4.6 The theoretical largest stepsize

In this subsection, we present a method to find the theoretical largest stepsize of a time integration method

to solve the monodomain problem within a specified MRMS error.

The procedure used to find the theoretical largest stepsize is summarized in the following steps:

Step 1: Compute eigenvalues. We computed the eigenvalues from cell model consists of systems of non-linear

ODEs of equation (3.21) and a PDE equation (3.22).

1. Reference solution. We generate a reference solution for equations (3.21) and (3.22) by using

Richardson extrapolation [12] method.

2. Compute eigenvalues from cell model. The Jacobian matrix is computed from the right-

hand side of the non-linear systems of ODEs of equation (3.21) using the reference solution and

MATLAB’s built-in numjac function over the time integration interval. Then, the numerical

eigenvalues are computed using MATLAB’s built-in eig function on the Jacobian matrix. The

Jacobians of the coupled systems have size 2(Nx + 2), 2(Nx + 2)(Ny + 2), and 2(Nx + 2)(Ny +

2)(Nz + 2) for the 1D monodomain problem, 2D monodomain problem, and 3D monodomain

problem, respectively.

3. Compute the eigenvalues from PDE. We implemented the finite element method to discretize

the PDE equation (3.22) in space to obtain the system of ODEs. These system ODEs were

rearranged to put into the matrix on the right-hand side. Then, the eigenvalues are computed

using MATLAB’s built-in eig function on the matrix.

Step 2: We implemented the techniques of Step 1 and Step 3 presented on Section 3.2 to get the theoretical

largest step stepsize.

3.4.7 The experimental largest stepsize

In this subsection, we will present a method to find the experimental largest stepsize of a time integration

method to of the monodomain problem.

The procedure used to find the experimental largest stepsize is summarized in the following steps:

Step 1: Reference solution: We generate a reference solution for equations (3.21) and (3.22) by using Richard-

son extrapolation [12].
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a. For the monodomain simulation, the reference solution converged to D = 4 decimal places of

accuracy at N points in space and time. We used Nx = 21 (Ω = [0, 1]), Nx = Ny = 21 (Ω =

[0, 1] × [0, 1]), and Nx = Ny = Nz = 21 (Ω = [0, 1] × [0, 1] × [0, 1]) equally spaced points in

the spatial direction for one-dimensional problems, two-dimensional problems, three-dimensional

problems respectively. Also, we used Nt = 201 (T = [0, 20]) equally spaced points in the time

direction.

b. The reference solution of the spiral wave problem converged to D = 3 decimal places of accuracy

at NxNyNt points in space and time. We used Nx = Ny = 51 (Ω = [0, 2.5] × [0, 2.5]) equally

spaced points in space and Nt = 20001 (T = [0, 1000]) equally spaced points in time. We were

unable to compute a reference solution for the scroll wave simulation.

Step 2: Starting time stepsize: We use the theoretical largest stepsize as a starting time stepsize to compute

the experimental largest stepsize.

Step 3: Tune time step: The time step value is incremented or decremented until the [MRMS]v tolerance is

satisfied. If the time step value has dbe digits before the decimal point and d digits after the decimal

point (say 0.a1a2 . . . ad), then the time step is changed by 10−d (0.00 . . . 1d). If the [MRMS]v is greater

than 0.05, we decrement the time step value by 1o−d. If the [MRMS]v is less than 0.05, we increment

the time step by 10−d. This gives us a new time step value of (0.a1a2 . . . (ad−1)) or (0.a1a2 . . . (ad+1))

and using this time step, we do one simulation and check the accuracy. If the accuracy is satisfied, we

are done. If not, we repeat the process by decrementing or incrementing the new time step.

Step 4: Numerical solution: Using a given time step, we generate a numerical solution.

Step 5: Interpolation of the numerical solution: Using linear interpolation, we construct new data points

from the numerical solution.

a. For the monodomain simulation, we construct Nx×Nt = 21×201, Nx×Ny×Nt = 21×21×201,

and Nx ×Ny ×Nz ×Nt = 21× 21× 21× 201 new data points from the numerical solution using

MATLAB’s built-in interp2 function, interp3 function, and interpn function for one-dimensional

problems, two-dimensional problems, three-dimensional problems respectively.

b. For spiral simulation, we construct Nx × Ny × Nt = 51 × 51 × 20001 new data points from the

numerical solution using MATLAB’s built-in interp3 function for two-dimensional spiral problem.

Step 6: Calculate MRMS: We calculate [MRMS]v by using the linear interpolation of the numerical solution

and reference solution.

Step 7: Experimental largest stepsize:

if the [MRMS]v is equal to 0.05 then
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this gives us the experimental largest stepsize such that [MRMS]v equal to 0.05.

else if the [MRMS]v is less than 0.05 then

i. the time step is incremented as described in Step 3. We increment the time step to check if

there is a larger stable time step with less than 0.05 [MRMS]v

ii. Using the new time step, repeat Step 4 to Step 6 to check [MRMS]v greater than 0.05.

if the [MRMS]v is less than 0.05 then

we increment the time step as described in Step 3 and repeat Step 4 to Step 6.

end if

else

i. The time step is decremented as described in Step 3. We decrement the time step to check

if there is a smaller time step with less than 0.05 [MRMS]v.

ii. Using the new time step, repeat Step 4 to Step 6 to check the [MRMS]v less than 0.05.

if the [MRMS]v error is greater than 0.05 then

we decrement time step as described in Step 3 and repeat Step 4 to Step 6.

end if

this new time step is the experimental largest stepsize such that [MRMS]v is less than 0.05.

end if
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4 Numerical Experiments

In this chapter, we provide the numerical experiments that should enable us to have a better understanding

of the theories presented in Chapter 2 and Chapter 3.

In Section 4.2, we present thirty-seven cardiac cell models and use them to examine the time integration

methods. In Section 4.3, we present results for the numerical solutions of all thirty-seven cardiac cell models.

We used all the time integration methods presented in Section 3 to solve these models. We compare these

methods based on their theoretical largest stepsize, experimental largest stepsize, CPU time, and [MRMS]v.

In Section 4.4, we present results for the numerical solutions of the monodomain model coupled with the

FHN model problem presented in Section 3.4. We used all the first-order time integration methods pre-

sented Section 3 to solve this model. We compare these methods based on their theoretical largest stepsize,

experimental largest stepsize, CPU time, and [MRMS]v. In Section 4.5, we present the simulation of the

monodomain model coupled with the modified FHN model using the theoretical largest stepsizes of all the

first-order time integration presented Section 3. We present the spiral and scroll waves propagation snapshots

captured in the simulation of the monodomain model coupled with the modified FHN model.

4.1 Machine used

The simulations are implemented on a laptop with an Intel(R) Pentium(R) 2 core(s) 1.90GHz and 4 GB

RAM running 64-bit Windows 10.

4.2 Cardiac cell models

In this thesis, we focus on thirty-seven cardiac cell models. These models are obtained from the CellML

model repository [2] and presented in Table 4.1.

4.3 Cell model simulation

In this section, we examine the time integration methods applied to the thirty-seven cardiac cell models. We

compare these methods based on their theoretical largest stepsizes, experimental largest stepsizes, MRMS

errors, and CPU times. To compute CPU time, we solved the cardiac cell model fifty times using the time

integration method and recorded each running times. The minimum of all recorded running times gives us

the CPU time to solve the cardiac cell model.
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Table 4.1: Details on 37 validated cardiac cell models [40]. Models labeled with an asterisk (*) indicate
three cell variants (endocardial cell, epicardial cell, and M-cell). The model referred as Winslow31 is
a reduced model with 31 variables compared to its original form.

Model Reference Number of variables Description

Beeler–Reuter (1977) [10] 8 Mammalian ventricular model

Bondarenko et al. (2004) [11] 41 Mouse ventricular model

Courtemanche et al. (1998) [13] 21 Human atrial model

Demir et al. (1994) [17] 27 Rabbit sinoatrial node model

Demir et al. (1999) [16] 29 Rabbit sinoatrial node model

DiFrancesco–Noble (1985) [18] 16 Mammal Purkinje fibre model

Dokos et al. (1996) [19] 18 Rabbit sinoatrial node model

Faber–Rudy (2000) [21] 19 Guinea pig ventricular model

FitzHugh–Nagumo (1961) [22, 44] 2 Nerve membrane model

Fox et al. (2002) [24] 13 Canine ventricular model

Hilgemann–Noble (1987) [27] 15 Rabbit atrial model

Hund–Rudy (2004) [28] 29 Canine ventricular model

Jafri et al. (1998) [31] 31 Guinea pig ventricular model

Luo–Rudy (1991) [36] 8 Guinea pig ventricular model

Maleckar et al. (2008) [39] 30 Human atrial model

McAllister et al. (1975) [42] 10 Canine Purkinje fibre model

Noble (1962) [46] 4 Mammal Purkinje fibre model

Noble–Noble (1984) [47] 15 Rabbit sinoatrial node model

Noble et al. (1991) [48] 17 Guinea pig ventricular model

Noble et al. (1998) [49] 22 Guinea pig ventricular model

Nygren et al. (1998) [50] 29 Human atrial model

Pandit et al. (2001) [51] 26 Rat left-ventricular model

Pandit et al. (2003) [52] 26 Rat left-ventricular model

Puglisi–Bers (2001) [53] 17 Rabbit ventricular model

Sakmann et al. (2000)* [54] 21 Guinea pig ventricular model

Stewart et al. (2009) [62] 20 Human Purkinje fibre model

Ten Tusscher et al. (2004)* [64] 17 Human ventricular model

Ten Tusscher et al. (2006)* [65] 19 Human ventricular model

Wang–Sobie (2008) [66] 35 Neonatal mouse ventricular model

Winslow31 (1999) [68] 31 Canine ventricular model

Zhang et al. (2000) [71] 15 Rabbit sinoatrial node model
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4.3.1 Theoretical results

We implemented the time integration methods, the accuracy measure of the numerical solution, and the

theoretical largest stepsize techniques from the Chapter 3 on cardiac cell models to produce the theoretical

largest time steps, [MRMS]v, and CPU time. These results are presented in Table 4.2. We now present some

analysis based on the results of Table 4.2; see Table A.1 for complete results.

1. If the theoretical largest stepsize also produces a sufficiently accurate solution, FE will be the most

efficient method because it is less expensive per step than any method with more than one stage. The

FE method outperforms the RKC(2, 1), RKC(3, 1), SSP(3, 3), SSP(4, 3), EMP, and RK4 methods on

all thirty-seven cardiac cell models. The additional stages of the RKC(2, 1), RKC(3, 1), SSP(3, 3),

SSP(4, 3), EMP, and RK4 methods add extra costs for each step compared to the FE method.

2. After the FE method, RKC(2, 1) method is the most efficient method, outperforming the RKC(3, 1),

SSP(3, 3), SSP(4, 3), and RK4 methods on all 37 cardiac cell models. The RKC(2, 1) method outper-

forms the EMP method on thirty-six cardiac cell models. Both the EMP and RKC(2, 1) methods are

two-stage methods, but the improvements of the time step sizes compensate for the extra costs it takes

per step of the RKC(2, 1) method. However, the EMP method outperformed the RKC(2, 1) method on

the FHN model. This is because the larger theoretical stepsize of the EMP method produces a more

accurate solution than the RKC(2, 1) method.

3. The RKC(3, 1) method outperforms the SSP(3, 3), SSP(4, 3), EMP, and RK4 methods on twenty-eight

cardiac cell models. The RKC(3, 1) method outperforms the EMP method on twenty-nine cardiac cell

models. This was because of the improvements of the time stepsizes compensate for the extra cost

it takes per step of the RKC(3, 1) method. However, the EMP method outperformed the RKC(3, 1)

method on eight cardiac cell models. This is because the larger theoretical stepsize of the EMP method

produces a more accurate solution than the RKC(3, 1) method.

4. The SSP(4, 3) method outperforms the SSP(3, 3) on twenty-five cardiac cell models. This was because

of the improvements of the time step sizes compensate for the extra costs it takes per step of the

SSP(4, 3) methods. However, the SSP(3, 3) method outperformed the SSP(4, 3) method on twelve

cardiac cell models. This is because the larger theoretical stepsize of the SSP(3, 3) method produces a

more accurate solution than the SSP(4, 3) method.

5. Figure 4.1 shows that the maximum of stable stepsizes gives us the theoretical largest stepsize. These

stable stepsizes are computed by scaling all calculated time-sampled eigenvalues with non-positive real

parts for the FHN cell model to lie inside the stability region of the FE method.

From section 3.2, we calculate the stable stepsizes by scaling each eigenvalue to the boundary of

the stability region of the time integration method. The minimum of all stable stepsizes gives us the

largest theoretical stepsize. This largest theoretical stepsize brings all eigenvalues with a non-positive
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real part inside and on the stability region of the time integration method, and the numerical solution

does not diverge. However, for the FHN model, the maximum of all stable stepsizes keep all eigenvalue

inside the stability region of the FE method (see Figure 4.1) because all eigenvalues with non-positive

real parts lie inside the stability region of the FE method. Therefore, we use the following steps to

determine the largest theoretical stepsize:

Step 1: First, we must check whether or not all eigenvalues with non-positive real parts computed from

the cell model lie inside the stability region of the time integration method. This is because the

stability region of each time integration method is not the same.

Step 2: We calculate the stable stepsizes by scaling all eigenvalues with non-positive real parts computed

from the cell model to the boundary of the stability region of the time integration method.

Step 3: The maximum scaling factor that brings all eigenvalues with a non-positive real part inside and

on the stability region of the time integration method is the theoretical largest stepsize.
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Figure 4.1: Subplot 1 shows all the computed time-sampled eigenvalues spanning over the integration

interval for the FHN model. Subplot 2 shows all eigenvalues with non-positive real parts because we

do not take eigenvalue with positive real parts for finding the theoretical largest stepsizes. Subplot

3 shows finding a bounding polygon of those eigenvalues. Subplot 4 shows the extreme values of the

eigenvalues with non-positive real parts. Subplot 5 shows the maximum of stepsizes (the value of the

maximum of all stepsizes is 9.9972e–01) times all extreme eigenvalues (λextreme) lie inside the stability

region of the FE method (it means, |1 + max(∆t)λextreme| ≤ 1).
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Table 4.2: ∆ttheo represents the theoretical largest time step and CPU time represents the minimum

of fifty times running of the FE method with less than 5% [MRMS]v.

Model FE

∆ttheo (ms) CPU time (s) [MRMS]v

Beeler–Reuler (1977) 2.4388e–02 1.5517e–01 4.8211e–03

Bondarenko et al. (2004) 2.1068e–04 1.3519e+00 1.1229e–03

Courtemanche et al. (1998) 1.5517e–02 4.7248e+00 4.5076e–03

Demir et al. (1994) 5.2293e–05 1.8012e–02 1.7997e–02

Demir et al. (1999) 5.2293e–05 1.6240e–02 2.1097e–02

DiFrancesco–Noble (1985) 7.6176e–05 1.3916e–01 8.7797e–03

Dokos et al. (1996) 6.6838e–05 8.0463e–02 9.6235e–03

FitzHugh-Nagumo (1961) 2.7217e–03 4.7620e–03 5.0000e–02

Faber–Rudy (2000) 1.0874e–02 3.5192e–01 1.6327e–02

Fox et al. (2002) 4.5596e–03 3.3172e–01 5.3733e–03

Hilgemann–Noble (1987) 6.1571e–05 5.6775e–02 4.3602e–03

Hund–Rudy (2004) 7.7965e–03 1.9462e–01 4.8996e–02

Jafri et al. (1998) 4.3300e–04 5.3558e+00 8.0899e–04

Luo–Rudy (1991) 1.3287e–02 9.1163e–02 5.4646e–03

Maleckar et al. (2009) 4.8053e–05 8.7255e–02 1.3231e–03

McAllister et al. (1975) 1.0934e–02 1.2491e–01 2.1598e–03

Noble (1962) 9.4880e–05 4.1900e–03 1.2260e–02

Noble–Noble (1984) 1.6059e–04 4.9362e–02 2.9266e–02

Noble et al. (1991) 5.1412e–05 1.0832e–01 1.7163e–03

Noble et al. (1998) 5.5473e–05 9.7216e–02 6.1817e–03

Nygren et al. (1998) 4.9589e–05 2.4881e–01 3.0497e–03

Pandit et al. (2001)) 2.8897e–07 3.3149e+00 1.2442e–04

Pandit et al. (2003) 2.6523e–08 3.3880e+01 6.9372e–03

PuglisiBers 1.0454e–02 7.0989e–01 2.9473e–02

Sakmann et al. (2000) – Endocardial 6.7440e–05 6.5490e–02 3.6162e–02

Sakmann et al. (2000) – Epicardial 6.7000e–05 5.9875e–02 4.1447e–02

Sakmann et al. (2000) – M-cell 6.7049e–05 1.2193e–01 3.5619e–03

Stewart et al. (2009) 1.4459e–02 4.4209e–01 2.7666e–03

Ten Tusscher et al. (2004) –Endocardial 1.7057e–03 1.6552e+00 4.3223e–04

Ten Tusscher et al. (2006) –Endocardial 1.5900e–03 7.5807e–01 9.8490e–04

Ten Tusscher et al. (2004) –Epicardial 1.7055e–03 1.4744e+00 3.8554e–04

Ten Tusscher et al. (2006) –Epicardial 2.1191e–03 6.0086e–01 5.3524e–04

Ten Tusscher et al. (2004) –M-cell 1.7115e–03 1.1081e+00 2.0687e–04

Ten Tusscher et al. (2006) –M-cell 2.0379e–03 9.6348e–01 5.1864e–04

Wang–Sobie (2008) 1.6311e–02 3.3048e–01 7.1810e–03

Winslow et al. (1999) (31 eqn) 1.0400e–04 1.3163e+01 1.4362e–03

Zhang et al. (2000) 9.0103e–05 6.1924e–02 4.9013e–03
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4.3.2 Experimental results

We implemented the time integration methods and the experimental largest stepsize techniques from the

Chapter 3 on cardiac cell models to produce the experimental largest stepsize, [MRMS]v, and CPU time.

These results are presented in Table 4.3. We now present some analysis based on the results of Table 4.3; see

Table A.2 for complete results.

1. The FE method outperforms the RKC(2, 1), RKC(3, 1), SSP(3, 3), SSP(4, 3), EMP, and RK4 methods

on all thirty-seven cardiac cell models. The additional stages of the RKC(2, 1), RKC(3, 1), SSP(3, 3),

SSP(4, 3), EMP, and RK4 methods add extra costs for each step compared to the FE method. Therefore,

the FE method becomes the most efficient method.

2. After the FE method, RKC(2, 1) method is the most efficient method because it outperforms the

RKC(3, 1), SSP(3, 3), SSP(4, 3), EMP, and RK4 methods on all thirty-seven cardiac cell models. The

additional stages of the RKC(3, 1), SSP(3, 3), SSP(4, 3), and RK4 methods bring extra costs for each

step than the RKC(2, 1) method. Both the EMP and RKC(2, 1) methods have two stages, but the

improvements of the time step sizes compensate for the extra cost per step of the RKC(2, 1) method.

3. The RKC(3, 1) method outperforms the SSP(3, 3), SSP(4, 3), EMP, and RK4 methods on all thirty-

seven cardiac cell models. This was because of improvements of the time step sizes compensate for the

extra cost per step of the RKC(3, 1) method.

4. The SSP(4, 3) method outperforms the SSP(3, 3) on thirty-three cardiac cell models. This is because

it is able to produce a sufficiently accurate solution with a stepsize that is large enough to compensate

for the increase in cost per step. However, the SSP(3, 3) method outperform the SSP(4, 3) method on

three cardiac cell models. This is because SSP(4, 3) cannot produce a sufficiently accurate solution with

a stepsize that is large enough to compensate for the increase in cost per step.

4.3.3 A comparison of theoretical largest stepsize and experimental largest step-

size of cardiac cell models

In this subsection, we compare the theoretical largest stepsize presented in Table 4.2 (see Table A.1 for

complete results) and the experimental largest stepsize results presented in Table 4.3 (see Table A.2 for

complete results). To compare, we used relative accuracy of the theoretical largest stepsize to measure how

close the theoretical largest stepsize to the experimental largest step size. The formula of relative accuracy

of the theoretical largest stepsize is given by

Relative accuracy of the theoretical largest stepsize =
∆ttheo

∆texp
× 100%.
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Table 4.3: ∆texp represents the experimental largest time step and CPU time represents the minimum
of fifty times running of the FE method with less than 5% [MRMS]v.

Model FE

∆texp (ms) CPU time (s) [MRMS]v

Beeler–Reuler (1977) 2.5298e–02 2.4791e–02 5.2120e–03

Bondarenko et al. (2004) 2.1300e–04 2.4416e+00 1.1353e–03

Courtemanche et al. (1998) 1.9400e–02 3.0747e–01 6.2901e–03

Demir et al. (1994) 5.9599e–05 1.6659e–02 2.2081e–02

Demir et al. (1999) 5.9607e–05 1.9908e–02 2.4060e–02

DiFrancesco–Noble (1985) 7.7276e–05 8.3383e–02 4.5145e–02

Dokos et al. (1996) 7.0200e–05 8.0562e–02 2.2554e–02

FitzHugh–Nagumo (1961) 2.7200e–03 7.6938e–01 4.9968e–02

Faber–Rudy (2000) 1.1294e–02 1.3211e–01 1.7008e–02

Fox et al. (2002) 4.6200e–03 3.5088e–01 5.4455e–03

Hilgemann–Noble (1987) 6.2500e–05 8.4361e–02 4.7582e–03

Hund–Rudy (2004) 7.8874e–03 2.2220e–01 4.9939e–02

Jafri et al. (1998) 5.7600e–04 4.5764e+00 1.8154e–02

Luo–Rudy (1991) 1.3572e–02 8.5973e–02 5.6083e–03

Maleckar et al. (2009) 5.0200e–05 2.9673e–01 1.6159e–02

McAllister et al. (1975) 2.4700e–02 3.5631e–02 4.9527e–02

Noble (1962) 2.0228e–04 3.0909e–03 4.9586e–02

Noble–Noble (1984) 2.0400e–04 5.7262e–03 3.8972e–02

Noble et al. (1991) 5.1500e–05 1.8201e–02 1.6961e–03

Noble et al. (1998) 5.5600e–05 3.5936e–02 6.1962e–03

Nygren et al. (1998) 5.3589e–05 7.7448e–02 3.0280e–02

Pandit et al. (2001) 2.9100e–07 5.3835e+00 1.2482e–04

Pandit et al. (2003) 2.6523e–08 3.6539e+01 6.9372e–03

PuglisiBers 1.0884e–02 1.9327e–01 3.2953e–02

Sakmann et al. (2000) – Endocardial 6.9000e–05 5.2694e–01 3.7504e–02

Sakmann et al. (2000) – Epicardial 6.8000e–05 2.0159e–01 4.3111e–02

Sakmann et al. (2000) – M-cell 6.8600e–05 3.3911e–02 3.9258e–03

Stewart et al. (2009) 1.5212e–02 4.1142e–01 4.9869e–02

Ten Tusscher et al. (2004) –Endocardial 1.7829e–03 1.1957e+00 1.5526e–03

Ten Tusscher et al. (2006) –Endocardial 1.6200e–03 8.9863e–01 9.9918e–04

Ten Tusscher et al. (2004) –Epicardial 1.7835e–03 1.1548e+00 1.5568e–03

Ten Tusscher et al. (2006) –Epicardial 2.1400e–03 8.6557e–01 5.3646e–04

Ten Tusscher et al. (2004) –M-cell 1.7667e–03 9.0396e–01 4.3927e–04

Ten Tusscher et al. (2006) –M-cell 2.0619e–03 6.6438e–01 4.7968e–04

Wang–Sobie (2008) 1.6611e–02 8.4543e–02 8.4128e–03

Winslow et al. (1999) (31 eqn) 1.0700e–04 1.2650e+01 1.4777e–03

Zhang et al. (2000) 9.9925e–05 7.3992e–02 5.4361e–03
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The relative accuracy of the theoretical largest time step of the time integration methods for solving the

cardiac cell models presented in Table 4.4; see Table A.3 for complete results. We now present some analysis

based on the results of Table 4.4.

1. From Figure 4.2, the FE method has the highest relative accuracy of the theoretical largest stepsize for

only 2 cell models.

2. From Figure 4.2, the SSP(4, 3) has the highest relative accuracy of the theoretical largest stepsize for

14 cell models.

3. From the Table 4.4 (see Table A.3 for complete results), the 100 percent relative accuracy of the theo-

retical largest stepsize value shows that the experimental largest stepsize is the same as the theoretical

largest stepsize. This shows that in such cases the experimental largest stepsize can be achieved with

a one-time simulation using the theoretical largest stepsize.

4. From Figure 4.2, the higher-order time integration methods are more accurate than the low-order ones

in predicting their experimental largest stepsize for solving the cardiac cell models.

Figure 4.2: The blue bar represents the number of the highest relative accuracy of the theoretical

largest stepsize of each time integration method out of 37 cardiac cell models. We compare each time

integration method based on the relative accuracy of the theoretical largest stepsize for predicting their

experimental largest stepsize for 37 cardiac cell models.
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Table 4.4: This table shows the relative accuracy of the theoretical time step to the experimental

time step of the FE method. ∆ttheo represents the theoretical largest time step and ∆texp represents

the experimental largest time step.

Model ∆ttheo

∆texp
× 100% of FE

Beeler–Reuler (1977) 96.40

Bondarenko et al. (2004) 98.91

Courtemanche et al. (1998) 79.99

Demir et al. (1994) 87.74

Demir et al. (1999) 87.74

DiFrancesco–Noble (1985) 98.58

Dokos et al. (1996) 95.21

FitzHugh-Nagumo (1961) 100.00

Faber–Rudy (2000) 96.28

Fox et al. (2002) 98.69

Hilgemann–Noble (1987) 98.51

Hund–Rudy (2004) 98.85

Jafri et al. (1998) 75.17

Luo–Rudy (1991) 97.90

Maleckar et al. (2009) 95.72

McAllister et al. (1975) 44.27

Noble (1962) 46.91

Noble–Noble (1984) 78.72

Noble et al. (1991) 99.83

Noble et al. (1998) 99.77

Nygren et al. (1998) 92.54

Pandit et al. (2001) 99.30

Pandit et al. (2003) 100.00

PuglisiBers 96.05

Sakmann et al. (2000) – Endocardial 97.74

Sakmann et al. (2000) – Epicardial 98.53

Sakmann et al. (2000) – M-cell 97.74

Stewart et al. (2009) 95.05

Ten Tusscher et al. (2004) –Endocardial 95.67

Ten Tusscher et al. (2006) –Endocardial 98.15

Ten Tusscher et al. (2004) –Epicardial 95.63

Ten Tusscher et al. (2006) –Epicardial 99.02

Ten Tusscher et al. (2004) –M-cell 96.88

Ten Tusscher et al. (2006) –M-cell 98.84

Wang–Sobie (2008) 98.19

Winslow et al. (1999) (31 eqn) 97.20

Zhang et al. (2000) 90.17
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4.4 Monodomain simulation

In this section, we examine the FE, the RKC(2, 1), and the RKC(3, 1) methods using the monodomain

model coupled with the FHN model. We compare these methods based on their theoretical largest stepsizes,

experimental largest stepsizes, CPU time, and [MRMS]v.

4.4.1 One-dimensional experiment

The monodomain model was simulated in one dimension with the FHN model [22]. The model of FHN has

2 cellular state variables. The FHN model is

∂s

∂t
= f(t, v, s), (4.1a)

∂v

∂t
=

1

Cme
Iion(v, s), (4.1b)

where f(t, v, s) = −k(v−Vrest)(s+ (v−Vthreshold)(v−Vpeak))− Istim and Iion(t, v, s) = l(v−Vrest)− bs.

The values of the parameters of the FHN model listed in Table 4.5.

Table 4.5: Parameters of the FHN model.

Cme 1

k 0.00004

Vrest −85

Vthreshold −70

Vpeak 40

l 0.63

b 0.013

Istim If time ≥ 0 and time ≤ 0.5, then Istim = 80.

else Istim=0.

We implemented the FE, RKC(2,1), and RKC(3,1) methods presented in Subsection 3.4.2, Subsec-

tion 3.4.3, Subsection 3.4.4, and the theories presented in Section 3.2 and Subsection 3.4.7 on the mon-

odomain problem (3.22) coupled with systems of ODEs (4.1) to produce the theoretical largest stepsizes,

the experimental largest stepsizes, and MRMS error. The initial conditions used on the domain [0, 1] are:

v(x, 0) = sin(πx) and s(x, 0) = s0, where s0 is is the default resting state value for the FHN model.

From Table 4.6a and Table 4.6b, the theoretical largest stepsize of the FE, RKC(2, 1), and RKC(3, 1)

methods are 99%, 97%, and 94% of their corresponding experimental largest stable time step sizes for solving

the monodomain model coupled with the FHN model. From these results, we conclude that the theoretical

method to find the theoretical largest stable stepsize is quite effective at avoiding trial-and-error to get the

experimental largest stepsize.

As we can see from Table 4.6a and Table 4.6b, the RKC(3, 1) method outperforms the FE and RKC(3, 1)

methods. Also, RKC(2, 1) method outperforms the FE method. These results were because of the improve-
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Table 4.6: Results of 1D monodomain model simulation.

∆ttheo (ms) [MRMS]v CPU time (s)

FE 2.4510e–02 6.0322e–03 1.5506e–02

RKC(2, 1) 9.5691e–02 2.8909e–02 6.2357e–03

RKC(3, 1) 1.9702e–01 3.6950e–02 4.7593e–03

(a) ∆ttheo represents the theoretical largest stepsize used
to get the numerical solutions with less than 5% [MRMS]v,
and the CPU time represents the minimum time running
of the FE, RKC(2, 1), and RKC(3, 1) methods for solving
the monodomain model coupled with the FHN model.

∆texp (ms) [MRMS]v CPU time (s)

FE 2.4777e–02 4.9619e–02 1.5476e–02

RKC(2, 1) 9.9115e–02 4.9951e–02 5.9370e–03

RKC(3, 1) 2.0999e-01 4.9999e-02 4.4740e-03

(b) ∆texp represents the experimental largest stepsize used to get the numerical
solutions with less than 5% [MRMS]v, and the CPU time represents the mini-
mum time running of the FE, RKC(2, 1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

ments of the time step size through the multistage RKC(2, 1) and RKC(3, 1) methods. These multistage

methods extend the real stability domain with a length proportional to the square of their number of stages.

The time step size of RKC(2, 1) and RKC(3, 1) methods are 3.9 and 8.0 times the time step size of the FE

method respectively. The improvements of these time step sizes compensate for the extra costs taken per

step of RKC(2, 1) and RKC(3, 1) methods. From this, we conclude that RKC(2, 1) and RKC(3, 1) methods

obtain advantages over FE method. This in the future might lead us toward the real-time simulation of the

electrical simulation of the heart.

4.4.2 Two-dimensional experiment

The monodomain model was simulated in two dimensions with the FHN model [22]. We implemented the

FE, RKC(2,1), and RKC(3,1) methods presented in Subsection 3.4.2, Subsection 3.4.3, Subsection 3.4.4 and

the theories presented in Section 3.2 and Subsection 3.4.7 on the monodomain problem (3.22) coupled with

systems of ODEs (4.1) to produce the theoretical largest stepsizes, the experimental largest stepsizes, and

MRMS error. The initial conditions used on the domain [0, 1] × [0, 1] are: v(x, y, 0) = sin(πx) sin(πy) and

s(x, y, 0) = s0, where s0 is is the default resting state value for the FHN model.

From Table 4.7a and Table 4.7b, the theoretical largest stable time step size of the FE, RKC(2, 1),
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Table 4.7: Results of 2D monodomain model simulation.

∆ttheo (ms) [MRMS]v CPU time (s)

FE 1.2255e–02 1.2204e–03 2.1669e–01

RKC(2, 1) 4.7846e–02 1.0587e–02 9.4249e–02

RKC(3, 1) 1.0716e–01 1.5131e–02 6.4316e–02

(a) ∆ttheo represents the theoretical largest stepsize used to get the numerical
solutions with less than 5% [MRMS]v, and the CPU time represents the mini-
mum time running of the FE, RKC(2, 1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

∆texp (ms) [MRMS]v CPU time (s)

FE 1.2343e–02 4.9820e–02 2.1638e–01

RKC(2, 1) 4.9373e–02 4.9956e–02 9.2007e–02

RKC(3, 1) 1.1113e–01 4.9989e–02 6.3118e–02

(b) ∆texp represents the experimental largest stepsize used to get the numerical
solutions with less than 5% [MRMS]v, and the CPU time represents the mini-
mum time running of the FE, RKC(2, 1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

and RKC(3, 1) methods are 99%, 97%, and 96% of their corresponding experimental largest stepsizes for

solving the monodomain model coupled with the FHN model. From these results, we conclude that the

theoretical method to find the theoretical largest stepsize can be used to largely avoid trial-and-error to get

the experimental largest stepsize.

As we can see from Table 4.7a and Table 4.7b, RKC(3, 1) method outperforms FE and RKC(2, 1) methods.

Also, RKC(2, 1) method outperforms FE method. These results were because of the improvements of the time

step size through the multistage RKC(2, 1) and RKC(3, 1) methods. These multistage methods extend the

real stability domain with a length proportional to the square of their number of stages. The time step size

of RKC(2, 1) and RKC(3, 1) methods are 3.9 and 8.7 times the time step size of the FE method respectively.

The improvements of these time step sizes compensate for the extra costs taken per step of RKC(2, 1) and

RKC(3, 1) methods. From this, we conclude that RKC(2, 1) and RKC(3, 1) methods obtain advantages over

the FE method. This in the future might lead us toward the real-time simulation of the electrical simulation

of the heart.

4.4.3 Three-dimensional experiment

The monodomain model was simulated in three dimensions with the FHN model [22]. We implemented the

FE, RKC(2,1), and RKC(3,1) methods presented in Subsection 3.4.2, Subsection 3.4.3, Subsection 3.4.4,
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and the theories presented in Section 3.2 and Subsection 3.4.7 on the monodomain problem (3.22) cou-

pled with systems of ODEs (4.1) to produce the theoretical largest stepsizes, the experimental largest step-

sizes, and MRMS error. The initial conditions used on the domain [0, 1] × [0, 1] × [0, 1] are: v(x, y, z, 0) =

sin(πx) sin(πy) sin(πz) and s(x, y, z, 0) = s0, where s0 is is the default resting state value for the FHN model.

Table 4.8: Results of 3D monodomain model simulation.

∆ttheo (ms) [MRMS]v CPU time (s)

FE 8.1699e–03 2.5750e–03 2.2806e+02

RKC(2, 1) 3.1897e–02 4.3865e–03 1.1005e+02

RKC(3, 1) 7.1438e–02 1.4979e–03 7.5010e+01

(a) ∆ttheo represents the theoretical largest stepsize used to get the numerical
solutions with less than 5% [MRMS]v, and the CPU time represents the mini-
mum time running of the FE, RKC(2, 1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

∆texp (ms) [MRMS]v CPU time (s)

FE 8.2185e–03 4.9325e–02 2.1655e+02

RKC(2, 1) 3.2875e–02 4.9326e–02 1.0634e+02

RKC(3, 1) 7.3984e–02 4.9479e–02 6.9984e+01

(b) ∆texp represents the experimental largest stepsize used to get the numerical
solutions with less than 5% [MRMS]v, and the CPU time represents the mini-
mum time running of the FE, RKC(2, 1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

From Table 4.8a and Table 4.8b, the theoretical largest stepsize of the FE, RKC(2, 1), and RKC(3, 1)

methods are 99%, 97%, and 97% of their corresponding experimental largest stepsizes for solving the mon-

odomain model coupled with the FHN model. From these results, we conclude that the theoretical method

to find the theoretical largest stepsize can be used to largely avoid trial-and-error to get the experimental

largest sepsize.

As we can see from Table 4.8a and Table 4.8b, RKC(3, 1) method outperforms FE and the RKC(2, 1)

methods. Also, RKC(2, 1) method outperforms the FE method. These results were because of the improve-

ments of the time step size through the multistage RKC(2, 1) and RKC(3, 1) methods. These multistage

methods extend the real stability domain with a length proportional to the square of their number of stages.

The time step size of RKC(2, 1) and RKC(3, 1) methods are 3.9 and 8.7 times of the time step size of the

FE method respectively. The improvements of the time step sizes compensate for the extra costs taken per

step of the RKC(2, 1) and RKC(3, 1) methods. From this, we conclude that the RKC(2, 1) and RKC(3, 1)

methods obtain advantages over FE method. This in the future might lead us toward the real-time simulation
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of the electrical simulation of the heart.

4.5 Spiral and scroll wave simulation in the monodomain model

A spiral wave is one of the types of traveling waves that circulate the core in a spiral [9]. Spiral waves occur

in many excitable and oscillatory systems [15, 33]. Scroll waves are the three-dimensional extensions of spiral

waves. They rotate away from the curves of the filaments. Ventricular tachycardia and ventricular fibrillation

are two of the causes of unexpected cardiac death. These are related to the creation of spiral and scroll wave

of electrical activation in cardiac tissue. To simulate a spiral and scroll waves, we use the modified FHN

model [67] coupled with the monodomain model.

4.5.1 Spiral wave simulation

The modified FHN model is

∂s

∂t
= f(t, v, s), (4.2)

∂v

∂t
=

1

Cme
Iion(v, s), (4.3)

where Cme = 1, f(t, v, s) = ε(βv−σ−γs) with ε = 0.01, β = 0.5, γ = 1, and Iion(t, v, s) = v(1−v)(v−a)−s

with a = 0.1. This model is coupled with the monodomain model and uses the following initial conditions [67]

on the square region [0, 2.5]× [0, 2.5] to initiate a spiral wave

v(x, y, 0) =

1, 0 < x < 1.25, 0 < y < 1.25,

0, otherwise,

and

s(x, y, 0) =


0.1, 0 < x ≤ 1.25, 1.25 ≤ y < 2.5,

0.1, 1.25 ≤ x < 2.5, 1.25 ≤ y < 2.5,

0, otherwise.

The following time interval [0, 1000] is selected because it shows the full propagation of a spiral wave [67].

To begin a spiral wave, we applied external potential v(x, y, 0) at t = 0 on the left boundary over bounded

region of x ∈ [0, 1.25] and y ∈ [0, 1.25]. To get the numerical solution of Figure 4.3, Figure 4.4, Figure 4.5,

Figure 4.6, Figure 4.8, Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.13, Figure 4.14, Figure 4.15, and

Figure 4.16, we implemented the FE. RKC(2, 1), RKC(3, 1) methods and the theoretical largest stepsizes of

the FE, RKC(2, 1), and RKC(3, 1) methods (see Figure 4.9) on the monodomain model coupled with the

modified FHN model. As we can see from Figure 4.3, Figure 4.5, Figure 4.8, Figure 4.10, Figure 4.13 and

Figure 4.15, a single spiral wave and a clockwise runs of spiral wave are seen at t = 169.3, t = 966.0, t = 169.4,

t = 966.1, t = 169.5 and t = 966.3, respectively.
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Figure 4.3: t = 0, and t = 169.3. Figure 4.4: t = 0.0, and t = 169.3.

Figure 4.5: t = 335.0, and t = 966.0. Figure 4.6: t = 335.0, and t = 966.0.

Figure 4.7: The figures show the generation of a spiral wave. The numerical solution of Figure 4.3,

Figure 4.4, Figure 4.5, and Figure 4.6 are obtained by using the FE method. Figure 4.3 and Figure 4.5

show the value of v at different time levels. Figure 4.4 and Figure 4.6 show the value of s at different

time levels.
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Figure 4.8: t = 0, and t = 169.4. Figure 4.9: t = 0.0, and t = 169.4.

Figure 4.10: t = 335.0, and t = 966.1. Figure 4.11: t = 335.0, and t = 966.1.

Figure 4.12: The figures show the generation of a spiral wave. The numerical solution of Figure 4.8,

Figure 4.9, Figure 4.10, and Figure 4.11 are obtained by using the RKC(2, 1) method. Figure 4.8 and

Figure 4.10 show the value of v at different time levels. Figure 4.9 and Figure 4.11 show the value of

s at different time levels.
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Figure 4.13: t = 0, and t = 169.5. Figure 4.14: t = 0.0, and t = 169.5.

Figure 4.15: t = 335.2, and t = 966.3. Figure 4.16: t = 335.2, and t = 966.3.

Figure 4.17: The figures show the generation of a spiral wave. The numerical solution of Figure 4.13,

Figure 4.14, Figure 4.15, and Figure 4.16 are obtained by using the RKC(3, 1) method. Figure 4.13

and Figure 4.15 show the value of v at different time levels. Figure 4.14 and Figure 4.16 show the

value of s at different time levels.
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FE RKC(2, 1) RKC(3, 1)

∆ttheo (ms) 4.6382e–02 8.0511e–02 1.2165e–01

∆texp (ms) 5.2190e–02 1.2108e–01 1.3600e–01

Table 4.9: ∆ttheo and ∆texp represent the theoretical largest time step and the experimental largest

time step used to get the numerical solutions with less than 5% [MRMS]v of the FE, the RKC(2, 1),

and the RKC(3, 1) methods.

All eigenvalues computed from the modified FHN cell model and the PDE equation (3.22) lie inside the

stability regions of the FE, RKC(2, 1), and RKC(3, 1) methods. To compute theoretical largest stepsizes (see

Table 4.9), we used the technique described in Subsection 4.3.1.

From Table 4.9, the theoretical largest stable time step size of the FE, RKC(2, 1), and RKC(3, 1) methods

are 89%, 67%, and 90% of their corresponding experimental largest stepsizes for solving the monodomain

model coupled with the modified FHN model. From these results, we conclude that the theoretical method

to find the theoretical largest stepsize can be used to largely avoid trial-and-error to get the experimental

largest stepsize.

4.5.2 Scroll wave simulation

We use the following modified FHN model

∂s

∂t
= f(t, v, s), (4.4)

∂v

∂t
=

1

Cme
Iion(v, s), (4.5)

where Cme = 1, f(t, v, s) = ε(βv−σ−γs) with ε = 0.01, β = 0.5, γ = 1, and Iion(t, v, s) = v(1−v)(v−a)−s

with a = 0.1. This model coupled with the monodomain model and use the following initial conditions on

the cubic region [0, 2.5]× [0, 2.5]× [0, 2.5] to initiate a scroll wave

v(x, y, z, 0) =

1, 0 < x < 1.25, 0 < y < 1.25,

0, otherwise,

and

s(x, y, z, 0) =


0.1, 0 < x ≤ 1.25, 1.25 ≤ y < 2.5,

0.1, 1.25 ≤ x < 2.5, 1.25 ≤ y < 2.5,

0, otherwise.

The following time interval [0, 1000] is selected because it shows the full propagation of a scroll wave.
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Figure 4.18: t = 0, and t = 252.9. Figure 4.19: t = 0, and t = 252.9.

Figure 4.20: t = 679.7, and t = 999.9. Figure 4.21: t = 679.7, and t = 999.9.

Figure 4.22: The figures show the generation of a scroll wave. The numerical solution of Figure 4.18,

Figure 4.20, Figure 4.19, and Figure 4.21 are obtained by using the FE method. Figure 4.18 and

Figure 4.20 show the value of v at different time levels. Figure 4.19 and Figure 4.21 show the value of

s at different time levels.
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Figure 4.23: t = 0, and t = 242.6. Figure 4.24: t = 0, and t = 242.6.

Figure 4.25: t = 727.8, and t = 999.2.

Figure 4.26: t = 727.8, and t = 999.2.

Figure 4.27: The figures show the generation of a scroll wave. The numerical solution of Figure 4.23,

Figure 4.25, Figure 4.24, and Figure 4.26 are obtained by using the RKC(2, 1) method. Figure 4.23

and Figure 4.25 show the value of v at different time levels. Figure 4.24 and Figure 4.26 show the

value of s at different time levels.
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Figure 4.28: t = 0, and t = 251.6.

Figure 4.29: t = 0, and t = 251.6.

Figure 4.30: t = 880.7, and t = 1000. Figure 4.31: t = 880.7, and t = 1000.

Figure 4.32: The figures show the generation of a scroll wave. The numerical solution of Figure 4.28,

Figure 4.29, Figure 4.30, and Figure 4.31 are obtained by using the RKC(3, 1) method. Figure 4.28

and Figure 4.30 show the value of v at different time levels. Figure 4.29 and Figure 4.31 show the

value of s at different time levels.
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To create a scroll wave in three dimensions, we used [0, 2.5]× [0, 2.5]× [0, 2.5] spatial domain over [0, 1000]

time interval. To begin a scroll wave, we applied external potential v(x, y, z, 0) at t = 0 on the left boundary

over bounded region of x ∈ [0, 1.25], y ∈ [0, 1.25], and z ∈ [0, 2.5]. We can see single scroll wave and a

clockwise runs of scroll wave from Figure 4.20, Figure 4.19, Figure 4.21, Figure 4.25, Figure 4.24, Figure 4.26,

Figure 4.29, Figure 4.30, and Figure 4.31, respectively.

FE RKC(2, 1) RKC(3, 1)

∆ttheo (ms) 1.0671e+00 1.4356e+00 1.3980e+00

Table 4.10: ∆ttheo represents the theoretical largest time step of the FE, the RKC(2, 1), and the

RKC(3, 1) methods. We did not check whether the numerical solutions produced with the largest

stepsize of the FE, the RKC(2, 1), and the RKC(3, 1) satisfied the acceptable [MRMS]v because we

were unable to compute a reference solution.

We computed the theoretical largest step sizes of the FE, RKC(2, 1), and RKC(3, 1) methods (see Ta-

ble 4.10) using the eigenvalues of only the PDE (3.22) because the largest eigenvalues come from this PDE.

This allows us to avoid computing reference solutions to find eigenvalues of the FHN cell models. Because

all eigenvalues lie inside the stability regions of the FE, RKC(2, 1), and RKC(3, 1) methods, we used the

technique described in Subsection 4.3.1 to compute the theoretical largest stepsizes (see Table 4.10) of the

FE, RKC(2, 1), and RKC(3, 1) methods. From Table 4.10, we observe that the theoretical largest stepsize

for RKC(3, 1) is smaller than that for RKC(2, 1). This result might be due to the approximation of not

considering the eigenvalues from the FHN cell model.
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5 Conclusion and Future Work

Cardiac simulation is essential for studying heart development and disorder. Computer simulations of the

electrical activity in the heart may help electrophysiologists to treat a patient’s heart condition with better

techniques and diagnosis.

The contributions of this thesis can be summarized as follows:

1. We compared the performance of seven time integration methods for solving thirty-seven cardiac cell

models. From the theoretical largest stepsizes and the experimental largest stepsizes results listed in

Subsection 4.3.1 and Subsection 4.3.2, the FE method outperformed the RKC(2, 1), the RKC(3, 1), the

SSP(3, 3), the SSP(4, 3), the EMP, and the RK4 methods on all cardiac cell models tested.

2. We determined the largest stepsize of the time integration method based on its stability region and the

eigenvalues computed from the Jacobian matrix of a system of ODEs. To the best of our knowledge,

this is a new methodology to find the largest stepsize. From the results listed in Subsection 4.4.1,

Subsection 4.4.2, and Subsection 4.4.3, the theoretical method used to find the theoretical largest

stepsize of the time integration methods with an average of the ratio of predicted to experimental is

96%. This method avoids trial-and-error to find the experimental largest stepsize.

3. We solved the monodomain model coupled with the FHN model using FE, RKC(2, 1), and RKC(3, 1) in

one dimensions, two dimensions, and three dimensions. The RKC(3, 1) method outperforms the FE and

RKC(2, 1) methods for all problems. The improvements of the time stepsizes more than compensate for

the extra costs it takes per step of the RKC(3, 1) method. From this, we conclude that the RKC(3, 1)

method has advantages over the FE and RKC(2, 1) methods. This is a promising result. This in the

future might lead us toward the real-time simulation of the electrical stimulation of the heart.

4. Using the largest stepsize of the FE method, we simulated the monodomain model coupled with the

modified FHN model and captured the excitation of spiral and scroll waves propagation in cardiac

tissue.

Possible future work includes the following:

1. It is of interest to investigate the performance of the SSP(s, 1) methods for s > 1 for solving the

cardiac cell models and the monodomain model. From results listed in Subsection 4.3.1 and Sub-

section 4.3.2, the RKC(2, 1) and RKC(3, 1) were the second-most and third-most efficient methods

for solving the cardiac cell models. From results listed in Subsection 4.4.1, Subsection 4.4.2, and
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Subsection 4.4.3, however, the RKC(3, 1) and RKC(2, 1) were the most and second-most effi-

cient methods for solving the monodomain model. From results listed in Subsection 4.3.1 and

Subsection 4.3.2, the SSP(4, 3) method outperformed the SSP(3, 3) method on twenty-five and

thirty-three cardiac cell models, respectively. These results show that increasing the number of

stages of the SSP method might benefit the simulation efficiency of some cardiac cell models and

the monodomain model.

2. The space-fractional monodomain model has an excellent performance in describing the exci-

tation of the electrical potential wave propagation in heterogeneous heart tissue [14, 69]. An

efficient higher-order numerical method should appropriately describe the excitation of the elec-

trical potential wave propagation in the heart tissue in high resolution. To solve this model, we

plan to implement the high-order discontinuous Petrov–Galerkin method [7, 32] in time and the

high-order continuous Ritz–Galerkin method [20] in space.
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Appendix A

Simulation Results

Table A.1: ∆ttheo represents the theoretical largest time step, and the CPU time represents the
minimum of fifty times running of the FE, the RKC(2, 1), the RKC(3, 1), the SSP(3, 3), the SSP(4, 3),
the EMP, and the RK4 methods with less than 5% [MRMS]v.

Model FE RKC(2, 1) RKC(3, 1) SSP(3, 3) SSP(4, 3) EMP RK4
∆ttheo (ms) CPU time (s) [MRMS]v ∆ttheo (ms) CPU time (s) [MRMS]v ∆ttheo (ms) CPU time (s) [MRMS]v ∆ttheo (ms) CPU time (s) [MRMS]v ∆ttheo (ms) CPU time (s) [MRMS]v ∆ttheo (ms) CPU time (s) [MRMS]v ∆ttheo (ms) CPU time (s) [MRMS]v

Beeler–Reuler (1977) 2.4388e–02 1.5517e–01 4.8211e–03 9.5217e–02 3.5663e–01 1.5549e–02 2.1325e–01 3.8467e–01 3.7030e–02 3.0949e–02 1.0088e+00 2.0496e–03 6.2794e–02 9.3206e–01 4.1414e–03 2.4388e–02 6.0067e–01 1.4650e–03 3.3964e–02 1.8402e+00 2.1359e–03
Bondarenko et al. (2004) 2.1068e–04 1.3519e+00 1.1229e–03 8.2252e–04 1.9617e+01 4.4698e–03 1.8422e–03 1.8255e+01 1.0026e–02 2.6735e–04 1.0687e+02 1.5736e–03 5.4244e–04 7.7829e+01 3.1899e–03 2.1068e–04 6.1032e+01 1.2402e–03 2.9340e–04 1.3111e+02 1.7267e–03
Courtemanche et al. (1998) 1.5517e–02 4.7248e+00 4.5076e–03 6.0580e–02 1.3621e+01 1.5657e–02 1.3568e–01 1.7716e+01 3.7874e–02 1.9691e–02 1.3311e+01 2.3073e–04 3.9951e–02 6.8069e+00 1.4191e–03 1.5517e–02 2.2090e+00 5.3323e–04 2.1609e–02 5.3159e+00 4.3219e–04
Demir et al. (1994) 5.2293e–05 1.8012e–02 1.7997e–02 1.9534e–04 1.0189e–01 4.9918e–02 2.0875e–04 2.1896e–01 4.9998e–02 6.6361e–05 1.2604e+01 1.4833e–05 1.3464e–04 1.7770e+00 4.1373e–05 5.2293e–05 2.8714e–01 6.4110e–05 7.2826e–05 9.8023e–01 1.7133e–05
Demir et al. (1999) 5.2293e–05 1.6240e–02 2.1097e–02 1.6551e–04 1.3096e–01 4.9991e–02 1.7648e–04 3.5549e–01 5.0000e–02 6.6364e–05 6.3046e+00 1.2990e–05 1.3464e–04 2.1037e+00 3.8603e–05 5.2293e–05 4.6029e–01 7.3613e–05 7.2826e–05 1.1232e+00 1.4929e–05
DiFrancesco–Noble (1985) 7.6176e–05 1.3916e–01 8.7797e–03 2.9740e–04 1.6617e+00 2.7500e–02 5.0563e–04 1.6135e+00 4.8359e–02 9.6667e–05 3.6133e+00 2.0273e–02 1.9612e–04 2.1106e+00 5.1745e–05 7.6171e–05 8.4802e–01 7.8744e–05 1.0608e–04 2.2281e+00 3.1190e–05
Dokos et al. (1996) 6.6838e–05 8.0463e–02 9.6235e–03 2.6095e–04 1.9307e–01 3.0310e–02 4.1274e–04 1.5522e–01 4.7214e–02 8.4818e–05 8.0628e–01 9.8628e–06 1.7209e–04 1.1566e+00 6.4063e–05 6.6838e–05 3.0696e–01 9.9930e–05 9.3082e–05 8.1761e–01 3.8085e–05
FitzHugh-Nagumo (1961) 2.7217e–03 4.7620e–03 5.0000e–02 2.6940e–03 1.5777e+00 4.9999e–02 2.6890e–03 2.8700e+00 4.9999e–02 2.6140e–03 2.6883e+00 4.9997e–02 2.6141e–03 2.6159e+00 4.9999e–02 2.6143e–03 1.2819e+00 5.0000e–02 2.6142e–03 2.7481e+00 5.0000e–02
Faber–Rudy (2000) 1.0874e–02 3.5192e–01 1.6327e–02 4.0646e–02 9.3878e–01 4.9508e–02 3.5438e–02 2.0589e+00 3.8926e–02 1.3799e–02 6.4960e+00 1.4017e–03 2.7998e–02 3.0988e+01 2.4258e–03 1.0874e–02 2.0897e+00 1.1467e–03 1.5144e–02 4.5945e+00 1.2999e–03
Fox et al. (2002) 4.5596e–03 3.3172e–01 5.3733e–03 1.7802e–02 9.8529e–01 1.8886e–02 3.9869e–02 9.8121e–01 4.5025e–02 5.7862e–03 6.1257e+00 2.8119e–03 1.1740e–02 4.3085e+00 5.7604e–03 4.5596e–03 3.5079e+00 2.2097e–03 6.3499e–03 8.1134e+00 3.0899e–03
Hilgemann–Noble (1987) 6.1571e–05 5.6775e–02 4.3602e–03 2.4038e–04 1.8134e–01 1.1942e–02 1.2224e–04 3.6132e–01 6.2921e–03 7.8134e–05 7.9424e–01 6.0361e–04 1.5853e–04 7.1143e–01 8.7678e–04 6.1571e–05 3.3012e–01 4.4528e–04 8.5746e–05 7.9979e–01 9.2930e–04
Hund–Rudy (2004) 7.7965e–03 2.1382e–01 4.8996e–02 9.7927e–03 2.6599e+00 4.6699e–02 9.3866e–03 1.1529e+01 4.1533e–02 1.3003e–02 1.3746e+01 3.0134e–03 2.6382e–02 6.8219e+00 2.2549e–03 1.0246e–02 2.6602e+00 4.9819e–04 1.4270e–02 6.7317e+00 3.2548e–03
Jafri et al. (1998) 4.3300e–04 5.3558e+00 8.0899e–04 1.6883e–03 1.8107e+01 2.4143e–03 3.7600e–03 3.2805e+01 5.2780e–03 5.4877e–04 1.2480e+02 2.2398e–04 1.0179e–03 1.1533e+02 4.0834e–04 3.9535e–04 7.5503e+01 1.5245e–04 6.4004e–04 1.7567e+02 3.4178e–04
Luo–Rudy (1991) 1.3287e–02 9.1163e–02 5.4646e–03 5.1876e–02 2.5316e–01 1.7954e-02 1.1618e–01 5.0030e–01 4.3569e–02 1.6862e–02 2.6092e+00 1.5905e–04 3.4211e–02 1.5423e+00 1.7533e–05 1.3287e–02 8.0670e–01 8.2108e–05 1.8504e–02 2.1740e+00 2.7365e–07
Maleckar et al. (2009) 4.8053e–05 8.7255e–02 1.3231e–03 1.8761e–04 5.6364e–01 4.3223e–03 4.2018e–04 6.2885e–01 9.0645e–03 6.0980e–05 3.6579e+00 8.4020e–04 1.2372e–04 2.9905e+00 1.4523e–03 4.8053e–05 1.8397e+00 2.1775e–04 6.6921e–05 4.7585e+00 5.1124e–04
McAllister et al. (1975) 1.0934e–02 1.2491e–01 2.1598e–03 4.2690e–02 5.6409e–01 6.3421e–03 9.5610e–02 4.8466e–01 1.3715e–02 1.2876e–02 3.6550e+00 4.7942e–07 2.8153e–02 3.4354e+00 2.5661e–06 1.0934e–02 2.2030e+00 9.5369e–06 1.5228e–02 5.3292e+00 9.2902e–08
Noble (1962) 9.4880e–05 4.1900e–03 1.2260e–02 1.1077e–04 5.8033e–02 1.0781e–02 1.0526e–04 1.2011e–01 9.6324e–03 1.6245e–04 8.3532e–02 1.0462e–03 3.8370e–04 8.4302e–02 4.0605e–03 2.0410e–04 5.7850e–02 3.3654e–03 2.0025e–04 1.5323e–01 1.5930e–03
Noble–Noble (1984) 1.6059e–04 4.9362e–02 2.9266e–02 3.6874e–04 6.8159e–02 4.9981e–02 3.9383e–04 1.3232e–01 4.9980e–02 2.0379e–04 4.9581e–01 3.6845e–05 4.1348e–04 5.6403e–01 1.6032e–04 1.6059e–04 1.6251e–01 4.6419e–04 2.2365e–04 4.4397e–01 5.6692e–05
Noble et al. (1991) 5.1412e–05 1.0832e–01 1.7163e–03 2.0072e–04 5.2958e–01 3.4262e–03 4.4955e–04 9.1534e–01 6.7517e–03 6.4593e–05 1.3587e+00 2.3214e–04 1.3237e–04 1.0922e+00 4.9678e–04 5.1412e–05 2.9327e–01 1.4937e–04 7.1599e–05 9.2946e–01 2.7498e–04
Noble et al. (1998) 5.5473e–05 9.7216e–02 6.1817e–03 1.7839e–04 2.7056e–01 1.2515e–02 1.7506e–04 7.1063e–01 1.1756e–02 6.9695e–05 2.9400e+00 4.6083e–04 1.4283e–04 2.2861e+00 5.0710e–04 5.5473e–05 6.2276e–01 7.0186e–04 7.7254e–05 1.5425e+00 7.2074e–04
Nygren et al. (1998) 4.9589e–05 2.4881e–01 3.0497e–03 1.9361e–04 1.3914e+00 9.6006e–03 4.3361e–04 1.8218e+00 3.7892e–02 6.2929e–05 5.1327e+00 6.7847e–05 1.2768e–04 7.0054e+00 2.4360e–04 4.9589e–05 1.9430e+00 1.4596e–04 6.9060e–05 5.0188e+00 3.6091e–06
Pandit et al. (2001)) 2.8897e–07 3.3149e+00 1.2442e–04 1.1282e–06 1.7107e+01 3.6273e–04 2.5267e–06 2.0713e+01 7.6377e–04 3.6305e–07 1.2585e+02 3.0361e–07 7.4401e–07 1.1671e+02 5.6234e–07 2.8897e–07 6.9375e+01 3.5921e–08 4.0243e–07 1.7711e+02 3.8200e–07
Pandit et al. (2003) 2.6523e–08 3.3880e+01 6.9372e–03 1.0355e–07 1.7944e+02 6.9958e–03 2.3192e–07 1.8303e+02 7.0939e–03 3.3000e–08 1.3307e+03 6.9069e–03 6.8203e–08 1.1159e+03 6.9069e–03 2.6523e–08 8.2199e+02 6.9069e–03 3.6938e–08 1.9196e+03 6.9069e–03
PuglisiBers 1.0454e–02 7.0989e–01 2.9473e–02 1.6822e–02 1.0760e+00 4.7114e–02 1.6602e–02 2.5711e+00 4.7971e–02 1.3267e–02 5.1939e+00 4.4702e–02 1.4888e–02 4.1489e+00 4.9395e–02 1.0454e–02 3.1416e+00 3.3901e–02 1.4559e–02 7.3737e+00 4.8580e–02
Sakmann et al. (2000) – Endocardial 6.7440e-05 6.5490e–02 3.6162e–02 1.0836e–04 5.3471e–01 4.7079e–02 1.6216e–04 6.2157e–01 7.0137e–02 8.5582e–05 1.3748e+00 2.7620e–03 1.7364e–04 2.1750e+00 5.4049e–03 6.7440e–05 5.7687e–01 3.4538e–03 9.3920e–05 1.3848e+00 2.5036e–03
Sakmann et al. (2000) – Epicardial 6.7000e–05 5.9875e–02 4.1447e–02 1.0097e–04 4.2843e–01 4.8653e–02 2.9937e–06 3.1092e+01 5.5979e–04 8.5643e–05 1.4081e+00 3.1994e–03 1.7371e–04 2.4310e+00 5.8307e–03 6.7466e–05 5.8817e–01 3.7727e–03 9.3957e–05 1.5080e+00 2.7794e–03
Sakmann et al. (2000) – M-cell 6.7049e–05 1.2193e–01 3.5619e–03 2.6177e–04 4.0051e–01 4.2459e–03 5.8628e–04 5.7791e–01 1.7006e–02 8.5086e–05 1.4087e+00 2.0517e–03 1.7263e–04 4.1988e+00 4.2390e–03 6.7049e–05 5.7300e–01 2.0841e–03 9.3376e–05 1.3976e+00 1.8459e–03
Stewart et al. (2009) 1.4459e–02 4.4209e–01 2.7666e–03 5.6451e–02 2.0499e+00 7.3510e–03 1.2643e–01 2.1530e+00 1.4448e–02 1.8349e–02 1.2167e+01 6.1833e–03 3.7228e–02 8.2702e+00 5.9501e–06 1.4459e–02 5.0047e+00 9.5991e–06 2.0136e–02 1.2684e+01 2.4421e–07
Ten Tusscher et al. (2004) –Endocardial 1.7057e–03 1.6552e+00 4.3223e–04 6.6595e–03 5.7068e+00 1.4745e–03 1.4915e–02 5.9435e+00 3.3340e–03 2.1646e–03 4.1463e+01 5.0955e–04 4.3628e–03 3.0338e+01 7.3680e–04 1.6945e–03 1.8440e+01 6.8065e–05 2.3598e–03 4.4641e+01 9.6544e–05
Ten Tusscher et al. (2006) –Endocardial 1.5900e–03 7.5807e–01 9.8490e–04 6.1924e–03 3.4789e+00 3.0752e–03 1.3869e–02 4.0404e+00 6.7679e–03 2.0128e–03 3.1421e+01 2.0840e–04 4.0837e–03 2.3064e+01 4.2646e–04 1.5861e–03 1.6584e+01 1.6256e–04 2.2088e–03 4.2175e+01 2.2910e–04
Ten Tusscher et al. (2004) –Epicardial 1.7055e–03 1.4744e+00 3.8554e–04 6.6588e–03 6.4227e+00 1.1390e–03 1.4913e–02 6.7111e+00 2.4889e–03 2.1644e–03 4.1625e+01 3.6098e–04 4.3628e–03 2.6398e+01 1.3202e–04 1.6945e–03 1.7598e+01 4.9603e–05 2.3598e–03 4.3503e+01 7.0644e–05
Ten Tusscher et al. (2006) –Epicardial 2.1191e–03 6.0086e–01 5.3524e–04 8.2734e–03 3.0580e+00 1.6770e–03 1.8529e–02 2.5948e+00 3.7201e–03 2.5000e–03 2.1643e+01 9.3349e–05 5.4561e–03 1.5586e+01 2.0699e–04 2.1191e–03 1.7212e+01 7.7445e–05 2.9512e–03 4.4649e+01 1.1034e–04
Ten Tusscher et al. (2004) –M-cell 1.7115e–03 1.1081e+00 2.0687e–04 6.6820e–03 5.0505e+00 5.7034e–04 1.4965e–02 5.2963e+00 1.1857e–03 2.1719e–03 3.4899e+01 5.6612e–05 4.4067e–03 2.2226e+01 1.1371e–04 1.7115e–03 1.4962e+01 4.3613e–05 2.3835e–03 3.8744e+01 6.1649e–05
Ten Tusscher et al. (2006) –M-cell 2.0379e–03 9.6348e–01 5.1864e–04 7.9565e–03 3.5900e+00 1.6037e–03 1.7820e–02 4.1434e+00 3.4888e–03 2.5862e–03 2.9407e+01 1.0175e–04 5.2472e–03 1.5964e+01 1.9272e–04 2.0379e–03 1.2095e+01 7.3340e–05 2.8381e–03 3.0826e+01 1.0333e–04
Wang–Sobie (2008) 1.6311e–02 3.3048e–01 7.1810e–03 6.3683e–02 1.5232e+00 2.2595e–02 1.1994e–01 7.3131e–01 4.6219e–02 2.0699e–02 3.5582e+00 1.1400e–03 4.1997e–02 5.3548e+00 3.8562e–03 1.6311e–02 1.2537e+00 1.7217e–03 2.2716e–02 3.8948e+00 2.3545e–03
Winslow et al. (1999) (31 eqn) 1.0400e–04 1.3163e+01 1.4362e–03 4.1278e–04 7.6932e+01 2.5991e–03 9.2448e–04 8.0854e+01 7.4232e–03 1.3417e–04 5.1014e+02 5.6852e–03 2.6978e–04 3.8861e+02 9.5513e–03 1.0478e–04 2.9860e+02 4.8139e–03 1.4592e–04 7.2392e+02 7.0014e–04
Zhang et al. (2000) 9.0103e–05 6.1924e–02 4.9013e–03 3.5178e–04 4.8803e–01 1.4544e–02 7.8786e–04 6.1441e–01 3.1339e–02 1.1434e–04 1.5728e+00 1.1459e–05 2.3199e–04 6.9150e–01 2.7911e–05 9.0103e–05 5.5132e–01 3.1884e–05 1.2548e–04 1.2841e+00 1.7238e–06

Table A.2: ∆texp represents the experimental largest time step and CPU time represents the minimum
of fifty times running of the FE, the RKC(2, 1), the RKC(3, 1), the SSP(3, 3), the SSP(4, 3), the EMP,
and the RK4 methods with less than 5% [MRMS]v.

Model FE RKC(2, 1) RKC(3, 1) SSP(3, 3) SSP(4, 3) EMP RK4
∆texp (ms) CPU time (s) [MRMS]v ∆texp (ms) CPU time (s) [MRMS]v ∆texp (ms) CPU time (s) [MRMS]v ∆texp (ms) CPU time (s) [MRMS]v ∆texp (ms) CPU time (s) [MRMS]v ∆texp (ms) CPU time (s) [MRMS]v ∆texp (ms) CPU time (s) [MRMS]v

Beeler–Reuler (1977) 2.5298e–02 2.4791e–02 5.2120e–03 1.0121e–01 1.0664e–01 1.7150e–02 2.1585e–01 1.0075e–01 4.8472e–02 3.1559e–02 1.4632e+00 2.3551e–03 6.7006e–02 6.4874e–01 2.3586e–02 2.4630e–02 4.5274e–01 1.4632e–03 3.4158e–02 1.0171e+00 1.4848e–03
Bondarenko et al. (2004) 2.1300e–04 2.4416e+00 1.1353e–03 8.5182e–04 1.4903e+01 4.6280e–03 1.9252e–03 1.3704e+01 1.0474e–02 2.6745e–04 9.9434e+01 1.5742e–03 5.5141e–04 6.9712e+01 3.2427e–03 4.0300e–04 2.9767e+01 2.3709e–03 2.9540e–04 1.2811e+02 1.7386e–03
Courtemanche et al. (1998) 1.9400e–02 3.0747e–01 6.2901e–03 8.1700e–02 4.4933e–01 1.9742e–02 1.6232e–01 4.2629e–01 4.9851e–02 2.4341e–02 3.0391e+00 6.8178e–04 4.9485e–02 2.7204e+00 2.4199e–03 1.8400e–02 1.9110e+00 7.3792e–04 2.6400e–02 4.2439e+00 2.5034e–04
Demir et al. (1994) 5.9599e–05 1.6659e–02 2.2081e–02 1.9551e–04 8.4736e–02 4.9978e–02 2.0875e–04 1.9210e–01 4.9998e–02 7.1524e–05 4.9149e–01 1.0548e–03 1.3851e–04 3.8060e–01 2.4342e–02 5.5293e–05 4.1262e–01 3.9599e–04 7.5493e–05 7.5214e–01 2.2562e–03
Demir et al. (1999) 5.9607e–05 1.9908e–02 2.4060e–02 1.6552e–04 1.2456e–01 4.9993e–02 1.7648e–04 2.9459e–01 5.0000e–02 7.1764e–05 6.5279e–01 1.8245e–02 1.3860e–04 4.1587e–01 5.3154e–03 5.5393e–05 3.3214e–01 3.9717e–04 7.5626e–05 8.0026e–01 4.9487e–02
DiFrancesco–Noble (1985) 7.7276e–05 8.3383e–02 4.5145e–02 3.0640e–04 2.3743e–01 3.4776e–02 5.0873e–04 3.2096e–01 4.8544e–02 9.7467e–05 1.6269e+00 4.9700e–02 1.9984e–04 1.7458e+00 4.9811e–02 7.6638e–05 8.9125e–01 9.2129e–05 1.0654e–04 2.3961e+00 1.8557e–04
Dokos et al. (1996) 7.0200e–05 8.0562e–02 2.2554e–02 2.7000e–04 1.6345e–01 3.1396e–02 4.3452e–04 2.3803e–01 4.9945e–02 8.7018e–05 6.5181e–01 8.9834e–03 1.7552e–04 4.3388e–01 1.0259e–04 6.9338e–05 3.3600e–01 1.1757e–04 9.5438e–05 8.0437e–01 6.8507e–05
FitzHugh–Nagumo (1961) 2.7200e–03 7.6938e–01 4.9968e–02 2.6937e–03 1.1895e+00 4.9994e–02 2.6891e–03 1.9282e+00 5.0000e–02 2.6135e–03 2.1985e+00 4.9987e–02 2.6141e–03 2.6159e+00 4.9999e–02 2.6143e–03 1.2819e+00 5.0000e–02 2.6142e–03 2.7481e+00 5.0000e–02
Faber–Rudy (2000) 1.1294e–02 1.3211e–01 1.7008e–02 4.0966e–02 4.1099e–01 4.9997e–02 4.3788e–02 8.9999e–01 4.9999e–02 1.4089e–02 3.2388e+00 1.4373e–03 2.9634e–02 1.2905e+01 3.1579e–03 1.1244e–02 1.6168e+00 1.0018e–03 1.5564e–02 3.9347e+00 1.1878e–03
Fox et al. (2002) 4.6200e–03 3.5088e–01 5.4455e-03 1.8000e–02 6.5123e–01 1.9077e–02 4.1200e–02 7.0721e–01 4.6519e–02 5.7962e–03 4.7237e+00 2.8173e–03 1.1843e–02 3.5261e+00 5.8110e–03 4.6200e–03 2.7766e+00 2.2392e–03 6.5200e–03 6.7926e+00 3.2090e–03
Hilgemann–Noble (1987) 6.2500e–05 8.4361e–02 4.7582e–03 2.4400e–04 1.0039e–01 1.0436e–02 4.2187e–04 1.0606e–01 4.9947e–02 7.8334e–05 5.7160e–01 8.4811e–04 1.5923e–04 4.3931e–01 1.0700e–03 6.2071e–05 3.1958e–01 7.2888e–04 8.6246e–05 7.0635e–01 1.1697e–03
Hund–Rudy (2004) 7.8874e–03 2.2220e–01 4.9939e–02 1.0440e–02 2.9393e+00 4.9973e–02 1.1003e–02 2.6024e+00 4.9784e–02 1.3963e–02 4.2422e+00 3.0650e–03 2.8505e–02 3.4895e+00 8.7876e–04 1.1117e–02 4.4086e+00 3.6066e–04 1.5444e–02 5.7985e+00 3.0478e–04
Jafri et al. (1998) 5.7600e–04 4.5764e+00 1.8154e–02 1.7500e–03 1.8212e+01 2.4939e–03 3.7600e–03 3.2805e+01 5.2780e–03 7.9972e–04 9.2747e+01 4.9545e–02 1.2727e–03 9.2116e+01 6.6143e–03 4.2600e–04 6.7364e+01 1.6968e–04 7.4600e–04 1.3251e+02 4.6231e–03
Luo–Rudy (1991) 1.3572e–02 8.5973e–02 5.6083e–03 5.4400e–02 1.9396e–01 1.8982e–02 1.1800e–01 2.1622e–01 4.5668e–02 1.7032e–02 1.3568e+00 4.6923e–04 3.4426e–02 1.4179e+00 5.0656e–05 1.3422e–02 8.0194e–01 8.4156e–05 1.8642e–02 2.0074e+00 1.7647e–07
Maleckar et al. (2009) 5.0200e–05 2.9673e–01 1.6159e–02 1.9000e–04 5.5468e–01 3.4263e–03 4.3628e–04 4.3383e–01 4.8524e–02 6.1980e–05 3.1770e+00 5.9248e–03 1.2582e–04 2.7435e+00 4.2425e–02 5.0053e–05 1.7369e+00 1.7378e–02 6.8221e–05 4.9233e+00 1.5111e–02
McAllister et al. (1975) 2.4700e–02 3.5631e–02 4.9527e–02 9.6000e–02 2.3019e–01 4.6948e–02 9.8600e–02 5.201e–01 1.4162e–02 1.3835e–02 3.8038e+00 6.1926e–07 2.8274e–02 3.2698e+00 3.0749e–06 1.1014e–02 2.0484e+00 9.7051e–06 1.5318e–02 5.3200e+00 2.3573e–05
Noble (1962) 2.0228e–04 3.0909e–03 4.9586e–02 3.5769e–04 2.7038e–02 4.9878e–02 3.9082e–04 4.0913e–02 4.9951e–02 2.5085e–04 4.7646e–02 4.9795e–02 5.1912e–04 5.0400e–02 4.9336e–02 2.1298e–04 4.4086e+00 1.3490e–03 2.7078e–04 6.9977e–02 4.9914e–02
Noble–Noble (1984) 2.0400e–04 5.7262e–03 3.8972e–02 3.6874e–04 6.3294e–02 4.9981e–02 3.9405e–04 1.4796e–01 4.9999e–02 2.3636e–04 2.2660e–01 2.1897e–02 4.3938e–04 1.0305e–01 3.6892e–02 1.7848e–04 8.1128e–02 3.5450e–02 2.4108e–04 2.3326e–01 4.9071e–02
Noble et al. (1991) 5.1500e–05 1.8201e–02 1.6961e–03 2.0100e–04 1.2543e–01 3.4581e–03 4.5000e–04 1.3260e–01 6.6311e–03 6.4735e–05 1.5370e+00 2.4792e–04 1.3249e–04 4.4325e–01 4.9153e–04 5.1500e–05 4.9358e–01 1.3620e–04 7.3799e–05 7.0791e–01 3.8207e–03
Noble et al. (1998) 5.5600e–05 3.5936e–02 6.1962e–03 1.8000e–04 2.8651e–01 1.2508e–02 1.8700e–04 6.1719e–01 1.2933e–02 7.0213e–05 1.1216e+00 7.5883e–04 1.4300e–04 9.8792e–01 5.0792e–04 5.6973e–05 6.1927e–01 2.6946e–03 7.9154e–05 1.5082e+00 5.3382e–03
Nygren et al. (1998) 5.3589e–05 7.7448e–02 3.0280e–02 2.0521e–04 3.8420e–01 1.0284e–02 4.4691e–04 4.2804e–01 4.5291e–02 6.6129e–05 3.4139e+00 8.0505e–04 1.3250e–04 2.2046e+00 7.5250e–04 5.2989e–05 1.7679e+00 9.6730e–04 7.1989e–05 4.7359e+00 3.3392e–03
Pandit et al. (2001) 2.9100e–07 5.3835e+00 1.2482e–04 1.1300e–06 2.0256e+01 3.6281e–04 2.5400e–06 2.0255e+01 7.6641e–04 3.6305e–07 1.2967e+02 3.0360e–07 7.4401e–07 9.1504e+01 5.6234e–07 2.8897e–07 6.7539e+01 8.4664e–08 4.0243e–07 1.7448e+02 3.6367e–07
Pandit et al. (2003) 2.6523e–08 3.6539e+01 6.9372e–03 1.0355e–07 1.8203e+02 6.9958e–03 2.3192e–07 1.9140e+02 7.0939e–03 3.3323e–08 1.3018e+03 6.9069e–03 3.6938e–08 1.8973e+03 6.9069e–03 2.6523e–08 7.4224e+02 6.9069e–03 3.6938e–08 1.9196e+03 6.9069e–03
PuglisiBers 1.0884e–02 1.9327e–01 3.2953e–02 1.6842e–02 1.1701e+00 4.9781e–02 1.6642e–02 2.9553e+00 4.9027e–02 1.3457e–02 3.5549e+00 4.6365e–02 1.5359e–02 4.6629e+00 4.9673e–02 1.2474e–02 1.4543e+00 4.9307e–02 1.4589e–02 4.1141e+00 4.8432e–02
Sakmann et al. (2000) – Endocardial 6.9000e–05 5.2694e–01 3.7504e–02 1.1000e–04 5.0272e–01 4.9120e–02 1.1881e–04 8.2267e–01 4.9895e–02 8.6233e–05 1.1288e+00 2.6263e–03 1.7466e–04 8.2207e–01 6.4168e–03 6.7440e–05 5.5610e–01 3.4538e–03 9.3920e–05 1.6529e+00 2.5035e–03
Sakmann et al. (2000) – Epicardial 6.8000e–05 2.0159e–01 4.3111e–02 1.0200e–04 4.6299e–01 4.9550e–02 1.0800e–04 8.7030e–01 4.8896e–02 8.6343e–05 1.0991e+00 3.0370e–03 1.7469e–04 1.0235e+00 6.7507e–03 6.8066e–05 5.1905e–01 3.9557e-03 9.4557e–05 1.5265e+00 2.8068e–03
Sakmann et al. (2000) – M-cell 6.8600e–05 3.3911e–02 3.9258e–03 2.7200e–04 1.9863e–01 7.9652e–03 5.9308e–04 1.8133e–01 4.9495e–02 8.5821e–05 1.9528e+00 2.7661e–03 1.7358e–04 8.6923e–01 4.5381e–03 6.7649e–05 7.2961e–01 9.7024e–04 9.3976e–05 2.2848e+00 2.3383e–03
Stewart et al. (2009) 1.5212e–02 4.1142e–01 4.9869e–02 6.0986e–02 1.9369e+00 4.8662e–02 1.3539e–01 1.5576e+00 2.7832e–02 1.9132e–02 8.5850e+00 4.8325e–02 3.7366e–02 6.8836e+00 3.3738e–05 1.4559e–02 5.0458e+00 9.4102e–06 2.0236e–02 1.3133e+01 3.3947e–05
Ten Tusscher et al. (2004) –Endocardial 1.7829e–03 1.1957e+00 1.5526e–03 6.9345e–03 4.2900e+00 1.6259e–03 1.6235e–02 4.2864e+00 4.0746e–03 2.2396e–03 3.1663e+01 1.5221e–03 4.5586e–03 2.3303e+01 1.4644e–03 1.6959e–03 2.0071e+01 2.8498e–04 2.3609e–03 4.7466e+01 3.9775e–04
Ten Tusscher et al. (2006) –Endocardial 1.6200e–03 8.9863e–01 9.9918e–04 6.4300e–03 3.5449e+00 3.1929e–03 1.4200e–02 3.5092e+00 6.8820e–03 2.0297e–03 2.6447e+01 1.9958e–04 4.4915e–03 1.7539e+01 7.0503e–04 1.6200e–03 1.4310e+01 1.6531e–04 2.2200e–03 3.4823e+01 2.3036e–04
Ten Tusscher et al. (2004) –Epicardial 1.7835e–03 1.1548e+00 1.5568e–03 7.1548e–03 4.2930e+00 2.0351e–03 1.6043e–02 4.1409e+00 3.0533e–03 2.2364e–03 3.1805e+01 1.4412e–03 4.3663e–03 2.4756e+01 1.3177e–04 1.6965e–03 1.7430e+01 5.0079e–05 2.3625e–03 4.3102e+01 7.0650e–05
Ten Tusscher et al. (2006) –Epicardial 2.1400e–03 8.6557e–01 5.3646e–04 8.5600e–03 2.8914e+00 1.7278e–03 1.8700e–02 3.1167e+00 3.7086e–03 2.6888e–03 2.0917e+01 1.5317e–04 5.5085e–03 1.5399e+01 2.3682e–04 2.1251e–03 1.1069e+01 7.7695e–05 2.9582e–03 2.6920e+01 1.1004e–04
Ten Tusscher et al. (2004) –M-cell 1.7667e–03 9.0396e–01 4.3927e–04 7.0820e–03 4.1688e+00 7.4036e–04 1.5904e–02 3.5254e+00 1.3192e–03 2.5872e–03 2.1481e+01 1.0537e–04 4.4501e–03 2.0321e+01 1.1544e–04 1.7305e–03 1.5244e+01 4.5085e–05 2.4075e–03 3.5862e+01 6.2223e–05
Ten Tusscher et al. (2006) –M-cell 2.0619e–03 6.6438e–01 4.7968e–04 8.2505e–03 2.6742e+00 1.6142e–03 1.8520e–02 2.9897e+00 3.6150e–03 2.5790e–03 2.0657e+01 8.6791e–05 5.3011e–03 1.5359e+01 1.7609e–04 2.0400e–03 1.0333e+01 7.3263e–05 2.8474e–03 2.5446e+01 1.0686e–04
Wang–Sobie (2008) 1.6611e–02 8.4543e–02 8.4128e–03 6.6443e–02 3.5429e–01 2.4299e–02 1.2634e–01 5.7322e–01 4.9967e–02 2.0789e–02 2.2012e+00 1.1371e–03 4.2732e–02 1.4439e+00 2.5577e–03 1.6381e–02 1.0174e+00 1.6877e–03 2.2771e–02 2.4985e+00 2.3341e–03
Winslow et al. (1999) (31 eqn) 1.0700e–04 1.2650e+01 1.4777e–03 4.1400e–04 7.3222e+01 2.6094e–03 9.5500e–04 6.8827e+01 1.9762e–02 1.3452e–04 5.2316e+02 5.5230e–03 2.7344e–04 3.6913e+02 4.8072e–02 1.0488e–04 2.9238e+02 1.3882e–02 1.4612e–04 7.0635e+02 5.0418e–03
Zhang et al. (2000) 9.9925e–05 7.3992e–02 5.4361e–03 3.8080e–04 1.2287e–01 1.5437e–02 8.6990e–04 1.1898e–01 3.4806e–02 1.2155e–04 8.6181e–01 4.8513e–04 2.3846e–04 1.1920e+00 4.1124e–02 9.5103e–05 5.2296e–01 1.5793e–03 1.3028e–04 1.2183e+00 4.4012e–02
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Table A.3: This table shows the relative accuracy of the theoretical time step to the experimental
time step of the FE, the RKC(2, 1), the RKC(3, 1), the SSP(3, 3), the SSP(4, 3), the EMP, and the
RK4 methods.

Model
∆ttheo
∆texp

× 100% of FE
∆ttheo
∆texp

× 100% of RKC(2, 1)
∆ttheo
∆texp

× 100% of RKC(3, 1)
∆ttheo
∆texp

× 100% of SSP(3, 3)
∆ttheo
∆texp

× 100% of SSP(4, 3)
∆ttheo
∆texp

× 100% of EMP
∆ttheo
∆texp

× 100% of RK4

Beeler–Reuler (1977) 96.40 94.08 98.80 98.07 93.71 99.02 99.43
Bondarenko et al. (2004) 98.91 96.56 95.69 99.63 98.37 52.28 99.32
Courtemanche et al. (1998) 79.99 74.15 83.58 80.90 80.73 84.33 81.85
Demir et al. (1994) 87.74 99.91 100.00 92.78 97.21 94.57 96.47
Demir et al. (1999) 87.74 100.00 100.00 92.48 97.14 94.40 96.30
DiFrancesco–Noble (1985) 98.58 97.06 99.39 99.18 98.14 99.39 99.57
Dokos et al. (1996) 95.21 96.65 94.99 97.47 98.05 96.39 97.53
FitzHugh-Nagumo (1961) 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Faber–Rudy (2000) 96.28 99.22 80.93 97.94 94.48 96.71 97.30
Fox et al. (2002) 98.69 98.90 96.77 99.83 99.13 98.69 97.39
Hilgemann–Noble (1987) 98.51 98.52 28.98 99.75 99.56 99.19 99.42
Hund–Rudy (2004) 98.85 93.80 85.31 93.13 92.55 92.17 92.39
Jafri et al. (1998) 75.17 96.47 100.00 68.62 79.98 92.80 85.80
Luo–Rudy (1991) 97.90 95.36 98.46 99.00 99.38 98.99 99.26
Maleckar et al. (2009) 95.72 98.74 96.31 98.39 98.33 96.00 98.09
McAllister et al. (1975) 44.27 44.47 96.97 93.07 99.57 99.27 99.41
Noble (1962) 46.91 30.97 26.93 64.76 73.91 95.83 73.95
Noble–Noble (1984) 78.72 100.00 99.94 86.17 94.11 89.98 92.77
Noble et al. (1991) 99.83 99.86 99.90 99.78 99.91 99.83 97.02
Noble et al. (1998) 99.77 99.11 93.61 99.26 99.88 97.31 97.60
Nygren et al. (1998) 92.54 94.35 97.02 95.16 96.36 93.58 95.93
Pandit et al. (2001) 99.30 99.84 99.48 100.00 100.00 100.00 100.00
Pandit et al. (2003) 100.00 100.00 100.00 99.03 100.00 100.00 100.00
PuglisiBers 96.05 100.00 94.99 98.59 96.93 83.81 99.79
Sakmann et al. (2000) – Endocardial 97.74 98.51 97.30 99.25 99.42 100.00 100.00
Sakmann et al. (2000) – Epicardial 98.53 98.99 27.72 99.19 99.43 99.11 99.37
Sakmann et al. (2000) – M-cell 97.74 96.24 98.85 99.14 99.45 99.11 99.36
Stewart et al. (2009) 95.05 92.57 93.38 95.91 99.63 99.36 99.53
Ten Tusscher et al. (2004) –Endocardial 95.67 96.03 91.87 96.65 95.71 99.92 99.95
Ten Tusscher et al. (2006) –Endocardial 98.15 96.31 97.67 99.17 90.92 97.91 99.50
Ten Tusscher et al. (2004) –Epicardial 95.63 93.07 92.96 96.78 99.92 99.88 99.89
Ten Tusscher et al. (2006) –Epicardial 99.02 96.65 99.09 92.98 99.05 99.72 99.79
Ten Tusscher et al. (2004) –M-cell 96.88 94.35 94.10 97.88 99.03 98.90 99.00
Ten Tusscher et al. (2006) –M-cell 98.84 96.44 96.22 100.00 98.98 99.90 99.67
Wang–Sobie (2008) 98.19 95.85 94,93 99.57 98.28 99.57 99.76
Winslow et al. (1999) (31 eqn) 97.20 99.71 96.80 99.74 98.67 99.91 99.86
Zhang et al. (2000) 90.17 92.38 90.57 94.07 97.29 94.74 96.32
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Appendix B

Reference Solutions

We present the reference solutions used in Section 4.4 to compute the MRMS error of the numerical
solution of the one-dimensional, two- dimensional, and three-dimensional monodomain problem. The solution
presented at different time levels and this solution obtained by applying RKC(3, 1) method on monodomain
model problem.

Figure B.1: Electrical potential from RKC(3, 1) method at t = 0 ms, t = 5 ms, t = 10 ms, t = 15 ms
and t = 20 ms for the one-dimensional monodmain model coupled with the FHN model.
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Figure B.2: Electrical potential from RKC(3, 1) method at t = 0 ms, t = 5 ms, t = 10 ms, t = 15 ms
and t = 20 ms for the two-dimensional monodmain model coupled with the FHN model.

Figure B.3: Electrical potential from RKC(3, 1) method at t = 0 ms, t = 5 ms, t = 10 ms, t = 15 ms
and t = 20 ms for the three-dimensional monodmain model coupled with the FHN model.
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