

VERSIONING IN INTERACTIVE SYSTEMS

A Thesis Submitted to the College of

Graduate and Postdoctoral Studies

 In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Gurjot Singh Bhatti

© Gurjot Singh Bhatti, December 2021. All Rights Reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to the author.

i

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available

for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in

part, for scholarly purposes may be granted by the professor or professors who supervised my thesis

work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis

work was done. It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may

be made of any material in my thesis.

Requests for permission to copy or to make other uses of material in this thesis in whole or part should

be addressed to:

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9

Canada

ii

ABSTRACT

Dealing with past states of an interactive system is often difficult, and users often resort to unwieldy

methods such as saving and naming multiple copies. Versioning tools can help users save and

manipulate different versions of a document, but traditional tools designed for coding are often

unsuitable for interactive systems. Supporting versioning in interactive systems requires investigation

of how users think about versions and how they want to access and manipulate past states. We first

surveyed users to understand what a ‘version’ means to them in the context of digital interactive work,

and the circumstances under which they create new versions or go back to previous ones. We then built

a versioning tool that can store versions using a variety of explicit and implicit mechanisms and shows

a graphical representation of the version tree to allow easy inspection and manipulation. To observe

how users used versions in different work contexts, we tested our versioning tool in two interactive

systems – a game level editor and a web analysis tool. We report several new findings about how users

of interactive systems create versions and use them as undo alternatives, exploring options, and planning

future work. Our results show that versioning can be a valuable component that improves the power

and usability of interactive systems. The new understanding that we gained about versioning in

interactive environments by developing and evaluating our custom version tool can help us design more

effective versioning tools for interactive systems.

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Carl Gutwin for his guidance and input throughout

my graduate career at the University of Saskatchewan. I also wish to extend my sincere thanks to the

faculty and staff of the Department of Computer Science, especially the students and staff of the HCI

Lab, for their assistance and friendship.

iv

This thesis is dedicated to my parents and my sister.

v

CONTENTS

PERMISSION TO USE………………………………………………………………………. I

ABSTRACT…………………………………………………………………………………. II

ACKNOWLEDGMENTS……………………………………………………………………... III

CONTENTS…………………………………………………………………………………. V

LIST OF TABLES…………………………………………………………………………… IX

LIST OF FIGURES………………………………………………………………………….. X

LIST OF ABBREVIATIONS………………………………………………………………….. XVII

1 INTRODUCTION .. 1

1.1 Problem ... 6
1.2 Solution ... 7
1.3 Steps to the Solution .. 7

1.3.1 Understanding versions (survey) ... 7

1.3.2 Determine the representation for versions .. 8
1.3.3 Build the versioning tool ... 8

1.4 Evaluation .. 8

1.5 Contributions ... 9
1.6 Thesis Outline ... 9

2 RELATED WORK .. 11
2.1 Versioning ... 11
2.2 Dealing with Past States .. 13

2.2.1 Undo – Redo .. 13
2.2.2 Autosaving and Autoversioning .. 14

2.2.3 Version Management Tools .. 18
2.2.3.1 Basic VCS terminology .. 18

2.2.3.2 A brief history of VCSs .. 18
2.3 Interaction with History .. 20

2.3.1 Interaction History ... 20
2.3.2 Comparing versions ... 20
2.3.3 Visualizing interaction .. 22

vi

2.3.4 Versioning for Interactive Systems ... 23

2.3.5 Exploration of Alternatives ... 24
2.3.6 Causality Framework .. 28

2.4 Versioning In Current Systems ... 31
2.5 Other Usages ... 34

3 A SURVEY STUDY OF VERSIONING IN INTERACTIVE SYSTEMS ... 38

3.1 Online Survey .. 38
3.1.1 Survey Content .. 38
3.1.2 Participants .. 39
3.1.3 Data Analysis .. 41

3.2 Circumstances to create new versions ... 43

3.2.1 Substantial Changes .. 43
3.2.2 Avoid losing work or progress .. 43

3.2.3 Testing experimental changes ... 44
3.2.4 Exploring alternatives ... 44

3.2.5 Collaborating with other users .. 45
3.2.6 Time-based versioning .. 45

3.3 Reasons to go back to the previous version .. 46
3.3.1 User accidents and mistakes .. 46
3.3.2 Broken or corrupt files .. 46

3.3.3 Testing new changes ... 47
3.3.4 Exploring alternatives ... 47

3.3.5 Referencing or extracting previous information ... 47

3.3.6 Change in requirements and matching needs .. 48

3.3.7 Tracking progress/project history .. 48
3.4 Naming Conventions ... 49

3.4.1 Why are naming conventions important? .. 49
3.4.2 Survey result for naming conventions used .. 52

3.5 Summary ... 53

4 VERSIONING TOOL .. 54

4.1 Versions and their relationships .. 54
4.2 Visual Representation For Versions .. 54

4.2.1 Lists ... 55
4.2.2 Trees .. 56

4.3 Version Tool For Interactive Systems ... 58
4.3.1 What information is stored in a version? .. 59
4.3.2 Visualization of the version tree .. 60

4.3.3 Interaction with the tool .. 61
4.3.4 How versions are stored .. 63
4.3.5 Integration within a web-based application .. 64

4.4 Game Level Editor .. 65
4.4.1 What is stored in each version? ... 68

vii

4.4.2 Pilot Studies ... 69

4.5 Web Analysis Tool .. 69
4.5.1 Augmenting the Winnowing System with Our Versioning Tool 70
4.5.2 What is stored in each version? ... 71

4.6 Summary ... 72

5 USER STUDIES ... 73

5.1 Study: Game Level editor ... 73
5.1.1 Goals .. 73
5.1.2 Apparatus .. 74
5.1.3 Participants .. 75
5.1.4 Procedure ... 76

5.1.5 Design Tasks ... 78
5.1.6 Results and Observations .. 85

5.1.6.1 Use of versions and trees in different tasks 85
5.1.6.2 Observations for creating new versions and switching to previous

ones 89
5.1.6.3 Responses and feedback .. 90

5.1.6.4 Post-hoc tree representations... 92
5.2 Case Study: Web Analysis Tool .. 95

5.2.1 Usage ... 95

5.2.2 User Feedback and Observations .. 96
5.3 Summary ... 99

6 DISCUSSION ... 100
6.1 Versioning Patterns ... 100

6.2 Templating .. 102
6.3 Previous Versions as References ... 103

6.4 Branching versions .. 104
6.5 Need for Merging .. 105
6.6 Versioning as an Undo Alternative ... 105
6.7 Managing A Large Number of Versions ... 109

6.8 Control over Granularity of Saving Versions ... 110
6.9 Summary ... 113

7 CONCLUSION ... 114

7.1 Contributions ... 114
7.1.1 Primary Contributions ... 114

7.1.1.1 Comprehension of ‘version’ creation in the context of interactive

systems 114

7.1.1.2 The interactive versioning tool for storing interaction history 115
7.1.1.3 Identification of requirements for versioning 115

7.1.2 Secondary Contributions ... 115

viii

7.2 Future Work .. 116

7.2.1 Collapsing and archiving nodes .. 116
7.2.2 Pruning branches ... 119
7.2.3 Color coding or tagging the nodes .. 120
7.2.4 Annotating the nodes ... 122
7.2.5 History of Specific Object States .. 124

7.2.6 Collaboration ... 126
7.3 Summary ... 127

REFERENCES ... 128

APPENDIX .. 138

ix

LIST OF TABLES

Table 1 Survey Questions ... 39

Table 2 Participant Demographics ... 40

Table 3 Naming Conventions ... 52

Table 4 Post Study Questions ... 78

Table 5 All tasks in the game level editor study. .. 80

Table 6 Version hovers (preview) by participants for tasks. .. 86

Table 7 Version switches by participants for tasks. ... 86

Table 8 Extra versions (besides the required ones) created by participants for tasks. 87

x

LIST OF FIGURES

Figure 1.1.1 Git integration inside Visual Studio Code using Source Control Panel. 2

Figure 1.1.2 (a) Unity Editor with default UI view with Project panel showing ‘Assets’ folder (b)

Unity Editor when Console panel is docked to the right side of the Project panel which now

shows ‘Shaders’ folder. ... 3

Figure 1.1.3 (a) Photoshop’s brush preset with default settings, (b) brush preset with modified

settings. .. 5

Figure 2.1.1 History Stack with various states Si of an element E (adapted from Nancel and

Cockburn [32]. .. 12

Figure 2.1.2 File with multiple versions. .. 12

Figure 2.2.1 History window of Paint.net. ... 13

Figure 2.2.2 The top row represents the autosave option available in MS Word (left) and Adobe

Premiere (right). The bottom row represents the autoversion settings in ZBrush (left) and

Blender (right). .. 15

Figure 2.2.3 Autorecovery settings for MS Word. ... 16

Figure 2.2.4 Autorecovery feature in Adobe Photoshop. ... 16

Figure 2.2.5 Screenshot of a save menu in Assassin’s Creed Odyssey [79]. 17

Figure 2.3.1 The assembled presentation from two separate versions of slides and its comparison

with the other two versions [14]. ... 21

Figure 2.3.2 Examples of Scented Widgets with various encodings [49]. 22

Figure 2.3.3 The evolution of a sketch in a linear layout and the Level of Detail tree created from

the dendrogram (resulting from the cluster analysis) [51]. ... 23

xi

Figure 2.3.4 Bottom row represents the three different versions of the spaceship model. Top row

represents how the MeshGit detects non-conflicting and conflicting changes and suggests

three possible ways to resolve the conflicted merge [10]. .. 24

Figure 2.3.5 Design Gallery for Light selection and placement [28]. .. 25

Figure 2.3.6 Parallel Pies tool's command dialog box that can apply current result as a new

variation (top right button), or apply commands to all variations (bottom right button) [47].

 ... 26

Figure 2.3.7 GEM-NI: (a) Cartesian Product menu for parameter selection, (b) Design gallery for

alternatives [50]. .. 27

Figure 2.3.8 DesignScape Interface: Simple Layout Editor (center), Refinement suggested Layouts

(left) and Brainstorm suggested Layouts (right) [34]. ... 28

Figure 2.3.9 Causality: Represents branching chronology (top 3 rows), linear timeline (blue lines),

application context (grey bar), artifact state (green bar), commands (blue triangles), time-

travels (clocks and dotted lines), and branching (black strokes) [32]. 29

Figure 2.3.10 Artifact versions and subscription in the local history. .. 30

Figure 2.3.11 Applying command to past state generates a new state of history (left) and inserting

command in an existing list of commands generates a new subtree (right) [32]. 30

Figure 2.4.1 Version History panel (right hand side) for Google Docs. 32

Figure 2.4.2 MacHg screenshot for revision graphs [92]. .. 32

Figure 2.4.3 Abstract Tool screenshot [93]. ... 33

Figure 2.4.4 Time Travel Debugging [95] allows command t- to move the debugger back to

previous position 4A:7 indicated with red arrows. .. 34

Figure 2.5.1 Screenshot of the gameplay of Super Meat Boy [104]. ... 35

xii

Figure 2.5.2 Screenshot of gameplay of Braid [105]. .. 36

Figure 2.5.3 Screenshot of the gameplay of Prince of Persia: The Forgotten Sands [107]. 36

Figure 2.5.4 Screenshot of gameplay of Super Time Force Ultra [108]. 37

Figure 3.1.1 Number of participants stating that they were familiar with specific versioning tools.

 ... 41

Figure 3.1.2 Number of participants stating that they were familiar with specific backup tools. 42

Figure 3.4.1 Default file names of the duplicate files created in Windows Operating System.... 50

Figure 3.4.2 Files sorted according to Date Modified tag in Windows Operating System. 50

Figure 3.4.3 Confusing file names for different versions. .. 51

Figure 4.2.1 Lists: horizontal layout (left) and vertical layout (right). .. 55

Figure 4.2.2 Adobe Photoshop’s History tool representing a linear hierarchy. 56

Figure 4.2.3 Tree Structure: number of children are fixed (left) and number of children are not

fixed (right). .. 57

Figure 4.2.4 Set of versions of a project (left), version history stored in a list when a new version

is added (middle), and version history stored in a tree when a new version is added (right).

 ... 58

Figure 4.3.1 Version Tree panel with different versions represented as nodes of the tree. 60

Figure 4.3.2 (a) User working on a current version (Version 4) of a level (b) user previewing

Version 2 of a level by hovering over a node where the changes from Version 4 are shown

with lower opacity. .. 62

Figure 4.3.3 Panning buttons (left) and Zoom buttons (right). .. 62

xiii

Figure 4.3.4 (a) JSON data of version 2 for the game level editor (left) and its corresponding

version in a version tree (right), (b) JSON data of version 422 for the web analysis tool

(left) and its corresponding version in a version tree (right). .. 63

Figure 4.4.1 Game Level Editor (left) and Versioning Tool (right). .. 65

Figure 4.4.2 Sprite box selector and playtest button. ... 66

Figure 4.4.3 Game End screen with the restart button. .. 67

Figure 4.4.4 (Left) Current version is ‘Version 2’ highlighted in green. (Right) When the user

saves changes while in 'Version 2’, it does not save those changes to ‘Version 2’ but creates

a new ‘Version 5’. ... 68

Figure 4.5.1 Web analysis tool’s interface (left) with versioning tool (right). 70

Figure 4.5.2 Tooltip displaying stored command in a version (node). .. 71

Figure 5.1.1 Game Level Editor (left) with Versioning Tree (right). .. 75

Figure 5.1.2 Participants’ responses for versioning tools. ... 76

Figure 5.1.3 Pop-up window with task instructions. .. 77

Figure 5.1.4 Task 3 with a pattern of sprites to move: (a) before moving the pattern (b) after moving

the pattern. ... 81

Figure 5.1.5 Task 3 when the previous version is being previewed to see the differences. 82

Figure 5.1.6 Task 4 with two given levels to modify. .. 83

Figure 5.1.7 Task 5 to create separate difficulty levels without changing positions of the spikes.

 ... 83

Figure 5.1.8 Task 6 to create separate difficulty levels with a specific number of ledges and spikes.

 ... 84

xiv

Figure 5.1.9 Example of creating a new version where (b) changes are made by a participant first

and then (c) changes are saved to a new version ‘easy’. ... 89

Figure 5.1.10 Tree generated by explicit saving (default method). ... 93

Figure 5.1.11 Trees generated by 'Play' and 'Every Change' methods. .. 94

Figure 5.1.12 Trees generated by '3 changes' and '3 second Time' methods. 94

Figure 5.2.1 Web Analysis Tool interface with version tree. ... 95

Figure 5.2.2 Single branched version tree after running analyses in a batch. 96

Figure 5.2.3 A mockup of a tree structure after classifying nodes based on parameters. 98

Figure 6.1.1 Left: Creation of a new version from a base version. Right: Artifact modification from

base version (star shape) to saved changes in a new version (fill color). 101

Figure 6.3.1 The objects of another version (hovered over by the user, ‘Level_Easy’) are overlaid

on top of the transparent layer of objects from the current version, ‘Version 3’. 103

Figure 6.4.1 Branching in a version tree. ... 104

Figure 6.6.1 One-step-multiple-undo (left) when a version acts as an alternative of multiple-undos

(right). .. 106

Figure 6.6.2 Version tree before a user switches from 'Version 9' to 'Version 3' (left). A new version

'Version 10' is created as a child to ‘Version 3’ while still preserving old branch (right).

 ... 107

Figure 6.6.3 (a) History list with two shapes in the drawing (b) History list when reverted to

previous step (c) History list losing history when a new change has been made. 109

Figure 6.8.1 Example of 2D digital design project [17] with two phases: base design phase (left)

and painting phase (right). ... 111

xv

Figure 6.8.2 Trees generated during (a) base design phase: by every change (left) and by layer

creation step only (right); (b) painting phase: by every change (left) and by layer creation

step only (right). .. 113

Figure 7.2.1 A mockup of the tree structure before collapsing with context menu (left) and after

collapsing (right) branches. ... 117

Figure 7.2.2 A mockup of the tree structure before archiving with context menu(left) and after

archiving (right) branch. .. 118

Figure 7.2.3 A mockup of the pruned node ‘Base Test’ marked with a red rectangle. 120

Figure 7.2.4 A mockup of the application screen with color-coded nodes (left) and nodes with tags

along with search capability (right) that highlights only nodes with ‘Enemy’ tag. 121

Figure 7.2.5 A mockup of the tree structure with annotations added to nodes. 122

Figure 7.2.6 Editing history of an illustration where the user edits are depicted as arrows and icons

that can be clicked to undo those edits [44]. ... 123

Figure 7.2.7 d.note enables interaction designers to leave comments attached to any state [21].

 ... 123

Figure 7.2.8 A mockup of the application screen showing the Object States History for ‘Spike 1’

sprite object with a strobe-styled path effect (left) and object interaction state history as a

single branch tree (right). .. 124

Figure 7.2.9 A mockup of the web analysis tool’s interface where the changed UI elements are

highlighted in green after-glow effects. .. 125

Figure 7.2.10 A mockup of the application screen showing the Object States History for ‘Spike 1’

sprite object for each user in collaboration with color-coding. 126

Figure A.1. Consent form ... 138

xvi

Figure A.2. Study questionnaire ... 139

Figure A.3. Online Survey Part 1 ... 140

Figure A.4. Online Survey Part 2 ... 141

Figure A.5. Online Survey Part 3 ... 142

xvii

LIST OF ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

GUI Graphical User Interface

PC Personal Computer

SVN Subversion

UI User Interface

VCS Version Control System

1

CHAPTER 1

INTRODUCTION

Versioning is integral to recording and maintaining proper logs for the evolution of work. The

different editions of books are an example of versioning, where each edition introduces changes

and updates to the content of a book. When we apply this concept to digital work, it is referred to

as digital versioning. Digital versioning is also crucial for error recovery and data backup in case

of inadvertent actions or system failures. Although several versioning approaches currently exist,

none of them fully meets the needs of interactive systems in which both the document content and

the state of the interface are important elements of the user's interaction history. Interactive systems

are the systems that accept input from the user as they run [52], and if these systems also have a

graphical interface attached, then they are usually referred to as graphical interactive systems.

These systems have two states – document/model state and User Interface (UI) state. The

document/model state includes the data associated with the work objects in the application and the

UI state includes the data associated with the view/interaction state of the interface elements of the

application.

There are multiple ways to handle digital versioning. One approach to handle it is to manually

duplicate existing work, e.g., as a new file. Because file-based versioning requires manual effort to

duplicate the files, it only works well when there are a small number of project files. As a result, if

the project has a significant number of files, this method of manually duplicating files becomes

inconvenient to use. The second approach is to leverage software applications’ built-in auto-

versioning features, which save multiple versions of project files. Blender and 3ds Max, for

example, allow for automatic versioning of project files at regular intervals [53,54]. The third

approach is to create versions or backups of project files using cloud-based solutions such as

Dropbox and OneDrive [55,56]. These services are designed to help users save time and effort by

recording and managing multiple versions of the same document. The fourth approach is to use

Version Control Systems (VCS) such as Git, SVN, and Mercurial [57–59] to manage revisions of

source code, binary files, and digital assets. These tools, however, only handle explicit versioning

2

(i.e., where the user must choose to save a version), are used externally (not integrated within the

interactive environments) and can require substantial configuration to set up. For example, in

Visual Studio Code (VS Code) [60], a user can utilize VCS features by accessing the Source

Control panel (see Figure 1.1.1) and can perform versioning for their document state data. But the

VCS system must be installed and configured on users’ system before it can be used inside VS

Code.

Figure 1.1.1 Git integration inside Visual Studio Code using Source Control Panel.

However, for interactive systems, all four approaches to handle digital versioning have two

shortcomings. First, the difficulty of current version tools does not make it easy for users of

interactive systems (e.g., visual editors) to create and make use of fine-grained versions. For

example, saving a new file or committing to Git every time a user moves an object in a game level

editor requires too much effort. Second, current tools only store the state of documents/files and

do not store any information regarding past states of interactive elements such as interface controls

and widgets, and the system settings or user preferences of an application. For example, if a user

is working in an interactive system like a game editor such as Unity [61] or Unreal [62], they might

3

be able to use versioning to keep track of changes in their document state such as game objects and

their properties in their current scene. But any changes related to the UI, such as docking a panel

to a different location and browsing to a different folder in the project view, are not stored in any

version (see Figure 1.1.2).

(a)

(b)

Figure 1.1.2 (a) Unity Editor with default UI view with Project panel showing ‘Assets’ folder (b)

Unity Editor when Console panel is docked to the right side of the Project panel which now

shows ‘Shaders’ folder.

4

Similarly, in a 3D modeling application such as Blender, changes in global settings that affect the

whole system, such as display resolution and anti-aliasing value, are never stored by current

versioning tools.

Another example is the changes that a user can make to brush presets in Adobe Photoshop [63].

Figure 1.1.3 (a) shows a scenario where a user is drawing leaf patterns using a brush preset ‘A’

with the default settings. If the user makes any adjustments to the parameters of this brush preset

in the Brush Settings Panel (see Figure 1.1.3 (b)) they will have to manually create a new brush

preset to save their adjustments because the moment they switch to a different brush preset ‘B’,

they will lose their changes to the brush preset ‘A’. This shows that Photoshop does not store any

information about the past states of the UI elements. Therefore, the current tools that will be used

to version the Photoshop file will not contain any information regarding the UI state changes.

(a)

5

(b)

Figure 1.1.3 (a) Photoshop’s brush preset with default settings, (b) brush preset with modified

settings.

Supporting versioning in interactive systems requires a better understanding of what a ‘version’

implies in the context of a specific digital system and what constitutes an interaction history.

Moreover, knowledge on how users want to access and manipulate past states of the interactions is

needed to develop effective versioning tools. For example, past states are important while working

in an interactive system for several reasons: users may want to know their interaction workflow

(how they reached the current version); they may want to explore possibilities by using previous

states as templates; they may want to refer to a previous state to plan future changes; or they may

want to use a past state as an undo state to revert in case the new changes are not in line with the

requirements.

In this thesis, we gathered new information about versioning in interactive systems and designed a

versioning tool that can be integrated into a web-based interactive system and that allows users to

record their interaction history without relying on any external tools. We evaluated the tool in two

6

case studies to see whether people can effectively use integrated versioning in several realistic

tasks. The study provides new knowledge about several aspects of interactive versioning, including

people's versioning patterns, the use of versions as templates, how people use branching within a

version tree, and using versions as an alternative to undo: this knowledge can aid the design of

effective versioning tools for other interactive systems.

1.1 PROBLEM

The problem we address in this thesis is the lack of understanding of how to build effective

versioning tools for interactive systems - including design issues for developing such tools to deal

with past states of interactive work and their ability to save users’ interaction history.

All of the existing approaches to handle versioning in interactive systems have drawbacks. Manual

file duplication requires substantial effort and does not save the UI state of the application where

the file is created. The built-in versioning approach does not work with applications more generally.

Cloud-based solutions like Dropbox and OneDrive require explicit actions to save versions and

they also do not save any UI state data. The VCS systems are used as external tools that must be

set up before they can be used. They also necessitate a significant effort in order to create versions.

A user, for example, would need to set up an external repository to store all versions of the project.

All the changes for different files in this project would be bundled by a user in a commit (snapshot

for current changes). After that, these changes are pushed to the external repository.

These drawbacks imply that a different type of versioning is required for interactive systems. There

is a lack of knowledge when we consider designing for such environments. This knowledge can be

gained by answering questions such as what must be stored in a version, how to store these versions,

are the UI states part of the version, and when and how users create and access these versions.

These and other design questions must be answered to create an effective tool to save interaction

history in an interactive environment.

7

1.2 SOLUTION

Our solution is to provide a new understanding about versioning in interactive environments by

developing a custom interactive versioning tool. First, we sent out a survey to people over the

internet regarding versions to understand how and when they are created, used, and modified.

Second, we used the information gathered through our survey to develop a custom interactive

versioning tool that can record both fine-grained document/model states either explicitly or

implicitly, and can record the interactive state of the UI, in web-based applications. The tool also

allowed users to inspect and interact with different versions visualized in a tree to provide an easy

way to switch between versions and compare them (visualize changes in the system). Moreover,

this tool also created implicit versions on granular trigger events (every 3 seconds, on every change,

etc.) to provide even more versions that a user can explore at a later time. Third, we added our

versioning tool to two interactive web applications to allow the system to store states of the system

(data such as positions of sprites representing a level in a game level editor) or to save user

interactions history with UI elements of the application (web-form elements like sliders or

dropdowns) as separate versions.

1.3 STEPS TO THE SOLUTION

Our solution has been implemented in three parts as follows:

1.3.1 Understanding versions (survey)

We recruited online users of interactive systems and asked them to complete a survey that asked

basic questions about versioning in interactive systems such as under what circumstances users

create a new version of any file, how often do they go back to the previous version, and what

naming convention do they follow when naming different versions of their files. Answers to these

questions helped us gain an understanding of versioning in the context of several digital interactive

environments.

8

1.3.2 Determine the representation for versions

To determine a visual representation for versions, we consulted previous research and other

available tools that suitably represent linear and non-linear hierarchies. There are two main

candidates – timeline/linear and trees, according to our findings. Timeline/linear representations

are ideal for depicting linear changes or events in chronological order, but they are unable to

represent branching. As a result, we used tree visualization to describe non-linear hierarchies in

which changes can be stored as multiple separate points that diverge from a common point in the

hierarchy.

1.3.3 Build the versioning tool

We built our custom version tool, presented in Chapter Three, that allows users to save an

application’s document/model state data and UI state data as a version. The tool was developed in

Javascript and used JSON (Javascript Object Notation) to store the data for each version. All of the

versions created were then presented in a version tree within a panel attached to the right-hand side

of a web application’s interactive interface. Users could access, alter, and explore versions stored

in the version tree with our versioning tool.

1.4 EVALUATION

We evaluated how people will use our versioning tool that was developed as a solution to the

problem of recording interaction history in an interactive system. We also wanted to see how well

they could use our tool during some digital interactive work. Therefore, we added our versioning

tool to two web-based applications and observed users who carried out tasks in the applications

that involved versioning. The two applications were: game level editor and a web analysis tool. We

then carried out a user study of level design tasks for a game to determine how our versioning tool

helps users in managing different versions of their game level. This study focused on simple and

fine-grained versioning of the document (saving the information of objects in each game level).

We observed how users were able to successfully create versions of their levels, easily switch to

9

different versions when required, and create several branches of versions in a tree. We made

additional observations such as using the preview feature to compare different versions and using

versions as undo-redo to fix quick mistakes.

We also wanted to test our tool in another interactive environment where the focus was on saving

interactive states of the UI. So, we tested our tool in a web interactive system used for performing

analysis on microbiome datasets, where the state of UI elements such as fields of a web form could

also be saved in a version. We observed what happens when there are a large number of versions

generated when analyses are run in bulk mode, i.e., multiple analyses are run sequentially. We

discovered how branching versions based on various parameters could make a large number of

versions simple to navigate and understand.

1.5 CONTRIBUTIONS

There are three main contributions presented in this thesis: a new understanding of versioning in

interactive systems and design issues for developing such tools; development of the versioning tool

that can augment interactive systems; and evaluation of the developed tool to observe how people

used versioning tool while performing design and analysis tasks, giving us an insight into the key

elements such as versioning patterns, templating, and branching that are required to construct

functional and helpful versioning tools for other interactive systems.

1.6 THESIS OUTLINE

The content of this thesis is organized into seven chapters.

Chapter Two presents a literature review of the related work that forms the foundation of research

done in this thesis.

10

Chapter Three presents the survey study we carried out to ask people some basic questions about

versioning in interactive systems. We discuss the necessity to create versions and the reasons to

revert to previous versions.

Chapter Four details the design of our versioning tool and selection of appropriate visual

representation for storing different versions in an interactive environment. It also presents our two

custom interactive systems that we designed to test our versioning tool.

Chapter Five presents two user studies we did to test our tool in interactive environments – a game

level editor and a web analysis tool. We discuss the design and analysis tasks that the participants

performed and the observations we made in both studies. We also discuss user feedback and

observations for how different version trees are created when versions are saved implicitly.

Chapter Six presents a discussion of the most important results and observations from both the

studies from Chapter Five. We present our explanation for each of the findings and how they can

be used in improving the design of versioning tools for interactive systems.

Finally, Chapter Seven concludes the research presented in this thesis. It discusses our

contributions and provides a summary of our findings. It also highlights future work that can be

done in relation to the research presented in this thesis.

11

CHAPTER 2

RELATED WORK

Augmenting interactive systems with an interactive versioning tool is based on five areas of

research. These areas give us insight into versioning, ways to deal with past states of a system, user

interactions with interactive history, current systems that implement versioning, and how other

interactive environments deal with historical data. In the first section, we introduce and review

definitions of versioning and explain why it is a crucial part of digital workflows. In the second

section, we discuss ways of dealing with past states of a digital system. In the third section, we

discuss how users can interact with interaction history within different applications. In the fourth

section, we look at current systems that implement versioning in their workflows. Finally, in the

fifth section, we review interactive environments that deal with historical data and versioning.

2.1 VERSIONING

Saving the current state of work is fundamental in a digital environment. Most of the time, people

save their work to avoid losing changes made in a file since the last time it was worked on or to

explore alternatives in their document. According to Nancel and Cockburn [32], a version is a fixed

reference in history that represents a snapshot Es of an element E at a given state S of history (see

Figure 2.1.1). In other words, it is a fixed point in history that stores a particular state of the system.

In computer science, versioning (or software versioning to be exact) “is the process of assigning

either unique version names or unique version numbers to unique states of computer software”

[64].

12

Figure 2.1.1 History Stack with various states Si of an element E (adapted from Nancel and

Cockburn [32].

The most common method of versioning is saving multiple copies of a file as shown in Figure

2.1.2. In the figure, three document files are named using the same keyword and suffixed with a

number. Each file is a different version of the same document with some modifications to the

previous state of file content.

Figure 2.1.2 File with multiple versions.

However, file names that do not adequately describe the version of a document might lead to

confusion among users when it comes to correctly identifying the document version they want to

access (discussed further in Section 3.4).

13

2.2 DEALING WITH PAST STATES

Storing and retrieving past states is an important part of interacting with digital systems. It’s all too

easy to make a typing error in a text document, insert an incorrect image into a file, or erase an

object from a design diagram by accident. Users require strategies to recover from such blunders

and mistakes, which are often unavoidable. One method is to utilize undo-redo functions, a second

method is to save frequently and build backups using autosaving and autoversioning, and a third

method is to use version management tools.

2.2.1 Undo – Redo

The most common way to recover from errors is to utilize undo-redo, which can be found in most

application softwares. Undo-redo allows users to carry out forward and backward error recovery

and is usually implemented using the command design pattern [19] in a linear model of system

states (Figure 2.2.1). Undo allows the user to return to a previous state of the system via one action

or one change in a linear model while redo allows them to move back to a future state (only if the

undo action was performed previously). This makes it easy to go backward (undo) and forward

(redo) in time.

Figure 2.2.1 History window of Paint.net.

14

However, undo-redo is quite easy to break; if new changes are introduced after performing an undo

action, then the previous changes in the redo stack may be lost and the user cannot access those

changes. This can be solved to some extent using selective undo [38] that deletes only specific

actions in the history without discarding any stored undo-redo commands on the stack [26]. This

enables the user to perform any operations stored in a history list and gives them the ability to alter

the history with more freedom, unlike regular undo-redo.

The “Three R’s” (Rewind, Repair, and Replay) undo model allows the users to go back in time

within a document state history to fix a problem. As a result, the effects of the changes made when

fixing the problem are propagated to the present state [3]. In the 'rewind' step, the user restores the

system to a previous state, makes changes in the 'repair' step, and then in the 'replay' step, the user

replays or re-executes the actions that follow the changed action according to the proposed changes.

Altering a part of the history of a document can result in generating temporal paradoxes [29] that

can introduce conflicts in the set of actions that follow the alteration. Avoiding such paradoxes

requires careful approaches such as rejecting actions that result in conflicts.

Another type of undo model exists called Cascading undo [5] that removes conflicts between

changes done through the undo-redo commands by tracking dependencies between user actions.

Even with this technique, however, the undo can fail if the capacity of the history list of a system

exceeds or when a dependency has changed for the resulting action.

Undo-redo mechanisms are not able to isolate specific versions, and for major changes between

versions, stepping through individual undo actions would require substantial user effort.

2.2.2 Autosaving and Autoversioning

Autosave and autoversion are the important features that are helpful for backups and error recovery.

Autosave saves the current work automatically, without the need to explicitly perform a save

action. Autoversioning automatically creates a separate version of a working file or a project. Some

applications such as MS Word, Adobe Photoshop, and Visual Studio Code have an option to auto-

save files at a regular interval [53,65–67]. Applications like Blender, 3ds Max, Autodesk

AutoCAD, and Zbrush automatically save versions of project files periodically or on every explicit

15

save [54,68,69]. Besides time-based or explicit saving, there are other cases when an application

can autosave a new version of a working document. For example, Adobe Story (Classic) saves

versions of a document in cases of changes like online-offline mode switching, session-based

changes, collaboration, and overwriting [70].

Figure 2.2.2 The top row represents the autosave option available in MS Word (left) and Adobe

Premiere (right). The bottom row represents the autoversion settings in ZBrush (left) and Blender

(right).

The main difference between these features is that autoversioning creates a duplicate of a file while

autosave overwrites the same file. In the latter, however, there is no option to preview the previous

stack of changes at different time intervals - the last saved version is the only copy of the work.

16

Autorecovery is another feature that is available in many applications that utilize autosave and

autoversion to recover files. It can be manually set up by the user to avoid losing their work. In MS

Word, the users can set up autorecovery for a certain number of minutes, see Figure 2.2.3, which

allows the software to recover the autosaved file [71]. In Adobe Photoshop, the autosaved recovery

files created by the autorecovery procedure are stored at some default recovery location on the hard

disk (see Figure 2.2.4). These files are not stored for an extended period of time and are removed

if Photoshop is opened after a crash or an unexpected failure and is then closed again without

selecting the recovered file (unlike MS Word where the user can still get back to the autorecovered

file) [72].

Figure 2.2.3 Autorecovery settings for MS Word.

Figure 2.2.4 Autorecovery feature in Adobe Photoshop.

17

Many other applications perform the autosave operation in conjunction with other actions. For

example, compiling the source code or building the current project in an IDE (Integrated

Development Environment) also saves the modified or unsaved source code file automatically.

This capability exists in IDEs such as IntelliJ, PyCharm, Eclipse, and Codeblocks [73,74]. Even

the command line text editors like Vim and Emacs have autosave facilities to save files

intermittently [75,76]. The save action can also be triggered on certain events by using hooks

(scripts) or by setting some variables in the preferences. These temporary files, also known as swap

files or recovery files, can be used to recover the lost work.

The autosave feature is also common in video games [77,78]. Many games have checkpoints which

are locations in the game where the player respawns after they die. When the player reaches a

checkpoint, the game is automatically saved. Players can also save their progress by manually

saving the game, i.e., manually creating a checkpoint, either using a mechanism called ‘quick

saving’ [78] by pressing a single keystroke or with a menu system (demonstrated in Figure 2.2.5).

Players can overwrite their progress on the same saved game file or can create a new one which is

then seen as a separate version of the saved game file.

Figure 2.2.5 Screenshot of a save menu in Assassin’s Creed Odyssey [79].

18

2.2.3 Version Management Tools

In several job domains, version management is crucial for error recovery and backup. Version

control systems and tools make it easier to manage the project files’ history and modifications.

They keep a separate version for each historical state or point of work. Tools like SVN, Git,

Mercurial, Bazaar, and others [57–59,80] track changes in a project’s files from their previously

saved state and store the differences in a changeset (explained in Subsection 2.2.3.1) for tracking

the changes over time. They keep track of all the files that were added, deleted, or updated in each

commit (version), making it easy to see how the project evolved over time.

2.2.3.1 Basic VCS terminology

The following is basic terminology that is used in VCSs.

• Repository: The repository is referred to a local or remote server where all current and

previous versions of files are stored.

• Version/Revision: A version is a state of the repository at any given time. It is also known

as revision or snapshot.

• Diff: The difference between two different versions of a file.

• Commit: To commit is to write or save the changes to the repository. In some VCSs, this is

known as check-in.

• Changeset: A collection of a set of commits that contains all the changes in a local working

copy from the previous revision of the repository.

• Checkout: To checkout is to create a local working copy from the repository.

• Branching/Forking: A set of files may be branched or forked at a point in time to create a

different copy of files independent of each other. An individual copy of a set of files is

known as a branch.

• Merging: To merge changes from one branch to the other branch so that both sets of changes

can be combined in a single branch.

2.2.3.2 A brief history of VCSs

There are three generations of version control systems [15]. The first versions of VCSs were all

file-oriented, centralized, and mostly lock-based. SCCS (Source Code Control System) [41],

developed in 1972 at Bell Labs for Unix systems, pioneered concepts and conventions like version

numbers, major and minor versions (revision) separated by periods, which are still used in VCSs

19

today. RCS (Revision Control System) [48], developed in 1982, operates on revision groups (a set

of documents called revisions) which evolved from each other under manual changes. It is a lock-

based system, meaning only a single person can have a lock on a file and can make changes to it;

the lock is released once the editing is done.

The second generation of VCSs were file-oriented and centralized as well but instead of using a

lock-based approach, they used merging which was useful for collaborative development. CVS

(Concurrent Versioning Systems) was released in 1986 and was widely used, with its terminology

and conventions inspiring later VCSs. CVS uses a client-server architecture where the server stores

the current versions of a project and its history while the clients 'check-out' a copy of the project,

make changes, and later 'check-in' those changes. Some other second-generation VCS projects are

Perforce (1995), Subversion (2000), and Microsoft Team Foundation Server (2005). Subversion

also allowed non-text files (unlike all prior VCSs) and even tracked directory structure as each

subdirectory of the Subversion working copy behaves like a CVS module and therefore can be

checked out and updated individually. The atomic commits (single commit that pertains to one fix

or feature), merge-before-commit model, and support for binary files made Subversion more

flexible and powerful than other VCSs of the time.

The third-generation systems finally allowed merging and committing work as separate processes.

These newer VCSs used decentralized and changeset-oriented approaches. Arch [81] and

BitKeeper [82], released in the early 2000s, became influential in terms of features and inspired

many new VCSs that are used by millions of users every day. Git, one of the most popular of VCS

today [83,84] was developed in 2005 for the development of the Linux Kernel when BitKeeper, a

proprietary software that they used to maintain their project at the time, revoked their free-of-

charge status [85]. Another project that was created following the BitKeeper pricing issues was

Mercurial [59]. Both Mercurial and Git provide high performance and scalability along with robust

and fully distributed collaborative development, and advanced branching and merging capabilities.

Both of these systems are available as software-as-a-service [86] by many hosting facilities. Git is

widely used with platforms like GitHub, GitLab, and CloudForge while Mercurial is hosted at

platforms such as Bitbucket, SourceForge, and Perforce. Many open source and private projects

are hosted on these platforms with contributors all around the world [87]. Large companies like

20

Microsoft, Netflix, Reddit, Lyft, and Stackshare use Git for their own projects, and Facebook,

Mozilla, and GNU Octave use Mercurial.

2.3 INTERACTION WITH HISTORY

2.3.1 Interaction History

The interaction history refers to a collection of all recorded actions performed by a user in an

interactive system. For example, in an image editing software, to resize and color an image, a user

executes certain actions in a sequence such as enabling ‘selection box’ to draw a rectangular area

around the image, change image size, create a new layer on top of this image, then choose a fill

color, and finally add color to the new layer. All these actions and events are stored as interaction

history in a list.

Interaction history can help avoid performing the actions that the user may need to execute

repeatedly. To automate these actions to perform a particular task, macros can be used which are a

series of steps (or interactions) in the interface that can be recorded and performed later [88–90].

Most of the systems that support macros usually do proactive recording [30,42] where recording

must be explicitly specified by the user (when to start and stop recording). On the other hand,

systems like Smart Bookmarks do retroactive recording [25] where the system automatically stores

the user interaction and creates macros from the subset of saved actions. Freeman and Balakrishnan

[18] presented tangible actions that allow the system to re-perform the original interactions for a

number of objects in the same interaction space using simple user gestures.

2.3.2 Comparing versions

Comparing individual versions is an important aspect in identifying the differences introduced

during the project lifecycle and evolution. While text-based differences can be done using line

based diff [24], the binary differences are a lot harder. However, doing a visual comparison

between versions for complex objects can provide users with easy to understand views. Drucker

et. al [14] presented new techniques and tools for doing a visual comparison between multiple

21

versions of a slide presentation. They identified subsets of slides that were similar across versions

and presented an interactive visualization of the multiple versions of the presentation. Their

assembly tool allows users to select and copy subsets of slides from one version into a new

presentation (see Figure 2.3.1), which becomes an important feature in a collaborative

environment. On the other hand, Chen et al. [6] presented a view authoring assistance system for

3D models to set views, paths, and surfaces across different model versions. Their comparison

view function allows a modeler to view two different model versions in a side-by-side comparison

with a version slider to change the version being displayed.

Figure 2.3.1 The assembled presentation from two separate versions of slides and its comparison

with the other two versions [14].

22

2.3.3 Visualizing interaction

Visualizing interaction for individual objects with a technique like Phosphor [1] can help in

improving user’s ability to understand changes in a user interface. Scented widgets [49] provide

visual navigation cues by scenting (augmenting with navigation cues) interactive widgets to

navigate information spaces (see Figure 2.3.2). A study of this technique showed that scented

widgets helped the user make up to twice the number of unique discoveries while navigating

unfamiliar data. Guimbretière, Dixon and Hinckley [20] presented an analytical tool called

‘ExperiScope’ that creates a timeline of interaction histories (capturing data and identifying

patterns) to aid the analysis of empirical studies. Cutler, Gadhave, et al. [7] developed a library

called ‘Trrack’ that provides web-based provenance-tracking for the purpose of action recovery

(undo/redo), reproducibility, collaboration, and logging. It allows for visualization of and

interaction with the non-linear provenance graph using TrrackVis (customizable visualization

library to be used with Trrack).

Figure 2.3.2 Examples of Scented Widgets with various encodings [49].

Similar to timelines, storyboards are a great way to visualize the evolution of a design, where each

frame of a storyboard can be used to represent a state of the design at a fixed point in time. Zhao,

Zhenpeng, et al. [51] developed ‘Sketcholution’ - a method for creating visual histories for hand-

drawn sketches using a bottom-up agglomerative clustering mechanism to group adjacent frames

based on perceptual similarity. This allows the designers to visualize the history of a sketch which

can provide an insight into the creative process behind the design. Due to the lack of need to support

forking the previous states, no hierarchical visual representation was required and therefore, a

linear list was used to represent the evolution that creates a storyboard of sketches (Figure 2.3.3).

23

Figure 2.3.3 The evolution of a sketch in a linear layout and the Level of Detail tree created from

the dendrogram (resulting from the cluster analysis) [51].

2.3.4 Versioning for Interactive Systems

The revision (version) management of the assets in a 3D environment is critical for artists and

designers working by themselves or in a team environment. Doboš & Steed [13] presented a 3D

Revision Control Framework that provides asynchronous revision control of 3D assets using

NoSQL Database. Their tool allowed version tracking, differencing, and conflict resolution during

merging while working with the notion of explicit and implicit conflicts [11]. Another tool that

helps in diffing and merging polygonal 3D meshes is MeshGit [10] where the conflicting merges

are handled gracefully by allowing users to choose the version that they want to include in the

merged version. In Figure 2.3.4, the spaceship model (original) has two derivative models

(derivative a and derivative b). In derivative a, new top part is added to the model, and the base of

the spaceship is also expanded. On the other hand, wings are added in the derivative b. However,

these edits are conflicting when user tries to merge them together. MeshGit resolves this by

presenting user with three different versions of the spaceship model. The first version includes

merging of only non-conflicting mesh parts, therefore the merged model has only the top part added

to the resultant model. The second version consists of all non-conflicting mesh parts and the

conflicting part of derivative a of the model. And, the third version is a combination of non-

conflicting mesh and the conflicting mesh from derivative b of the model.

24

Figure 2.3.4 Bottom row represents the three different versions of the spaceship model. Top row

represents how the MeshGit detects non-conflicting and conflicting changes and suggests three

possible ways to resolve the conflicted merge [10].

Revisiting the historical states of a system has also been explored by various researchers previously

[31,37,40,45]. Systems like Chronicle [4], Sketch-Sketch Revolution [16], and 3D Timeline [12]

record workflow histories that can be viewed and played back later, while an interactive system

like MeshFlow hierarchically clusters user operations and then ensures that the users can focus on

a relevant part of the design process [9]. MeshFlow summarizes the workflow to discrete steps

because of fixed clustering rules whereas another workflow tool called 3DFlow works on a

continuous summarization and summarizes the workflow down to a single step [8]. With a large

number of workflows available, it makes sense to do workflow comparisons. Delta [27] is one such

tool that helps the users to identify the tradeoffs between workflows by comparing them based on

the set of attributes that users focus on the most.

2.3.5 Exploration of Alternatives

Versions can also help in exploring a parameter space by creating multiple alternatives for a range

of parameters that can be used for dealing with some ill-defined problems (problems with poorly

defined operators and goals) such as design tasks [33]. There are many systems developed that can

25

create parameterized alternatives. For example, the Design Gallery interface [28] provides the user

with a selection of parameters that can be varied to automatically produce perceptually different

graphics or animations. The example interface, shown in Figure 2.3.5, shows alternative designs

available for setting light parameters such as light type and placement in the scene. These designs

were created during a “dispersion” step in which the system selects an appropriate subset of input

vectors from a random sample over the input space, i.e., only a subset of total thumbnails is

approved that are likely to be of user’s interest. Design galleries of animations can also be

constructed using a variety of dispersion methods. Similarly, Side Views [46] provides an on-

demand dynamic preview of commands applied to the copy of current data allowing users to look

at several possibilities without committing to any one course of action. The parameter spectrums

display a series of previews across the user-defined range of values for a parameter.

Figure 2.3.5 Design Gallery for Light selection and placement [28].

26

However, unlike SideViews and Design Galleries, Parallel Paths model of interaction [47] allows

users to generate, manipulate, manage and compare multiple solution variations. Users can create

new solution variations before, during, and after invoking a command (interaction action that can

alter the variations). Since each variation is directly embedded in the same workspace, it allows

users to operate on these variations simultaneously or individuals as necessary. Parallel Pies tool,

an image manipulation application that implements Parallel Paths’ principles, allows a command

to be applied on individual variations as well as simultaneous variations (see Figure 2.3.6).

Figure 2.3.6 Parallel Pies tool's command dialog box that can apply current result as a new

variation (top right button), or apply commands to all variations (bottom right button) [47].

A similar approach was followed by Zaman, Loutfouz, et al. [50] in their graph-based generative

design tool ‘GEM-NI’ that allows designers to explore different alternatives. Their system supports

parallel editing (allowing users to edit multiple alternatives simultaneously), merging alternatives,

branching, and comparisons that can help users create multiple alternatives for initial designs.

Figure 2.3.7 (a) shows the dialog box for creating an alternative from history, where a user can

branch out from the currently selected state (in the list on the left-hand side) by pressing a "Creating

27

Alternative" button that creates a new branch by cloning the history stack using skating (duplicating

the current state and return to the previous state non-destructively) [47]. The design gallery, see

Figure 2.3.7 (b), shows several possible alternatives based on parameters that can be varied, and

their results are obtained based on a Cartesian product.

Figure 2.3.7 GEM-NI: (a) Cartesian Product menu for parameter selection, (b) Design gallery for

alternatives [50].

28

O'Donovan, Agarwala and Hertzmann [34] presented a system that provides two types of future

versions for interactive layout: refinements and brainstorming suggestions. The system provides

refinement suggestions to improve the current layout while brainstorming suggestions help explore

alternative designs of the layout (Figure 2.3.8). Each alternative layout’s style differs from the

other according to layout suggestions such as a change in text, size, alignment, symmetry, etc.

Figure 2.3.8 DesignScape Interface: Simple Layout Editor (center), Refinement suggested

Layouts (left) and Brainstorm suggested Layouts (right) [34].

2.3.6 Causality Framework

Nancel and Cockburn [32] presented Causality framework which is “a conceptual model of

interaction history that keeps track of past states and commands of the edited artifact in the form

of a causal system”. Causality framework allows safe, flexible, and understandable modifications

of history. The commands used in the workflow can be modified, duplicated, and re-ordered,

allowing users to easily recover from their previous mistakes or rethink their documents without

losing their previous work. Moreover, users do not need to form any strategy for completing their

work before they actually begin.

29

Figure 2.3.9 Causality: Represents branching chronology (top 3 rows), linear timeline (blue

lines), application context (grey bar), artifact state (green bar), commands (blue triangles), time-

travels (clocks and dotted lines), and branching (black strokes) [32].

There are five main components in Causality that help in modeling temporal interaction in the

system: artifacts, context, commands, linear timeline, and branching chronology (see Figure

2.3.9). The artifacts are the states of the work object stored at discrete points in time that represent

the object’s development over time. The context is the state of the application at any given time in

history that stores all the system and parameters settings along with the state of the interaction

controls. The commands are the actions, that when performed cause changes in the state of artifacts

or contexts. Each command has a reference to all the elements of the artifact and the context that it

uses and affects. The Linear timeline contains all the commands as a sequential list of events that

are executed in real-time during the lifecycle of a project. It even stores the operations that alter

the history. The branching chronology is a tree-like virtual chronology of artifacts and contexts

30

(before a state was modified) where each branch is created when a user traverses through time

(using linear timeline) and modifies some artifact or context at a given point in time.

Figure 2.3.10 Artifact versions and subscription in the local history.

Figure 2.3.11 Applying command to past state generates a new state of history (left) and

inserting command in an existing list of commands generates a new subtree (right) [32].

The command objects in Causality use references to the artifacts or contexts instead of their

respective copies. These references have been categorized as versions and subscriptions. A version

is a fixed position in a history representing the state of a work object (see Figure 2.3.10) whereas

a subscription is a dynamic link to the current (or latest) version of an object in real-time or history.

Any changes to the indicated version will be reflected on the subscription as well. Whenever a new

command is applied to a saved state in history, a new child of a node is added to the history tree.

31

Modifying the historical state generates a new subtree which is a copy of original history but with

the intended changes, leaving the original set of history unaltered. For example, as shown in Figure

2.3.11, if a command Ca is applied to a past state, a new state of history is generated without the

need to copy over the rest of the commands in the sequence after that command. However, if a

command Ci is inserted in an existing sequence of commands, a new subtree is generated and the

rest of the commands are replicated from the original branch, User can see the effect of this

command by traveling to the end of this new branch.

2.4 VERSIONING IN CURRENT SYSTEMS

Current cloud applications like Google Docs, Google Sheets, or Google Slides do auto-versioning

of documents [91], while other applications such as Overleaf allow users to save versions of their

documents explicitly. There are also other tools such as Dropbox, OwnCloud, and OneDrive that

allow users to create backups of their files that can be restored if needed. There are also GUIs for

current VCS applications such as SourceTree and Github Desktop for Git, TortoiseSVN and

SmartSVN for SVN, and MacHg and TortoiseHg for Mercurial. These are standalone applications

that do not come integrated within any software environment and may or may not work well with

all interactive applications and their documents.

Google Docs employ a linear model of versioning - a stack-like structure as seen in the right-hand

panel called Version History (see Figure 2.4.1) while MacHg provides users with an ability to use

a non-linear hierarchy to store versions with a graph like structure that represents multiple branches

(see Figure 2.4.2) for the parallel paths for different versions.

32

Figure 2.4.1 Version History panel (right hand side) for Google Docs.

Figure 2.4.2 MacHg screenshot for revision graphs [92].

33

Another design tool called Abstract [93] is a good example of managing versions and avoiding

painful merge conflicts with a focus on collaboration. It keeps track of changes in the sketch file

and prompts a user to preview and commit them to the current branch on which they are working.

In a collaborative environment, other users can review those changes and can even add their

comments. Abstract is another standalone application that may improve and ease users’ experience

for collaboration and versioning. It does not necessarily ease the process for beginners who are not

familiar with the process.

Figure 2.4.3 Abstract Tool screenshot [93].

Visual Studio 2019 introduced Time Travel Debugging (TDD) which is a debugging solution that

allows users to record the execution of code in an application or a process and then replay it

backwards and forwards [94]. Typical debuggers allow users to go start at a specific point in time

and only go forward, however, TDD allows going backward in time to understand the conditions

better. The recording of events and data in a discrete time interval creates a timeline that works like

a version history that can be accessed at a later stage. The TDD contains the exact details of the

execution path that led up to the final failure or bug which is crucial to isolate and identify the

34

problems that could occur in the production environments. In addition to allowing users to step

forward (p), go forward (g), and trace forward (t), TDD allows them to step backward (p-), go

backward (g-), and trace backward (t-) as shown in Figure 2.4.4.

Figure 2.4.4 Time Travel Debugging [95] allows command t- to move the debugger back to

previous position 4A:7 indicated with red arrows.

2.5 OTHER USAGES

From internet browsers to operating systems, history can be recorded and presented to the user at

a later time. Browser history [96] and session management [97] can provide users access to their

35

past actions and work in web browsers. Using software and tools like Windows Restore Point [98],

Time Machine [99], TimeShift [100], etc., users can save a snapshot of their operating systems at

any given time to work as a backup solution. Tools like Windows Timeline [101] allow users to

view activities they have been working on in the past few days to weeks. Solutions like these are

useful in keeping track of interactive history.

We also see creative use of previous states of the system in other types of media like video games.

Games like Super Meat Boy [102] and Braid [103] leave historical evidence of the game played by

the players. In Super Meat Boy, players make mistakes and their character, red-colored cube, dies

a lot of times and with each death, the character leaves a trail of red-colored stains in the

environment which gives an indication to the player where they have died previously. While Braid

is a puzzle solving platformer game that relies heavily on the ability to rewind time and undo

actions even if the player dies. The player can switch to any previous attempt to solve the puzzle

and subsequently creates another attempt in the game and even see multiple realities.

Figure 2.5.1 Screenshot of the gameplay of Super Meat Boy [104].

36

Figure 2.5.2 Screenshot of gameplay of Braid [105].

Some games like Prince of Persia: The Forgotten Sands, Timeshift, Super Time Force Ultra, Blinx:

The Time Sweeper, etc. [106] actually reverse time in the game so the players can solve puzzles or

reset their progress if they find themselves in a situation where they die often.

Figure 2.5.3 Screenshot of the gameplay of Prince of Persia: The Forgotten Sands [107].

37

Figure 2.5.4 Screenshot of gameplay of Super Time Force Ultra [108].

38

CHAPTER 3

A SURVEY STUDY OF VERSIONING IN INTERACTIVE

SYSTEMS

In this chapter, we present a survey we carried out to understand versioning for users of interactive

systems. We discuss various circumstances that lead to the creation of new versions and reasons to

revisit or revert to previous versions. We also discuss the naming conventions that respondents

used for versioning their files that can help keep their versions manageable and comprehensible.

3.1 ONLINE SURVEY

To understand the circumstances for creating new versions and the reasons to go back to previous

versions, we designed a questionnaire to ask users about their versioning practices. We deployed a

web-based survey (see Table 1 and Appendix A3-A5) asking computer users about their

understanding of versions and how they utilize versioning in their projects.

3.1.1 Survey Content

After a set of initial questions about demographics and amount of computer use, the survey asked

participants to list the three software programs or tools that they use most frequently. We wanted

to see if participants were familiar with existing versioning systems, so we asked them to choose

from a list of some common versioning and backup tools. We also asked that they specify the

naming convention they use for their versions.

We then asked them three questions related to their versioning practices: why they create a new

version (circumstances when a new version creation is needed), why they use previous versions

(reasons that prompt users to revert to previous versions of their work), and how often they use

previous versions. We left it up to the users to decide whether to consider the nature of their

workflow (single-user or collaborative) while answering these questions.

39

S.No. Question

1. Gender

2. Age

3. On average, how many hours do you spend on desktop/laptop computers per day?

4. Specify the top 3 software programs/packages that you use.

For instance: MS Word, Photoshop, Autodesk Maya.

5. Are you familiar with any of the following versioning tools/systems/softwares?

6. Are you familiar with any of the following backup tools/systems/softwares?

7. What kind of naming conventions do you follow when you create multiple

versions of files?

Example: web_design.psd, web_design2.psd, web_design3.psd

8. In what circumstances do you feel the need to create a version of a file that you are

working with?

9. How often do you go back to the previous version of the file you create when

working on a project?

10. What are the reasons that make you go back to the previous version of the file you

created/saved when working on a project?

Table 1 Survey Questions

3.1.2 Participants

We deployed our survey on SurveyMonkey and shared the survey link in several groups (called

subreddits) on the social media site reddit.com [109] to recruit participants. These subreddits were

40

popular groups for designers and artists who work with applications such as Photoshop, Blender,

3DSMax, and various game engines. Along with these creative subreddits, we also posted in a

general computer user subreddit that is read by users who work with interactive applications such

as MS Office, text editors, and IDEs in their daily work.

The survey was completed by 84 people (see Table 2). The participants’ age ranged from 18 to 63

years (with a median age of 24). All of the participants reported that they used computers on daily

basis for an average of 9 hours. There were 71.43 percent males and 26.19 percent females among

the 84 respondents, with the remaining percentage preferring not to disclose their gender.

Respondents spent an average of 7 minutes completing the questionnaire.

Total participants (n = 84)

Age 18 – 24 (50% = 42)

25 – 34 (27.38% = 23)

35 – 44 (17.85% = 15)

45 – 54 (1.19% = 1)

55 and older (2.38% = 2)

Undisclosed (1.19% = 1)

Gender Male (71.43% = 60)

Female (26.19% = 22)

Undisclosed (2.38% = 2)

Average hours per day spent on

computers

1 – 5 (16.66% = 14)

6 – 10 (52.38% = 44)

11 – 15 (27.38% = 23)

15+ hours (3.57% = 3)

Table 2 Participant Demographics

41

3.1.3 Data Analysis

All participants completed the survey and no participants were discarded. For questions related to

participant demographics, we present the results as percentages (see Table 2). The responses from

the respondents’ list of their top three software applications confirmed that at least one of their

applications can be augmented with versioning or backup tools.

After examining responses for the questions related to familiarity with available versioning and

backup tools, we found that all except two respondents have either worked with or heard about at

least one of the tools as shown in Figure 3.1.1 and Figure 3.1.2.

Figure 3.1.1 Number of participants stating that they were familiar with specific versioning tools.

42

Figure 3.1.2 Number of participants stating that they were familiar with specific backup tools.

We performed inductive thematic analysis [2] on all users' responses for the two important

comment-based questions of our survey (see questions 8 and 10 in Table 1). First, we went over

the data for each question several times to broadly categorize the users’ responses by color coding

and adding labels to it. This helped us identify initial themes in the data. After thoroughly reviewing

these initial themes, we were able to name and define the six main circumstances that lead to the

creation of a new version of the current work (Subsection 3.2) and seven reasons to go back to

previous versions of the work (Subsections 3.3). Performing this inductive thematic analysis on

our qualitative survey data helped us formulate how users understand and utilize versioning in their

daily workflow.

43

3.2 CIRCUMSTANCES TO CREATE NEW VERSIONS

We found six main circumstances that prompt users to create new versions of their work.

3.2.1 Substantial Changes

Substantial changes are any big or significant changes in a current file that make it difficult to revert

to its previous state using simple undo because of the multiple steps required to reach that

significant change state. For example, if a user is working on a 3D model of a character, there are

various steps involved in the character design process such as modeling, sculpting, re-topologizing

(the process of redefining high-resolution 3D models to lower resolution models), UV-mapping

(the process of projecting a 2D image to a 3D model's surface), and texturing. Each step could take

up to hundreds of actions that are required to be performed by the user. Therefore, having these

substantial changes in project files encourages users to create new versions at important points

during their project’s lifecycle in case they do not like where their project is heading.

31 out of 84 participants mentioned that they create a new version when they plan to make a

substantial change in their project or they hit a significant milestone in their project. One of the

participants commented on their workflow by stating that,

“[I create a new version] whenever I’m satisfied with a version, but I have to improve parts of it.

For example, a character has a final version of a face, but still needs work on the body.”

3.2.2 Avoid losing work or progress

People create a new version to have a backup of their current file to avoid losing their progress in

case of errors and mistakes that can occur due to human or machine faults. They create a copy of

the original file in case their current progress becomes irreversible or incorrect. For example, if a

user merges two layers in Photoshop and continues to work on this merged layer, then at a later

stage, they will not be able to get their original layers back in their unmerged form without losing

the newer changes done after the merge operation.

44

Three participants informed us that they can revert to backed-up versions of their files if they

accidentally overwrite their original work with something they were not supposed to do. Twelve

participants mentioned that they create versions for their working files to avoid losing their work

due to software failure or file corruption. One of the participants noted that,

“I never work on the original, so the first thing I do is create a copy. I usually work with neurons

in a brain slice, so I make a file containing everything, then split it up into individual neurons (each

has a file).”

3.2.3 Testing experimental changes

Experimental changes are changes that are temporarily introduced in a project to test some new

functionality or some content that can later be either discarded from a project or accepted and

merged in the final stage of a project. For example, during game development, developers may

implement a new superpower for a game character that can be playtested and reviewed that may or

may not stay in the final game.

Eighteen participants told us that they create new versions when they are unsure about their changes

or want to see how their changes affect the project’s output. One of the participants mentioned that

they would create a new version “if the old version worked and I continued with improvements

which haven’t been tested to work well yet.” Another participant remarked about experimenting

with the changes as,

“[I create a new version if] I learned new data since the first version, but am unsure if the new

data is valid, so I want to experiment.”

3.2.4 Exploring alternatives

Alternatives are duplicates of a document that are slightly different from the original. Nineteen

participants mentioned that they create separate versions when they are exploring different options

or alternative ideas in their work. When they are creating slight variations to an original design or

they are experimenting with different styles or techniques but still want to keep the original work,

they create multiple files/versions. For example, a designer working on user interface mockups

45

might need to create multiple variations of the same design to avoid overwriting the original design.

The separate versions not only allow the users to go in different design directions but also enable

them to compare these variations. Remarking about changes and the ease to go back to their original

work, one participant told us,

“When the piece doesn't follow a strict layout and there might be many ways to place the content,

I'll save a new version every time something moves, making it easy to go back instead of having to

redo steps.”

3.2.5 Collaborating with other users

Collaboration is the process of working on the same project with multiple people. When

collaborating on a project with others, eleven participants mentioned that they create a separate

copy of their work to keep track of the changes they share. This allows them to easily understand

what changes were contributed by others and compare the before and after states of the shared file.

One participant mentioned creating a new version to make changes in the file according to the

feedback they received. While another remarked that,

“[It allows] incorporating edits/notes/comments from multiple reviewers [and then] branching a

file because I'm not sure I'll like the direction it goes.”

3.2.6 Time-based versioning

Time-based versioning means creating versions of files periodically or intermittently. Users can

save multiple versions of their work periodically or allow the systems to do auto-versioning. Four

participants mentioned that they prefer to save their work to a new version at the end of the day or

a session while two participants said they do it more frequently (e.g., hourly). Many applications

provide an automatic save feature that creates a new version of the current work in a custom time

frame, and this was also corroborated by one participant who reported that,

“I have an autosave feature which increments the version number of a save I'm using in Blender.”

46

3.3 REASONS TO GO BACK TO THE PREVIOUS VERSION

Participants reported several reasons for going back to previous versions of their files: user

accidents and mistakes, broken or corrupt files, testing new changes, exploring alternatives,

referencing or extracting previous information, change in requirements and matching needs, and

tracking progress/project history.

3.3.1 User accidents and mistakes

Accidents and mistakes happen due to users’ negligence that can interfere with their work. The

most common mistake that people make is to change file content that should be left alone or

accidentally save over the same file. Unintentional content deletions in a revised file or accidental

file deletions are some other common mistakes.

Twenty-three participants mentioned that it is their own mistakes that result in them having to go

back to previous versions. One of those participants told us that sometimes while merging separate

edits/files, the outcome is not the desired result or some merge conflicts happen in their files,

therefore going back to the previous version becomes necessary to fix such issues.

3.3.2 Broken or corrupt files

Files or programs can become unusable due to unexpected computer or application crashes. The

files can also become corrupted when being written to a disk. This could happen due to several

reasons such as bugs and issues present in the host application, glitches in the operating system,

bad sectors on hard drive or storage disk, and viruses or other malwares.

The previous versions act as a backup if any kind of corruption happens in the system. Twenty-

seven participants mentioned that they would go back to previous versions in case of broken or

corrupt files. Although going back to a previous version is like restoring a previous session or state

of work but some users think of it as performing undo actions which helps them to save time in

"adjust[ing things] to work in a reasonable time".

47

3.3.3 Testing new changes

While testing the newer changes in a single file or a whole project, the previous versions of the

current work can act as a backup in case something goes wrong, like the new version completely

breaks due to changes or the project stops working. Twenty-four participants said that they can

then switch to the previous version to revert their changes and proceed to work from the last file

state. Sixteen of them told us that sometimes the newer changes don’t work out as planned and

having the backed-up versions can quickly revert those changes.

Two participants mentioned that having previous versions help identify the sections of code that

could lead to unexpected behavior in the system. One of them reported that “If something breaks

while working on a newer version, I can try on an older version and see if it will still break.” And

the other participant mentioned applying the identified fix of an issue to the original file as,

“[while] testing changes, [if] a single small change was found to fix the issue, [then] the change

is made to the original [file]”.

3.3.4 Exploring alternatives

Exploring alternatives refers to when designers switch back and forth between different versions

of their designs to see which is better, more aesthetically pleasing, and/or more professional; or

when developers test their different implementations of code to determine which works with less

memory footprint and/or takes less time to execute.

Nine participants stated that having different alternate versions is quite helpful in making

comparisons and one of them noted that it is easier to “return to a variant design version and

continue down that branch of a design”.

3.3.5 Referencing or extracting previous information

Referencing or extracting old information or data to understand how something was implemented

or done previously is crucial for developers and designers alike. Consider the case of a developer

who added a feature to a project that was later removed because it was no longer needed. Now that

48

the client's demand has changed and that feature must be built anew, the developer can easily go

back to a prior version of the project to extract the required data.

Sixteen participants said that they made use of previous versions in order to retrieve solutions to

problems that were already solved in previous versions. Referencing previous versions of their

work can also help them recall their earlier workflow or process. Two participants mentioned using

older versions to “extract information from a file that is no longer used” or “copy and paste

segments that were intentionally removed”.

3.3.6 Change in requirements and matching needs

The requirements of any project can change over time due to several factors such as the client

altering their initial requirements, the manager shifting their focus on another feature in their

product design, and the developers finding a new algorithm to make certain functionality perform

more efficiently. One of the participants summarized this as, “the nature of designing [a] product

is creative and never linear”. Therefore, it is useful to have older versions to fall back on. It is also

possible that the newer changes do not meet the intended target/milestone, or the new version turns

out not to be what was originally envisioned. Twelve participants had similar thoughts and one of

those participants said,

“When I realize that the new feature I’m working on would have been better implemented in a

different way, I go back and redo some work rather than deal with my mistake as I progress

further.”

3.3.7 Tracking progress/project history

Version history keeps track of all the changes made throughout the lifecycle of a project and

therefore people use previous versions to check their progress over time. Three participants

mentioned the importance of project version history for comparison at different stages of their work

while one participant mentioned using previous versions to identify the work done by collaborators

and stated,

49

“Once a project partner didn’t contribute anything, so having an earlier draft that contained

basically everything in the project I handed in was very useful as it hadn’t been opened/edited

since long before my partner claimed to have done said work.”

There were a couple of participants who mentioned not going back to the previous version and one

of them mentioned using emails for retrieving previous versions of work as, “With coding, I’ve

done it [go back to the previous version] because I mess something up. I use email for prior

versions of the papers.”

3.4 NAMING CONVENTIONS

The survey also asked participants about the naming conventions that they use for their files in

their personal and/or professional projects. We discussed why naming conventions are important

and what, as our survey revealed, are some common conventions people use to name their files in

the following subsections.

3.4.1 Why are naming conventions important?

Saving multiple copies of the same files in the same folder or directory forces the users to give

unique names to those files because file browsers do not allow multiple files with the same names.

But this mandatory step is not as easy as it seems at first. Substantial effort can go into deciding on

appropriate names for the files. The default names that the file browsers give to the copies of a file

are suitable only for a certain number of copies after which it becomes difficult to keep the

association of a file with its content. Figure 3.4.1 represents the default file names that the

Windows File browser assigns to duplicates of a file. It can be noticed that the pattern of “Copy

(n)” (where n is a number) is appended to each incremental copy of the file and as expected, the

file names start losing context for creating those duplicate versions of the file and it becomes

incomprehensible to recognize which version contains what changes.

50

Figure 3.4.1 Default file names of the duplicate files created in Windows Operating System.

Another problem with the default naming scheme is determining which file is the most recent

version. At first glance, a file name with the largest number in its name may appear to be the latest

version, but that cannot be a certainty. A user could make the latest changes in any of the versions

which defeats the purpose of having an incremental number in the filenames. What if the user wants

to know what was changed in any of the versions? Just by looking at the names, it is sometimes

not easy to answer these questions. There are two ways to make it easier to understand the context

of each file: using time references and using proper naming conventions.

Using a time reference for all of the files can be used to sort them according to their date of creation

or their date of modification (see Figure 3.4.2), making it easier to discover the most recently

updated file or the oldest file.

Figure 3.4.2 Files sorted according to Date Modified tag in Windows Operating System.

51

But using a time reference does not help us figure out what was changed in the files or what was

the purpose of creating a new version of that file. We would have to open each file and look at the

contents to determine that. This is where using naming conventions helps users easily distinguish

between files for the content differences.

There are many keywords that people use with their file names such as ‘draft’, ‘wip (work in

progress)’, ‘final’, etc. These keywords help in assigning valuable information to the status of each

file. But even then, the naming of different versions of a file may not prove helpful as in the

following case depicted in Figure 3.4.3.

Figure 3.4.3 Confusing file names for different versions.

Here, the user has tried to use the ‘final’ keyword to indicate the last version of their work, but the

filenames are still ambiguous. Therefore, it is important to follow a good naming convention to

avoid confusion and frustration later, especially when working in a collaborative environment

where other users need to understand the state of work at any given point.

52

3.4.2 Survey result for naming conventions used

There is no standard way to give names to the files, and people use naming conventions that they

find easy to understand. We asked people through our online survey about the different conventions

that they use to name their files in their personal or professional projects. The survey revealed that

people use all kinds of variations for the names to distinguish between different versions of their

files. There were many naming conventions that people use, and the most common ones are

grouped and listed in Table 3.

Convention style Examples

Version number / Sequential Example.xxx, Example1.xxx

Example_1.xxx, Example_2.xxx

Example_V1.xxx, Example_V2.xxx

Date and Time / Chronology Example_YYYYMMDD.xxx,

Example_YYYYMMDDhhmmss.xxx

Descriptive Example_white.xxx,

Example_black.xxx

Author name (in collaboration) Example-Alex.xxx

Example-Bob.xxx

Table 3 Naming Conventions

We saw four major convention styles used by people who answered our survey. First is version

number or sequential based naming where a number or a letter that represents some sequential

53

order is appended to the name of the file. For example, a series of 1,2,3, etc., or V1, V2, V3, etc.

can be used to convey the order of file created. The second style involves appending date and time

to represent a chronology that makes it easy to find files. For example, appending YYYYMMDD

or YYYYMMDDhhmmss are some common ways to add a date or chronology information to the

file names. The third convention style involves adding a descriptive name to the end of a file that

makes it easy to understand what a file may refer to. For example, if there are two logo files named

‘Example_white.jpg’ and ‘Example_black.jpg’, we can easily understand which one refers to a

black logo. Lastly, we have a convention style where an author name is added to the end of a file

name to easily identify which author has worked on what file when two or more authors are

collaborating on a single project. For example, ‘Example_Alex.docx’ and ‘Example_Bob.docx’

filenames can help us identify files associated with their respective authors.

3.5 SUMMARY

In this chapter, we presented a survey we carried out to better understand versioning for users in

interactive systems. We have identified several situations when there is a need to create a new

version and the reasons to go back to previous versions in a digital software environment. We also

saw various naming conventions that are used by people to name different versions of the same

files. In the next chapter, we describe the versioning tool we developed to support versioning in

interactive systems.

54

CHAPTER 4

VERSIONING TOOL

In this chapter, we introduce the tool that we built to implement versioning in interactive systems.

We discuss what is stored in a version, how versions are stored, the relationship between different

versions and how it is represented, and how to interact with the tool. We also introduce the two

applications that we used to test the versioning tool.

4.1 VERSIONS AND THEIR RELATIONSHIPS

In the context of an interactive system, a version (the current state of a system) can encapsulate

document/model data and parameter space data for that system. A new version is created by making

changes to the current state of the system which means that each new version is derived from a

previous version, therefore establishing a parent-child relationship. There can be several versions

that are derived from a single version, but no single version can have two parent versions, i.e., there

is a 1-to-n relationship between a parent version and a set of child versions.

4.2 VISUAL REPRESENTATION FOR VERSIONS

There are two important factors to consider while choosing the graphical representation for

versions:

1. Parent-child relationship between each version

2. Bi-directional traversal

Therefore, to represent a parent-child relationship as discussed in Section 4.1, we require a

structure that has no cycles (a closed path where we start and end at the same vertex), i.e., an acyclic

55

graph with the ability to traverse in both directions. There are two such structures that can be used

to depict versions and their relationships: lists and trees.

4.2.1 Lists

Lists, as shown in Figure 4.2.1, are linear structures with just one child at each vertex except the

final vertex, which has none. The vertices in this type of structure can be laid out in two different

orientations: horizontally and vertically. In this type of structure, there is only one root vertex

(colored purple) and one final vertex (colored green).

Figure 4.2.1 Lists: horizontal layout (left) and vertical layout (right).

Timelines [110] and storyboards [111] are graphical ways of representing a list of events in

chronological order. These types of visualizations are quite effective for storing time-based events

where a linear structure is observed.

An undo stack is an example of a linear structure that is implemented in a wide range of

applications. Adobe Photoshop’s History panel [112] implements the undo stack where each action

performed in the document is recorded and displayed in a stack of changes. Users can go to

56

different states of the document saved in the undo stack by directly selecting an action from the list

(see Figure 4.2.2).

Figure 4.2.2 Adobe Photoshop’s History tool representing a linear hierarchy.

4.2.2 Trees

A tree is a non-linear structure that can have vertices with zero or more children, see Figure 4.2.3.

There are two common ways of organizing a tree structure: (a) each vertex has the same number

of children except the leaf vertices (vertices with no children), and (b) each vertex can have any

number of children.

A tree is defined as an undirected graph in which any two vertices are connected by a unique edge.

The following is some basic terminology [113] that is associated with trees:

57

• Root node: The topmost node of a tree that has no parent node.

• Leaf node: A node of a tree that has no child nodes.

• Branch node: A node with at least one child node.

• Ancestor: A node reached by repeated traversing from child to parent.

• Descendant: A node reached by repeated traversing from parent to child.

• Branch: The path connecting a root node to a leaf node.

• Size of a tree: Total number of nodes in a tree.

• Degree: Number of children of a given node.

Figure 4.2.3 Tree Structure: number of children are fixed (left) and number of children are not

fixed (right).

Tree visualizations can encapsulate information for work diverging in different spatial directions

from a common point. A version of work derived from the parent node can be stored in each node

of a tree. Unlike lists, where each node can only refer to one neighbor, each node in a tree can refer

to multiple neighbors. While both lists and trees allow for many snapshots of the project to exist at

the same time, only trees allow users to go to any version and create a new derivative version to

save their recent changes without impacting the other versions. This is because trees allow users to

add new child nodes to any prior node, whereas lists only allow users to add new nodes to the lists’

endpoint. Consider a scenario (see Figure 4.2.4 (left)) where a user is working on a project that

has three versions. Version 3 is the most recent version of the project, and it is represented by the

color green. Now, if a user decides to go back to an earlier version of the project, version 1, and

makes some modifications to be saved, a new version will be created in the version history. If the

version history is stored as a list (as shown in Figure 4.2.4 (middle)), versions 2 and 3 (colored

58

red) will be removed from the list, and a new version 2 will be added after version 1 and becomes

the current version (colored green). However, if the version history is stored as a tree (as shown in

Figure 4.2.4 (right)), a new version (version 4) is added as a child to version 1, creating a new

branch in the tree and marking it as the current version. The other versions (version 2 and 3) will

not be removed from the history as they will be preserved in a separate branch.

Figure 4.2.4 Set of versions of a project (left), version history stored in a list when a new version

is added (middle), and version history stored in a tree when a new version is added (right).

4.3 VERSION TOOL FOR INTERACTIVE SYSTEMS

We developed a custom tool to implement versioning in web-based applications. The tool allowed

users to save the document/model data and UI state data of an application as a version, which could

subsequently be displayed as an interactive version tree. Users can also access, manipulate and

navigate versions stored in the tool. The survey results motivated us to add two features to our

version tool – preview feature and auto-versioning. One of the reasons to go back to a previous

version was to reference or extract information from it, which informed the design of the preview

59

feature (discussed in Section 4.3.3) that allowed users to see the data saved in past versions without

actually switching to them. The respondents of our survey mentioned time-based versioning where

they created new versions at different time intervals (e.g., hourly). We leveraged this concept to

implement autoversioning feature in our tool, which allowed us to save a new version on various

triggers (see Section 5.1.6.4).

The version tool was developed in Javascript and Node.js, while the data storage is done using

mongoose [114] – an object modeling library for MongoDB. The data for each version, stored in a

JSON format, also contained a reference to the parent version to provide a parent-child relationship

which helped construct a version tree. The tree visualization was developed using ‘vis.js’ [115], a

JavaScript library for web-based visualization, but it was modified to allow custom node colors

and event handling.

4.3.1 What information is stored in a version?

According to the Causality model (as explained in Section 2.3.6), artifact and context are two of

the five main components that help in modeling the temporal interaction in the system. ‘Artifacts’

are the main work objects in the application at any given time whereas ‘context’ is the state of the

application at any given time that stores all system and parameters settings as well as interactive

elements. Both components comprise our data model which we store in a version.

For an interactive application, we can save data information on every aspect of the application’s

interactive system. However, we wanted to mainly focus on storing the data of the application in

two aspects – document/model state and UI state. Both of these aspects are covered within our two

interactive environments (Sections 4.4 and 4.5) that we used for testing our versioning tool. In the

game level editor, our versioning tool stored the document/model state where data for each version

consists of the location of each sprite in the level. On the other hand, our tool in the web analysis

tool stored UI state where data for each version consists of the state of the UI that is used to specify

parameters for an analysis run.

60

4.3.2 Visualization of the version tree

The version tree contains different nodes that are connected through curved lines, as seen in Figure

4.3.1. Each node in the tree represents a separate state of the system. The version tree always begins

with one root node acting as a parent for all the other nodes that are created later on during the

process of working with the interactive interface. This root node consists of the initial system state.

As new changes are introduced to the system, new nodes are added to the tree beneath the node

that is currently active (called the current node). To avoid cluttering up the screen space, by default

not all of the nodes are displayed on the screen at once. The scale (zoom level) of the tree view is

automatically set to put the current node in focus but a user can change the scale as explained in

the next section. Initially, the tree focuses on the latest node in the tree; otherwise, the current node

is in focus.

All nodes in the version tree are colored blue except for the current node, which is colored green

(see Figure 4.3.1). Any other node in the tree that a user hovers over, with their mouse cursor, to

preview the version is colored orange.

Figure 4.3.1 Version Tree panel with different versions represented as nodes of the tree.

61

4.3.3 Interaction with the tool

Users can switch between different versions by clicking on the nodes of the tree. This will set the

document/model state and/or UI state of the application to the data stored in the currently selected

version. For example, switching between different versions in a game level editor (Section 4.4)

sets all sprites to the positions stored in that selected version whereas in the web analysis tool

(Section 4.5) all values of the web form elements are set to the saved values. We will discuss saving

and retrieving document/model state and UI state in the next sections.

The hover feature gives a visual preview of what is stored in that particular version in the tree.

When users hover their cursor on a particular node, the color of that node changes to orange to

reflect that the state has been changed to the preview state. Depending on the application in which

the tool is used, the preview can be implemented in a variety of ways, such as previewing level

changes (Figure 4.3.2) in the game scene (Section 4.4) or displaying stored commands as a tooltip.

(a)

62

(b)

Figure 4.3.2 (a) User working on a current version (Version 4) of a level (b) user previewing

Version 2 of a level by hovering over a node where the changes from Version 4 are shown with

lower opacity.

The tree view also provides zooming and panning using the features of the vis.js library. Users can

zoom in and out of the tree view to change the size of all the nodes displayed in the panel. They

can use either the mouse scroll wheel or the ‘+’ and ‘-’ buttons to zoom. The fit-to-view button

above the zoom buttons fits the whole tree inside the view. Panning allows users to move around

the tree view. Users can pan the view left, right, up, and down using the buttons (as seen in Figure

4.3.3) or by dragging the view with the cursor on the background.

Figure 4.3.3 Panning buttons (left) and Zoom buttons (right).

63

4.3.4 How versions are stored

A VCS system like Git can be integrated with our versioning tool in the backend to keep storing

the application’s data as versions in the git history. Since we were dealing with simple text data

(no asset files or large files were included) to represent document/model state or UI state, we opted

to store this data in JSON format for each version in our versioning tool (see Figure 4.3.4) instead

of integrating any VCS with our tool.

(a)

(b)

Figure 4.3.4 (a) JSON data of version 2 for the game level editor (left) and its corresponding

version in a version tree (right), (b) JSON data of version 422 for the web analysis tool (left) and

its corresponding version in a version tree (right).

64

Our versioning tool's preview feature displays the preview of the currently hovered version in a

tree by lowering the opacity of the current version's content and overlaying the content of the

hovered version, only if there are differences between the two versions. We compare the two

versions to see if they store different data. We stored the data for each version in a JSON format

which is then ‘stringified’ (converted into a JavaScript string). This resultant string is then

compared with another version’s saved data string using a strict equality operator (===) that uses

the ‘Strict Equality Comparison Algorithm’ [116] to compare two operands. Since we made sure

the order of data in the JSON data structure always remained the same, we decided to use a simple

equality comparison instead of opting for a more advanced JavaScript comparison algorithm such

as “fast-equals” [117]. It works well for our versioning tool prototype; however, a robust diffing

algorithm [118] could be used for a production-ready versioning tool where only the result of

diffing two versions can be previewed instead of displaying everything in the previewed version.

4.3.5 Integration within a web-based application

We integrated our versioning tool in the interactive systems interface (game level editor and web

analysis tool, discussed in Sections 4.4 and 4.5) to store versions and display them in a version

tree in the form of a panel that was attached to the right-hand side of the main interfaces. Our tool

provided useful functions such as saving data to a version and displaying the version tree inside

the panel. The application can call a function to save the document/model state from their model

code, as well as the UI state information from its UI handlers, in JSON format for each version.

All versions are stored in a JSON array which is used to display the version tree in a side panel.

The tool also provided other functions that allow an application to access individual versions or

implement their custom preview functionality.

In the game level editor, a version can be saved by pressing the keyboard shortcut ‘Ctrl+S’ (for

saving changes in the current version) or ‘Ctrl+Shift+S’ (for saving changes to new version). In

the web analysis tool, a new version is saved when a user presses the ‘Run’ button to run the

analysis with currently selected parameters. Both systems allow users to explicitly create new

versions, where the control is in the hand of the user. However, auto versioning is a very useful

feature for backup and error recovery as we discussed in Section 2.2.2. So, we integrated an auto-

65

versioning feature inside our tool. It allows us to configure parameters for when to trigger a new

version save. We currently support four trigger events to save a new version – on every play (saves

a new version every time a user playtests the level), 3-changes (saves a new version on every 3

changes in the level), every-change (saves a new version on every change made to the level), and

time-based (saves a new version at a set interval in seconds). We wanted to compare a version tree

generated when a user explicitly saves a version and the trees generated during each of these trigger

events (discussed in Section 5.1.6.4).

4.4 GAME LEVEL EDITOR

We developed a 2D game level editor using Phaser [119] which is a Javascript game framework

for Canvas and WebGL. It runs in the browser using the Express.js [120] web application

framework running in a Node.js [121] environment.

Figure 4.4.1 Game Level Editor (left) and Versioning Tool (right).

66

The game level editor allows a user to design game levels using three sprite types: ledges (green

tiles), spikes (brown triangular tiles), and stars as shown in Figure 4.4.2. This application allows

the users to create, delete and move the 2D sprites in a game view. Clicking the right mouse button

allows them to add a new sprite of a selected type which can be changed from the sprite selector

box located in the top right-hand corner of the editor as shown in Figure 4.4.1. The middle mouse

button click deletes the current sprite under the cursor and the left mouse button click allows them

to drag and move the sprite across the screen to change its position.

Figure 4.4.2 Sprite box selector and playtest button.

Users can playtest the level by entering into the Playtest mode, which can be enabled by clicking

the play button shown to the left of the sprite selector box (Figure 4.4.2). Once the user is in

playtest mode, they can control the character with the arrow keys to move left, right, or jump. To

exit the playtest mode, the user can click the stop button that replaces the play button in the play

mode. The objective of the game is for the character to reach the health icon represented as a white

box with a heart shape on top. Users can step on the ledges to make their way toward the health

box avoiding contact with the spikes that can kill the character, and can earn score points by

collecting as many stars as possible before finishing the level. The user can restart the same level

from a Restart button that pops up following the end of that level (Figure 4.4.3). The level also

gets reset if the player collides with the spikes. The score increases by one with every star sprite

collection and the time taken to complete the level are displayed when the level is finished.

67

A general undo-redo functionality exists in the tool which allows going back and forth between the

previous actions taken in designing the level. This functionality can be utilized using the standard

shortcut keys: ‘Ctrl+Z’ to undo and ‘Ctrl+Shift+Z’ or ‘Ctrl+Y’ to redo. The undo-redo actions were

stored in a global stack (a data structure that follows the ‘last in, first out’ principle – where the

first element is processed last and the last element is processed first) at an application level. Any

action performed in the game level editor such as adding, deleting, and modifying the sprite’s

position will add an undo-redo command in the undo-redo stack. The undo-redo functionality

works at an application level and not at a version level, i.e., the undo-redo stack is cleared when a

user switches to a different version or a new version is created.

We allowed the users to save their changes in the levels to the current version using explicit save

triggers by using keyboard shortcuts: ‘Ctrl+S’ or to a new version with ‘Ctrl+Shift+S’. There are

some caveats for saving the versions: a new version can only be created if there are changes in the

level since the last save; the versions that already have one or more children cannot be overwritten

– trying to save changes to such versions will create a new version that is a descendant of that

version.

Figure 4.4.3 Game End screen with the restart button.

68

In Figure 4.4.4 (left), the current version highlighted in green (Version 2) has a descendant version

‘Version 4’. Making any changes in the current version will not overwrite the contents of this

version but will create a new child ‘Version 5’ with the changes (Figure 4.4.4 right).

Figure 4.4.4 (Left) Current version is ‘Version 2’ highlighted in green. (Right) When the user

saves changes while in 'Version 2’, it does not save those changes to ‘Version 2’ but creates a

new ‘Version 5’.

4.4.1 What is stored in each version?

Each version in the game level editor stores data for positions of all the sprites (spikes, ledges, and

stars). The undo-redo actions stored in the undo-redo stack of the application were not included in

the data stored for each version. Our main goal was to store the application’s document/model data

that represents game levels to quickly iterate over their designs without worrying about creating

69

backups and inadvertently destroying their previous work/designs and even making use of

templates.

4.4.2 Pilot Studies

We ran some initial pilot studies (with 5 participants recruited from the University of

Saskatchewan) during the development of our versioning tool and integrated the tool inside a

custom game level editor for evaluation purposes. It helped us finalize the design and interactions

of our versioning tool that we tested in our main study (Section 5.1). The feedback from these pilot

studies helped us identify and fix some key issues with our versioning tool as mentioned below:

1. The nodes should be different colors for different types of nodes.

2. The nodes should be easy to rename for better structuring of the tree.

3. The preview feature should change the opacity of all objects in the current and previous

versions instead of changing the colors of sprites for better visualization.

We also found that some participants did not use the nodes in the tree when asked to make changes

in the level. Explicitly telling them to change the version helped them get familiar with the concept

of a different version of the same level. Once they understood how to interact with the nodes in the

version tree, they were able to access the different versions of their game levels represented by

those nodes.

4.5 WEB ANALYSIS TOOL

The Winnowing Pipeline is a web analysis system that runs a python script with various arguments

to analyze a soil-microbiome dataset in a variety of ways [39]. We created a web interface for this

analysis system (see Figure 4.5.1). Users can select a dataset or upload new dataset files and change

parameters from the web form that consists of sliders and drop-down options. The changes in the

various parameters alter the python command that is to be executed on a selected dataset file. The

70

user can then press the ‘Run’ button to execute the command that will start the analysis on the

selected input file. The users can do multiple analyses by running the commands in a batch by

listing the desired commands in the field titled ‘List’ which in turn runs all the commands in

sequential order.

Figure 4.5.1 Web analysis tool’s interface (left) with versioning tool (right).

4.5.1 Augmenting the Winnowing System with Our Versioning Tool

We added our versioning tool to the web analysis tool. In this system, there was no document/model

state, and so the versions stored only the UI state; and because the UI specified a parameter space

for the analysis command, each version was a point in this parameter state. On each run, a new

node was created in the visual tree on the right-hand side of the interface (except when there was

no change in the command). If the user double-clicked on any previous node, the respective

parameters in the form were changed, i.e., the form effectively went back to the previous command

settings. The preview was enabled by hovering the mouse over the node, which showed the state

values of the UI elements as parameters to the actual python command that was used to run the

analysis (see Figure 4.5.2); this format for presenting the version was already familiar to the users.

71

Figure 4.5.2 Tooltip displaying stored command in a version (node).

4.5.2 What is stored in each version?

Each version in this web analysis tool stored information for each field of the web form and the

final python command that was generated after pressing the Run button. No resulting files and data

were stored in any version. Our main goal was to store the UI state of the application, i.e., all

settings associated with running an analysis, in each version. The idea was to understand how

versions can help the users remember or save their history of analysis without having to explicitly

save the parameters for the analysis in some external program or service.

72

4.6 SUMMARY

In this chapter, we introduced the tool that we built to implement versioning in interactive systems.

We discussed the document/model state and UI state information saved in a version, how to interact

with the tool, and how different versions were visualized within our tool. We also discussed the

different representations that can be used for depicting version history and the most appropriate

structure to represent versions and their relationships, i.e., tree – a non-linear hierarchical graph.

We also introduced two different interactive applications (a game level editor and a web analysis

tool) that were used to test the versioning tool.

73

CHAPTER 5

USER STUDIES

In this chapter, we discuss two user studies we performed to test our versioning tool in interactive

environments. The first user study was designed with three goals: to evaluate our versioning tool

in a game level editor, confirm if participants used our versioning tool for the different

circumstances and scenarios identified in the survey (Sections 3.2 and 3.3), and identify key

elements that can be used to improve our interactive versioning tool in future. We report how the

participants performed study tasks of designing game levels and how they interacted with our

versioning tool. We also discuss study design tasks along with the results and observations of the

study in the following subsections. The second user study was designed with a goal to test our

system in another interactive environment, i.e., a web analysis tool – a real-world application for

carrying out analyses in microbiology. We discuss user feedback and what we observed when

hundreds of analyses were run in the pipeline.

5.1 STUDY: GAME LEVEL EDITOR

5.1.1 Goals

We developed a custom web-based 2D game level editor to test our versioning tool in a working

interactive environment (see Section 4.4). The game level editor provides a good mix of versioning

and interactivity criteria. The process of level designing is an immersive experience that allows

users to have rich interaction with the editor and provides them with ample opportunities to version

their levels.

The game level editor includes two main components: a level editor and a versioning tool

(described in Chapter Four). We conducted a study in which participants played the role of a game

74

level designer and designed levels for a 2D platformer game by adding, deleting, or modifying the

positions of game sprites using the level editor. The goals of this study were:

1. To evaluate our versioning tool in an interactive system where versions involve document

content and see if participants were able to understand and utilize all its features such as

saving new versions, previewing other versions, switching to other versions, and creating

multiple branches.

2. To confirm if participants used our versioning tool for the different capabilities identified

in the survey – circumstances to create new versions and reasons to go back to previous

versions (Sections 3.2 and 3.3).

3. To identify key elements that can be used to improve the later designs of our interactive

versioning tool.

5.1.2 Apparatus

The study used a custom-built game level editor (explained in Section 4.4) that supported features

such as general undo-redo, sprite manipulation (addition, deletion, and translation), and

playtesting. The editor was augmented with our versioning tool that supports saving new versions,

renaming versions, previewing saved versions with changes, zooming and panning tree, and

switching to other versions. The web application was run on a Chrome Web Browser. We used a

24-inch display monitor with 1920 x 1080 resolution at a 60Hz refresh rate. A wired mouse with a

movement resolution of 1000dpi was used by the participants to design game levels for a platformer

game.

75

Figure 5.1.1 Game Level Editor (left) with Versioning Tree (right).

5.1.3 Participants

Ten participants (7 males and 3 females) were recruited from the Human-Computer Interaction

Lab at the University of Saskatchewan to participate in this study and were given an honorarium

of $10 for their valuable time and participation. We wanted to recruit participants with experience

in game engine or level design to reduce the training required to work with our custom game level

editor. All participants were students and ranged in age from 22 to 30 years. All the participants

filled out demographic data as well as our web-based survey (see Table 1 and Appendix A3-A5).

We found that all of them were regular users of computers, averaging more than 10 hours per day

of usage, and were also familiar with the concepts of versioning and file backup (see Figure 5.1.2).

Six of the participants said that they played video games on an average of 2.5 hours daily. Nine of

the participants had previously designed board games or video games such as first-person shooter,

platformer, and puzzle. Seven of the nine participants who designed video games stated that they

have used game engines such as Unity and Scratch to create their games.

76

Figure 5.1.2 Participants’ responses for versioning tools.

5.1.4 Procedure

The study took approximately 50 minutes to complete. After completing a consent form and a

demographic questionnaire, participants went through a short briefing session where they were

informed about the tasks (explained in Section 5.1.5). The participants were given instructions for

each task prior to the start of the task and the same instructions were accessible inside the task itself

using the instructions button available above the level editor window (see Figure 5.1.3). They were

also encouraged to think aloud about their thought process for designing levels and how and why

they were creating different versions of their game levels while doing the tasks.

77

Figure 5.1.3 Pop-up window with task instructions.

We observed how our participants interacted with the system for each task. At the end of each task,

we asked questions to our participants based on our observation of their performances. We asked

them about their thought process behind creating a new version and why they switched to a

previous version for every task. Participants were also encouraged to report any problem they had

with the tool so that it could help us identify existing problems with our tool and what useful feature

could help us improve it.

At the end of the study, the participants were asked a few open-ended questions about their

decision-making for the tasks and their experience with the versioning tool (see Table 4).

78

S. No. Question

1. Did you have any issues understanding or working with the versioning tool?

2. Did prior familiarity with versioning systems help you?

3. Do you think the versioning tree was helpful? If yes, why and how did it help?

4. Do you think users not familiar with any versioning tools will find working with

this versioning tool easy?

5. Any other feedback?

Table 4 Post Study Questions

5.1.5 Design Tasks

Participants were asked to perform a series of tasks to design game levels using the level editor.

There was a total of seven design tasks (Table 5) in the study to see how the participants would

make use of the versioning tool available in the level editor and to see when and how often they

would create versions.

To familiarize participants with the interface, we asked them to perform easy tasks at the beginning

(Tasks 1 and 2), such as adding a new sprite to the screen, deleting the sprite, and moving the sprite

around the screen. Once they became familiar with how to work with the interface, we asked them

to perform complex tasks that involved moving a particular pattern of sprites to a different location

on the screen (Task 3) and altering the levels to add additional complexity for the players to play

the levels (Task 4). We created these complex tasks (Tasks 5 and 6) that served as constrained

design situations (with pre-existing levels needed to be modified or levels be designed with certain

constraints) for a game level designer.

79

Tasks Description and Instructions Annotation

1 and 2 Practice tasks to familiarize users with the game level

editor and version tree.

Task 1: Create or delete a few ledges in the level.

Move them around and play the level.

Task2: Hover on ‘Version 1’ and see the preview of

that version. Click on ‘Version 1’ to change to this

version. Now make changes to the level so that it is

playable. Save a new version after making those

changes and change its label to any name of your

choice.

Familiarization with basic

features

3 Move pattern of sprites to different locations.

Task 3: Two steps – 1. Move the pattern to the center

of the screen. 2. Move it back to its original position

and create another copy in the bottom left corner.

Previewing and referencing

other versions

4 Multiple versions to adjust based on difficulty level.

Task 4: Adjust both of the versions to finish levels

within 7 seconds. Then select the node and edit the

label to ‘easy’ for the version that you find is easier

to play.

Templating test and

branching

5 and 6 Create levels with certain constraints for a level.

Task 5: Suppose you are designing a level for a

beginner player. Create new versions from all of the

given versions without changing the spikes, so that

players in this game can finish the levels within 8

Constrained game level

design challenges

80

seconds. Rename the version that you find easiest to

‘Easy’ and the hardest to ‘Hard’.

Task 6: Suppose you are designing a level for an

intermediate player. Create as many levels(versions)

as you want. Label them as necessary. Label an easy

level that has exactly 5 ledges and 5 spikes to finish

in exactly 10 seconds and a player is able to collect 5

stars. Create a hard level from the same template

that has 5 ledges and 7 spikes to finish the level in no

less than 12 seconds and be able to collect at least 5

stars.

7 Design levels without any restrictions.

Task 7: Design a few good levels that will be played

by some users later on. No restrictions on any

number of items.

Open-ended design task

Table 5 All tasks in the game level editor study.

The first two tasks were practice tasks that helped participants understand how the basic

interactions work in the system. This allowed them to get familiar with the editor to create, move,

and delete sprites on the screen. They also learned how to save the current version, save their

changes to a new version, preview the changes in other versions by hovering over the nodes, and

finally switch between different versions. They also learned how to undo and redo their changes

using shortcut keys (‘Ctrl+Z’ to undo and ‘Ctrl+Shift+Z’ or ‘Ctrl+Y’ to redo) to fix their mistakes

in the editor along with being able to rename the versions to give more appropriate names to the

new versions that they were generating.

In the third task, the participants were asked to move a pattern of sprites (see Figure 5.1.4) located

in the top left corner of the screen to the middle of the screen, and then move it back to the original

81

position and create a copy of the same pattern to the bottom left of the screen. This task taught

them how to use a version as a reference by utilizing the preview feature of the versioning tool to

see the difference between their current version and a previous version. In Figure 5.1.5, the version

tree displays the currently selected node (current version) “Version 3” highlighted in light pink

whereas node “Version 1” is currently being previewed and highlighted with orange color. The

changes specific to the current version are visible with lowered opacity while the changes for the

preview version are displayed with full opacity.

(a)

(b)

Figure 5.1.4 Task 3 with a pattern of sprites to move: (a) before moving the pattern (b) after

moving the pattern.

82

Figure 5.1.5 Task 3 when the previous version is being previewed to see the differences.

The fourth task asked the participants to adjust the two given versions of a level (see Figure 5.1.6)

and label the easiest (for the players to play) of them as ‘Easy’, by renaming the node in the tree.

This task was designed to make the participants use a version as a template and understand how a

branch is created when they make any changes to the root version (Version 1) since any changes

made to this version will result in creating a version node in a separate branch. Version 1 served as

a template for the participants to create more levels.

In the fifth task, participants were asked to create new versions of a given level without changing

the positions of the spikes already presented (see Figure 5.1.7), so that the levels can be played

within 8 seconds. They were again asked to rename the levels: they were asked to name the easier

of the two levels ‘Easy’ and harder of the two ‘Hard’. This task was a design challenge for the

participants to work with given game constraints while designing a level. We wanted to observe

how participants will utilize our versioning tool’s features such as templating and branching while

doing a level design challenge.

83

Figure 5.1.6 Task 4 with two given levels to modify.

Figure 5.1.7 Task 5 to create separate difficulty levels without changing positions of the spikes.

84

The sixth task involved making use of the existing level (see Figure 5.1.8) to create two levels, an

easy level that includes exactly 8 ledges and 8 spikes to make the level playable within 12 seconds,

a hard level with exactly 8 ledges and 10 spikes, so that a player with an intermediate skill level

may complete the level under 15 seconds. In addition to adding ledges and spikes, the participants

were asked to place stars that a player must collect while playing these levels to give an experience

of an actual platformer game. During playtesting, each star collected increased the player’s score

which was displayed at the end screen (see Figure 4.4.3). Similar to the previous task, this task

was another constrained design challenge for the participants to design game levels with real

constraints and for us to observe how our interactive versioning tool can help them when they are

designing multiple levels where they could utilize templating and branching.

Figure 5.1.8 Task 6 to create separate difficulty levels with a specific number of ledges and

spikes.

The final task asked the participants to create as many levels as they prefer without any restrictions

or constraints on how many spikes or stars were to be used in any level. This task was left open-

ended to allow participants to show their creativity while designing levels of various difficulties. It

allowed us to see how the participants designed levels with all the experience of working with our

85

versioning tool in previous tasks. We encouraged participants to think aloud while performing this

task to understand how their workflow is being aided by our versioning tool.

5.1.6 Results and Observations

In this game level editor study, all the participants were successful in performing all the tasks. They

did not have any issues understanding the concept of creating versions of their levels. They were

able to successfully interact with the version tree and grasped the concept of a parent-child

relationship between the nodes. They were able to utilize all the features of our versioning tree that

we were expecting them to use while designing levels such as preview changes in other versions

while hovering on a node, creating new versions, and switching to new versions.

5.1.6.1 Use of versions and trees in different tasks

All participants previewed different versions by hovering over the nodes in the tree (Table 6 shows

the number of version previews done for each task). They mentioned in the post-study feedback

that they liked the preview feature that overlayed the version currently being hovered on the screen

at the same time. One of the participants commented on using preview feature, “I liked you can

see previous version in a task specific thing”.

Previewing other versions made it easy for the participants to compare and make changes to their

current version. One of the participants mentioned, “hovering [on the nodes] over and over to see

the difference helped me identify which was easier level that I designed”.

Table 6 shows that it was only for task 7 where 2 out of 10 participants did not use the preview

feature. Since task 7 was an open-ended design task with no restrictions on the number of sprites,

collectables (stars), or time limit, it was expected that some participants would be focused on just

designing levels instead of comparing multiple versions that they were creating. Also, those two

participants, who did not use the preview feature, created just a single version of their game level

and did not switch to any other version during the whole task. Three more participants made zero

version switches in task 7, i.e., they did not switch to another version of the level (see Table 7),

however, they still utilized the preview feature to compare their version changes.

86

Participants Task 3 Task 4 Task 5 Task 6 Task 7

1 5 4 7 2 3

2 8 3 5 1 0

3 7 3 3 2 6

4 3 5 3 0 7

5 5 3 7 6 0

6 8 2 4 3 1

7 6 5 6 1 3

8 4 2 4 3 1

9 2 3 8 1 2

10 6 4 6 4 2

Average 5.4 3.4 5.3 2.3 2.5

Table 6 Version hovers (preview) by participants for tasks.

Participants Task 3 Task 4 Task 5 Task 6 Task 7

1 1 2 0 0 0

2 2 2 4 0 0

3 2 2 1 1 2

4 1 1 2 2 3

5 3 1 4 4 0

6 1 1 2 1 1

7 2 5 2 1 1

8 1 2 2 1 0

9 1 2 4 0 4

10 1 1 3 1 0

Average 1.5 1.9 2.4 1.1 1.1

Table 7 Version switches by participants for tasks.

Despite the fact that all participants used the undo-redo actions during their second task, only one

participant used it to fix their mistakes (unintentionally adding, deleting, or moving sprites). The

remaining participants either manually corrected their mistakes or just switched back to the

previous version and started over. They reported that it was easier to go back to the old version to

87

quickly set things to their old positions if they have not introduced many changes to the level

already. One participant remarked on the version switching feature that, “[I] wasn’t worried about

breaking the system as it is easier to go back”.

We also noticed the participant who had the most experience with versioning systems (like Git),

created more versions and previewed more versions than the other participants. Participant 10 has

the most version hovers and switches, as shown in Table 6 and Table 7. Table 8 shows that while

designing levels, the same participant also created the highest number of extra versions. This could

be because the participant is used to the idea of working in a non-destructive manner and plan

ahead of actually doing the work, even when they are just exploring alternative design ideas.

Participants Task 3 Task 4 Task 5 Task 6 Task 7

1 0 0 0 0 0

2 0 1 0 0 0

3 0 0 0 0 1

4 0 0 0 0 0

5 0 1 0 1 0

6 1 0 0 0 0

7 0 0 0 0 0

8 0 1 0 0 1

9 0 0 1 0 1

10 0 1 4 0 4

Average 0.1 0.4 0.5 0.1 0.7

Table 8 Extra versions (besides the required ones) created by participants for tasks.

We observed two versioning approaches during the study – pre-versioning (version-then-change)

and post-versioning (changes-then-version). Six out of ten participants made all their desired

changes to the current version of a level before they saved their changes to a new version. However,

when asked if making changes before saving to a new version is their preference, 2 out of those 6

participants said that they would prefer to save the versions first to avoid changing their base level

accidentally.

88

To illustrate an example of pre-versioning, see Figure 5.1.9 where we can see that one of the

participants has a single version of a game level available (Figure 5.1.9 (a)). They made their

changes by placing the stars around the level and moving around some spikes without making a

new version (Figure 5.1.9 (b)). After they are done making their changes and playtesting the level,

they saved their changes to a new level called “easy” (Figure 5.1.9 (c)).

(a)

(b)

89

(c)

Figure 5.1.9 Example of creating a new version where (b) changes are made by a participant first

and then (c) changes are saved to a new version ‘easy’.

5.1.6.2 Observations for creating new versions and switching to previous ones

We found that some of the circumstances to create new versions (discussed in Section 3.2) were

also observed in this study. All participants except one created new versions to avoid losing their

work while making changes to their current game level. Three out of 10 participants created new

versions to explore alternatives while designing levels of varying difficulties. One participant

mentioned that they created a new version because they were testing their changes and were not

sure if they were going to keep them or not. The rest of the circumstances such as collaborating

with other users and time-based versioning were not observed (as expected) because the study did

not include a collaboration process or allow time-based versioning since the users were only

allowed to do explicit versioning.

We also observed that participants went back to their previous versions following some of the

reasons mentioned in Section 3.3. All participants made a few mistakes while designing levels

where they had to either use undo to fix the mistake or switch to a previous version to start from

scratch. One participant went back to their previous version after testing their new changes which

90

they didn’t like. All participants except one created alternate versions of their levels and therefore

switched back to a previous version which they used as a template. We also noticed that 7

participants ended up with 2 or more branches when creating alternate versions of their levels.

Other reasons such as broken or corrupt files or changes in requirements were not observed since

the study was designed with pre-determined tasks where requirements didn’t change and our

application did not crash during the study that could have resulted in broken or corrupt files.

5.1.6.3 Responses and feedback

We asked the participants a few questions after the study to get more insight into their experience

with the versioning tool.

5.1.6.3.1 Did you have any issues understanding or working with the versioning tool?

None of the participants reported having issues understanding the versioning tool. They were able

to save their changes in the level to a new version, however, two participants did experience a

moment of confusion when they lost their changes as they switched to another version without

saving their changes first. One of the participants suggested that “maybe there should be * on the

name of the version you are changing to show that this version is being changed”. When a user

tries to switch to a different level, having a visual indication that some unsaved changes are present

in the current level could potentially prevent users from losing their changes by accident. While

working on tasks 5 and 6, two participants stated that they wanted to merge some of the versions

because they assumed they could combine them to create a new version. They suggested that a

merging option would be useful when a user wants to use some of the work (e.g., creating a pattern

of sprites) that they have already done in another version.

5.1.6.3.2 Did prior familiarity with versioning systems help you?

The participants familiar with versioning agreed that their prior knowledge of versioning systems

did help them understand the versioning tool quickly.

91

One participant with relatively less experience with such tools remarked that it was easy after the

practice tasks and another participant with similar experience said that “once [I] got familiar with

the interface, it was easy to use”.

5.1.6.3.3 Do you think the versioning tree was helpful? If yes, why and how did it help?

All participants responded affirmatively. One participant mentioned that it was easier to keep track

of everything that they have done since the start. Another participant remarked similarly that “one

glance and you can read everything in a tree”. Some participants mentioned that colors for the

nodes were helpful and the tree “helps you see what you are creating, and which version are you

working with”. Most of the participants remarked that seeing the preview of another version and

seeing the difference was quite helpful.

One participant compared our versioning tool with the traditional versioning GUIs as, “Git GUIs

are confusing, and this [tree] is like an add-on”, while another participant remarked that the visual

differences which you can see are better than the textual or numbered differences found in most

versioning tools.

5.1.6.3.4 Do you think users not familiar with any versioning tools will find working with this

versioning tool easy?

All participants agreed that even if the users who are not familiar with any versioning tools will be

able to understand and use it easily. One of the participants remarked that anyone can become

familiar with the versioning tool quickly with proper guidance and a good tutorial. One participant

responded that “[It was] easy to convey the [basic] concept to non-programmers as you don’t have

to understand all the concepts of git to understand [the tool]”. Another participant noted that with

enough practice, the users not familiar with versioning tools will be able to use the tool efficiently.

It was also mentioned by one of the participants that, “it was beginner friendly and will make their

life easier”.

92

5.1.6.3.5 Any other feedback?

Two participants remarked that the tool would be more helpful for bigger projects rather than small

projects, while another participant mentioned that they would like to have an option to duplicate

the version first before making changes. The participant also expressed concern about doing so

because it would allow for having many duplicates without any changes. Another participant

mentioned that “creating templates is not hard to remember but easy to forget because I was

getting wrapped up in what I was doing, so I automatically ctrl+s to save and then realize I just

saved over [previous version]”.

5.1.6.4 Post-hoc tree representations

Section 4.5 discusses how we integrated auto-versioning into our versioning tool as we wanted to

explore how it will affect the version tree being generated. We generated different tree

representations using auto-generation methods to save a new version - play, 3-changes, every-

change, and time-based on the same tree that was created when the participants explicitly created

a version using a keypress (Ctrl+Shift+S). The play method generated a tree with nodes created on

every play button press. The 3-changes method created a new node on every 3-changes made in

the level by the participant. In the every-change method, a new node is created on every change

made by the participant in the level which included adding, deleting, and moving the sprites along

with changes made with undo-redo. The time method created a new node every 3 seconds

(arbitrarily chosen value) working in the editor.

From Figure 5.1.10 and Figure 5.1.11, it is evident that the trees generated in case of play and

explicit save methods are almost equivalent and there are fewer nodes in their trees as compared to

other trees (Figure 5.1.11 and Figure 5.1.12). This could be because participants explicitly saved

levels (that led to the creation of nodes) only after they made some significant changes. Similarly,

they playtested the level once they were satisfied with their level design. However, the number of

nodes in the tree, created by the play method, could grow depending on how many times the

participant wants to test the level. This was observed for a few participants who playtested their

levels frequently.

93

The every-change and 3-second methods created a few long parallel branches for all the

participants because of a high frequency of changes in their designs in the case of the every-change

method and fixed time interval version saves in the case of the 3-second method. These long-

branched tree structures could be difficult to comprehend for the users because of the high number

of nodes, but they can prove useful where the user wants to look at a fine granularity of changes

being made in the design. The 3-change method, however, among other methods strikes a balance

between storing enough useful change states (versions of level that contained changes that a user

may consider important) and a manageable tree structure (relatively less number of versions

making it easy to navigate the version tree).

Figure 5.1.10 Tree generated by explicit saving (default method).

94

Figure 5.1.11 Trees generated by 'Play' and 'Every Change' methods.

Figure 5.1.12 Trees generated by '3 changes' and '3 second Time' methods.

95

5.2 CASE STUDY: WEB ANALYSIS TOOL

In this subsection, we report a case study we did to test our versioning tool in another interactive

environment, i.e., a web analysis tool. The goal of this case study was to observe how our

versioning tool could be used in a setting where the UI state of the application (interactive elements

of a web form) was stored instead of the result (output) in a version and to gather information for

improving the future designs of the tool.

5.2.1 Usage

We wanted to test our tool with users in research who were working on projects that involved

performing detailed analysis with multiple parameters over a long period. Therefore, our tool was

used for a week by two users who were working on a real-world web application for carrying out

analyses in microbiology (Winnowing Pipeline project). We demonstrated the working of our tool

to them, and they were asked to use the web interface (explained in Section 4.5) to perform all of

their data analyses. We interviewed the users and asked them about their experience and their

opinions about our tool, discussed in the following subsection.

Figure 5.2.1 Web Analysis Tool interface with version tree.

96

5.2.2 User Feedback and Observations

In each version, the versioning tool saved the application's UI state, which contained a set of

parameters in a python command format. All versions were presented in the version tree, allowing

users to see their progress and quickly look over and review the commands they had previously

run using the tool's hover capability. But with the increased number of commands executed, the

number of nodes increased, which overwhelmed the users’ ability to see how they have progressed.

The users reported that it was useful to see the nodes to a certain extent, but it proved difficult to

find the commands they were looking for - if they were looking for the commands in the tree. This

was mainly because the nodes are not labeled as intuitively as they would have liked. The nodes

were labeled as Version 1, Version 2, Version 3, and so on. They were not descriptive unless they

hover over the nodes to reveal the command that was executed in that particular node. Moreover,

when users ran the analysis in a batch (more than one command), it quickly created a lot of nodes

and eventually became difficult to keep track of the executed commands.

Figure 5.2.2 Single branched version tree after running analyses in a batch.

97

Another issue that surfaced with running analyses in a batch was the construction of a linear version

tree. The tree generated, as seen in Figure 5.2.2, was a long list of nodes connected without a lot

of branching. This result was not desired by the users who suggested that they would like to use a

feature that can automatically branch the nodes in a tree based on the classification by some

parameters. For example, the “metric type” parameter has two options - pca_importance and

graph_centrality where the pca_importance deals with the number of PCA components, and

graph_centrality include the correlation type, correlation property, centrality type, and other

options. These parameters can be used to branch the tree structure so that the nodes that are created

by a change in certain parameter values can be grouped as branches. But, classifying versions based

on parameters is a challenging problem. When a single parameter is changed, a new version can be

grouped with other versions that contain the same parameter changes; however, when two or more

parameters are changed, a new version can belong to two or more groups of versions. This alternate

representation of versions differs fundamentally from the way we currently organize versions in

our version tree. The current method organizes versions using a parent-child relationship, in which

a child version contains the data stored in a parent version as well as any new changes made to that

data. In a parameter-based classification tree, on the other hand, some parent versions might not

even hold any version data, but they can serve as branch nodes for a single parameter, allowing

other versions containing changes for the same parameter to be grouped as children.

If the problem of classification of versions can be properly addressed, and a tree can be branched

based on parameter requirements of the users, then the same single branched tree (Figure 5.2.2)

could look like a tree in Figure 5.2.3 and will be easier to navigate and comprehend. Moreover,

the constrained parameter space allows the creation of a prospective version tree showing possible

future designs similar to GEM-NI's design generation (Figure 2.3.7) based on parameter selection

with Cartesian product [50].

98

Figure 5.2.3 A mockup of a tree structure after classifying nodes based on parameters.

99

5.3 SUMMARY

In this chapter, we have discussed two user studies we performed to test our versioning tool in two

interactive web-based applications – game level editor and web analysis tool. The first user study

focused on three goals: evaluating the version tool where each version stored document/model data

of an application, confirming circumstances and scenarios identified for creating new and revisiting

previous versions, and identifying key elements that can be used to improve our tool. The second

user study focused on testing the tool in a real-world application where UI state data of an

application was stored in each version. We reported results on how the participants used our

versioning tool in design and analysis tasks in both studies. We also discussed the observations we

made and the feedback we received from the participants during both user studies. We also looked

at the alternative version trees, created implicitly in four automatic version trigger mechanisms

(play, 3-changes, every-change, and time), and compared them with the explicit version tree

created by the participants during the tasks.

100

CHAPTER 6

DISCUSSION

In this chapter, we discuss findings and observations from our two studies, present explanation for

the main findings, and consider how our results can be used to improve versioning tools in

interactive systems. The discussion is organized around eight key elements in this chapter -

versioning patterns, templating, branching, need for merging versions, using previous versions as

a reference, versions as undo alternative, managing a large number of versions, and control over

the granularity of saving versions.

6.1 VERSIONING PATTERNS

In our game level editor study, when participants were creating new versions while performing the

design tasks, we observed two different types of versioning patterns – pre-versioning and post-

versioning.

Pre-versioning involved the creation of a new version prior to making any changes to the system.

The participants who used pre-versioning ensured that they had a structure in place for the number

of levels they wanted to create; they could then modify these versions according to their needs.

This pattern is also seen in file-based versioning where users create duplicates of their files and

rename them before editing.

Post-versioning involved making changes to the system before saving those changes to a new

version. It was used when participants worked on the current game level to introduce their desired

variations to the level, tested those changes, and then saved those changes as a new version. This

is similar to what is observed in VCS tools where changes are made to the files first and then new

commits are made to save those changes in the version history.

101

In both cases, the resulting tree structure will be the same (Figure 6.1.1). Consider a ‘Base’ version

containing a single star shape which should be filled with yellow color. In the case of pre-

versioning, the user will create a new version called ‘New Version’ first, switch to this new version,

fill the star shape with yellow color, and then save the changes. On the other hand, in the case of

post-versioning, the user first makes changes in the ‘Base’ version itself, i.e., fills the shape with

yellow color, and then saves these changes to a new version.

Figure 6.1.1 Left: Creation of a new version from a base version. Right: Artifact modification

from base version (star shape) to saved changes in a new version (fill color).

One disadvantage of using the post-versioning pattern is that there is a chance of overwriting the

current file with the changes that were supposed to go in a new file. For example, suppose a user

is working on a text document named ‘file.txt’ and then decided to make changes to it later and

save those changes to a separate file called ‘file_new.txt’. But instead of saving the current file

changes as a separate file, the user accidentally saves the file using the ‘Save’ option instead of

‘Save As’. Now, the changes that were supposed to be saved as a separate version were saved to

the same file, overwriting the contents of the original file. This was also observed happening with

our versioning tool in the game level editor study when participants accidentally saved their

changes in the same version rather than creating a new version. Therefore, avoiding chances of loss

102

of original data becomes a matter of concern and can be prevented by following the pre-versioning

approach by the user. Moreover, the automatic pre-versioning feature can also be integrated into

our versioning tool.

6.2 TEMPLATING

Graphics editing software applications such as Photoshop allow users to create multiple layers and

groups [122]. With this feature, users can use their layers or groups as templates to extend or modify

their designs by duplicating these layers or groups. For example, if a user creates a character design

with one color that consists of multiple layers, then these layers can be grouped together in a layer

folder which can then be duplicated to be used as a template for more characters with different

variations such as color, size, and rotation. Another common templating mechanism is to save a

base file that can then be used as a template to create new files. Photoshop also has Smart Objects

[123] that can be used as templates for creating derivative objects. Therefore, designers may often

create multiple instances of their designs using layers or smart objects to speed up their design

process.

Similarly, in our game level editor study, we observed that participants made use of their older

versions as templates for more complex levels that they wanted to create while performing design

tasks. This provided them with a good starting point to design new levels instead of starting from

scratch. Creating templates allowed our participants to quickly duplicate a version from the base

work and then make changes or modifications to this new version, thus saving time.

Moreover, users sometimes need to explore different design paths such as designing game levels

or designing character art where the project isn’t limited to just a few layers. In many such settings,

templates can be a huge help because they reduce time and effort to create a copy of the design

allowing the designers to produce a variety of designs quickly from a single template.

103

6.3 PREVIOUS VERSIONS AS REFERENCES

Participants also used their previously created versions as references to compare the changes within

the current version they were working on using the preview feature of our tool. To do so, they

needed to hover over the version that they wanted to view and the objects in that version were

visible with full opacity while the objects in the current version were shown with transparency.

Participants made comparisons for the locations of objects and patterns across the two versions, at

first to see if they correctly moved the pattern of sprites from one location to another (Task 4) and

then to see how their current level differs from their previously created version (Task 5, 6 and 7).

Figure 6.3.1 The objects of another version (hovered over by the user, ‘Level_Easy’) are overlaid

on top of the transparent layer of objects from the current version, ‘Version 3’.

Such quick visual comparisons inside the editor itself can be very useful in improving the workflow

of a designer working on adjusting a level. This is not an obvious feature of versioning tools but

when versions are easily accessible as they are in our versioning tool, it makes it easy to use them

for other tasks like diffing (comparing two versions).

104

6.4 BRANCHING VERSIONS

In the last task (task 7) of the study, where the participants were asked to make any number of

levels without any constraints on using a certain number of sprites, we observed participants

working with their version tree ended up with multiple branches for creating game levels with

varying difficulty (see Section 5.1.6.2). This happened because participants wanted to use previous

versions as templates to create new versions of levels. The easy-to-play levels were branched out

to create more complex (difficult to play) levels as it allowed the participants to quickly add more

spikes and ledges without designing from scratch.

Figure 6.4.1 shows the work of a participant where branches at depth two of the version tree were

created as testing versions to later branch them to create final versions ‘easy’ and ‘difficult’ at depth

level three. This shows that they created a base level for themselves to branch out to new versions

for more complex levels.

Figure 6.4.1 Branching in a version tree.

Branching can also allow the participants to identify versions based on some attribute (e.g.,

difficulty level) because versions with similar attributes are usually grouped in the same branch.

105

For example, a designer working on alternate designs of a hard level can easily identify all versions

that are hard to play since they can be found grouped in the same branch.

6.5 NEED FOR MERGING

A couple of participants stated that they wanted to merge some of the versions to create a new

version (see Section 5.1.6.3.1). Merging refers to a process of combining changes from multiple

source branches into a single target branch that will initiate a conflict resolution process if changes

are incompatible [36]. In other words, merging is a process to combine changes from two different

versions from two separate branches to create a new version.

Although this feature of merging the nodes is not available in our game level editor, it could prove

quite useful in generating a new design that blends two separate versions. However, it does require

careful consideration on how to merge two versions as the number of objects present in both the

versions would increase the number of collisions (conflicts between changes in the same file) that

the user will need to resolve to decide as to which version of the object the user wants to keep in

the newer version. One way to do this is to merge non-conflicting changes and then ask the user to

manually select the conflicting changes from one of the versions they are merging.

6.6 VERSIONING AS AN UNDO ALTERNATIVE

We found that most of the participants did not use undo feature to fix their mistakes while designing

a level (see Section 5.1.6.1); rather, they just switched to some previous version to start over. One

of the major reasons for reverting by selecting a previous version could be the ease of going back

to the previous versions (clicking on the nodes of a tree) than doing undo multiple times (pressing

Ctrl+Z). But for situations where no previous versions are available in a tree, the need for undo-

redo functionality is fairly obvious. When users are exploring the design space, quickly switching

between versions by selecting them in the version tree can help save a lot of time.

106

Another valuable feature of using versions as an undo alternative is the ability to go back multiple

versions with a single click (Figure 6.6.1) in the interaction history. This could be considered as a

one-step multiple-undo which can be useful when the user does not want to keep any changes made

after a particular version. For example, in Adobe Photoshop’s history panel (see Figure 4.2.2), a

user can undo multiple steps at a time. However, going back to an older version in a version tree

and making new changes does not affect other versions since it will create a separate version

(Figure 6.6.2), whereas the previous history is lost when a new change is made in a history list as

explained below.

Figure 6.6.1 One-step-multiple-undo (left) when a version acts as an alternative of multiple-

undos (right).

107

Figure 6.6.2 Version tree before a user switches from 'Version 9' to 'Version 3' (left). A new

version 'Version 10' is created as a child to ‘Version 3’ while still preserving old branch (right).

In Figure 6.6.3 (a), we can see that a user created two shapes (rectangle and ellipse) and changed

their colors. When that user reverted changes for the second shape (by selecting the step of “Set

Shape Layer Fill” for rectangle in the history panel) to only have a rectangle in the drawing, we

observe (Figure 6.6.3 (b)) that two of the steps in the history list have their font colors darken to

indicate that these steps have been reverted. Lastly, when a user creates a new shape triangle, we

can see (Figure 6.6.3 (c)) the previous two steps get deleted from the list and a new “Triangle

Tool” step has been added. This indicates that the history is not preserved in Adobe’s History Panel

when we make a new change after reverting to the previous step.

108

(a)

(b)

109

(c)

Figure 6.6.3 (a) History list with two shapes in the drawing (b) History list when reverted to

previous step (c) History list losing history when a new change has been made.

6.7 MANAGING A LARGE NUMBER OF VERSIONS

In the web analysis tool, users were able to explore the multidimensional parameter space rather

than spatial arrangement (as in the game level editor). When the participants ran multiple analysis

commands in a batch, the version tree created auto-generated versions in a single branch (see

Figure 5.2.2). The version tree became difficult to navigate and understand. This is because the

auto-generated versions are not given meaningful and descriptive names to identify the commands

run that make up a particular version, and a tree with a single branch does not help in identifying

the nature of connections that could be established among various versions representing particular

locations in parameter space.

110

One way to manage these versions is to branch them based on a classification of the parameters

available in the system (Figure 5.2.3). This can help to ensure that the users can identify and focus

on the subset of versions containing changes for a particular parameter instead of all the versions.

When a command is run with at least one of its parameters changed, a new version is created and

grouped in a branch with other versions based on the same parameter (see Section 5.2.2). Making

associations with the parameters at branch and version levels can prove beneficial in the long run

when the project evolves, and the branching structure also becomes complex. Associating versions

with specific parameters that got modified during each command run can assist in finding versions

of interest in the pipeline and avoid the overhead of revisiting and checking the contents of

parameters of the command enclosed within each version separately. However, classifying based

on the parameters will require careful consideration and prioritization of the parameters.

Another way to manage a large number of versions in a tree is to use semantic zoom [35] that

allows the user to see the amount of detail in a view based on the zoom level. This will allow only

a certain number of nodes in a tree to be visible at any given time. For example, at a lower zoom

level (highly zoomed-out view of the tree), a tree with a single branch could show a certain number

of nodes starting from the root node and a certain number of nodes from the leaf node, while the

remaining nodes are hidden. In the case of a tree with multiple branches, branches that have more

than a certain number of child nodes could be collapsed – the child nodes are hidden – and only

the parent nodes are visible in the tree. Therefore, depending on the zoom level, the version tree

will appear dense or sparse based on the number of nodes being visible.

6.8 CONTROL OVER GRANULARITY OF SAVING VERSIONS

Giving control to the users over the granularity of saving the versions based on their needs should

prove beneficial since their workflows might differ for different kinds of work. Some users might

prefer to save their versions periodically by using the auto-saving feature, while some might prefer

to save a new version whenever there are some changes in their work, similar to what we had as

111

the 3-changes method (Chapter Five). This control over granularity could be a powerful addition

to improving individual workflows of the users for interactive systems.

Consider an example of a user working on a design project in a 2D digital design application (such

as Photoshop, Affinity Photo, Gimp, or Krita [63,124–126]). The user works on the design in two

phases: base design and painting (Figure 6.8.1). Consider a scenario in which a user, during the

base design phase, would perform a limited number of actions to obtain a base drawing whereas,

in the painting phase, the number of actions would increase depending on the level of design

complexity. If the system (drawing application) is configured to save the versions based on every

change to the base layer, then the resulting tree would create a long single branch. And, if the user

also switches between versions throughout the whole drawing process, the tree would have multiple

branches, resulting in a dense tree. However, this does not mean that every version stored in a tree

is useful for the user. The versions created should contain changes that are significant and useful

for the user. Therefore, if the system is configured to save the versions only whenever a new layer

is created, for example, the tree structure would be sparse since the number of versions created

would be far less (Figure 6.8.2).

Figure 6.8.1 Example of 2D digital design project [17] with two phases: base design phase (left)

and painting phase (right).

112

We see that during the design phase of a drawing if a new version is stored for every change, the

number of versions created is more than if a new version is stored every time a new layer is created

(see Figure 6.8.2 (a)). Similarly, during the painting phase, the number of versions stored for every

change is way higher than versions stored only on every new layer created (see Figure 6.8.2 (b)).

Storing a new version on every change made can lead to a tree with a dense structure especially

during a complex phase such as the painting phase that requires a greater number of actions by

users rather than during the design phase. This makes it difficult to navigate the version tree by

users due to how large and dense it can get but provides far more flexibility to go to a certain point

in history. Therefore, it is important to have control over the granularity of saving versions to get

the desired number of versions in history that in turn creates sparse or dense version trees to

navigate at a later time.

(a)

113

(b)

Figure 6.8.2 Trees generated during (a) base design phase: by every change (left) and by layer

creation step only (right); (b) painting phase: by every change (left) and by layer creation step

only (right).

6.9 SUMMARY

In this chapter, we have discussed various findings and observations from both of our studies

(Chapter Five). We also present explanations for the main findings and consider how our results

can be used to improve versioning for interactive systems. We discussed eight key elements -

versioning patterns, templating, branching, need for merging versions, using previous versions as

a reference, versions as undo alternative, managing a large number of versions, and control over

the granularity of saving versions - that can be used to improve versioning tools for the interactive

systems.

114

CHAPTER 7

CONCLUSION

Versioning in an interactive environment can help users deal with past states of a document and

avoid using methods such as saving and naming multiple copies that make versioning a

cumbersome process. However, we lack the understanding to develop effective versioning tools

for interactive systems including design issues to deal with the past states of interactive work in a

digital interactive workspace and the ability of such tools to save user's interaction history. We

surveyed people to understand what constitutes a ‘version’ in a digital interactive system and why

and how often they go back to previous versions. We performed two user studies with our custom

versioning tool to see how users create and manipulate versions in an interactive environment. We

discussed our findings and observations from both studies and presented explanations for the main

findings. The results of the studies suggest that versioning can be a valuable component that can

improve the usability of interactive systems and how our tool can help improve the workflow of

the users in an interactive environment. The new understanding we gained about versioning in

interactive environments by developing and evaluating a custom version tool can help us design

more effective versioning tools for interactive systems.

7.1 CONTRIBUTIONS

7.1.1 Primary Contributions

There are three main contributions of this thesis.

7.1.1.1 Comprehension of ‘version’ creation in the context of interactive systems

Our survey informs us about the various reasons for creating a new version (Section 3.2). We also

identify possible reasons to revisit or go back to the previous versions of the work (Section 3.3).

115

Our findings help us gain a new understanding of versioning in the context of digital interactive

systems.

7.1.1.2 The interactive versioning tool for storing interaction history

The interactive versioning tool (Section 4.3) was developed for versioning in interactive systems

that can be used for storing both the document/model state and UI state of an application. The tool

also provides an interactive version tree that can be used to visualize and interact with versions

stored in the tool. The tool can be extremely helpful in dealing with the past states without even

leaving the working environment.

7.1.1.3 Identification of requirements for versioning

The evaluation of our custom versioning tool with two studies (game level editor study and web

analysis tool study) helped us identify key elements such as versioning patterns, templating,

branching, need for merging versions, using previous versions as a reference, versions as undo

alternative, managing a large number of versions, and control over the granularity of saving

versions that can be used to construct the powerful interactive versioning systems (see Chapter

six).

7.1.2 Secondary Contributions

Our two secondary contributions in this thesis are the interactive systems we developed to evaluate

our versioning tool - game level editor and web analysis tool (Sections 4.4 and 4.5). The game

level editor integrates our versioning tool to save the document state of the editor, whereas the web

analysis tool allows users to save the state of UI elements in each version. Both of these systems

were developed with a focus to implement versioning in them and can serve as a good reference

material for developers to design their interactive systems that support versioning.

116

7.2 FUTURE WORK

The research done in this thesis has laid a foundation for developing better interactive versioning

tools for dealing with past states of interactive systems. There are two main concerns that we would

like to address in our future work. The first concern is that our versioning tool lacks certain features

that prevent users from effectively using the system such as making the interactions richer while

working with the version tree or storing a state history of an object in each version.

The second concern we have is that the users’ lack of expertise and familiarity with our custom

game level editor could have influenced our observations. We want to test our tool in real-world

applications that users are familiar with, which allows us to see how our tool could improve their

existing workflows. We would be able to see how versioning with different granularities can

change the created version trees and how users could utilize such versions trees in different

scenarios.

To address our first concern, we propose the following features in our tool to enhance and extend

the functionality of interactive versioning. We will explain the concepts using an example of a

version tree from our game level editor.

7.2.1 Collapsing and archiving nodes

The web analysis tool case study showed that with the increase in the number of versions in the

version management system, it becomes difficult to visually understand the version tree because

the tree becomes extremely long which makes it tough to navigate. We believe that collapsing the

nodes in a branch that are considered less important by the users can help hide the long chains of

nodes in the tree. Additionally, archiving certain nodes or branches that are not currently in focus

or required by the user can also decrease the number of versions on screen at once and help improve

the understandability of the tree structure.

For instance, in a tree structure as depicted in Figure 7.2.1 left, the left sub-branch that stems out

of node ‘Base Test’ at a depth of two has child nodes. This left sub-branch could be collapsed, by

selecting the ‘Collapse’ option from the context menu, to hide the child nodes to declutter the tree

117

view when the child (leaf nodes) is not being considered in the bigger picture of the project

structure. The node that is collapsed can be visually marked with a surrounding dark blue rectangle

and a red plus ‘+’ symbol attached to it (Figure 7.2.1 right). This ability or feature to collapse and

expand the sub-branching nodes can help in improving a user’s understanding of the project’s

version tree and let them focus on the nodes that they are interested in or find more useful. This

feature can also be expanded to accommodate another useful feature of semantic zooming in the

tree structure view that is explained in Section 6.7.

Figure 7.2.1 A mockup of the tree structure before collapsing with context menu (left) and after

collapsing (right) branches.

118

Figure 7.2.2 A mockup of the tree structure before archiving with context menu(left) and after

archiving (right) branch.

Similarly, the same sub-branch from node ‘Base Test’ can be archived by selecting the ‘Archive’

option from the context menu (Figure 7.2.2 left). This results in hiding all of the child nodes of

that sub-branch. These archived nodes are not permanently deleted - just hidden from the tree view.

All of the archived nodes can be redisplayed by toggling the ‘Show Archived nodes’ option

available in the top-right corner (Figure 7.2.2 right).

Both collapsing and archiving nodes can be done manually, automatically, or both. The tool can

automatically collapse all nodes of other branches that the user isn’t currently working on.

119

Similarly, nodes can be archived automatically by the tool based on some date/time criteria such

as when the nodes were created and/or when they were last visited.

Between collapsing and archiving nodes, there are two major distinctions. First, unlike collapsing,

there is no apparent marker after archiving. Second, when the sub-branches are collapsed, they can

be individually expanded by clicking on the '+' symbol, whereas when they are archived in the

proposed implementation of archiving, expanding nodes might not be possible. They could only

be re-displayed simultaneously.

7.2.2 Pruning branches

In both the studies presented in this thesis, we noticed that participants created some nodes that

they did not use later. One participant of the game level editor study remarked that they “created a

few nodes accidentally” while another mentioned that they created a few versions that “were just

[temporary] testing nodes and thought to delete [them] later”. So, they created those versions

either unintentionally or their workflow changed when working through the design tasks. In the

web analysis tool case study, users ran a large set of commands on the wrong dataset or accidentally

selected incorrect parameters that led to the creation of some unwanted nodes in their tree

representation. Such a scenario is a common mistake where users do not want to alter the tree

structure but end up having nodes that they do not remember creating in the first place. Another

situation is where users may have created some nodes at an earlier stage of a project and later

realize that their project has evolved or changed significantly, and they no longer require those

changes stored as nodes that have now become redundant. Therefore, with the ability to clean up a

tree by pruning [127,128] (deleting) branches, users can keep the node clutter to a minimum and

understand the node relationships better. Figure 7.2.3 depicts a pruned branch where all the child

nodes have been deleted, and the parent node ‘Base Test’ is marked red to show pruning was done

on this node. Pruning a branch would result in the permanent deletion of nodes from the version

tree and cannot be restored later. To temporarily hide a node or a branch, users can use the

‘Collapse’ or ‘Archive’ option as mentioned in Section 7.2.1.

120

Figure 7.2.3 A mockup of the pruned node ‘Base Test’ marked with a red rectangle.

7.2.3 Color coding or tagging the nodes

When the number of nodes in a version tree increases throughout the evolution of a project, it

becomes a challenge to identify specific nodes that correspond to a particular set of changes in the

project. Although users can rename their nodes to give more descriptive names that indicate the

types of changes stored in different versions, doing a visual search in a tree to find a node can still

be cumbersome and could take a substantial amount of time and effort. Therefore, to resolve such

an issue, color coding the nodes according to a category of work or a particular behavior can help

speed up the navigate-and-search process for a user which in turn can save their time.

For example, the nodes marked with brown color (Figure 7.2.4 left) depict test levels while yellow-

colored nodes are levels that contain some specific set of obstacles that are not found in any other

versions of the same level.

121

Similarly, the nodes can be tagged with specific keywords such as ‘Enemy’ which can be easily

searched for later. Only versions containing the correct tag are highlighted with blue color and the

rest of the tree nodes are greyed out to emphasize the searched nodes only (Figure 7.2.4 right).

Figure 7.2.4 A mockup of the application screen with color-coded nodes (left) and nodes with

tags along with search capability (right) that highlights only nodes with ‘Enemy’ tag.

Color coding could also be used to reflect the version tree's timeline or the number of changes

between versions. The oldest node in the tree, for example, could be represented by a lighter shade

of color, while the most recently generated node could be represented by a darker shade of color.

Similarly, the color of the edge linking two nodes could indicate how many changes there are

between the two versions. The darker hue of the edge connecting the two nodes will result from a

large number of changes.

122

7.2.4 Annotating the nodes

Another interesting idea to augment the nodes with more useful information is to attach annotations

to the nodes. A small but informative text message accompanying any node can help in providing

additional information regarding the data stored in a version. This could allow users to leave notes

and messages in the version tree for future reference or other users during collaborative projects.

Figure 7.2.5 shows several annotated nodes represented by the annotation symbol ‘i’ enclosed in

a white circle. The node named ‘Stage Works’ shows the expanded text in the annotation box when

a user hovers over the annotation symbol.

Figure 7.2.5 A mockup of the tree structure with annotations added to nodes.

123

The annotations can also be added to the preview screen similar to ordinal numbers displayed in a

summary frame of Sketcholution [51] (see Figure 2.3.3) or storyboard with action depictions

(graphical metaphors as icons, see Figure 7.2.6) [44] that allows users to undo their actions, or left

as comments attached to the states (see Figure 7.2.7) in d.note – a revision tool for user interfaces

expressed as control flow diagrams [21].

Figure 7.2.6 Editing history of an illustration where the user edits are depicted as arrows and

icons that can be clicked to undo those edits [44].

Figure 7.2.7 d.note enables interaction designers to leave comments attached to any state [21].

124

7.2.5 History of Specific Object States

The interaction history can be further enriched by saving the history of the states for individual

objects in the environment. The user can select any object in the current version tree and see the

related object states history for the selected object.

In the case of our game level editor, an individual sprite’s state history can be saved as a single

branch tree (Figure 7.2.8 right) that can be visualized as a strobe style path [1], a frame-by-frame

illustration of an object’s transition, as shown in Figure 7.2.8 (left). The tool would start saving

the state of the object when it is first created, and then all the subsequent changes to the object

would result in a new object state. All states of the object would be stored as nodes of the Object

States History tree where the intermediate states are depicted with blue color while the initial state

is marked red and the final state is marked green. To provide additional information, the nodes

would be labeled with descriptive texts for each state, e.g., the initial state labeled ‘C (100, 180)’

would refer that an object was created at position (100, 180) and the other nodes labeled with a text

including ‘M’ would refer that the object was moved to a certain location in the level.

Figure 7.2.8 A mockup of the application screen showing the Object States History for ‘Spike 1’

sprite object with a strobe-styled path effect (left) and object interaction state history as a single

branch tree (right).

125

We can even add visualization to the nodes to show interaction with them. For example, we can

darken the outlines or color of nodes to represent how often the node has been visited by the user.

This can help users see what node(s) has been worked with recently or more frequently.

Moreover, we can also use something like phosphor transitions using afterglow effects [1] to

represent the interaction history for the UI elements like buttons, dropdowns, sliders, etc. in a

project like a web analysis tool (Chapter Six) where the form elements can be highlighted with an

afterglow with user-specified granular interaction (for example, interaction frequency) as shown in

Figure 7.2.9.

Figure 7.2.9 A mockup of the web analysis tool’s interface where the changed UI elements are

highlighted in green after-glow effects.

126

7.2.6 Collaboration

In situations where designers are working in a collaborative environment, mining the local

interaction histories of each user can help coordinate the team’s activities [43]. The synchronous

development changes can be reflected to each team member for real-time collaboration [22,23].

The real-time collaboration must be implemented inside the application itself using a real-time

communication protocol, e.g., WebRTC [129]. The application would connect the users and would

allow our custom version tool to sync the version history stored locally on each user’s application.

The version tool can then have the individual local interaction history for each user visualized by

color-coding their interactions in the Object State History tree. On the other hand, each user

interaction can be marked with separate colors to distinguish between the actions performed by

respective users in the level editor window. Moreover, we can also annotate their actions in both

the views (Level Editor window and Object States History panel).

Figure 7.2.10 A mockup of the application screen showing the Object States History for ‘Spike

1’ sprite object for each user in collaboration with color-coding.

127

7.3 SUMMARY

In an interactive system, versioning can assist users in dealing with the past states of the system.

But traditional versioning tools are often unsuitable for versioning in such systems. We lack the

understanding to develop effective versioning tools for interactive systems, including design issues

to deal with the past states of interactive work and the ability of such tools to save users’ interaction

history. We surveyed people to understand more about versioning in interactive systems including

what is a ‘version’ in such systems, circumstances when users create new versions, and why and

how often they go back to previous versions. We built a custom versioning tool that we tested in

two web-based applications to see how users carry out design and analysis tasks. Our findings

demonstrate how versioning may enhance the power and usability of interactive systems, as well

as how our tool can improve user workflow in an interactive environment. The work presented in

this thesis has given us a new understanding of versioning in interactive systems, which can aid us

in developing more effective versioning tools.

128

REFERENCES

1. Patrick Baudisch, Desney Tan, Maxime Collomb, Dan Robbins, Ken Hinckley, Maneesh

Agrawala, Shengdong Zhao, and Gonzalo Ramos. 2006. Phosphor: explaining transitions in

the user interface using afterglow effects. In Proceedings of the 19th annual ACM

symposium on User interface software and technology - UIST ’06.

https://doi.org/10.1145/1166253.1166280

2. Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative Research in Psychology 3, 2: 77–101.

https://doi.org/10.1191/1478088706QP063OA

3. AB Brown and DA Patterson. 2002. Rewind , Repair , Replay : Three R ’ s to Dependability.

In Proceedings of the 10th workshop on ACM SIGOPS European workshop.

4. Tony Campbell, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: Capture,

Exploration, and Playback of Document Workflow Histories. In Proceedings of the 23nd

Annual ACM Symposium on User Interface Software and Technology.

5. Aaron G. Cass and Chris S. T. Fernandes. 2007. Using Task Models for Cascading Selective

Undo. In Task Models and Diagrams for Users Interface Design.

https://doi.org/10.1007/978-3-540-70816-2_14

6. Hsiang-Ting Chen, Tovi Grossman, Li-Yi Wei, Ryan M. Schmidt, Björn Hartmann, George

Fitzmaurice, and Maneesh Agrawala. 2014. History assisted view authoring for 3D models.

https://doi.org/10.1145/2556288.2557009

7. Zach Cutler, Kiran Gadhave, and Alexander Lex. 2020. Trrack: A Library for Provenance-

Tracking in Web-Based Visualizations. In Proceedings - 2020 IEEE Visualization

Conference, VIS 2020. https://doi.org/10.1109/VIS47514.2020.00030

8. J D Denning, V Tibaldo, and F Pellacini. 2015. 3DFlow: Continuous Summarization of

Mesh Editing Workflows. Acm Transactions on Graphics. https://doi.org/10.1145/2766936

9. Jonathan D. Denning, William B. Kerr, and Fabio Pellacini. 2011. MeshFlow: Interactive

Visualization of Mesh Construction Sequences. ACM SIGGRAPH 2011 papers on -

SIGGRAPH ’11. https://doi.org/10.1145/1964921.1964961

10. Jonathan D Denning and Fabio Pellacini. 2013. MeshGit：Diffing and Merging Meshes for

Polygonal Modeling. ACM Trans. Graph. https://doi.org/10.1145/2461912.2461942

11. J Doboš and a Steed. 2012. 3D Diff: an interactive approach to mesh differencing and

conflict resolution. SIGGRAPH Asia 2012 Technical Briefs.

https://doi.org/10.1145/2407746.2407766

129

12. Jozef Doboš, Niloy J. Mitra, and Anthony Steed. 2014. 3D Timeline: Reverse engineering

of a part-based provenance from consecutive 3D models. Computer Graphics Forum.

https://doi.org/10.1111/cgf.12311

13. Jozef Doboš and Anthony Steed. 2012. 3D revision control framework.

https://doi.org/10.1145/2338714.2338736

14. Steven M. Drucker, Georg Petschnigg, and Maneesh Agrawala. 2006. Comparing and

managing multiple versions of slide presentations.

https://doi.org/10.1145/1166253.1166263

15. Eric Raymond. Understanding Version-Control Systems (DRAFT). Retrieved June 12, 2019

from http://www.catb.org/~esr/writings/version-control/version-control.html

16. Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice. 2011. Sketch-Sketch

Revolution: An Engaging Tutorial System for Guided Sketching and Application Learning.

In Proceedings of the 24th Annual ACM Symposium on User Interface Software and

Technology.

17. Floortje. 2017. Origami Crane. Retrieved from

https://www.instagram.com/p/BXaZlhAAJ7j/?igshid=umtr5euupo6j

18. Dustin Freeman and Ravin Balakrishnan. 2011. Tangible actions.

https://doi.org/10.1145/2076354.2076373

19. Erich Gamma. 1995. Design Patterns – Elements of Reusable Object-Oriented Software. A

New Perspective on Object-Oriented Design. https://doi.org/10.1093/carcin/bgs084

20. François Guimbretiére, Morgan Dixon, and Ken Hinckley. 2007. ExperiScope: an analysis

tool for interaction data. In CHI ’07. https://doi.org/10.1145/1240624.1240826

21. Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R.

Klemmer. 2010. d.note: revising user interfaces through change tracking, annotations, and

alternatives. In Proceedings of the 28th international conference on Human factors in

computing systems - CHI ’10. https://doi.org/10.1145/1753326.1753400

22. Lile Hattori. 2010. Enhancing collaboration of multi-developer projects with synchronous

changes. https://doi.org/10.1145/1810295.1810397

23. Lile Hattori and Michele Lanza. 2010. Syde : A Tool for Collaborative Software

Development. In ICSE 2010. Proceedings of the 32th International Conference on Software

Engineering, 2010.

24. James J. Hunt and Walter F. Tichy. 1998. Addendum to “Delta algorithms: an empirical

analysis.” ACM Transactions on Software Engineering and Methodology.

https://doi.org/10.1145/292182.292200

130

25. Darris Hupp and Robert C Miller. 2007. Smart bookmarks: automatic retroactive macro

recording on the web. Proceedings of the ACM Symposium on User Interface Software and

Technology. https://doi.org/10.1145/1294211.1294226

26. Karel Jakubec, Marek Polák, Martin Nečaský, and Irena Holubová. 2014. Undo/redo

operations in complex environments. In Procedia Computer Science.

https://doi.org/10.1016/j.procs.2014.05.461

27. Nicholas Kong, Tovi Grossman, Björn Hartmann, Maneesh Agrawala, and George

Fitzmaurice. 2012. Delta: A Tool For Representing and Comparing Workflows. CHI.

https://doi.org/10.1145/2207676.2208549

28. J. Marks, W. Ruml, K. Ryall, J. Seims, S. Shieber, B. Andalman, P. A. Beardsley, W.

Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, and H. Pfister. 1997. Design galleries:

a general approach to setting parameters for computer graphics and animation. In Proc. of

SIGGRAPH ’97. https://doi.org/10.1145/258734.258887

29. Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp: Rethinking

timekeeping and performance monitoring mechanisms to mitigate side-channel attacks. In

Proceedings - International Symposium on Computer Architecture.

https://doi.org/10.1109/ISCA.2012.6237011

30. Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and Javier López. 2009.

Automating navigation sequences in AJAX websites. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). https://doi.org/10.1007/978-3-642-02818-2_12

31. Elizabeth D. Mynatt, Takeo Igarashi, W. Keith Edwards, Anthony LaMarca, Coyote Hill,

and Keith Edwards. 1999. Flatland: New Dimensions in Office Whiteboards. In Proceedings

of the SIGCHI conference on Human Factors in Computing Systems.

https://doi.org/http://doi.acm.org/10.1145/302979.303108

32. Mathieu Nancel and Andy Cockburn. 2014. Causality - A Conceptual Model of Interaction

History. In Proceedings of the 32nd annual ACM conference on Human factors in computing

systems - CHI ’14. https://doi.org/10.1145/2556288.2556990

33. Ulric Neisser and Walter R. Reitman. 2006. Cognition and Thought: An Information

Processing Approach. The American Journal of Psychology.

https://doi.org/10.2307/1421156

34. Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. DesignScape: design

with interactive layout suggestions. In Proceedings of the ACM Conference on Human

Factors in Computing Systems. https://doi.org/10.1145/2702123.2702149

35. Ken Perlin and David Fox. 1993. Pad: an alternative approach to the computer interface. In

SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer graphics and

131

interactive techniques. https://doi.org/10.1145/166117.166125

36. Shaun Phillips, Jonathan Sillito, and Rob Walker. 2011. Branching and merging: An

investigation into current version control practices. In Proceedings - International

Conference on Software Engineering. https://doi.org/10.1145/1984642.1984645

37. Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shneiderman. 2003.

LifeLines: visualizing personal histories. https://doi.org/10.1145/238386.238493

38. Atul Prakash and Michael J. Knister. 1994. A framework for undoing actions in

collaborative systems. ACM Transactions on Computer-Human Interaction.

https://doi.org/10.1145/198425.198427

39. Ellen Redlick and 0000-0003-1431-5516. 2020. A Modular Data Analytic Pipeline for

Feature Selection in High Dimensional Microbial Data Sets. Retrieved November 30, 2021

from https://harvest.usask.ca/handle/10388/13284

40. Jun Rekimoto. 1999. Time-Machine Computing : A Time-centric Approach for the

Information Environment. CHI Letters. https://doi.org/10.1145/320719.322582

41. Marc J. Rochkind. 1975. The Source Code Control System. IEEE Transactions on Software

Engineering. https://doi.org/10.1109/TSE.1975.6312866

42. Alex Safonov. 1999. Web macros by example. In CHI ’99 extended abstracts on Human

factors in computing systems - CHI ’99. https://doi.org/10.1145/632716.632761

43. K.A. Schneider. 2006. Mining a software developer’s local interaction history.

https://doi.org/10.1049/ic:20040486

44. Craig Scull, Steve Johnson, Frederick Aliaga, Sylvain Paris, Sara L. Su, and Fredo Durand.

2009. Interactive Visual Histories for Vector Graphics. Retrieved June 12, 2019 from

https://dspace.mit.edu/handle/1721.1/45600

45. Frank M. Shipman and Haowei Hsieh. 2000. Navigable history: A reader’s view of writer’s

time. New Review of Hypermedia and Multimedia.

https://doi.org/10.1080/13614560008914721

46. Michael Terry and Elizabeth D. Mynatt. 2002. Side views: persistent, on-demand previews

for open-ended tasks. In Proceedings of the 15th annual ACM symposium on User interface

software and technology - UIST ’02. https://doi.org/10.1145/571985.571996

47. Michael Terry, Elizabeth D Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto. 2004.

Variation in element and action: supporting simultaneous development of alternative

solutions. In Proceedings of the SIGCHI conference on Human factors in computing

systems, 711–718.

https://doi.org/http://doi.acm.org.proxy.lib.sfu.ca/10.1145/985692.985782

132

48. Walter F. Tichy. 1985. Rcs — a system for version control. Software: Practice and

Experience. https://doi.org/10.1002/spe.4380150703

49. Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. 2007. Scented widgets: Improving

navigation cues with embedded visualizations. IEEE Transactions on Visualization and

Computer Graphics. https://doi.org/10.1109/TVCG.2007.70589

50. Loutfouz Zaman, Wolfgang Stuerzlinger, Christian Neugebauer, Robert Woodsbury, Maher

Elkhaldi, Naghmi Shireen, and Michael Terry. 2015. GEM-NI : A System For Creating and

Managing Alternatives In Generative Design. Proceedings of the 2015 CHI Conference on

Human Factors in Computing Systems. https://doi.org/10.1145/2702123.2702398

51. Zhenpeng Zhao, William Benjamin, Niklas Elmqvist, and Karthik Ramani. 2015.

Sketcholution: Interaction histories for sketching. International Journal of Human

Computer Studies. https://doi.org/10.1016/j.ijhcs.2015.04.003

52. Interactive computing - Wikipedia. Retrieved January 3, 2022 from

https://en.wikipedia.org/wiki/Interactive_computing

53. File User Preference — Blender Manual. Retrieved November 27, 2021 from

https://docs.blender.org/manual/en/2.93/editors/preferences/save_load.html#auto-save

54. Backing Up and Archiving Scenes | 3ds Max 2020 | Autodesk Knowledge Network.

Retrieved June 12, 2019 from https://knowledge.autodesk.com/support/3ds-max/learn-

explore/caas/CloudHelp/cloudhelp/2020/ENU/3DSMax-Basics/files/GUID-FFCAA5A1-

A5C7-4725-AC01-FC9EE8DA8982-htm.html

55. Dropbox. Retrieved November 28, 2021 from https://www.dropbox.com/

56. Free Cloud Storage - OneDrive Sign-In | Microsoft OneDrive. Retrieved November 28, 2021

from https://www.microsoft.com/en-ca/microsoft-365/onedrive/online-cloud-storage

57. Git. Retrieved November 28, 2021 from https://git-scm.com/

58. Apache Subversion. Retrieved November 28, 2021 from https://subversion.apache.org/

59. Mercurial SCM. Retrieved November 28, 2021 from https://www.mercurial-scm.org/

60. Visual Studio Code - Code Editing. Redefined. Retrieved January 5, 2022 from

https://code.visualstudio.com/

61. Unity Real-Time Development Platform | 3D, 2D VR & AR Engine. Retrieved January 5,

2022 from https://unity.com/

62. The most powerful real-time 3D creation tool - Unreal Engine. Retrieved January 5, 2022

from https://www.unrealengine.com/en-US/?sessionInvalidated=true

133

63. Official Adobe Photoshop | Photo & Design Software. Retrieved November 29, 2021 from

https://www.adobe.com/ca/products/photoshop.html

64. Software versioning - Wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Software_versioning

65. What is AutoSave? - Office Support. Retrieved June 12, 2019 from

https://support.office.com/en-us/article/what-is-autosave-6d6bd723-ebfd-4e40-b5f6-

ae6e8088f7a5

66. Understanding backup and autosave files in AutoCAD | AutoCAD 2017 | Autodesk

Knowledge Network. Retrieved June 12, 2019 from

https://knowledge.autodesk.com/support/autocad/learn-

explore/caas/sfdcarticles/sfdcarticles/Understanding-AutoCAD-backup-and-autosave-

files.html

67. Basic Editing in Visual Studio Code. Retrieved June 12, 2019 from

https://code.visualstudio.com/docs/editor/codebasics#_save-auto-save

68. File Menu — Krita Manual version 4.2.0. Retrieved June 12, 2019 from

https://docs.krita.org/en/reference_manual/main_menu/file_menu.html

69. Quicksave | ZBrush Docs. Retrieved June 12, 2019 from

http://docs.pixologic.com/reference-guide/preferences/quicksave/

70. Save versions of a document | Adobe. Retrieved June 12, 2019 from

https://helpx.adobe.com/story/help/save-versions-document.html

71. Help protect your files in case of a crash - Office Support. Retrieved June 12, 2019 from

https://support.office.com/en-us/article/help-protect-your-files-in-case-of-a-crash-

551c29b1-6a4b-4415-a3ff-a80415b92f99?ui=en-US&rs=en-US&ad=US

72. How To Auto-Recover Files In Photoshop. Retrieved June 12, 2019 from

https://www.addictivetips.com/windows-tips/auto-recover-files-in-photoshop/

73. Working with source code - Help | PyCharm. Retrieved June 12, 2019 from

https://www.jetbrains.com/help/pycharm/working-with-source-code.html#auto_save

74. Autosaving on a build | Eclipse. Retrieved June 12, 2019 from

https://help.eclipse.org/kepler/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Ftasks%2Fc

dt_t_autosave.htm

75. Auto-save current buffer periodically | Vim Tips Wiki | FANDOM powered by Wikia.

Retrieved June 12, 2019 from https://vim.fandom.com/wiki/Auto-

save_current_buffer_periodically

134

76. EmacsWiki: Auto Save. Retrieved June 12, 2019 from

https://www.emacswiki.org/emacs/AutoSave

77. Checkpoints (Concept) - Giant Bomb. Retrieved June 12, 2019 from

https://www.giantbomb.com/checkpoints/3015-292/

78. Saved Game - Checkpoints | Wikipedia. Retrieved June 12, 2019 from

https://en.wikipedia.org/wiki/Saved_game#Checkpoints

79. How to save and load the game in Assassin’s Creed Odyssey? - Assassin’s Creed Odyssey

Guide | gamepressure.com. Retrieved June 12, 2019 from

https://guides.gamepressure.com/assassins-creed-odyssey/guide.asp?ID=46549

80. Bazaar. Retrieved November 28, 2021 from https://bazaar.canonical.com/en/

81. GNU arch - GNU Project - Free Software Foundation (FSF). Retrieved June 12, 2019 from

https://www.gnu.org/software/gnu-arch/

82. BitKeeper. Retrieved June 12, 2019 from https://www.bitkeeper.org/

83. RhodeCode › Version Control Systems Popularity in 2016. Retrieved June 12, 2019 from

https://rhodecode.com/insights/version-control-systems-2016

84. Stack Overflow Developer Survey 2018. Retrieved June 12, 2019 from

https://insights.stackoverflow.com/survey/2018#work-_-version-control

85. Git - A Short History of Git. Retrieved June 12, 2019 from https://git-

scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git

86. What is Software as a Service (SaaS)? - Definition from WhatIs.com. Retrieved June 12,

2019 from https://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service

87. The State of the Octoverse | The State of the Octoverse reflects on 2018 so far, teamwork

across time zones, and 1.1 billion contributions. Retrieved June 12, 2019 from

https://octoverse.github.com/

88. Create or run a macro - Word. Retrieved June 12, 2019 from https://support.office.com/en-

ie/article/create-or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c

89. Macros | Vim Tips Wiki | FANDOM powered by Wikia. Retrieved June 12, 2019 from

https://vim.fandom.com/wiki/Macros

90. Automate tasks in Google Sheets - Computer - Docs Editors Help. Retrieved June 12, 2019

from

https://support.google.com/docs/answer/7665004?co=GENIE.Platform%3DDesktop&hl=e

n

135

91. How to manage file versions in Google Docs, Sheets, and Slides - TechRepublic. Retrieved

June 12, 2019 from https://www.techrepublic.com/article/version-history-essentials-for-

google-docs-sheets-and-slides/

92. Screen Shots MacgHg. Retrieved June 12, 2019 from

http://jasonfharris.com/machg/screenshots/

93. Abstract: The Design Tool We Deserve – Prototypr. Retrieved June 12, 2019 from

https://blog.prototypr.io/abstract-the-design-tool-we-deserve-6157bb94469e

94. Introducing Time Travel Debugging for Visual Studio Enterprise 2019 | The Visual Studio

Blog. Retrieved June 12, 2019 from

https://devblogs.microsoft.com/visualstudio/introducing-time-travel-debugging-for-visual-

studio-enterprise-2019/

95. Debugging .NET Apps with Time Travel Debugging (TTD) | .NET Blog. Retrieved June

12, 2019 from https://devblogs.microsoft.com/dotnet/debugging-net-apps-with-time-travel-

debugging-ttd/

96. How to view and delete your browser history. Retrieved June 12, 2019 from

https://www.telegraph.co.uk/technology/0/view-delete-browser-history/

97. Save and Restore Browser Sessions in Chrome, Firefox and Vivaldi. Retrieved June 12,

2019 from https://www.maketecheasier.com/save-restore-browser-sessions/

98. How to Use System Restore in Windows 7, 8, and 10. Retrieved June 12, 2019 from

https://www.howtogeek.com/howto/windows-vista/using-windows-vista-system-restore/

99. Time Machine, the Backup Software You Should Be Using. Retrieved June 12, 2019 from

https://www.lifewire.com/review-apples-time-machine-software-2260112

100. How To Backup And Restore Linux With Timeshift - It’s FOSS. https://itsfoss.com/.

Retrieved June 12, 2019 from https://itsfoss.com/backup-restore-linux-timeshift/

101. Windows 10 Timeline: How to use Microsoft’s new organizational tool | PCWorld.

Retrieved June 12, 2019 from https://www.pcworld.com/article/3263905/windows-10-how-

to-use-timeline.html

102. Super Meat Boy. Retrieved June 12, 2019 from

https://en.wikipedia.org/wiki/Super_Meat_Boy

103. Braid Video Game. Retrieved June 12, 2019 from

https://en.wikipedia.org/wiki/Braid_(video_game)

104. Super Meat Boy on Steam. Retrieved January 7, 2022 from

https://store.steampowered.com/app/40800/Super_Meat_Boy/

136

105. Braid on Steam. Retrieved January 7, 2022 from

https://store.steampowered.com/app/26800/Braid/

106. Top 10 Best Time Manipulation Games of All Time - Gameranx. Retrieved June 12, 2019

from https://gameranx.com/features/id/28157/article/top-10-best-time-manipulation-

games-of-all-time/

107. Prince of Persia: The Forgotten SandsTM on Steam. Retrieved January 7, 2022 from

https://store.steampowered.com/app/33320/Prince_of_Persia_The_Forgotten_Sands/

108. Super Time Force Ultra on Steam. Retrieved January 7, 2022 from

https://store.steampowered.com/app/250700/Super_Time_Force_Ultra/

109. Reddit - Dive into anything. Retrieved December 3, 2021 from https://www.reddit.com/

110. Timeline - Learn about this chart and tools to create it. Retrieved June 12, 2019 from

https://datavizcatalogue.com/methods/timeline.html

111. Storyboard | Wikipedia. Retrieved June 12, 2019 from

https://en.wikipedia.org/wiki/Storyboard

112. Undo/redo and history in Adobe Photoshop. Retrieved September 10, 2020 from

https://helpx.adobe.com/ca/photoshop/using/undo-history.html#using_the_history_panel

113. Tree (data structure) - Wikipedia. Retrieved September 10, 2020 from

https://en.wikipedia.org/wiki/Tree_(data_structure)

114. Mongoose ODM v5.5.14. Retrieved June 12, 2019 from https://mongoosejs.com/

115. vis.js - A dynamic, browser based visualization library. Retrieved June 12, 2019 from

https://visjs.org/

116. ECMAScript Language Specification - ECMA-262 Edition 5.1. Retrieved November 22,

2021 from https://262.ecma-international.org/5.1/#sec-11.9.6

117. GitHub - planttheidea/fast-equals: A blazing fast equality comparison, either shallow or

deep. Retrieved November 22, 2021 from https://github.com/planttheidea/fast-

equals#readme

118. The definitive, practical guide to diff algorithms and patch formats | Ably Blog: Data in

Motion. Retrieved November 22, 2021 from https://ably.com/blog/practical-guide-to-diff-

algorithms

119. Phaser - A fast, fun and free open source HTML5 game framework. Retrieved June 12, 2019

from https://phaser.io/

137

120. Express - Node.js web application framework. Retrieved June 12, 2019 from

https://expressjs.com/

121. Node.js. Retrieved June 12, 2019 from https://nodejs.org/en/

122. Learning layer basics in Photoshop. Retrieved June 12, 2019 from

https://helpx.adobe.com/ca/photoshop/using/layer-basics.html

123. Work with Smart Objects in Photoshop. Retrieved June 12, 2019 from

https://helpx.adobe.com/ca/photoshop/using/create-smart-objects.html

124. Affinity Photo – Professional Image Editing Software. Retrieved November 29, 2021 from

https://affinity.serif.com/en-us/photo/

125. GIMP - GNU Image Manipulation Program. Retrieved November 29, 2021 from

https://www.gimp.org/

126. Krita | Digital Painting. Creative Freedom. Retrieved November 29, 2021 from

https://krita.org/en/

127. Pruning decision trees. Retrieved June 13, 2019 from

https://www.ibm.com/support/knowledgecenter/bg/SSEPGG_9.7.0/com.ibm.im.visual.doc

/t_pruning.html

128. Git Prune | Atlassian Git Tutorial. Retrieved June 13, 2019 from

https://www.atlassian.com/git/tutorials/git-prune

129. WebRTC. Retrieved December 2, 2021 from https://webrtc.org/

138

APPENDIX

Figure A.1 Consent form

139

Figure A.2 Study Questionnaire

140

Figure A.3 Online Survey Part 1

141

Figure A.4 Online Survey Part 2

142

Figure A.5 Online Survey Part 3

