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Abstract

Cardiac electrophysiology studies the electrical activity of the heart. Researchers from different fields are
working together to model and simulate the electrical activity in the heart. Such simulations may lead to
help cardiologists to treat a patient’s heart condition with better techniques and diagnoses.

Mathematical models of cardiac electrophysiology are described by a system of partial differential equa-
tions (PDEs) and a non-linear system of ordinary differential equations (ODEs). One way to reach real-time
simulation of the electrical activity of the heart is through more efficient time integration of these ODEs.
Larger time steps lead to more efficient computations provided the solutions remain accurate enough. Pro-
ducing the largest stable time step for solving these ODEs is a daunting task. Usually, trial and error is used
to get the largest stable time step, but it is time consuming. In this thesis, we propose a new efficient method
to find the largest stable time step to solve these ODEs efficiently.

In this thesis, we present thirty-seven cardiac cell models. We compare, the forward Euler method,
the explicit midpoint method, the four-stage, fourth-order Runge-Kutta method, the two-stage, first-order
Runge-Kutta—Chebyshev method, the three-stage, first-order Runge-Kutta—Chebyshev method, the three-
stage, third-order strong-stability-preserving Runge—Kutta method, and the four-stage, third-order strong-
stability-preserving Runge-Kutta method based on their largest stepsize, mixed root mean square errors, and
CPU time to solve the cardiac cell models. From the theoretical largest stepsize results, the forward Euler
method outperforms all the other methods considered on all thirty-seven cardiac cell models. Next to the
forward Euler method, the two-stage, first-order Runge-Kutta—Chebyshev method outperforms all the other
methods considered on thirty-seven cardiac cell models.

From the experimental largest stepsize results, the forward Euler method outperforms all the other meth-
ods considered on all thirty-seven cardiac cell models. Next to the forward Euler method, the two-stage,
first-order Runge-Kutta—Chebyshev and the explicit midpoint methods outperform all the other methods
considered on thirty-six cardiac cell models and one cardiac cell model, respectively.

Also, we solve the monodomain problem coupled with FitzHugh—-Nagumo model using the forward Euler,
the two-stage, first-order Runge-Kutta—Chebyshev method, and the three-stage, first-order Runge-Kutta—
Chebyshev method in one, two, and three dimensions. We compare these methods based on their theoretical
largest stepsize, experimental largest stepsize, CPU time, and mixed root mean square errors. From these
results, the three-stage, first-order Runge-Kutta—Chebyshev method outperforms all the other methods over

a one-dimensional problem, a two-dimensional problem, and a three-dimensional problem.
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1 Introduction

Every year people die from cardiovascular disease. In 2008, an estimated 30% of all deaths worldwide were
due to cardiovascular disease [Tl [35]. Currently, due to the coronavirus (COVID-19) pandemic, thousands
of people are dying worldwide. This virus can infect the heart muscle; see Figure The death rate for
COVID-19 patients with pre-existing heart disease is far higher than among other patients [34]. As a result
of COVID-19, the worldwide mortality rate associated with cardiovascular diseases will likely increase from

the percentage mentioned above.

Figure 1.1: Tllustration of a neon purple coronavirus cell in the center of a heart outline [4].

These days, we can design the shape of planes and automobiles using finite element simulations; see
Figure These simulations predict how the planes and automobiles behave in wind and thunder instead
of putting them in the wind and thunder. These results are the motivation for the researchers from computer
science, engineering, mathematics, and physiologists to work together to model and simulate the electrical
activity in cardiac cells. This computer simulation may lead to help the cardiologists to treat a patient’s heart
condition with better techniques and diagnosis, for example, in the form of more accurate electrocardiogram

(ECG) analysis.

Figure 1.2: Finite element models of airbus and Ford taurus car [56] [58]



Cardiac electrophysiology studies the electrical activity of the heart. Mathematical models and numerical
simulations of cardiac electrophysiology are valuable for studying heart development and disorder. These
models are described by a system of partial differential equations (PDEs) and a non-linear system of ordinary
differential equations (ODEs). These systems of ODEs are used to model the electrical activity in the
cardiac cells. This thesis proposes a new efficient method to minimize the time required to perform cardiac
simulations.

Over the most recent two decades, the modeling and simulating the electrical activity in the heart have
advanced quickly. Currently, high-resolution simulation of the human heart with great detail and accuracy
level can now be carried out. However, it is still slower than real-time despite using 16,384 computer nodes
and 1,572,864 supercomputer cores [43], 45].

One way to reach the real-time simulation of the electrical activity of the heart is through more efficient
time integration. Usually, time integration is done with a constant step size, and to maximize the size of the
step while maintaining sufficient accuracy, trial and error is used, but it is inefficient and leads to sub-optimal
stepsizes. These sub-optimal stepsizes are either too large and lead to a divergence of the time integration,
or they are too small and lead to solutions that are too accurate, and this leads to long computational times.
To overcome these problems, we propose a new efficient method to find the largest stepsize that will yield a

desired accuracy.

1.1 Contributions of the thesis

In this thesis, we examine time integration methods for cardiac cell models. These methods are the forward
Euler (FE), the explicit midpoint (EMP), the four-stage, fourth-order Runge-Kutta (RK4), the two-stage,
first-order Runge-Kutta-Chebyshev (RKC(2, 1)), the two-stage, first-order Runge-Kutta—Chebyshev (RKC(3, 1)),
the three-stage, third-order strong-stability-preserving (SSP(3,3)), and the four-stage, third-order strong-
stability-preserving (SSP(4,3)) methods. We propose a new efficient methodology to find the largest con-
stant stepsize of these methods to meet a given tolerance. Also, we solved the monodomain model using the
FE method, the RKC(2,1), and the RKC(3,1) based on their theoretical largest stepsize and experimental
largest stepsize. We determine the largest stepsize of the time integration method based on its stability region
and the eigenvalues computed from the Jacobian matrix of a system of ODEs. This avoids trial and error to

find the experimental largest stepsize.

1.2 Structure of the thesis

In chapter [2| we present background on the electrical activity in the heart and the mathematical model of
cardiac cell and myocardial tissue. In chapter [3, we present the numerical methods used to solve cardiac
cell models and the monodomain model. We also give the procedure to find the largest stable time step

of the method to solve the systems of ODEs. In chapter [4] we present a numerical experiment for solving



cardiac cell models using the FE, the RKC(2, 1), the RKC(3,1), the SSP(3,3), the SSP(4, 3), the EMP, and
RK4 methods and simulation of the monodomain model using FE, RKC(2,1), and RKC(3,1) methods. In
chapter 5] we summarize the conclusions of these works and make suggestions for future work. Appendix [A]
provides complete results of Table [£.2] Table [£:3] and Table [£:4] Appendix [B] provides reference solutions

used for one-dimensional, two-dimensional, and three-dimensional monodomain problem.



2 Background

2.1 Heart

The heart is an important organ because it carries oxygen and nutrients to different parts of the body; see
Figure 2.1} For instance, the brain is the central organ of the human nervous system. It gets a supply of
oxygen and nutrients when the heart carries out its responsibility. So without the heart, these capacities

would fall flat. If the heart fails, the entire body will shut down rapidly.

Figure 2.1: Heart [3]

The right and left atria and the right and left ventricles are the chambers of the heart. The electrical
heart system is fundamental for the heart to work those activities efficiently [23]. The heart’s pumping action
is regulated by pacemaker cells that administer regular, spontaneous electrical impulses. These impulses are

transmitted to nearby muscle cells, which then contract together as a unit to make the heart pump.

2.2 Cardiac muscle cells

Cardiac muscle is made up of specialized muscle cells, called cardiomyocytes. The cells appear Y-shaped
in the Figure because they are connected end to end, and some are branched. They are all electrically
connected. One of the cells is stimulated, that signal will travel to all of the other cells. There are two types

of cells in the cardiac muscle known as cardiomyocytes and cardiac pacemaker cells. The cardiomyocytes



are found in the chambers of the heart. They contract and relax to allow blood to enter and exit the
heart. Cardiac pacemaker cells are specifically found on the walls of the right atria. They are responsible for
initiating action potentials at a regular pace. The five phases of the action potential (see Figure [2.3]) in the

membrane of cardiac cell are presented below [5]:
1. Phase 4 (Diastole): This is known as resting membrane potential.
2. Phase 0 (Depolarization): The sodium channels open, and sodium ions (Na™) enter the cell.

3. Phase 1 (Early repolarization): The potassium channels open, and potassium ions (K"‘) exit the

cell.

4. Phase 2 (Plateau phase): Both the potassium channels and calcium channels are open. Potassium

ions (K1) exit the cell at the same time calcium ions (Ca®") enter the cell. This restores the potential.

5. Phase 3 (Delayed repolarization): Calcium channels close slowly while potassium channels remain

open. Potassium ions (K™) continue to move out of the cell, causing repolarization.

i 2006 Encyclopsadia Britannica, Inc. cardiac muscle cells

Figure 2.2: Cardiac muscle cell [61].
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Figure 2.3: The action potential in the membrane of the cardiac cell [59]. Pacemaker cells and muscle
cells show different kinds of action potential patterns.

2.2.1 Cell models

In this thesis, we present 37 cardiac cell models of different species, for example, human, pig, and mouse.
Each model describe the electrical activity of the cardiac cells. FitzHugh-Nagumo (FHN) [22] is a model
of nerve membrane and the simplest model with two ODEs. Bondarenko et al. [I1] is the model of mouse

ventricular myocyte action potential and the largest model with 41 ODEs.

The Luo-Rudy (1991 model)

Luo and Rudy developed the Luo-Rudy model [36] in 1991. They updated the preexisting guinea pig ventric-
ular action potentials model of Beeler-Reuter (1977) [I0]. The Luo—Rudy model (1991) is the most widely
used cardiac cell model in research. It makes it possible to simulate cardiac myocytes’ excitation-contraction
in different conditions; for more details see [37, 38]. Figure shows the ionic current flows across the cell

membrane of the Luo—Rudy model.
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Figure 2.4: The ionic current flows across the cell membrane of Luo-Rudy(1991) model [2].

Winslow et al. (1999) model

Winslow, Rice, Jafri, Marban, and O’Rourke developed the model of Winslow et al. [68] in 1999. They
developed a model of canine ventricular tissue. The model of Winslow et al. (1999) are among the more
advanced cardiac cell models available; for more details see [68]. Figure shows the ionic current flows

across the cell membrane of the model of Winslow et al. (1999).

Figure 2.5: The ionic current flows across the cell membrane of the model of Winslow et al. (1999)

2.



2.3 Bidomain model

The bidomain model represents the electrical activity of the whole heart. The bidomain domain consists
of two parts: the cardiac cell called the intracellular domain, and the extracellular domain which is the
space surrounding the intracellular domain. The cell membrane divides these domains. The bidomain model
describes the potential difference across this cell membrane. This model consists of an ODE, a nonlinear
PDE, and a linear PDE and is given by [63]

ds

a = f(S,’U,t), (21)
mee% + XLion(8,0,t) + Ispim(x, t) =V - (M;Vv)+ V- (M[Vug), (2.2)
OZV(MIVU)-‘FV((M[—FME)VTAE), (23)

with boundary conditions on 0f2 is given by
n- (M[VU + M[VUE) =0,
n- (MEVUE) = O7

where 72 is the unit outward normal of the domain and 0f2 is the domain of the boundary.

Table 2.1: Parameters of the bidomain model.

v the transmembrane potential
UR the extracellular potential
M7 and Mg conductivity tensors
s a vector of state variables from the cell model
X the area of cell membrane per unit volume
Che the capacitance of the cell membrane per unit area
Lstim, f, and Liop dependent on the particular cell model used

2.4 Monodomain model

The bidomain model is challenging for mathematical computation and analysis. We can simplify this model

to a monodomain model by assuming M; = AMpg. This monodomain model is given by

a = (87U7t)? (253“)
C @4’ Iion(s,v,t) + Lgy (mt)*iv (M;Vv) (2.5b)
X meat XLion(S,, stim ) - 1+)\ Ivv), .
with boundary conditions on 9f2 is given by
n- (M;Vv) =0,



where 7o is the unit outward normal of the domain and 0f2 is the domain of the boundary.
It is not easy to find A that satisfies the assumption mentioned above in real life. This assumption
hides critical electrophysiological phenomena because it assumes tissue is isotropic (the conductivities are

homogeneous in all directions) [63].



3 Numerical Methods

In this chapter, we present the time integration methods used to solve the ODEs and the finite element

method to solve PDEs.

3.1 Explicit Runge—Kutta Methods

Explicit Runge-Kutta (RK) methods are used in the approximation solutions of systems of ODEs [§]. The
general form of an s-stage explicit RK method applied to an initial-value problem (IVP),

yi(t)
dy Y2 (t)
E = f (t7y)a Yy (to) = Yo, where y(t) = . ) (31)
Ym ()
given as follows:
s i—1
Ynt+1 = Yn +Atzbzku where ki = f [2% +CiAtayn +Atzauk] , = 1327"'78' (32)
i=1 j=1

The general form of (3.2)) can be represented by its Butcher tableau [30].

0] O 0o ... 0 0
Co | 21 0 . 0 0
Cs | As1 As2 ... 0(Ass—1 0

by by bs_1 bs

3.1.1 Stability analysis
To illustrate the stability of time integration methods, we use the following test function:

d
dii =y, y(to) =1yoand X € C. (3.3)

We implement ERK to (3.3) yields

Yn = R(2)"yo, where R(2) =14 zb" (I — zA)"*(1,1,...,1)7 is a stability function and z = AAt.
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To have a bounded numerical solution, we must ensure |R(z)| < 1 and the stability domain of the time
integration method given as follow

S:={z€ C:|R(z)| <1}.
In this thesis, we are dealing with 37 non-linear systems of cardiac cell models, so we have generalized the

stability analysis from equation (3.3 to the non-linear system equation (3.1). The right-hand side of the
non-linear systems of equation (3.1]) are linearized by using a Taylor expansion about the point (¢*,y*)

du of

hahag t* * YJ t* * ag* o 2 ) 4
T )+ )=y £ O u—y ) (3.4
By ignoring the higher-order terms, the equation (3.4) becomes
du af
— =f{t"y")+ =", y" —y*). 3.5
7 (7y)+3y( Y ) (w—y") (3.5)

In the stability analysis of (3.1)), we check the difference of two solutions of (3.1]) is bounded. Let v and w
satisfy (3.5). Then

dv of
b t* * “J t* * o )
pra ,y)+ay( Y ) (v —y") (3.6)
and
= )+ Sy w =), (37)
The difference of (3.6) and (3.7) becomes
— = |ft (¢ - — | ft (¢ - .
- = e Lewne-v)| - rew s Feww-v)] e
after the cancellation of the term f(¢*,y*) from right hand side of (3.8) and it becomes
dv dw O0f, ., .
E_E_%(t Y ) (v —w). (3.9)
Let g = v — w and (3.9) becomes
dy _of _
— = —=(t",y")y. 3.10
T (310)
The partial derivative g—!fl(t*7 y*) represent the Jacobian matrix
on ... oh u h
Oy1 OYm
y f:
J:%: : i : , where y = ? and f = ?
Jy :
Ofm ... Ofm
Ay OYm
Y Y Ym fm
We assume J is diagonalizable. Therefore, we can write J as
J=PDP !, (3.11)

where D is a diagonal matrix with the eigenvalues of J and P is an invertible matrix consisting of the
eigenvectors of D. We replaced J by PDP~! and (3.10)) becomes
dy

~Z —PDP 4. 3.12
7 ] (3.12)

11



Let g = P~'4. Then (3.12) can be rearrange as follows

d(Py) =
=PDy. 3.13
dt Y (3.13)
Using P7'P =1, then (3.13) becomes
dj =
— = Dy. 3.14
5 = Dy (3.14)

All of the differential equations in the system (3.14)) are fully decoupled. Then we can write each component
in the form

dyi

T )\iﬂi, where \; eigenvalue of D. (3.15)

The equation (3.15)) has the same form of equation (3.3), so we can apply stability analysis of (3.3) to (3.15).

3.1.2 FE Method

The forward Euler (FE) method is the simplest explicit RK method. The order, Butcher tableau, stability
region, and stability formula of this method are given in Table

FE

Order | Butcher Tableau Stability Region Stability Formula

Stability region

00 ‘ 5
Oone | — ‘ zeCilzt1<1)
1 -1

Table 3.1: The order, Butcher tableau, stability region, and stability formula of FE.

3.1.3 EMP Method

The explicit midpoint (EMP) method is also known as the modified FE method [8]. The order, Butcher
tableau, stability region, and stability formula of this method are given in Table

12



EMP

Order | Butcher Tableau Stability Region Stability Formula
0 0 0
Two 1/211/2 0 {zeC:’%zz—l—z—i—l‘gl}
0 1

Table 3.2: The order, Butcher tableau, stability region, and stability formula of EMP.

3.1.4 RK4 Method

The four-stage, fourth-order RK (RK4) is known as the classical RK method [8]. The order, Butcher tableau,

stability region, and stability formula of this method are given in Table

RK4

Order Butcher Tableau Stability Region Stability Formula
0l0 0 0 o0 T
/2112 0 0 0

Fow | 1/2| 0 1/2 0 0 {zeC:|Hz*+38+322+2+1| <1}
1 0 0 1 0

1/6 1/3 1/3 1/6

Table 3.3: The order, Butcher tableau, stability region, and stability formula of RK4.

3.1.5 SSP Methods

The strong-stability-preserving (SSP) ERK methods were previously known as total-variation-diminishing

time integration methods [25].

lYn+1ll < |lynll, of the FE method [26].

These time integration methods preserve the strong stability property

These methods are useful, especially in solving hyperbolic par-

tial differential equations, because they have non-linear stability properties [60]. We can write an s-stage

13




explicit SSP methods (3.2) in the following form:

Yo = Yn,
i—1

yi =Y (aijy; + Aty f(y;)), for i=1,2,...,s, (3.16)
j=0
Yn+1 = Ys,

where all a;; and B3;; are non-negative and o;; = 0 only if 8;; = 0, and for consistency Z;;é oy; = 1. This

form is known as Shu-Osher form [25]. Because the a;; and f;; are non-negative, the equation (3.16) is a

convex combination of forward Euler step, At is replaced with modified stepsizes of g ‘L At. The coefficient S;;
ij

can be negative, in which case the function f must be modified to account for a downwinded discretization;

for more details see [57]. Next, we present two SSP RK methods.

SSP(3,3) method

The three-stage, third-order strong-stability-preserving (SSP(3,3)) method is broadly known as the Shu-
Osher method [25]. It is probably the most popular and commonly used SSP method [25]. The order,
Butcher tableau, stability region, stability formula, coefficients of a;; and f;; [60] of this method are given

in Table [3.41

SSP(3,3)
Order Butcher Tableau Stability Region Stability Formula
0o[0 0 0 ‘
1 1 0 0
Three | | | e - {zeC: |3+ 322 +2+1| <1}
1/211/4 1/4 0
1/6 1/6 2/3 i
Stage 0 Bij Consistency
1 0 0 1 0 0
Three 3/4 1/4 0 3/4 1/4 0 Yioei=1, i=1,2,...s
1/3 0 2/3 1/3 0 2/3

Table 3.4: The order, Butcher tableau, stability region, stability formula, «;;, and f;; of SSP(3,3).

SSP(4,3) method

The SSP(4, 3) gives improved stability over SSP(3,3). The order, Butcher tableau, stability region, stability
formula, coefficients of a;; and B;; [60] of SSP(4,3) method are given in Table

14




‘ SSP(43)‘ ‘ ‘ ‘

‘ Order ‘ Butcher Tableau ‘ Stability Region ‘ Stability Formula ‘

00 0o o0 o0
/2012 0 0 0
0

Stability region

Three 1 11/2 1/2 0 {zeC:|gz*+53+122+241] <1}
1/211/6 1/6 1/6 0
16 1/6 1/6 1/2
‘ Stage ‘ Qi Bij ‘ Consistency ‘

1 0 0 O 1/2 0 0 0
0 1 0 O 0 1/2 0 0

Four / Zj‘;é%j—l 1=1,2,...,s
2/3 0 1/3 0 0 0 1/6 0
0 0 0 1 0 0 0 1/2

Table 3.5: The order, Butcher tableau, stability region, stability formula, ;;, and 5;; of SSP(4,3).

3.1.6 RKC Methods

The Runge-Kutta—Chebyshev (RKC) methods are explicit stabilized RK methods [29]. These methods are
explicit one-step methods with extended stability domains along the negative real axis.

For stiff problems, the standard RK methods are not efficient because they have severe stability con-
straints. For semi-discrete parabolic problems, implicit methods can be computationally expensive in higher
dimensions. However, RKC methods are useful for such problems because they extend the real stability inter-
val with a length proportional to s2, where s is the number of stages, using the shifted Chebyshev polynomial

as the stability polynomial. This polynomial is given as follows:
z
P()=T. (14 5). B =25

where [—0,, 0] is the largest segment of the negative z-axis belongs to the stability region S, and Ti(z) is the
Chebyshev polynomial defined by

Ts(z) = cos(sarccos(z)), ze€C.
The s-stage RKC method [29] is written as

Yno = Yn,
Ynl = Yn + ﬂlAtf(tn + CkAta ynO);
Ynj = (1= 15 = Vj)Un + WjYnj—1 + VjYnj—2 + i ALf (t + D Y j1) + ViYnt1, for j=2,3,..s,

Yn+1 = Yns,
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and,

» Y = —aj-1fij, a; =1 —=b;T;(uo).

- Qb‘UO —b; - 2bAu1
fi1 = bruy, pu; = b] L L p = bj
j—1 =2 j—1

For an s-stage, first-order RKC method, the parameters wy, wi, and b;, are defined as,

wo =1+ ¢/s%,  wy = Ty(wo)/Ti(wp), where € is the damping parameter,

and,

Damping parameters implemented to the RKC method to overcome a small imaginary perturbation on
z might lead to instability [29]. These damping parameters extended the stability region and reducing the
intersection of the stability region with the negative z-axis; see Figure and Figure For practical

problems, a convenient choice for e studied in [29] is 0.05.

RKC(2,1)

The order, Butcher tableau, stability region, and stability formula of two-stage, first-order Runge-Kutta—
Chebyshev (RKC(2,1)) method are given in Table

RKC(2,1)
Order Butcher Tableau Stability Region Stability Formula
0 0 0 : Stability region i
One | 1/4[1/4 0 [ S———— “ (zeC:|i2 4241 <1}
1/2 1/2 :z -14 12 10 -8 -6 —4 -2 (E)

Table 3.6: The order, Butcher tableau, stability region, stability formula of RKC(2,1).

RKC(3,1)

The order, Butcher tableau, stability region, and stability formula of three-stage, first-order Runge-Kutta—
Chebyshev (RKC(3,1)) method are given in Table
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RKC(3,1)

Order Butcher Tableau Stability Region

Stability Formula

0 0 0 0

Stability region

1/911/9 0 0 : §
One o i
4/912/9 2/9 0 . 5

Il

1/3 4/9 2/9

-17.5 -150 -125 -100 -7.5 =50 -25 00

{ZGC:’%23+%Z2+Z+1’§1}

Table 3.7: The order, Butcher tableau, stability region, stability formula of RKC(3,1).

RKC(2,1) method without damping parameter

RKC(2,1) method with damping parameter=0.025

H

1

2 |
|

|

|

RKC(2,1) method with damping parameter=0.05

Figure 3.1: Stability regions of RKC(2,1)
method without damping parameter and with

damping parameter.

RKC(3,1) method without damping

RKC(3,1) method with damping parameter=0.025

RKC(2,1) method with damping parameter=0.05

175 -150 -125 -100 -75 -50 25 00

Figure 3.2: Stability regions of RKC(3,1)

method without damping parameter and with

damping parameter.

3.2 The theoretical largest stepsize

In this subsection, we propose a new efficient method to find the theoretical largest stepsize of a time

integration method to solve the given system ODEs.
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The stability region of the time integration method is |[R(z)| < 1 where |R(2)| is a complex polynomial,
for example, see Figure [3.3] We determine the theortical largest stepsize of the time integration method
based on its linear stability region and the eigenvalues computed from the Jacobian matrix of a system of

ODEs.

Stability region

Stability region Stability region

SSPa3:R(2) =2t +327 + 322 4241 = 1

- -3 2 4 0 1
RKC3L|R(2) = 73g2° + 22 +2+1| s 1

Figure 3.3: Stability regions and their complex polynomials of time integration methods.

The procedure used to find the largest time step is summarized in the following steps:

Step 1: Compute boundary values of stability region. The boundary of the stability region is the set of

all z such that R(z) is on the unit circle.
R(z) =€, (3.17)

for some 6 € [0,27]. To compute the values of z of equation (3.17) analytically is a tedious task.
However, we can solve it easily numerically using MATLAB’s built-in roots function. This gives us the

boundary values of the stability region.

Step 2: Compute eigenvalues from the Jacobian matrix. We use the following procedure to find the

eigenvalues:

1. We generate the reference solution for (3.1) by using MATLAB’s built-in odel5s function. This

function used the following syntax:
[T,y] = ode15s(Qf(t,y), [to:At™:ts], 'RelTol', le-12, 'AbsTol', 1e-12),

where f(t,y) is the RHS of (3.1, ¢ is the initial time, ¢, is the final time, and At* is the time
interval at which eigenvalues are stored. This value is chosen small enough to capture the evolution

of the eigenvalues.

2. We use the reference solution to compute the Jacobian matrix. Then, we compute the eigenvalues

from the Jacobian matrix.
for i=ty:At*:ty do

Get the current y values from the reference solution,
Yret = Y1+ 1,1).
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We use the current reference solution to compute f(¢,vy),

fcurrent = f(t*v yref)' where t* = to + iAL.

We compute the current Jacobian matrix using MATLAB’s built-in numjac function,
[jac, fac] = numjac(Qf (t,y),t", Yref, feurrent, 'thresh', le-12 fac, [ ], S, 0),

which numerically approximates the Jacobian matrix of % . The column vector thresh
gives a threshold of importance Yyef (i-€, Yrot(?) With |yref(i)| < thresh(i) is considered not
important). The column fac is working storage. On the first call, we assign fac to [|. This
does not change the returned value between calls. The matrix S is a non-empty sparse matrix
of zeros and ones. A value of 0 for S(7, j) means that element j of the vector f(¢,vy) does not
depend on element i of vector y.

We compute eigenvalues using MATLAB’s built-in eig function on the Jacobian matrix,
eigenvalues(i + 1,:) = eig(jac).

end for

Step 3: Scaling the eigenvalues. We scale each eigenvalue to the nearest boundary of the stability region.

1.

The stability region is a set of values of z = AAt such that |R(z)| < 1. We are trying to bring
the value of AAt to the boundary of the stability region of the time integration method because

this is the largest stable time step. We scale each eigenvalue \;, i = 1,2,...,mn*, where n* =

(thth + 1) is the number of steps taken, computed from Step 2 to the boundary of stability

region using the formula, At; =

/z\—f ,7=1,2,...,n (n is the number of numerical roots of (3.17))

used for plotting the boundary of the stability region). We use the following procedure to get

stable time steps by bringing the eigenvalues to the nearest boundary of the stability region:

a. Find the nearest point. We use MATLAB’s built-in dsearchn function to find the nearest
point of the eigenvalue to boundary values of the stability region. The dsearchn(boundary

values of the stability region, \;) gives the indices of the nearest point.

b. Determine the stable step size. We get the stable step size by scaling the eigenvalues
to the nearest boundary; see Figure |3.4]

| The nearest point on the boundary to \;

At; N

(3.18)
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The nearest point on the boundary to A;

A;

Shortest distance

Figure 3.4: The figure shows the shortest distance between the eigenvalue and the boundary values

of the stability region of the time integration method.

2. The minimum of stable time steps computed from equation (3.18) gives us the theoretical largest

stable stepsize. The theoretical largest stepsize is

Atpmax = min(At;), i=1,2,...,mn". (3.19)

3.2.1 Measuring the accuracy

In this subsection, we are interested in measuring the accuracy of the numerical solution. In this thesis, we

use the following accuracy measurement, which is called MRMS error [41]:

N ~ 2
1 Ui — Yi
MRMS], == ,| = E , 3.20

where y; is the numerical solution and g; is the reference solution to y; at time point ¢ and N is the number
of solution points. The [MRMS], measure is based on a combination of relative error and absolute error.
This error norm gives more satisfactory results than the Relative Root Mean Squared (RRMS) error [41]. We
used an [MRMS],, of 5% as acceptable for the cardiac cell model simulation and the monodomain simulation,

The procedure used to an acceptable [MRMS], is summarized in the following steps:

Step 1: Reference solution: We generate a reference solution by using a MATLAB’s built-in odel5s function
and lowering the error tolerances for successive approximations until two approximations are identical

for at least ten significant digits at 100 equally spaced output points in time.
Step 2: Numerical solution: Using the theoretical largest stepsize (Atmax ), we generate a numerical solution.

Step 3: Interpolation of the numerical solution: Using linear interpolation, we construct 100 new data

points from the numerical solution.
Step 4: Calculate MRMS: We calculate [MRMS], by using equation ({3.20).

Step 5: Checking the accuracy: If the [MRMS], is less than or equal to 0.05, then we have achieved an
acceptable [MRMS],.
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Step 6:

Step 7:

Extrapolation: If the [MRMS], greater than 0.05, then we scale the At,,.x by using extrapolation:
1

0.05
Atmaxyew = Abmax < ] )p , pis the order of time integration method.
v

[MRMS

Repeats steps: Repeat Step 2 to Step 6 until we satisfy Step 5.

3.3 Experimental largest stepsize

In this section, we present a method to find the experimental largest stepsize of a time integration method

to solve a given system ODEs to within a specified [MRMS],.

The procedure used to find the experimental largest stepsize is summarized in the following steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Reference solution: We generate a reference solution by using a MATLAB’s built-in odel5s function
and lowering the error tolerances for successive approximations until two approximations are identical

for at least ten significant digits at 100 equally spaced output points in time.

Starting time step: We use the theoretical largest stepsize as a starting time step to compute the

experimental largest stepsize.

Tune time step: The time step value is incremented or decremented until the [MRMS], tolerance is
satisfied. If the time step value has dj digits before the decimal point and d digits after the decimal
point (say 0.ajas ... aq), then the time step is changed by 10~¢ (0.00...1,). If the [MRMS], is greater
than 0.05, we decrement the time step value by 10~¢. If the [MRMS], is less than 0.05, we increment
the time step by 10~¢. This gives us a new time step value of (0.aas ... (aq—1)) or (0.a1as ... (aqg+1))
and using this time step, we do one simulation and check the accuracy. If the accuracy is satisfied, we

are done. If not, we repeat the process by decrementing or incrementing the new time step.
Numerical solution: Using a given time step, we generate a numerical solution.

Interpolation of the numerical solution: Using linear interpolation, we construct 100 new data

points from the numerical solution.

Calculate MRMS: We calculate [MRMS], by using the linear interpolation of the numerical solution

and reference solution.

Experimental largest stepsize:

if the [MRMS], is equal to 0.05 then
this gives us the experimental largest stepsize such that [MRMS], equal to 0.05.
else if the [MRMS], is less than 0.05 then
i.  the time step is incremented as described in Step 3. We increment the time step to check if

there is a larger stable time step with less than 0.05 [MRMS],.
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ii.  Using the new time step, repeat Step 4 to Step 6 to check MRMS error greater than

0.05.

if the MRMS error is less than 0.05 then

we increment the time step as described in Step 3 and repeat Step 4 to Step 6.

end if

else

i.  The time step is decremented as described in Step 3. We decrement the time step to check

if there is a smaller time step with less than 0.05 [MRMS],.

ii.  Using the new time step, repeat Step 4 to Step 6 to check the [MRMS], less than 0.05.

if the [MRMS], is greater than 0.05 then

we decrement time step as described in Step 3 and repeat Step 4 to Step 6.

end if

this new time step is the experimental largest stepsize such that [MRMS], is less than 0.05.

end if

3.4 Fully discrete first-order Godunov operator-splitting method

for the monodomain model

The monodomain model consists of systems of non-linear ODEs of equation (2.5a)) coupled with a PDE

equation ([2.5b)). Solving this model numerically is a daunting task because of its complexity. Using the

operator splitting method, this complex system of the model can be split into two smaller parts that can be

easier to solve. There are operator splitting methods higher than order two, but they need negative time

stepsizes [70]. These time stepsizes may lead to instability for operator splitting methods [55]. For this

thesis, we apply a first-order operator splitting method called Godunov splitting. This method solves the

monodomain PDE and the coupled ODE model into the two steps [63]:

1. Using the initial conditions v, and s,, solve the system of ODEs arising from the cell models for

t € [tn,tn + At] to obtain v

2. Solve the PDE, using v

1 .
n+1-*

& s, (3.21a)
ov 1
a = —CimIz'on(S, v, t) (321}3)

as the initial condition, for ¢ € [t,,t, + At] and the boundary conditions
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n - (M;Vv) =0, to obtain v, 41:

i . 3.22
XCme ot 1—|—Av (M[V’U), ( )

3.4.1 Spatial discretization

In this subsection, we semi-discretize in space, using the finite element method.
The meshes (g < x1,...,< zx) is quasi uniform if there exists a number C' > 0, independent of
h = #5G* and i such that
h .
h—i <C,as N — oo, wherei =1,2,...,N, and h; = x; — x;_1.

We first define the L2(Q2) space over the open and bounded domain 2 as follows:
Ly(Q) = {w : /Qw(X)w(X) dX < oo} .
The Lo inner product over the domain €2 is defined as follows:
(w,u) = /Qw(X)u(X) dX, Vw,u € Ly(Q).
The Sobolev space H'() is defined as follows:
HY Q) ={w € Ly(Q) : Vw € Ly(Q)},

and the variational formulation of the problem (3.22) is defined as follows: find v(z,t) € H*, for each t, such
that

v b |
<Xcmeataw> = <MIVU, W\V’LU>, Yw e H".

Finite element method

We use a continuous, piecewise-linear finite element over a quasi-uniform mesh of Q, so v, : [0,7] — K

satisfies
e 20 A v (MY Vuw € K (3.23)
me o, W)=(7 7 7V" Up),W ), w ) .
Xme 5y T+ A rYen .
where, Kj, = {u € H*(Q) : u|; € polynomial of degree < K}. This K}, space is spanned by basis functions
®,,i=0,1,2,..., N, + 1, where N, is the total number of interior nodes, defined as follows:
T—T;_1
e TE[zic1,@i],
D, (x) = ai_ijll__;i, x € x4, ig1],
0, otherwise,
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=Ly € [xg, 1]
Do(a) = ¢ o
0, otherwise.

and,

LT—TN,

TNy+1—TN,
PN, +1(z) = I
0, otherwise.

, T € [:L'Nm’me-i-l]a

The one-dimensional, two-dimensional, and three-dimensional semi-discrete schemes for the equation (3.23)
given as follows:

1. In one dimension, we write the v, for each fixed ¢, of the basis functions as follows:
Na+1

vp(z,t) = Z v; (1)@ (),

i=0
where {®; }N =+1 o basis for K}, where N, is the total number of interior nodes. We insert this basis

function into equation (3.23) and choose w = ®; to find the following equivalent equation

Ny+1 Ng+1
6’01 - - d‘I)Z A d‘I)j .
XC’me E <¢)1,(b]> = — E Uz(t)<M] ( dr ) ,m (d(p) >7 fOI'j _07177NI+1 (324)

=0

Define one vector and two matrices v, A,, and Ay, as follows:

dd; A dd;
v = (vi)(N,+2)x1, [Azlij = <‘I’i,‘1"> . ALl = <M1 ( ) , — (j) > .
(o ' ') (Nas2)x (N +2) ! dr ) 1+A N\ dx ) [ (n, 42)x(Nat2)

Therefore, equation (3.24) becomes

ov

XCmeiAm = *'U(t)AIT,- (325)
ot
2. In two dimensions, we write the vy, for each fixed ¢, of the basis functions as follows:
Ny+1 N, +1
@pt)= > Y vy Ou()oily),
=0 75=0

where {®;}¥«"! and {¢]}N v basis for K, where N, and N, is the total number of interior nodes in
z-direction and y-direction. We insert this basis function into equation (3 and choose w = ®;¢;, to

find the following equivalent equation

Ny+1 N, +1 Ny+1N,.+1
N o ad; A [dD,
XCme : 8tJ< ]¢jv®l¢k> : : vi,j(t)<MI ( ) ¢j7 1 +>\ ( )¢k>
=0 j=0 =0 j=0
Ny+1N,+1
: 3.26
= = dy ) T Uy

forl=0,1,...,Ny+1and k=0,1,...,N, + 1.
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Define one vector and four matrices v, A,, Ay, , Ay, and Ay, as follows:

dd; A dd;
v= (vi’j)((N +2)(N,y+2)) x17 [Azli = <q)i’q>l> o Al = <MI ( dz > 14\ <d$> >
‘ Y (Nz+2)x(Nz+2) (Na+2)x (Ny42

dé:\ A [dé
[A]»k=<¢~,¢>k> , [A1y1»k=<M1( ) ( )> .
Y U 2k (Y, 42) ’ dy ) 1+ AN Y /) [ (ny12)x(N,+2)

Therefore, equation (3.26]) becomes

v
ot

where ® denotes the Kronecker product of two matrices [0].

XCme—- (Az @ Ay) = —v(t) (A, ® Ay) —v(t) (A, @ Ap) . (3.27)

. In three dimensions, we write the vy, for each fixed t, of the basis functions as follows:

N.+1Ny+1N,+1

(‘ryazt Z Z ZU,JZ ¢2() ()

i=0 j=0 (=0

where {®;}Nt, {qu}j-vz”oﬂ, and {pe}p7," basis for Kj where N,, Ny, and N, is the total number

of interior nodes in the z-direction, y-direction, and z-direction. We insert this basis function into

equation (3.23) and choose w = ®;¢xp, to find the following equivalent equation

N.+1Ny+1N_+1 N.+1Ny+1N_.+1
. ov d A d
XCme 5’“ <‘bi¢j¢z7‘bz¢k<ﬁp> =- i je(t )<M1 ( ¢j> ®jpe, 1 ( (bl) ¢k<ﬂp>
. , . ; + A
=0 J=0 ¢=0 =0 =0 +¢=0
N.41Ny+1 N, +1
do; A doy,
— Ui,j,é(t)<MIq)i < ) v, —P; (> 90p>
i=0 j=0 ¢=0 dy 1+A dy
No+1Ny+1 N +1
dpy A d
. Vi jn(t )<M1q’z¢>g (@) Tr /\‘I)Nﬁk ( (Pp> >,
i=0 j=0 ¢=0

forl=0,1,...,N, +1, k=0,1,...,Ny + 1, and

p=0,1,...,N, + 1.
(3.28)

Define one vector and six matrices vy, Az, Ar,, Ay, A, A, and Ay, as follows:

v = (Um}n) ((N;n+2)(Ny+2)(NZ+2)) x1’

dd; A [dd
[Az]i = <(I)i;q)l> . [Arla <M1 ( yi ) TN <dl> > ,
(No+2)x (Nat2) x + T ) ] (Na+2)x (Nat2)
do A doy,
[A ]k: <¢a¢k> ) [Aly]‘ <MI( j)a (>> )
Y U (2 12) " dy ) 1+ANAY ) [ (v, 42)x (N, +2)

don A dep,
[A ]n = <907L7<)0 > ) [Alz}n = <MI ( ) s — <) > .
o ' (N.+2)x(N-+2) 3 dz L+A N\ dz (N.+2)x (N> +2)
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Therefore, equation (3.28]) becomes

ov
a7 (A, @Ay, @A) =—v(t) (A, ® Ay ® A.) —v(t) (A, ® A, ® A.)
(3.29)

—v(t) (A, ® A, ® AL).

XCm

3.4.2 FE method

To define the one-dimensional, two-dimensional, and three-dimensional fully discrete scheme of the first-order
Godunov operator-splitting method for the monodomain model of equations and , we discretize
equation and the semi-discretization of (3.25)), (3.27)), and ([3.29) using the FE method defined by the
Butcher tableau in Table 311

3.4.3 RKC(2,1) method

To define the one-dimensional, two-dimensional, and three-dimensional fully discrete scheme of the first-order
Godunov operator-splitting method for the monodomain model of equations and , we discretize
equation and the semi-discretization of (3.25)), (3.27), and (3.29) using the RKC(2,1) method defined
by the Butcher tableau in Table [3.6

3.4.4 RKC(3,1) scheme

To define the one-dimensional, two-dimensional, and three-dimensional fully discrete scheme of the first-order
Godunov operator-splitting method for the monodomain model of equations and , we discretize
equation and the semi-discretizzation of (3.25)), (3.27), and (3.29) using the RKC(3, 1) method defined
by the Butcher tableau in Table

3.4.5 Richardson Extrapolation

We generate a reference solution for equations (3.21) and (3.22) by using Richardson extrapolation [12].
Using this method, we generate high-order accuracy results of monodomain problems using the RKC(3, 1)
method. The procedure used to generate the reference solution of the monodomain problem is summarized

in the following steps:

step 1:  Numerical solution of half step size : First, we solve the monodomain problems using the

RKC(3,1) method in a step-doubling manner.
R(i,0) = v(X,At/2"), i=1,2,...,r, wherer is the number of time step refinements.

Each time we increase the accuracy of the numerical solution by one order, at the cost of one new

R(i,0) computation with a smaller At.
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step 2: Extrapolation: We use the extrapolation formula to improve the first-order numerical solution to
more accurate solutions. For each fixed j (j = 1,2,...,r), we computed

2R(i,j—1)—R(i—1,57—1)

R(i, j) = g i

=1,2,...,1.

3.4.6 The theoretical largest stepsize

In this subsection, we present a method to find the theoretical largest stepsize of a time integration method
to solve the monodomain problem within a specified MRMS error.

The procedure used to find the theoretical largest stepsize is summarized in the following steps:

Step 1: Compute eigenvalues. We computed the eigenvalues from cell model consists of systems of non-linear

ODEs of equation (3.21]) and a PDE equation ([3.22)).

1. Reference solution. We generate a reference solution for equations (3.21) and (3.22) by using
Richardson extrapolation [I2] method.

2. Compute eigenvalues from cell model. The Jacobian matrix is computed from the right-
hand side of the non-linear systems of ODEs of equation using the reference solution and
MATLAB’s built-in numjac function over the time integration interval. Then, the numerical
eigenvalues are computed using MATLAB’s built-in eig function on the Jacobian matrix. The
Jacobians of the coupled systems have size 2(N, + 2), 2(N, + 2)(N, + 2), and 2(N, + 2)(N, +
2)(N. + 2) for the 1D monodomain problem, 2D monodomain problem, and 3D monodomain

problem, respectively.

3. Compute the eigenvalues from PDE. We implemented the finite element method to discretize
the PDE equation (3.22)) in space to obtain the system of ODEs. These system ODEs were
rearranged to put into the matrix on the right-hand side. Then, the eigenvalues are computed

using MATLAB’s built-in eig function on the matrix.

Step 2: We implemented the techniques of Step 1 and Step 3 presented on Section to get the theoretical

largest step stepsize.

3.4.7 The experimental largest stepsize

In this subsection, we will present a method to find the experimental largest stepsize of a time integration
method to of the monodomain problem.

The procedure used to find the experimental largest stepsize is summarized in the following steps:

Step 1: Reference solution: We generate a reference solution for equations (3.21)) and (3.22) by using Richard-

son extrapolation [12].
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

a. For the monodomain simulation, the reference solution converged to D = 4 decimal places of
accuracy at N points in space and time. We used N, = 21 (2 = [0,1]), N, = N, =21 (2 =
[0,1] x [0,1]), and N, = N, = N, = 21 (@ = [0,1] x [0,1] x [0,1]) equally spaced points in
the spatial direction for one-dimensional problems, two-dimensional problems, three-dimensional
problems respectively. Also, we used N; = 201 (T' = [0,20]) equally spaced points in the time

direction.

b. The reference solution of the spiral wave problem converged to D = 3 decimal places of accuracy
at NyN,N; points in space and time. We used N, = N, = 51 ( = [0,2.5] x [0,2.5]) equally
spaced points in space and N; = 20001 (T = [0,1000]) equally spaced points in time. We were

unable to compute a reference solution for the scroll wave simulation.

Starting time stepsize: We use the theoretical largest stepsize as a starting time stepsize to compute

the experimental largest stepsize.

Tune time step: The time step value is incremented or decremented until the [MRMS], tolerance is
satisfied. If the time step value has dj. digits before the decimal point and d digits after the decimal
point (say 0.ajas .. .aq), then the time step is changed by 10~ (0.00...1,). If the [MRMS], is greater
than 0.05, we decrement the time step value by 1o~¢. If the [MRMS], is less than 0.05, we increment
the time step by 10~%. This gives us a new time step value of (0.ajas . ..(ag—1)) or (0.a1az ... (aqg+1))
and using this time step, we do one simulation and check the accuracy. If the accuracy is satisfied, we

are done. If not, we repeat the process by decrementing or incrementing the new time step.
Numerical solution: Using a given time step, we generate a numerical solution.

Interpolation of the numerical solution: Using linear interpolation, we construct new data points

from the numerical solution.

a. For the monodomain simulation, we construct N, x Ny = 21 x 201, N x Ny x Ny = 21 x 21 x 201,
and Ny x Ny x N, x Ny =21 x 21 x 21 x 201 new data points from the numerical solution using
MATLAB’s built-in interp2 function, interp8 function, and interpn function for one-dimensional

problems, two-dimensional problems, three-dimensional problems respectively.

b. For spiral simulation, we construct N, x N, x Ny = 51 x 51 x 20001 new data points from the

numerical solution using MATLAB’s built-in interpd function for two-dimensional spiral problem.

Calculate MRMS: We calculate [MRMS], by using the linear interpolation of the numerical solution

and reference solution.

Experimental largest stepsize:

if the [MRMS], is equal to 0.05 then
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this gives us the experimental largest stepsize such that [MRMS], equal to 0.05.
else if the [MRMS], is less than 0.05 then
i.  the time step is incremented as described in Step 3. We increment the time step to check if

there is a larger stable time step with less than 0.05 [MRMS],

e
s

Using the new time step, repeat Step 4 to Step 6 to check [MRMS], greater than 0.05.

if the [MRMS], is less than 0.05 then
we increment the time step as described in Step 3 and repeat Step 4 to Step 6.
end if

else
i.  The time step is decremented as described in Step 3. We decrement the time step to check

if there is a smaller time step with less than 0.05 [MRMS],.

ii.  Using the new time step, repeat Step 4 to Step 6 to check the [MRMS], less than 0.05.

if the [MRMS], error is greater than 0.05 then
we decrement time step as described in Step 3 and repeat Step 4 to Step 6.
end if
this new time step is the experimental largest stepsize such that [MRMS], is less than 0.05.

end if
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4 Numerical Experiments

In this chapter, we provide the numerical experiments that should enable us to have a better understanding
of the theories presented in Chapter 2] and Chapter

In Section we present thirty-seven cardiac cell models and use them to examine the time integration
methods. In Section [£:3] we present results for the numerical solutions of all thirty-seven cardiac cell models.
We used all the time integration methods presented in Section [3] to solve these models. We compare these
methods based on their theoretical largest stepsize, experimental largest stepsize, CPU time, and [MRMS],,.
In Section [£:4] we present results for the numerical solutions of the monodomain model coupled with the
FHN model problem presented in Section [3:4f We used all the first-order time integration methods pre-
sented Section [3| to solve this model. We compare these methods based on their theoretical largest stepsize,
experimental largest stepsize, CPU time, and [MRMS],. In Section we present the simulation of the
monodomain model coupled with the modified FHN model using the theoretical largest stepsizes of all the
first-order time integration presented Section[3] We present the spiral and scroll waves propagation snapshots

captured in the simulation of the monodomain model coupled with the modified FHN model.

4.1 Machine used

The simulations are implemented on a laptop with an Intel(R) Pentium(R) 2 core(s) 1.90GHz and 4 GB
RAM running 64-bit Windows 10.

4.2 Cardiac cell models

In this thesis, we focus on thirty-seven cardiac cell models. These models are obtained from the CellML

model repository [2] and presented in Table

4.3 Cell model simulation

In this section, we examine the time integration methods applied to the thirty-seven cardiac cell models. We
compare these methods based on their theoretical largest stepsizes, experimental largest stepsizes, MRMS
errors, and CPU times. To compute CPU time, we solved the cardiac cell model fifty times using the time
integration method and recorded each running times. The minimum of all recorded running times gives us

the CPU time to solve the cardiac cell model.
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Table 4.1: Details on 37 validated cardiac cell models [40]. Models labeled with an asterisk (*) indicate
three cell variants (endocardial cell, epicardial cell, and M-cell). The model referred as Winslow31 is
a reduced model with 31 variables compared to its original form.

Model Reference  Number of variables Description

Beeler—Reuter (1977) [10] 8 Mammalian ventricular model
Bondarenko et al. (2004) i1 41 Mouse ventricular model
Courtemanche et al. (1998) [13] 21 Human atrial model

Demir et al. (1994) [17) 27 Rabbit sinoatrial node model
Demir et al. (1999) [16] 29 Rabbit sinoatrial node model
DiFrancesco-Noble (1985) [18] 16 Mammal Purkinje fibre model
Dokos et al. (1996) [19] 18 Rabbit sinoatrial node model
Faber-Rudy (2000) [21] 19 Guinea pig ventricular model
FitzHugh-Nagumo (1961) [22] [44) 2 Nerve membrane model

Fox et al. (2002) [24] 13 Canine ventricular model
Hilgemann—Noble (1987) 27] 15 Rabbit atrial model
Hund-Rudy (2004) [28] 29 Canine ventricular model
Jafri et al. (1998) [31] 31 Guinea pig ventricular model
Luo-Rudy (1991) [36] 8 Guinea pig ventricular model
Maleckar et al. (2008) [39] 30 Human atrial model
McAllister et al. (1975) [42] 10 Canine Purkinje fibre model
Noble (1962) [46] 4 Mammal Purkinje fibre model
Noble-Noble (1984) [47] 15 Rabbit sinoatrial node model
Noble et al. (1991) [48] 17 Guinea pig ventricular model
Noble et al. (1998) [49] 22 Guinea pig ventricular model
Nygren et al. (1998) [50] 29 Human atrial model

Pandit et al. (2001) [51] 26 Rat left-ventricular model
Pandit et al. (2003) [52] 26 Rat left-ventricular model
Puglisi-Bers (2001) B3] 17 Rabbit ventricular model
Sakmann et al. (2000)* 4] 21 Guinea pig ventricular model
Stewart et al. (2009) [62] 20 Human Purkinje fibre model
Ten Tusscher et al. (2004)* [64] 17 Human ventricular model

Ten Tusscher et al. (2006)* [65] 19 Human ventricular model
Wang—Sobie (2008) 35 Neonatal mouse ventricular model
Winslow31 (1999) [68] 31 Canine ventricular model
Zhang et al. (2000) [T1] 15 Rabbit sinoatrial node model
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4.3.1 Theoretical results

We implemented the time integration methods, the accuracy measure of the numerical solution, and the

theoretical largest stepsize techniques from the Chapter [3| on cardiac cell models to produce the theoretical

largest time steps, [MRMS],,, and CPU time. These results are presented in Table We now present some

analysis based on the results of Table [£.2} see Table [A]] for complete results.

1.

If the theoretical largest stepsize also produces a sufficiently accurate solution, FE will be the most
efficient method because it is less expensive per step than any method with more than one stage. The
FE method outperforms the RKC(2,1), RKC(3,1), SSP(3,3), SSP(4, 3), EMP, and RK4 methods on
all thirty-seven cardiac cell models. The additional stages of the RKC(2,1), RKC(3,1), SSP(3,3),
SSP(4,3), EMP, and RK4 methods add extra costs for each step compared to the FE method.

. After the FE method, RKC(2,1) method is the most efficient method, outperforming the RKC(3,1),

SSP(3,3), SSP(4, 3), and RK4 methods on all 37 cardiac cell models. The RKC(2, 1) method outper-
forms the EMP method on thirty-six cardiac cell models. Both the EMP and RKC(2, 1) methods are
two-stage methods, but the improvements of the time step sizes compensate for the extra costs it takes
per step of the RKC(2, 1) method. However, the EMP method outperformed the RKC(2,1) method on
the FHN model. This is because the larger theoretical stepsize of the EMP method produces a more
accurate solution than the RKC(2,1) method.

. The RKC(3,1) method outperforms the SSP(3,3), SSP(4, 3), EMP, and RK4 methods on twenty-eight

cardiac cell models. The RKC(3,1) method outperforms the EMP method on twenty-nine cardiac cell
models. This was because of the improvements of the time stepsizes compensate for the extra cost
it takes per step of the RKC(3,1) method. However, the EMP method outperformed the RKC(3, 1)
method on eight cardiac cell models. This is because the larger theoretical stepsize of the EMP method

produces a more accurate solution than the RKC(3, 1) method.

The SSP(4, 3) method outperforms the SSP(3,3) on twenty-five cardiac cell models. This was because
of the improvements of the time step sizes compensate for the extra costs it takes per step of the
SSP(4,3) methods. However, the SSP(3,3) method outperformed the SSP(4,3) method on twelve
cardiac cell models. This is because the larger theoretical stepsize of the SSP(3,3) method produces a

more accurate solution than the SSP(4, 3) method.

. Figure shows that the maximum of stable stepsizes gives us the theoretical largest stepsize. These

stable stepsizes are computed by scaling all calculated time-sampled eigenvalues with non-positive real

parts for the FHN cell model to lie inside the stability region of the FE method.

From section we calculate the stable stepsizes by scaling each eigenvalue to the boundary of
the stability region of the time integration method. The minimum of all stable stepsizes gives us the

largest theoretical stepsize. This largest theoretical stepsize brings all eigenvalues with a non-positive
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real part inside and on the stability region of the time integration method, and the numerical solution
does not diverge. However, for the FHN model, the maximum of all stable stepsizes keep all eigenvalue
inside the stability region of the FE method (see Figure because all eigenvalues with non-positive
real parts lie inside the stability region of the FE method. Therefore, we use the following steps to

determine the largest theoretical stepsize:

Step 1: First, we must check whether or not all eigenvalues with non-positive real parts computed from
the cell model lie inside the stability region of the time integration method. This is because the

stability region of each time integration method is not the same.

Step 2: We calculate the stable stepsizes by scaling all eigenvalues with non-positive real parts computed

from the cell model to the boundary of the stability region of the time integration method.

Step 3: The maximum scaling factor that brings all eigenvalues with a non-positive real part inside and

on the stability region of the time integration method is the theoretical largest stepsize.
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Figure 4.1: Subplot 1 shows all the computed time-sampled eigenvalues spanning over the integration

interval for the FHN model. Subplot 2 shows all eigenvalues with non-positive real parts because we

do not take eigenvalue with positive real parts for finding the theoretical largest stepsizes. Subplot

3 shows finding a bounding polygon of those eigenvalues. Subplot 4 shows the extreme values of the

eigenvalues with non-positive real parts. Subplot 5 shows the maximum of stepsizes (the value of the

maximum of all stepsizes is 9.9972e—-01) times all extreme eigenvalues (Acztreme) lie inside the stability

region of the FE method (it means, |1 + max(At)Aeztreme| < 1).
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Table 4.2: Aty represents the theoretical largest time step and CPU time represents the minimum

of fifty times running of the FE method with less than 5% [MRMS],.

Model FE

Atineo (ms) | CPU time (s) | [MRMS],
Beeler—Reuler (1977) 2.4388e-02 1.5517e-01 4.8211e-03
Bondarenko et al. (2004) 2.1068e-04 1.3519e+00 | 1.1229¢-03
Courtemanche et al. (1998) 1.5517e-02 4.7248¢+00 | 4.5076e-03
Demir et al. (1994) 5.2293e-05 1.8012e-02 | 1.7997e-02
Demir et al. (1999) 5.2293e-05 1.6240e-02 | 2.1097e-02
DiFrancesco-Noble (1985) 7.6176e-05 1.3916e-01 | 8.7797e-03
Dokos et al. (1996) 6.6838¢-05 8.0463e-02 | 9.6235e-03
FitzHugh-Nagumo (1961) 2.7217¢-03 4.7620e-03 5.0000e-02
Faber-Rudy (2000) 1.0874e-02 3.5192e-01 1.6327e-02
Fox et al. (2002) 4.5596e-03 3.3172e-01 5.3733e-03
Hilgemann-Noble (1987) 6.1571e-05 5.6775e-02 | 4.3602¢-03
Hund-Rudy (2004) 7.7965e¢-03 1.9462e-01 4.8996e-02
Jafri et al. (1998) 4.3300e-04 5.3558e+00 | 8.0899e-04
Luo-Rudy (1991) 1.3287e-02 9.1163e-02 5.4646e-03
Maleckar et al. (2009) 4.8053e-05 8.7255e-02 1.3231e-03
McAllister et al. (1975) 1.0934e-02 1.2491e-01 2.1598e-03
Noble (1962) 9.4880e-05 4.1900e-03 | 1.2260e-02
Noble-Noble (1984) 1.6059e-04 4.9362¢-02 | 2.9266e-02
Noble et al. (1991) 5.1412e-05 1.0832e-01 | 1.7163e-03
Noble et al. (1998) 5.5473e-05 9.7216e-02 | 6.1817¢-03
Nygren et al. (1998) 4.9589¢-05 2.4881e-01 3.0497e-03
Pandit et al. (2001)) 2.8897e-07 3.3149e+00 | 1.2442e-04
Pandit et al. (2003) 2.6523e-08 3.3880e+01 | 6.9372e-03
PuglisiBers 1.0454e-02 7.0989e-01 2.9473e-02
Sakmann et al. (2000) — Endocardial 6.7440e-05 6.5490e-02 | 3.6162e-02
Sakmann et al. (2000) — Epicardial 6.7000e-05 5.9875e-02 | 4.1447¢-02
Sakmann et al. (2000) — M-cell 6.7049e-05 1.2193e-01 | 3.5619e-03
Stewart et al. (2009) 1.4459e-02 4.4209¢-01 2.7666e-03
Ten Tusscher et al. (2004) ~Endocardial | 1.7057e-03 1.6552e+00 | 4.3223e-04
Ten Tusscher et al. (2006) ~Endocardial | 1.5900e-03 7.5807e-01 | 9.8490e-04
Ten Tusscher et al. (2004) —Epicardial 1.7055e-03 1.4744e4+00 | 3.8554e-04
Ten Tusscher et al. (2006) —Epicardial 2.1191e-03 6.0086e-01 | 5.3524e-04
Ten Tusscher et al. (2004) —M-cell 1.7115e-03 1.1081e4+00 | 2.0687e-04
Ten Tusscher et al. (2006) —M-cell 2.0379e-03 9.6348e-01 5.1864e-04
Wang—Sobie (2008) 1.6311e-02 3.3048e-01 7.1810e-03
Winslow et al. (1999) (31 eqn) 1.0400e-04 1.3163e+01 | 1.4362¢-03
Zhang et al. (2000) 9.0103e-05 6.1924e-02 4.9013e-03
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4.3.2 Experimental results

We implemented the time integration methods and the experimental largest stepsize techniques from the
Chapter [3| on cardiac cell models to produce the experimental largest stepsize, [MRMS],, and CPU time.
These results are presented in Table We now present some analysis based on the results of Table see
Table for complete results.

1. The FE method outperforms the RKC(2, 1), RKC(3, 1), SSP(3, 3), SSP(4, 3), EMP, and RK4 methods
on all thirty-seven cardiac cell models. The additional stages of the RKC(2,1), RKC(3,1), SSP(3,3),
SSP(4, 3), EMP, and RK4 methods add extra costs for each step compared to the FE method. Therefore,
the FE method becomes the most efficient method.

2. After the FE method, RKC(2,1) method is the most efficient method because it outperforms the
RKC(3,1), SSP(3,3), SSP(4, 3), EMP, and RK4 methods on all thirty-seven cardiac cell models. The
additional stages of the RKC(3,1), SSP(3,3), SSP(4, 3), and RK4 methods bring extra costs for each
step than the RKC(2,1) method. Both the EMP and RKC(2,1) methods have two stages, but the

improvements of the time step sizes compensate for the extra cost per step of the RKC(2,1) method.

3. The RKC(3,1) method outperforms the SSP(3,3), SSP(4,3), EMP, and RK4 methods on all thirty-
seven cardiac cell models. This was because of improvements of the time step sizes compensate for the

extra cost per step of the RKC(3,1) method.

4. The SSP(4,3) method outperforms the SSP(3,3) on thirty-three cardiac cell models. This is because
it is able to produce a sufficiently accurate solution with a stepsize that is large enough to compensate
for the increase in cost per step. However, the SSP(3,3) method outperform the SSP(4, 3) method on
three cardiac cell models. This is because SSP(4, 3) cannot produce a sufficiently accurate solution with

a stepsize that is large enough to compensate for the increase in cost per step.

4.3.3 A comparison of theoretical largest stepsize and experimental largest step-

size of cardiac cell models

In this subsection, we compare the theoretical largest stepsize presented in Table (see Table for
complete results) and the experimental largest stepsize results presented in Table (see Table for
complete results). To compare, we used relative accuracy of the theoretical largest stepsize to measure how
close the theoretical largest stepsize to the experimental largest step size. The formula of relative accuracy

of the theoretical largest stepsize is given by

At
Relative accuracy of the theoretical largest stepsize = ﬁheo x 100%.
exp
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Table 4.3: Aty represents the experimental largest time step and CPU time represents the minimum
of fifty times running of the FE method with less than 5% [MRMS],.

Model FE

Ateyp (ms) | CPU time (s) | [MRMS],
Beeler-Reuler (1977) 2.5298¢-02 | 2.4791e-02 | 5.2120e-03
Bondarenko et al. (2004) 2.1300e-04 | 2.4416e+00 | 1.1353e-03
Courtemanche et al. (1998) 1.9400e-02 | 3.0747e-01 | 6.2901e-03
Demir et al. (1994) 5.9599¢e-05 1.6659e-02 2.2081e-02
Demir et al. (1999) 5.9607e-05 1.9908e-02 2.4060e-02
DiFrancesco-Noble (1985) 7.7276e-05 | 8.3383e-02 | 4.5145e-02
Dokos et al. (1996) 7.0200e-05 | 8.0562e-02 | 2.2554e—02
FitzHugh-Nagumo (1961) 2.7200e-03 | 7.6938e-01 | 4.9968e-02
Faber-Rudy (2000) 1.1294e-02 1.3211e-01 1.7008e-02
Fox et al. (2002) 4.6200e-03 | 3.5088¢-01 | 5.4455e-03
Hilgemann—Noble (1987) 6.2500e-05 8.4361e-02 | 4.7582e-03
Hund-Rudy (2004) 7.8874e-03 2.2220e-01 4.9939e-02
Jafri et al. (1998) 5.7600e-04 4.5764e+00 1.8154e-02
Luo-Rudy (1991) 1.3572e-02 8.5973e-02 5.6083e-03
Maleckar et al. (2009) 5.0200e-05 2.9673e-01 1.6159e-02
McAllister et al. (1975) 2.4700e-02 3.5631e-02 4.9527e-02
Noble (1962) 2.0228e-04 3.0909e-03 4.9586e-02
Noble-Noble (1984) 2.0400e-04 5.7262e-03 | 3.8972e-02
Noble et al. (1991) 5.1500e-05 1.8201e-02 1.6961e-03
Noble et al. (1998) 5.5600e-05 3.5936e-02 | 6.1962¢-03
Nygren et al. (1998) 5.3589e-05 | 7.7448e-02 | 3.0280e-02
Pandit et al. (2001) 2.9100e-07 5.3835e+4-00 1.2482e-04
Pandit et al. (2003) 2.6523e-08 | 3.6539¢+01 | 6.9372e-03
PuglisiBers 1.0884e-02 1.9327e-01 3.2953e-02
Sakmann et al. (2000) — Endocardial 6.9000e-05 | 5.2694e-01 | 3.7504e-02
Sakmann et al. (2000) — Epicardial 6.8000e-05 2.0159e-01 4.3111e-02
Sakmann et al. (2000) — M-cell 6.8600e-05 | 3.3911e-02 | 3.9258¢-03
Stewart et al. (2009) 1.5212e-02 4.1142e-01 4.9869e-02
Ten Tusscher et al. (2004) ~Endocardial | 1.7829¢-03 | 1.1957e+00 | 1.5526e-03
Ten Tusscher et al. (2006) ~Endocardial | 1.6200e-03 8.9863e-01 9.9918e-04
Ten Tusscher et al. (2004) ~Epicardial 1.7835e-03 | 1.1548e+00 | 1.5568e-03
Ten Tusscher et al. (2006) —Epicardial 2.1400e-03 | 8.6557e-01 | 5.3646e-04
Ten Tusscher et al. (2004) ~M-cell 1.7667e-03 | 9.0396e-01 | 4.3927e-04
Ten Tusscher et al. (2006) —M-cell 2.0619e-03 6.6438e-01 | 4.7968e-04
Wang—Sobie (2008) 1.6611e-02 8.4543e-02 8.4128e-03
Winslow et al. (1999) (31 eqn) 1.0700e-04 | 1.2650e+01 | 1.4777e-03
Zhang et al. (2000) 9.9925e-05 | 7.3992e-02 | 5.4361e-03
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The relative accuracy of the theoretical largest time step of the time integration methods for solving the
cardiac cell models presented in Table [4.4} see Table for complete results. We now present some analysis
based on the results of Table [4.4l

1. From Figure[£:2] the FE method has the highest relative accuracy of the theoretical largest stepsize for

only 2 cell models.

2. From Figure the SSP(4, 3) has the highest relative accuracy of the theoretical largest stepsize for
14 cell models.

3. From the Table (see Table for complete results), the 100 percent relative accuracy of the theo-
retical largest stepsize value shows that the experimental largest stepsize is the same as the theoretical
largest stepsize. This shows that in such cases the experimental largest stepsize can be achieved with

a one-time simulation using the theoretical largest stepsize.

4. From Figure the higher-order time integration methods are more accurate than the low-order ones

in predicting their experimental largest stepsize for solving the cardiac cell models.

EMP FE RK4 RKC(2,1) RKC(3,1) SSP(3,3) SSP(4,3)

Figure 4.2: The blue bar represents the number of the highest relative accuracy of the theoretical
largest stepsize of each time integration method out of 37 cardiac cell models. We compare each time
integration method based on the relative accuracy of the theoretical largest stepsize for predicting their

experimental largest stepsize for 37 cardiac cell models.
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Table 4.4: This table shows the relative accuracy of the theoretical time step to the experimental
time step of the FE method. Atye, represents the theoretical largest time step and Atey, represents

the experimental largest time step.

Model Apes x 100% of FE
Beeler-Reuler (1977) 96.40
Bondarenko et al. (2004) 98.91
Courtemanche et al. (1998) 79.99
Demir et al. (1994) 87.74
Demir et al. (1999) 87.74
DiFrancesco—Noble (1985) 98.58
Dokos et al. (1996) 95.21
FitzHugh-Nagumo (1961) 100.00
Faber-Rudy (2000) 96.28
Fox et al. (2002) 98.69
Hilgemann—Noble (1987) 98.51
Hund-Rudy (2004) 98.85
Jafri et al. (1998) 75.17
Luo—Rudy (1991) 97.90
Maleckar et al. (2009) 95.72
McAllister et al. (1975) 44.27
Noble (1962) 46.91
Noble—Noble (1984) 78.72
Noble et al. (1991) 99.83
Noble et al. (1998) 99.77
Nygren et al. (1998) 92.54
Pandit et al. (2001) 99.30
Pandit et al. (2003) 100.00
PuglisiBers 96.05
Sakmann et al. (2000) — Endocardial 97.74
Sakmann et al. (2000) — Epicardial 98.53
Sakmann et al. (2000) — M-cell 97.74
Stewart et al. (2009) 95.05
Ten Tusscher et al. (2004) ~Endocardial 95.67
Ten Tusscher et al. (2006) —Endocardial 98.15
Ten Tusscher et al. (2004) —Epicardial 95.63
Ten Tusscher et al. (2006) —Epicardial 99.02
Ten Tusscher et al. (2004) —M-cell 96.88
Ten Tusscher et al. (2006) —M-cell 98.84
Wang-Sobie (2008) 98.19
Winslow et al. (1999) (31 eqn) 39 97.20
Zhang et al. (2000) 90.17




4.4 Monodomain simulation

In this section, we examine the FE, the RKC(2,1), and the RKC(3,1) methods using the monodomain
model coupled with the FHN model. We compare these methods based on their theoretical largest stepsizes,
experimental largest stepsizes, CPU time, and [MRMS],.

4.4.1 One-dimensional experiment

The monodomain model was simulated in one dimension with the FHN model [22]. The model of FHN has

2 cellular state variables. The FHN model is

0s

5= f(t,v,s), (4.1a)
Ov 1

E = Tmlion(v,s>, (41b)

where f(t,v,s) = —k(v — Vrest)(s+ (v — Vthreshold)(v — Vpeak)) — Istim and I;,, (¢, v, s) = (v — Vrest) — bs.
The values of the parameters of the FHN model listed in Table

Table 4.5: Parameters of the FHN model.

Cne 1
k 0.00004
Vrest -85
Vthreshold =70
Vpeak 40
l 0.63
b 0.013
Istim If time > 0 and time < 0.5, then Istim = 80.
else Istim=0.

We implemented the FE, RKC(2,1), and RKC(3,1) methods presented in Subsection Subsec-
tion [3:4:3] Subsection [3.4:4] and the theories presented in Section [3.2] and Subsection [3.4.7 on the mon-
odomain problem coupled with systems of ODEs to produce the theoretical largest stepsizes,
the experimental largest stepsizes, and MRMS error. The initial conditions used on the domain [0, 1] are:

v(x,0) = sin(rz) and s(z,0) = sg, where sg is is the default resting state value for the FHN model.

From Table and Table the theoretical largest stepsize of the FE, RKC(2,1), and RKC(3,1)
methods are 99%, 97%, and 94% of their corresponding experimental largest stable time step sizes for solving
the monodomain model coupled with the FHN model. From these results, we conclude that the theoretical
method to find the theoretical largest stable stepsize is quite effective at avoiding trial-and-error to get the
experimental largest stepsize.

As we can see from Table and Table [1.6b] the RKC(3, 1) method outperforms the FE and RKC(3, 1)
methods. Also, RKC(2,1) method outperforms the FE method. These results were because of the improve-
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Table 4.6: Results of 1D monodomain model simulation.

Atiheo (ms) | [MRMS], | CPU time (s)
FE 2.4510e-02 | 6.0322¢-03 1.5506e-02
RKC(2,1) | 9.5691e-02 | 2.8909e-02 6.2357e-03
RKC(3,1) | 1.9702e-01 | 3.6950e-02 4.7593e-03

() Atgneo represents the theoretical largest stepsize used
to get the numerical solutions with less than 5% [MRMS],,
and the CPU time represents the minimum time running
of the FE, RKC(2,1), and RKC(3,1) methods for solving
the monodomain model coupled with the FHN model.

Atexp (ms) | [MRMS], | CPU time (s)
FE 2.4777e-02 | 4.9619¢-02 1.5476e-02
RKC(2,1) | 9.9115e-02 | 4.9951e-02 5.9370e-03
RKC(3,1) | 2.0999e-01 | 4.9999¢-02 4.4740e-03

(b) Atexp represents the experimental largest stepsize used to get the numerical
solutions with less than 5% [MRMS],, and the CPU time represents the mini-
mum time running of the FE, RKC(2,1), and RKC(3,1) methods for solving the
monodomain model coupled with the FHN model.

ments of the time step size through the multistage RKC(2,1) and RKC(3,1) methods. These multistage
methods extend the real stability domain with a length proportional to the square of their number of stages.
The time step size of RKC(2,1) and RKC(3,1) methods are 3.9 and 8.0 times the time step size of the FE
method respectively. The improvements of these time step sizes compensate for the extra costs taken per
step of RKC(2,1) and RKC(3,1) methods. From this, we conclude that RKC(2,1) and RKC(3,1) methods
obtain advantages over FE method. This in the future might lead us toward the real-time simulation of the

electrical simulation of the heart.

4.4.2 Two-dimensional experiment

The monodomain model was simulated in two dimensions with the FHN model [22]. We implemented the
FE, RKC(2,1), and RKC(3,1) methods presented in Subsection Subsection [3.4.3] Subsection and
the theories presented in Section and Subsection on the monodomain problem coupled with
systems of ODEs to produce the theoretical largest stepsizes, the experimental largest stepsizes, and
MRMS error. The initial conditions used on the domain [0,1] x [0, 1] are: v(z,y,0) = sin(7z)sin(7ry) and

s(z,y,0) = sg, where sg is is the default resting state value for the FHN model.

From Table and Table the theoretical largest stable time step size of the FE, RKC(2,1),

41



Table 4.7: Results of 2D monodomain model simulation.

Atiheo (ms) | [MRMS], | CPU time (s)

FE 1.2255e-02 | 1.2204e-03 2.1669e-01

RKC(2,1) | 4.7846e-02 | 1.0587e-02 9.4249e-02

RKC(3,1) | 1.0716e-01 | 1.5131e-02 6.4316e-02

(a) Atiheo represents the theoretical largest stepsize used to get the numerical
solutions with less than 5% [MRMS],, and the CPU time represents the mini-
mum time running of the FE, RKC(2, 1), and RKC(3,1) methods for solving the
monodomain model coupled with the FHN model.

Ateyp (ms) | [MRMS], | CPU time (s)

FE 1.2343e-02 | 4.9820e-02 2.1638e-01

RKC(2,1) | 4.9373e-02 | 4.9956e-02 9.2007e-02

RKC(3,1) | 1.1113e-01 | 4.9989e-02 6.3118e-02

(b) Atexp represents the experimental largest stepsize used to get the numerical
solutions with less than 5% [MRMS],, and the CPU time represents the mini-
mum time running of the FE, RKC(2,1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

and RKC(3,1) methods are 99%, 97%, and 96% of their corresponding experimental largest stepsizes for
solving the monodomain model coupled with the FHN model. From these results, we conclude that the
theoretical method to find the theoretical largest stepsize can be used to largely avoid trial-and-error to get
the experimental largest stepsize.

As we can see from Table[d.7aland Table[d.7b] RKC(3, 1) method outperforms FE and RKC(2, 1) methods.
Also, RKC(2,1) method outperforms FE method. These results were because of the improvements of the time
step size through the multistage RKC(2,1) and RKC(3,1) methods. These multistage methods extend the
real stability domain with a length proportional to the square of their number of stages. The time step size
of RKC(2,1) and RKC(3,1) methods are 3.9 and 8.7 times the time step size of the FE method respectively.
The improvements of these time step sizes compensate for the extra costs taken per step of RKC(2,1) and
RKC(3,1) methods. From this, we conclude that RKC(2,1) and RKC(3, 1) methods obtain advantages over
the FE method. This in the future might lead us toward the real-time simulation of the electrical simulation

of the heart.

4.4.3 Three-dimensional experiment

The monodomain model was simulated in three dimensions with the FHN model [22]. We implemented the

FE, RKC(2,1), and RKC(3,1) methods presented in Subsection Subsection Subsection
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and the theories presented in Section and Subsection on the monodomain problem (3.22)) cou-
pled with systems of ODEs (4.1]) to produce the theoretical largest stepsizes, the experimental largest step-
sizes, and MRMS error. The initial conditions used on the domain [0,1] x [0,1] x [0, 1] are: v(z,y, 2,0) =

sin(7a) sin(ry) sin(rz) and s(z,y, z,0) = s, where sg is is the default resting state value for the FHN model.

Table 4.8: Results of 3D monodomain model simulation.

Atiheo (ms) | [MRMS], | CPU time (s)

FE 8.1699e-03 | 2.5750e-03 | 2.2806e+-02

RKC(2,1) | 3.1897e-02 | 4.3865e-03 | 1.1005e+02

RKC(3,1) | 7.1438¢-02 | 1.4979e-03 | 7.5010e-+01

(a) Atiheo represents the theoretical largest stepsize used to get the numerical
solutions with less than 5% [MRMS],, and the CPU time represents the mini-
mum time running of the FE, RKC(2,1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

Ateyp (ms) | [MRMS], | CPU time (s)

FE 8.2185e-03 | 4.9325e-02 | 2.1655e4-02

RKC(2,1) | 3.2875e-02 | 4.9326e-02 1.0634e+02

RKC(3,1) | 7.3984e—02 | 4.9479e-02 | 6.9984e+01

(b) Atexp represents the experimental largest stepsize used to get the numerical
solutions with less than 5% [MRMS],, and the CPU time represents the mini-
mum time running of the FE, RKC(2,1), and RKC(3, 1) methods for solving the
monodomain model coupled with the FHN model.

From Table and Table the theoretical largest stepsize of the FE, RKC(2,1), and RKC(3,1)
methods are 99%, 97%, and 97% of their corresponding experimental largest stepsizes for solving the mon-
odomain model coupled with the FHN model. From these results, we conclude that the theoretical method
to find the theoretical largest stepsize can be used to largely avoid trial-and-error to get the experimental
largest sepsize.

As we can see from Table and Table RKC(3,1) method outperforms FE and the RKC(2, 1)
methods. Also, RKC(2,1) method outperforms the FE method. These results were because of the improve-
ments of the time step size through the multistage RKC(2,1) and RKC(3,1) methods. These multistage
methods extend the real stability domain with a length proportional to the square of their number of stages.
The time step size of RKC(2,1) and RKC(3,1) methods are 3.9 and 8.7 times of the time step size of the
FE method respectively. The improvements of the time step sizes compensate for the extra costs taken per
step of the RKC(2,1) and RKC(3,1) methods. From this, we conclude that the RKC(2,1) and RKC(3,1)

methods obtain advantages over FE method. This in the future might lead us toward the real-time simulation
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of the electrical simulation of the heart.

4.5 Spiral and scroll wave simulation in the monodomain model

A spiral wave is one of the types of traveling waves that circulate the core in a spiral [9]. Spiral waves occur
in many excitable and oscillatory systems [15], [33]. Scroll waves are the three-dimensional extensions of spiral
waves. They rotate away from the curves of the filaments. Ventricular tachycardia and ventricular fibrillation
are two of the causes of unexpected cardiac death. These are related to the creation of spiral and scroll wave
of electrical activation in cardiac tissue. To simulate a spiral and scroll waves, we use the modified FHN

model [67] coupled with the monodomain model.

4.5.1 Spiral wave simulation

The modified FHN model is

Os

E = f(ta v, S)? (42)
v 1
E - Tmlion(v’S)’ (43)

where Cpe = 1, f(t,v,8) = e(fv—0—7s) with e = 0.01, 8 =0.5, v =1, and I;,,(¢t,v,8) =v(l—v)(v—a)—s
with ¢ = 0.1. This model is coupled with the monodomain model and uses the following initial conditions [67]
on the square region [0, 2.5] x [0, 2.5] to initiate a spiral wave

1, 0<z<1.25 0<y<l1.25

v(z,y,0) =
0, otherwise,

and
0.1, 0<x<125 1.25<y<2.5,

s(z,y,0) =401, 1.25<z<25, 125<y<25,
0, otherwise.

The following time interval [0,1000] is selected because it shows the full propagation of a spiral wave [67].
To begin a spiral wave, we applied external potential v(z,y,0) at t = 0 on the left boundary over bounded
region of x € [0,1.25] and y € [0,1.25]. To get the numerical solution of Figure Figure Figure
Figure [£.6] Figure [I.8] Figure [£.9] Figure Figure [411] Figure Figure Figure and
Figure we implemented the FE. RKC(2,1), RKC(3,1) methods and the theoretical largest stepsizes of
the FE, RKC(2,1), and RKC(3,1) methods (see Figure on the monodomain model coupled with the
modified FHN model. As we can see from Figure Figure Figure Figure Figure and
Figure[4.15] a single spiral wave and a clockwise runs of spiral wave are seen at ¢t = 169.3, t = 966.0, ¢t = 169.4,
t =966.1, t = 169.5 and t = 966.3, respectively.
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Figure 4.3: t =0, and t = 169.3. Figure 4.4: t = 0.0, and ¢t = 169.3.
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Figure 4.5: t = 335.0, and ¢t = 966.0. Figure 4.6: t = 335.0, and t = 966.0.

Figure 4.7: The figures show the generation of a spiral wave. The numerical solution of Figure
Figure [£.4] Figure 1.5 and Figure[£.6]are obtained by using the FE method. Figure[f.3]and Figure [£.5
show the value of v at different time levels. Figure and Figure show the value of s at different

time levels.
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Figure 4.8: t =0, and t = 169.4. Figure 4.9: t = 0.0, and ¢t = 169.4.
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Figure 4.10: ¢t = 335.0, and t = 966.1. Figure 4.11: t = 335.0, and ¢ = 966.1.

Figure 4.12: The figures show the generation of a spiral wave. The numerical solution of Figure

Figure Figure and Figure are obtained by using the RKC(2,1) method. Figure 4.8 and
Figure [£.10 show the value of v at different time levels. Figure and Figure show the value of

s at different time levels.
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Figure 4.13: ¢t =0, and t = 169.5. Figure 4.14: ¢t = 0.0, and t = 169.5.

27551.00 27551.00

il

7943 1.00

(]

Figure 4.15: ¢t = 335.2, and t = 966.3. Figure 4.16: ¢ = 335.2, and ¢ = 966.3.
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Figure 4.17: The figures show the generation of a spiral wave. The numerical solution of Figure

Figure Figure [4.15] and Figure are obtained by using the RKC(3, 1) method. Figure [4.13]
and Figure show the value of v at different time levels. Figure and Figure show the

value of s at different time levels.
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FE RKC(2,1) RKC(3,1)

Attheo (ms) 4.6382¢-02 8.0511e-02 1.2165e-01

Atexp (ms) 5.2190e-02 1.2108e-01 1.3600e-01

Table 4.9: Atiheo and Ateyp, represent the theoretical largest time step and the experimental largest
time step used to get the numerical solutions with less than 5% [MRMS], of the FE, the RKC(2,1),
and the RKC(3,1) methods.

All eigenvalues computed from the modified FHN cell model and the PDE equation lie inside the
stability regions of the FE, RKC(2, 1), and RKC(3, 1) methods. To compute theoretical largest stepsizes (see
Table , we used the technique described in Subsection m

From Table the theoretical largest stable time step size of the FE, RKC(2,1), and RKC(3,1) methods
are 89%, 67%, and 90% of their corresponding experimental largest stepsizes for solving the monodomain
model coupled with the modified FHN model. From these results, we conclude that the theoretical method
to find the theoretical largest stepsize can be used to largely avoid trial-and-error to get the experimental

largest stepsize.

4.5.2 Scroll wave simulation

We use the following modified FHN model

ds

a = f(t, v, 8), (44)
v 1

ar 711’0’” 5 9)s 4.
o = o Tion(0.) (45)

where Cp,e = 1, f(t,v,8) = e(fv—0—7s) with e = 0.01, 8 =0.5, v = 1, and L;,,(¢t,v,8) =v(l—v)(v—a)—s
with @ = 0.1. This model coupled with the monodomain model and use the following initial conditions on

the cubic region [0,2.5] x [0,2.5] x [0,2.5] to initiate a scroll wave

1, 0<z<125 0<gy<1.25,

v(r,y,2,0) =
0, otherwise,

and

0.1, 0<z<125 125<y<2.5,
s(x,y,2,0) =401, 1.25<z<25, 125<y<2.5,
0, otherwise.

The following time interval [0, 1000] is selected because it shows the full propagation of a scroll wave.
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Figure 4.18: ¢t =0, and t = 252.9. Figure 4.19: ¢t =0, and t = 252.9.

Figure 4.20: t = 679.7, and t = 999.9. Figure 4.21: ¢ = 679.7, and t = 999.9.

Figure 4.22: The figures show the generation of a scroll wave. The numerical solution of Figure

Figure Figure [.19] and Figure are obtained by using the FE method. Figure and
Figure show the value of v at different time levels. Figure and Figure show the value of

s at different time levels.
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Figure 4.23: t =0, and ¢ = 242.6. Figure 4.24: ¢t =0, and ¢t = 242.6.

Figure 4.26: ¢t = 727.8, and t = 999.2.

Figure 4.25: ¢t = 727.8, and t = 999.2.

Figure 4.27: The figures show the generation of a scroll wave. The numerical solution of Figure

Figure Figure and Figure are obtained by using the RKC(2, 1) method. Figure [4.23|
and Figure [£:25] show the value of v at different time levels. Figure [£:24] and Figure [£:26] show the

value of s at different time levels.
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Figure 4.28: ¢t =0, and t = 251.6.
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Figure 4.30: ¢t = 880.7, and ¢ = 1000. Figure 4.31: ¢ = 880.7, and ¢ = 1000.

Figure 4.32: The figures show the generation of a scroll wave. The numerical solution of Figure

Figure Figure |4.30, and Figure are obtained by using the RKC(3,1) method. Figure
and Figure show the value of v at different time levels. Figure and Figure show the

value of s at different time levels.
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To create a scroll wave in three dimensions, we used [0, 2.5] x [0, 2.5] x [0, 2.5] spatial domain over [0, 1000]
time interval. To begin a scroll wave, we applied external potential v(x,y, z,0) at t = 0 on the left boundary
over bounded region of = € [0,1.25], y € [0,1.25], and z € [0,2.5]. We can see single scroll wave and a

clockwise runs of scroll wave from Figure [£:20] Figure [1.19] Figure [1.21] Figure[.25] Figure[4:24] Figure [1.26]
Figure Figure [£.30] and Figure [£:31] respectively.

1.0671e+00 | 1.4356e+00 | 1.3980e+00

Table 4.10: Atiheo represents the theoretical largest time step of the FE, the RKC(2,1), and the

RKC(3,1) methods. We did not check whether the numerical solutions produced with the largest
stepsize of the FE, the RKC(2,1), and the RKC(3,1) satisfied the acceptable [MRMS], because we

were unable to compute a reference solution.

We computed the theoretical largest step sizes of the FE, RKC(2,1), and RKC(3,1) methods (see Ta-
ble using the eigenvalues of only the PDE because the largest eigenvalues come from this PDE.
This allows us to avoid computing reference solutions to find eigenvalues of the FHN cell models. Because
all eigenvalues lie inside the stability regions of the FE, RKC(2,1), and RKC(3,1) methods, we used the
technique described in Subsection to compute the theoretical largest stepsizes (see Table of the
FE, RKC(2,1), and RKC(3,1) methods. From Table we observe that the theoretical largest stepsize
for RKC(3,1) is smaller than that for RKC(2,1). This result might be due to the approximation of not

considering the eigenvalues from the FHN cell model.
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5 Conclusion and Future Work

Cardiac simulation is essential for studying heart development and disorder. Computer simulations of the
electrical activity in the heart may help electrophysiologists to treat a patient’s heart condition with better
techniques and diagnosis.

The contributions of this thesis can be summarized as follows:

1. We compared the performance of seven time integration methods for solving thirty-seven cardiac cell
models. From the theoretical largest stepsizes and the experimental largest stepsizes results listed in
Subsection and Subsection the FE method outperformed the RKC(2, 1), the RKC(3, 1), the
SSP(3,3), the SSP(4, 3), the EMP, and the RK4 methods on all cardiac cell models tested.

2. We determined the largest stepsize of the time integration method based on its stability region and the
eigenvalues computed from the Jacobian matrix of a system of ODEs. To the best of our knowledge,
this is a new methodology to find the largest stepsize. From the results listed in Subsection
Subsection and Subsection the theoretical method used to find the theoretical largest
stepsize of the time integration methods with an average of the ratio of predicted to experimental is

96%. This method avoids trial-and-error to find the experimental largest stepsize.

3. We solved the monodomain model coupled with the FHN model using FE, RKC(2, 1), and RKC(3,1) in
one dimensions, two dimensions, and three dimensions. The RKC(3, 1) method outperforms the FE and
RKC(2,1) methods for all problems. The improvements of the time stepsizes more than compensate for
the extra costs it takes per step of the RKC(3,1) method. From this, we conclude that the RKC(3,1)
method has advantages over the FE and RKC(2,1) methods. This is a promising result. This in the

future might lead us toward the real-time simulation of the electrical stimulation of the heart.

4. Using the largest stepsize of the FE method, we simulated the monodomain model coupled with the
modified FHN model and captured the excitation of spiral and scroll waves propagation in cardiac

tissue.

Possible future work includes the following:

1. It is of interest to investigate the performance of the SSP(s, 1) methods for s > 1 for solving the
cardiac cell models and the monodomain model. From results listed in Subsection [£.3.1] and Sub-
section[£.3.2] the RKC(2,1) and RKC(3, 1) were the second-most and third-most efficient methods
for solving the cardiac cell models. From results listed in Subsection Subsection and
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Subsection however, the RKC(3,1) and RKC(2,1) were the most and second-most effi-
cient methods for solving the monodomain model. From results listed in Subsection and
Subsection the SSP(4,3) method outperformed the SSP(3,3) method on twenty-five and
thirty-three cardiac cell models, respectively. These results show that increasing the number of
stages of the SSP method might benefit the simulation efficiency of some cardiac cell models and

the monodomain model.

. The space-fractional monodomain model has an excellent performance in describing the exci-
tation of the electrical potential wave propagation in heterogeneous heart tissue [14, [69]. An
efficient higher-order numerical method should appropriately describe the excitation of the elec-
trical potential wave propagation in the heart tissue in high resolution. To solve this model, we
plan to implement the high-order discontinuous Petrov—Galerkin method [7, [32] in time and the

high-order continuous Ritz—Galerkin method [20] in space.
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Appendix A

Simulation Results

Table A.1: At represents the theoretical largest time step, and the CPU time represents the
minimum of fifty times running of the FE, the RKC(2, 1), the RKC(3,1), the SSP(3, 3), the SSP(4, 3),

the EMP, and the RK4 methods with less

than 5% [MRMS],.

Model FE RKC(2,1) RKC(3,1) SSP(3,3) SP(1,3) EMP RKA

Alieo () [ CPU time (5) | [MRMS], - CPU time (3) | [MRMS], | Ay, ( CPU time (5) | [MRMS], | Afype, (m3) | CPU time (5) | [MRMS[, | A, ( CPU time (3) | [MRMS], | Afype, (05) [ CPU time (5) | [MRMS], | Ay, (ms) | OPU time (5) | [MRMS],
Beeler Renler (1977) 24388002 15517e-01 | 4.8211e-03 | 9.5217¢ 3.5663¢ 01 | 1551902 | 2.1325¢ 381670 01 | 3.7030c-02 | 3.0919%02 | 1.0088¢+00 | 2.0496e03 | 6.279%e 02 | 9.3206e-01 | 4.1414e-03 | 2.435802 | 6.0067e 01 | 1.4650¢-03 | 3.3964e-02 | 18102¢+00 | 2.1359¢ 03
Bondarenko et al_(2004) 210680 01 1.3519e+00 | 1.19290-03 | 5.9%5% 04 | 1.9617c+01 | 44698¢03 | 15422¢ e01 | 1.0026e-02 | 2673504 | 1.0687+02 | 15736c03 | 5424e 77520001 | 31899003 | 2106504 | 6.1032+01 | 12402003 | 2.9340c-04 | 1.3111e+02 | 172670 03
C ot al. (1995) 15517 02 472480400 | 4.5076e 03 | 6.0580¢ 02 | 13621e+01 | 1.5657c 02 | 1.3568¢ 17716e+01_| 3.7874c 02 | 1.9691c 02 | 1.3311c+01 | 2.3073¢ 04 | 3.9951c 02 | 6.8069e+00 | 1.419Tc 03 | 15517 02 | 2.2090c+00 | 5.3323c 04 | 216090 02 | 53150000 | 4.3219 0
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Hilgerann Noble (1957) G1571c 05 5.6775e 02 [ 136020 03 | 24035 04 | 1s13de 01 | 119420 02 | 122240 04 01| 6.2921c 03 | 7.5134c 05 | 7.0424c 01 | 6.036Ic 04 | 15853c 04 | 71143 01 | 57078¢ 04 | G.1571c 05 | 330020 01 | 44528¢ 04 | 55746c 709700 01| 9.9930¢ 01
Mund Rudy (2009) 779650 03 2.13820 01 | 4.899Gc 02 | 0.7927c 03 | 26509000 | 1.6699¢ 02 | 9.3866e 03 FO1_| 41533 02 | 1.3003c 02 | 1374601 | 3.013dc 03 | 26382 02 | 682190100 | 2.2549¢ 03 | 1.024Ge 02 [ 2.0602¢+00 | 4.9819¢ 04 | 1.4270c 6.7317c 100 | 3.2548¢ 03
Tafti ot al__(1995) 3300001 5.3558+00 [ 50809 01 | 16583¢ 03 | 18107e+01 | 24143603 | 3.7600e 03 Be01_| 52750603 | 54877e 01 02| 22398001 | 10179603 T5330+02_| 1.0831e 01 | 3.9535¢ 01 | 755036401 | 15245001 | 6.400de T7567e+02_| 3.4178¢01
Tuo Rudy (1991) 13287 02 9.1163¢ 02 | 54646003 | 5.1876¢-02 | 25316001 | 1.7954-02 | 11618c-01 01| 13569002 | 1.6862002 00| 1.5905¢-04 | 3.4211e-02 | 1.5423¢+00 | 1.7533¢ 05 | 1.3287¢ 02 | 8.0670c-01 | 8.2108¢-05 | 1.850dc 21740000 _| 2.7365007
Maleckar et al__(2000) 15053005 T3231c03 | 1.5761c04 | 5636de 01 | 4.3223¢ 03 | 420180 04 01| 9.0645¢-03 | 6.0950¢05 00| 5.4020c04 | 12372004 | 2.9905¢+00 | 14523003 | 48053005 | 18307e+00 | 2.1775e 04 | G.6921c T75850+00_| 5 1124e 01
McAllister ot al. (1975) T.0931c 02 2.1598¢ 03 | 1.2690c 02 | 56409 01 | 6.3421e 03 | 956100 02 01| 137150 02 | 1.2876e 02 00| 4.792c 07 | 2.8153¢ 02 | 343540400 | 2.5601e 06 | 1.0934e 02 | 2.20300+00 | 9.5369¢ 06 | 1.5228¢ 5.32020+00_| 9.2902¢ 08
Noble (1962) 94880005 12260002 | 11077001 | 55033c02 | 1.0781e02 | 105260 01 01| 96324003 | 1.62450 01 | 8353202 | 10462003 | 35370c01 | 54302c02 | 40605003 | 20410604 | 57850002 | 3.3654c-03 | 20025 T5323c-01_| 15030003
Noble-Noble (1951) 1605901 2.926602 | 3 01 | 6515902 | 1.9981e 02 | 393830 01 01 2.0379¢ 01 Te01_| 368450 05 | 4.1348¢ 04 | 56403e-01 | 1.6032¢04 | 1.605904 | 16251e 01 | 4.6419¢-01 | 2.2305¢ 14397e-01_| 56092005
Noble et al._(1991) 514126 05 T7163¢03 | 20072004 | 52958 01 | 3.4262¢ 03 | 449550 04 01 645030 05| 1.3587e+00 | 2.3214c 04 | 1.3237c 04 | 1.09226+00 | 4.9678¢ 04 | 51412605 | 2.9327c 01 T1599¢ 920460 01 | 2.7498¢ 04
Noble et al. (1995) 551730 05 GI817e 03 | 178300 01 | 270560 01 | 125160 02 | 1.7506e 01 | 7.1063e 01 606050 05| 20100000 | 1.6083e 01 | 142530 01 | 2.2861e+00 | 507100 01 | 551730 05 | 6.2276 01 | 7.01860 04 | 7.7254c T51250+00 | 7.2074c 01
Nygren ct al. (1998) 195500 05 248816 01 | 3.0497c 03 | 1.9361c 04 | 13914000 | 9.6006e 03 | 43361c 04 | 18218c+00 6.20200 05 | 5.1327c+00_| 6.78470 05 | 1.2765 01 | 7.0054c+00 | 2.4360c 01 T.91300+00 | 1.4506¢ 01 | 6.9060¢ 5.0185c+00 | 3.6091c06
Pandit et al._(2001)] 255070 07 3.3149e+00 [ T244% 01 | 119520 06 | 1.7107e+01 | 3.62730 04 | 25207e 00 | 20713c+01 | 7.6377e 04 | 3.6305e 07 | 12585e+02 | 3.036e 07 | 7.440le 07 | T.1671e+02 | 5.623de 0T 6.03750+01_| 3.5021e 05 | 4.0243¢ 352000 07
Pandit et al_(2003) 20523005 33880601 T.0355¢-07 | 1.704e+02 | 6.0055¢-03 | 2319207 | 1.8303¢-02 | 7.0939¢03 | 3.3000c-05 | 13307e+03 | 6.9069¢-03 | 6.5203e-08 | 11150¢+03 | 6.0060¢-03 52199e+02 | 6.9069¢-03 | 3.0038¢ T9196e-03_| 6.0060¢-03
PuglisiBers TOT5de 02 7.098% 0 TG822 02 | 1076000 | 4711de 02 | 16602¢ 02 | 25711e 00 | 4.7971e 02 | 1.3267c 02 | 51039+00 | 447020 02 | T4588c 02 | 4.14800+00 | 493950 02 31416000 _| 3.3901e 02 | T4550¢ T37370+00_| 1.8550¢ 02
Sakmann ct al. (2000) - Endocardial 6.7H0c-05_ 6.54900-02 T.0836c-01 | 5347101 | 47079¢02 | 1 01 | 6.2157c-01 | 7.0137c 02 | 85582605 | 13748c+00 | 27620003 | 1.7364c-04 | 2.1750c+00 | 5.4049¢ 03 5.7687¢-01 1538¢-03 | 9.3020c T3805¢00 | 2.5080¢-03
Sakmann et al_(2000) — Epicardial G7000e 05 5987502 [ 114470 02 | 1.0097e 04 | d2543e 01 | 45053002 | 2 06| 31092001 | 55079 04 | 55043e 05 | 14081e+00 | 3.199de 03 | 1.737Ie 04 | 24310600 | 55307 03 58817 01 | 3.77270 03 | 93057 T5080e+00 | 277940 03
Sakmann et al. (2000) ~ M-cell 6.7049¢05 12193601 | 3561903 | 2.6177c-04 | 4.0051e01 | 42450c B 01 | 5.7791c-01 | 1.7006e 02 | 85086005 | 14087e+00 | 2.0517¢-03 | 1.7263c-04 | 4.1988¢+00 | 4.2390¢ 03 5.7300c-01 | 2.0841c03 | 9.3376¢ T.3976+00 | 1.8459¢-03
Stewart ct al_(2009) TAT500 02 44209 01 [ 27666c 03 | 5.6451e 02 | 20499¢+00 | 735100 03 | 1 01 | 21530000 | 144480 T8340c 02 | 1.2167c+01 | 6.1833¢ 03 | 3.72250 02 | 52702000 | 5.9501c 06 5001700 | 9.5991c 06 | 20136¢ T2684c+01 | 2.4421c 07
Ten Tusscher et al. (2001) Endocardial | 17057c 03 1.6552¢+00 | 1.3223c 01 | 6.6595003 | 57008¢+00 | 14745¢-03 | 1 02 | 5.9135¢+00 | 33310003 | 21616003 | 4.14630+01 | 5.0955c01 | 1.3628¢-03 | 3.0338¢-+01 | 7.3680c 01 T810c+01_| 6.8065¢-05 | 2.3508¢ TA61Te+01_| 9.6511c-05
Ten Tusscher et al_(2006) Fndocardial | 15000003 7.5807e-01 | 9.5190e 04 | 61924603 | 34789e+00 | 3.0752¢03 | 1.3569¢02 | 4040400 | 6.7679¢ 03 | 20125603 | 3.1421e+01 | 2.0840c 04 | 1083703 | 2.3064e+01 | 42646004 T.G584e+01_| 16256004 | 2.2088¢ T2175e+01 | 29910601
Ten Tusscher et al. (2004) ~Epicardial _| 17055003 1.4744e+00 | 3.8554e 01 | 6.658%¢ 03 00 | 11390003 | 1 02 | 6711100 21640003 | 416250 +01 | 3.6098¢ 01 | 1.3628¢03 | 2.6398¢+01 | 1.3202¢01 175080 +01_| 1.9603¢-05 1.3503¢+01_| 7.0644e 05
Ten Tusscher ot al_(2006) Epicardial | 21191c 03 6.0086¢ 01 | 535240 04 | 59734c 03 00 | 1.6770c 03 | 155200 02 | 2.5045¢-+00 250000 03 | 21643001 | 933490 05 | 54561c 03 | 15586e+01 | 200699¢ 04 | 21191 03 | 17212601 | 7.7445c 05 TA640c+01_| 110340 01
Ten Tusscher et al._(2001) ~N-cell T7115¢03_ L10SIet00 | 2.0687c 01 | 66820003 | 5.05050+00 | 5.7031c-01 | 1496502 | 5.2963¢-+00 21719003 | 3.4509¢+01 | 56612005 | 1406703 | 2.2226e+01 | 1.1371c-01 | 17115003 | 1496201 | 43613005 | 2.3835¢ 3874 01| 61619005
Ten Tusscher et al_(2006) —N-cell 20370003 9.6348¢-01 |5 1864c 04 | 7.0565¢03 | 3.5000+00 | 16037c 03 | 17520c02 | 41434e+00 258620 03 | 20407e+01 | 1.01750-04 | 5247203 | 1.5064e+01 | 19272004 | 20379¢03 | 1.2095¢-01 | 7.3340e 05 | 2.8381c 3.0526e+01 | 1.03330 01
Wang Sobie (2008) 16311e 02 _ 3.3048¢ 01 | 7.18100-03 | 6.3633¢02 | 1523200 | 225050 02 | 1.1994e 01 | 7.3131e01 2.0699¢ 02 | 3.5582¢+00 | 1.1400e-03 | 4.1997¢-02 | 53548¢+00 | 38562003 | 1.6311e-02 | 1.2537e+00 | 1.7217e 03 | 2.2716e 3.89480+00 | 2.35450-03
Winslow ct al__(1999) (31 equ) T0900c 04 1.31636+01 | 143620 03 | 4.1278¢ 04 | 7.932c+01 | 2.5091c 03 | 924450 04 | 5.0854e+01 T3417c 04 | 5.1014c+02_| 5.6852 260780 04 | 38861c+02 | 955130 03 | 1.0475¢ 04 | 2.0860c+02 | 4.8130¢ 03 | 145020 T23020+02_| 7.001dc 04
Zhang ct al._(2000) 901030 05 6.1924e 02 [ 100130 03 | 351780 01 | 485030 01 | 45440 02 | 7.5786e 01 | G.14Te 0L T1131c 01 | 15728400 | 11450c 05 | 2.3199¢ 04 | G.0150c 01 | 2.7911c 05 | 9.0103c 05 | 55132 01 | 315840 05 | 1.258s¢ T2511c+00 | 1.7238¢ 06

Table A.2: Atcyp, represents the experimental largest time step and CPU time represents the minimum

of fifty times running of the FE, the RKC(2, 1), the RKC(3, 1), the SSP(3, 3), the SSP(4, 3),

and the RK4 methods with less than 5% [MRMS],.

the EMP,

Model

TE RKC(2.1) REC(3.1) SSP(3.3 SSP(4.3) ENP REL
Al () [ OPU time (5) | [MRMS], | Al () [ OPU time (5) | [MRMS], | Aley, (ms) [ CPU time (5) | [MRMS], | Al (ms) | OPU time (5) | [MRMS], | Al (s) | CPU time (5) | [MRMS], | Aley, (ms) [ CPU time () | [MRMS], | Aley, (ms) | CPU time [MRAS],
Becler Reuler (1977) 5295¢ 02 2.4701c 02| 5.2120c 03 | L0I2Te 01 | 1.0664e 0L | 17150 02 | 2.1585c 01 | L0075e 01 | 4.8472¢ 02 | 3.1559¢ 02 | 14632c+00 | 2.3551e 03 | 6.7006e 02 | 6.487de 0L | 2.3586e 02 | 2.4630e 02 | 45274e 01 | 14632 03 | 34158 02 | T0I71er00 | 148480 03
Bondarenko et al_(2004) 2.1300e04 24416600 | 1 T4903e 01| 46280003 | 19252603 | 13704e+01 | 1.0474c02 | 2.0745c 04 | 90434c+01 | 15742603 | 5:5141e 04 | 6.9712e+01_| 3242703 | 40300004 | 2.9767e+01 | 2.3700c03 | 20540004 | 12811c+02 | 1.73860 03
Courtemanche et al._(1995) T9900c02__3.0747e 0T S 170002 TO742002 | 16232001 | 42620c-01_| 4.9851e 02 3.0391e+00_| 6.8178¢ 01 | 19485002 | 2.7204c+00 | 2.4199¢03 | 15100602 | 19110600 | 7.37926 04 T2139¢+00_| 2503101
Demir et al._(1991) 5.9599¢ T.6659¢02 T9551e 01 T.9975¢ 02 | 2.0875e 01 | _1.9210e 01 | 4.9998e02 L9149¢ 01 | 1054503 | 13551e 01 | 38060601 | 2.4342¢02 | 5 05 | 4.1262¢ 01 | 3.9599 04 2256203
Demir et al._(1999) 5.9607¢ 19908602 T 0 1.9993¢02 | 17645 01 | 2.9459¢ 01 _| 5000002 T0e01_| 15045002 | 108600 01 | 4 1587c01 | 5315403 | 5 05 210e-01_| 3.9717e 01 T9157e
Difrancesco Noble (1955) Toe 30640601 34776602 | 50873604 | _3.9096e 01 | 4554e 02 9100 | 1.0700602 | 1.9954e 04 | 17455000 | 4.9511e02 | 76635 05 | 5.9125e 01 | 0212005 T8557e
Dokos et al__(1996) T0200e 270000 04 | 163450 01 T34520 04 | 238030 01| 4.9945¢ 02 G5181c 01| 583dc 03 | 175520 04 | 4.3358c 01 | 1.0%5% 04 | 6.933% 05 | 3.3600¢ 01 | L1757e 04 [
FitzIugh Nagumo (1961) 0 2.6937¢ 03 | 118950100 2.6891c 03 | 1.925%¢+00 | 5.0000¢ 02 | 2.6135¢ 03 00| 4.9957¢ 02 | 261416 03 | 26159e+00 | 49999¢ 02 | 2.6143¢ 03 | 12819¢+00 | 5.0000c 02 5.0000c
Faber Rudy (2000) T1294c T0966c 02 | 41099 01 237550 02 | 5.9999¢ 01| 49999 02 | 1.4080¢ 02 | 3.2388¢:+00 | 1.4373¢ 03 | 2.0634e 02 | 129050 +01 | 3.1579¢ 03 02 | 1616800 _| L00ISe 0 3.9307e+00_| 1I878¢
Fox ot al_(2002) T6200e T8000602 | 65123001 41200002 | 7.0721e01 | 46519¢-02 | 5.7962¢03 | 47237c+00 | 2.8173¢ 03 | 11843002 | 3:5261c+00 | 5.5110603 | 4620003 | 2.7766e+00 | 2239203 6.7026¢+00_| 3.2000c
Tilgemann-Noble (1957) 6.5 24400604 | 1.0039¢01 | 1.0136e 13157601 | _1.0606e 01 | 49917002 | 7. 5716001 | 84811c-04 | 15023c 04 | 4.3931c-01 | 1.0700c03 | 6:2071c-05 | 3.1958¢ 01 | 7.25880 04 T0635e 01| 11607
Hund Rudy (2001) 7 19939002 | 1041002 | 2.9393+00 | 49973¢-02 | 11003¢-02 19784002 | 1 1212200 _| 3.0650¢03 | 28505602 | 3.4595e+00 | 87876¢-04 | 11117e-02 | 4.90866+00 | 3.6066e 04 579856100 _| 3.0478¢
Jafti ct al__(1995) T8T54e 02 | 17500003 | 182120 +01 | 2.4939¢03 | 3760003 5.2780003 | 7 9.9747e+01_| 49545602 | 12727003 | 92116e+01 | 6.6143¢03 | 4.96006 01 | 6.7364e+01 | 1.6968¢ 04 T3251e02_| 1.6231e
o Rudy (1991) 5.6053¢-03 | 5.4400c-02 | 19396001 | 1.8982¢ 02 | 1.1800e 01 T5668e-02 | T T3568¢-100_| 4.6923¢ 34426002 | T4170¢+00 | 5.0656e 05 | 1342202 | 5.0194¢ 01 | 8.4156e05 2.0074e+00_| 1.7647¢
Malcckar ot al_(2009) T6150c 02 | 19000c 04 | 55468 01 | 3.4263¢ 03 | 4.3628¢ 04 | 4.3383¢ 01 | 485240 02 | G, 31770+00_| 5.9245¢ 125820 04 | 2.74350+00 | 424250 02 | 500530 05 | 1.7360¢+00 | 1.7378¢ 02 19233000 | Thllle
McAllister et al. (1975) 9.6000c 02 019¢ 01| 4.6945¢ 02 | 9.8600¢ 02 | 5201c 01 | 14162 02 | 1.3 35035¢-+00_| 619260 07 | 2.82740 02 | 3.2698¢+00 | 3.0749¢ 06 | 1.1014e 02 | 2.0484c+00 | 9.7051c 06 5.3200+00_| 23573 05
Noble (1962) 357690 04 | 270380 02 3.908%¢ 04 | 1.0913¢ 02_| 499510 02 | 2. 47646c 02| 497950 02 | 51912¢ 04 | 504000 02 | 4.9336¢ 02 | 2.1298¢ 04 | 44086e+00_| 1.3490c 03 6.9977c 02
Noble_Noble (1951) 38972002 | 3657404 | 6.32940 02 39405004 | 14796001 | 49999002 | 2. 2.2660c01 | 2.1807c 02 | 4.3938¢ 04 | 10305001 | 3.6892¢ 02 | 1.7845¢ 04 | 5.1128¢ 02| 35450002 26001
Noble ct al__(1991) T.6961c-03 | 2010004 | 12543001 15000601 | 13260601 | 6.6311c-03 | 6. 15370000 _| 24792601 | 13219004 | 143250 01 | 49153¢-01 | 51500c-05 | 4935501 | 13620004 T0791601
Noble et al__(1995) 6196203 | 1800004 | 28651c01 0 TRT006-01 | 61719¢-01_| 1.29330 02 | 7.0 T1216c--00 | 7.5553¢ 04 | 14300004 | 9.87920 01 | 5079201 | 5.6973¢-05 | 6192701 | 2.6946¢03 15082600
Nygren ct al. (1995) 30250002 | 20521604 | 354200 01 | 1028902 | 4469101 | 4.2804e 01 20102 | 6. 3A139c+00_| 8.0505¢-04 | 13250004 | 2.2046c+00 | 7.5250¢ 04 | 5.2989¢ 05 | 1.7679¢-00 | 9.67300 04 17350000
Pandit et al__(2001) T245%¢ 04 | 113000 06 | 2.0256e+01_| 3.6281c 04 | 2.5400¢ 06 | 2.0255c+01 | 7.6641e 04 | 3. T2967c-02 74401c 07 | 9.1504c+01_| 5.6234c 07 | 2.8897c 07 | 6.7539+01 | 8 4664e 08 17448002
Pandit ct al__(2003) 693720 03 | 103560 07 | _18203c+02_| 6.995% 23192 07 | 1.9140c+02_| 7.0939c 03 | 3.3 130180103 369380 08 | 189730+03 | 6.9069c 03 | 2.6523¢ 08 | 74224c+02_| 6.0060c 03 19196003
PuglisiBers 329530 02 | 16542 02 | 11701c+00 | 49781c 02 | 16642 02 | 2.9553c+00 | 4.0027c 02 | 13 35549100 15350 02 | 46620000 | 4.0673¢ 02 | 1.2474e 02 | 14543¢+00 | 4.9307c 02 T1141c00
akmann ct al_(2000) Budocardial | 6.0000c 05 __5.2694c 3.7504c 02 | 110000 04 | 502726 01| 49120c 02 8.2267c 01| 4.0895¢ 02 | 8.6233¢ 05 | 1.1288c+00 74660 04 | 8.2207c 01 | 64168 03 | 6.7440c 05 | 55610c 01 | 3.4538¢ 03 | 0.3920c 05 | 1.6529c+00
akmann ct al._(2000) — Bpicardial G.8000c 05 2.0150¢01 | 43111002 | 10200004 | 4629901 _| 4.9550¢ 02 87030001 _| 4.8896c 02 | 8.6343¢ 05 | 1.0991c+00 T7460c-04 | 10235000 | 6.7507c 03 | G:8006c-05 | 51905¢-01 | 3.9557c-03 | 9.4557c 05 | 152650400 | 2.8068¢
akmann ct al._(2000) — M-cell 6.8600c 05 3.3911c02_| 39258003 | 2.7200c-04 | 19863001 181330 01| 1.04950 02 | 85821c 05 | 1.9528¢+00 T7358c-04 | 86923001 | 4.5381c03 | 6.7649¢05 | 7.2061c-01 | 9.7024c 04 | 9.3976005 | 2.28450+00 | 2.3383c
towart ot al._(2009) 15210c TT42e 19569002 | 6.0986002 | 1.9369¢+00 155760400 | 2.783%¢ 02 | 1.013%¢ 02 | 85850000 37366002 | 6.55360+00 | 3.3738¢-05 | 1.4569¢-02 | 5.0458¢+00 | 9.4102c-06 | 2.0236c02 | 13133001 | 3.3947¢ 05
(2001) ~Endocardial | 1.7529¢ T1957c1 15526003 | 6.9395¢-03 |_1.2000-+00 12561e+00_| 1.0746c-03 | 2.23066-03 | _3.1063e+01 15580003 | 23303001 | 11644e03 | 1.6959¢-03 | 2.0071e+01_| 284980 | 2360903 | 4.7466c-+01 | 39775001
(2006) Endocardial | 1.6200c03___8.0863¢ 01| 9.9918¢ 01 | 6.4300¢ 03 | 3541900 3.5092¢00_| 6.55200-03 | 2.0207¢ 03 |_2.6417e 01 14915003 | 1.7539e+01 | 7.0503¢ 0 | 1.6200¢ 03 | 1.4310c+01 | 1.6531c 04 | 2.2200c 03 | 3.4523e+01 | 230360 01
(2001) Epicardial | 1.78350 03 L1548e+00 | 1.5568¢ 03 | 715450 03 | 1.2030c-+00 1T400c+00_| 3.0533003 | 2.2364003 | 31805001 13663003 | 2.47560+01 | 13177c 04 | 1.0965¢ 03 | 1.7430c+01 | 5.00700-05 | 2.3625¢03 | 131026+01 | 7.0630¢ 05
(2006) Epicardial _| 21900003 8.6557c-01 | 53660 01 | 8.56000 03 | 2891400 31167c+00_| 3.70860 03 | 2.6858¢ 08 | 2.0017e01 1 [ 5.60850 03 | 153900+ 01 | 2.3682¢ 04 | 2.1251c 03 | 11069¢01 | 7.76950 U5 | 2.0958%¢ 03 | 2.6920c+01 | T.1004c 01
(2004) M-cell T7607c 05 9.0396c 01 [ 1.3927c 01 | 7.08200 03 | 1.1688c100 | 7.1036c 04 35254000 _| 13192003 | 25872003 | 2 TSIe 01 1 [ 145016 03 | 208210+01 | 1.1544c 04 | 173050 08 | 15244c 01 | 150850 05 | 2.4075¢ 03 | 3.5862c+01 | 6.22230 06
sscher et al._(2006) —N-ecll 2061003 6.6438¢-01 [ 17968001 | 82505003 | 267420400 | L.6142c-03 2.9807c00_| 3.61500-03 | 25700c-03 | 2.0657c 01 | 8.679Te-05 | 53011603 | 1.58500+01 | 1.7000c-04 | 2.0400c-03 | 1.0333c+01 | 73263005 | 2.89174c03 | 25590c+01 | 1068601
Wanig_Sobic (2005) TGOIIc 02 84543¢-02 [ 81125003 | 6.61130-02 | 35129001 | 2.1209c02 T9967c-02 | 20780c-02 | 22012400 | 1.1371c-03 | 12732002 | T44300+00 | 2.5577c-03 | 1.0381c02 | LOI74ct00 | 16877003 | 2.2771c-02 | 2.49850+00 | 23311008
Winslow ct al. (1999) (31 cqn) 0700001 1.2650e+01 [ 19777003 | 11400001 | 7.32220401 | 2.0094c03 2 T07620-02 | 13152001 | 523160402 _| 5.62300-03 | 2.7314e 01 | 3.09130+02 | 45072002 | 10155001 | 2.0238c+02_| 13852002 | 1.4612¢-01 | 7.06350+02 | 50115003
Zhang ot al_(2000] 9.0025c 05 7.399%02 [5.1361c-03 | 38050001 | 12257e-01 | 15037002 | 5.6990c-01 | 1T808c-01 | 3.1806e02 | 1.2156e04 | S.0181c-01 | 45513001 | 23516001 | 119200400 | 1.1124e02 | 95108005 | 52206001 | 1.5793¢ 03 | 1.3025¢ 01 | 121830400 | 4101202
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Table A.3: This table shows the relative accuracy of the theoretical time step to the experimental
time step of the FE, the RKC(2,1), the RKC(3,1), the SSP(3,3), the SSP(4, 3), the EMP, and the

RK4 methods.

Model M x 100% of FE M x 100% of RKC(2,1) M x 100% of RKC(3,1) M x 100% of SSP(3,3) M x 100% of SSP(4, 3) M x 100% of EMP M x 100% of RK4
Ategp torp Ategp terp torp Ategp Ateap

Beeler-Reuler (1977) 96.40 94.08 98.80 98.07 93.71 99.02

Bondarenko et al. (2004) 98.91 96.56 95.69 99.63 98.37 52.28

Courtemanche et al. (1998) 79.99 74.15 83.58 80.90 80.73 84.33

Demir ct al. (1994) 87.74 99.91 100.00 92.78 97.21 94.57

Demir et al. (1999) 87.74 100.00 100.00 92.48 97.14 94.40

DiFrancesco-Noble (1985) 98.58 97.06 99.18 98.14 99.39

Dokos et al. (1996) 95.21 96.65 94.99 97.47 98.05 96.39

FitzHugh-Nagumo (1961) 100.00 100.00 100.00 100.00 100.00 100.00

Faber-Rudy (2000) 96.28 99.22 80.93 97.94 94.48 96.71

Fox et al. (2002) 98.69 98.90 96.77 99.83 99.13 98.69

Hilgemann-Noble (1987) 98.51 98.52 28.98 99.75 99.56 99.19

Hund-Rudy (2004) 98.85 93.80 85.31 93.13 92.55 92.17

Jafri et al. (1998) 75.17 96.47 100.00 68.62 79.98 92.80

Luo-Rudy (1991) 97.90 95.36 98.46 99.00 99.38 98.99

Maleckar et al. (2009) 95.72 98.74 96.31 98.39 98.33 96.00

McAllister et al. (1975) 44.27 44.47 96.97 93.07 99.57 99.27

Noble (1962) 46.91 30.97 26.93 64.76 73.91 95.83

Noble—Noble (1984) 78.72 100.00 99.94 86.17 94.11 89.98

Noble et al. (1991) 99.83 99.86 99.90 99.78 99.91 99.83

Noble et al. (1998) 99.77 99.11 93.61 99.26 99.88 97.31

Nygren et al. (1998) 92.54 1 97.02 95.16 96.36 93.58

Pandit et al. (2001) 99.30 99.48 100.00 100.00 100.00 100.00
Pandit et al. (2003) 100.00 100.00 100.00 99.03 100.00 100.00 100.00
PuglisiBers 96.05 100.00 94.99 98.59 96.93 83.81 99.79
Sakmann et al. (2000) — Endocardial 97.74 98.51 97.30 99.25 99.42 100.00 100.00
Sakmann et al. (2000) — Epicardial 98.53 98.99 27.72 99.19 99.11 99.37
Sakmann et al. (2000) — M-cell 97.74 96.24 98.85 99.14 99.11 99.36
Stewart et al. (2009) 95.05 92.57 93.38 95.91 99.63 99.36 99.53
Ten Tusscher et al. (2004) ~Endocardial 95.67 96.03 91.87 96.65 95.71 99.92 99.95
Ten Tusscher et al. (2006) ~Endocardial 98.15 96.31 97.67 99.17 90.92 97.91 99.50
Ten Tusscher et al. (2004) —Epicardial 95.63 93.07 92.96 96.78 99.92 99.88 99.89
Ten Tusscher et al. (2006) —Epicardial 99.02 96.65 99.09 92.98 99.05 99.72 99.79
Ten Tusscher et al. (2004) —M-cell 96.88 94.35 94.10 97.88 99.03 98.90 99.00
Ten Tusscher et al. (2006) —M-cell 98.84 96.44 96.22 100.00 98.98 99.90 99.67
WangSobie (2008) 98.19 95.85 94,93 99.57 98.28 99.57 99.76
Winslow et al. (1999) (31 eqn) 97.20 99.71 96.80 9! 98.67 99.91 99.86
Zhang et al. (2000) 90.17 92.38 90.57 94.07 97.29 94.74 96.32
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Appendix B

Reference Solutions

We present the reference solutions used in Section [£4] to compute the MRMS error of the numerical
solution of the one-dimensional, two- dimensional, and three-dimensional monodomain problem. The solution
presented at different time levels and this solution obtained by applying RKC(3,1) method on monodomain
model problem.

0

— ——t=0ms
t =5 ms
t =10 ms
3B — — —t = 16 ms ||
— — —t =20 ms

30 - —

25 —

20 - —

Uy, (mV)

15 —

10 —

Figure B.1: Electrical potential from RKC(3,1) method at ¢t =0 ms, t =5 ms, ¢ = 10 ms, ¢ = 15 ms
and t = 20 ms for the one-dimensional monodmain model coupled with the FHN model.
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Figure B.2: Electrical potential from RKC(3,1) method at ¢t =0 ms, t =5 ms, ¢ = 10 ms, ¢ = 15 ms
and ¢ = 20 ms for the two-dimensional monodmain model coupled with the FHN model.
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Figure B.3: Electrical potential from RKC(3,1) method at t = 0 ms, t = 5 ms, ¢ = 10 ms, ¢ = 15 ms
and ¢ = 20 ms for the three-dimensional monodmain model coupled with the FHN model.
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