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Abstract

In the simulation of turbulent flows, resolving flow motions near a solid surface requires a
high resolution that is computationally expensive. The present research investigates reducing
the computational cost of simulating wall-bounded flows through a technique, called wall-
modeling, that introduces the effects of the near-wall flow dynamics as a wall shear stress to
the outer layer. Turbulent wall-bounded flows were studied using large eddy simulation at
moderate to high Reynolds numbers to evaluate the performance of the wall-modeling.

The results of wall-modeled turbulent channel flow at Reτ = 2000 were in good agreement
with the experimental data. However, a log-layer mismatch was observed in the mean velocity
profile below the matching point due to the inconsistency between the local grid resolution
and that required by the subgrid scale model. Moving the matching point further from the
wall mitigated the mismatch. The effects of time averaging and temporal filtering schemes
on the performance of the wall model were also investigated. It was found that smaller
time periods for time averaging result in a wall model that is more responsive to the flow
structures in the outer layer. The results indicated that the temporal filtering scheme is
strongly dependent on the location of the matching point.

Next, the wall-modeling was implemented in the simulation of a turbulent boundary layer.
Inflow generation methods were reviewed, and a recycling rescaling method was employed
to generate realistic turbulence at the inlet boundary. Zero pressure gradient turbulent
boundary layers over a wide range of Reynolds numbers up to Reθ = 25 523 were studied
in terms of the mean velocity profile, Reynolds stress, and skin-friction coefficient. It was
found that a wall-modeled turbulent boundary layer can be resolved using a much lower grid
resolution in the wall layer.

Finally, the wall stress model was implemented to introduce the effects of wall rough-
ness into the wall-modeling via the eddy viscosity. The proposed wall model was examined
for transitionally and fully rough channel flows and successful results were achieved. For
high-Reynolds number wall-bounded flows, wall-modeling can effectively couple a large eddy
simulation to the wall via the wall shear stress without the need to fully resolve the inner
region.
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Chapter 1

Introduction

1.1 Motivation

Turbulence is the most significant and complicated phenomenon in the physics of fluids.
Turbulence is observed in most natural flows and engineering applications such as the flow of
water in rivers or the boundary layer growing on the wing of an aircraft. However, it is still
difficult to precisely define turbulence, and instead it is described based on its characteristics.
Turbulence is random and the flow field in turbulent flows varies significantly and irregularly
in both time and space. Turbulence is three-dimensional and rotational, and it contains
numerous vortical structures that appear at different length scales. Turbulent flows are also
diffusive, and the rapid transport of momentum between different length scales is a feature
of turbulence. Reynolds (1883) injected dye in a long pipe to demonstrate this feature.
Dissipation is another characteristic of turbulent flows. Turbulence needs a continuous supply
of energy since some kinetic energy is transformed into internal energy by velocity fluctuations
working against viscous shear stresses. These characteristics make turbulent flow a cutting-
edge research topic for engineers and mathematicians in fluids science.

The fast and reliable simulation of turbulent flow is essential in a spectrum of engineering
applications ranging from aviation to power generation in wind farms. To achieve a solution
for turbulent flows, the governing equations should first be specified. The well-known Navier-
Stokes equations (NSE) mathematically govern a turbulent flow and represents conservation
of momentum. Neglecting the body forces, the NSEs for incompressible flows are presented
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as follows:
∂u

∂t
+ u · ∇u = ∇p

ρ
+ ν∇2u, (1.1)

where u is the fluid velocity vector, t presents time coordinates, p is the fluid pressure,
ρ is the density of fluid, ν is the kinematic viscosity, and ∇ is the gradient differential
operator. However, the presence of a nonlinear convective term makes the solution of the
NSE challenging even with the aid of powerful computers and advanced numerical schemes.
Analytical solutions have been developed for the Navier-Stokes equations where the nonlinear
terms can be neglected. For the general case, numerical solutions can be implemented for
different flow problems. However, the computational cost associated with the numerical
solution can be a significant challenge.

Various approaches have been developed to predict the behavior of turbulent flow in the
context of computational fluid dynamics (CFD). Direct numerical simulation (DNS) is the
simplest approach, which resolves all turbulent scales down to the Kolmogorov length scale
where the kinetic energy is dissipated into heat by viscous forces. For a sufficiently fine
grid, DNS needs no modeling, and hence is the most accurate approach. However, the
computational cost of DNS can be prohibitive. An alternative approach is based on the time-
averaged flow statistics. The mean values of the velocity and pressure fields provide adequate
information for the majority of engineering applications. The governing Reynolds-Averaged
Navier-Stokes (RANS) equations allow a lower grid and temporal resolution in solving the
flow. RANS is much faster than DNS, but turbulence modeling becomes the challenge since
there is no universal turbulence model. A third option is large eddy simulation (LES), where
the large-scale motions are filtered and resolved, and the smaller subgrid scales are modeled.
LES provides an unsteady solution similar to DNS, but it comes with lower computational
costs. This feature makes LES a powerful tool for predicting instantaneous flow fields in
research applications.

In many engineering and academic flow problems, there is an interaction between the flow
and a wall or solid surface, which results in the formation of a boundary layer. The presence of
solid walls introduces constraints that are absent in free shear layers. The viscosity of the fluid
imposes a no-slip condition at a wall. The viscous constraint at the wall is associated with
a viscosity-dominated length scale that is much smaller than the boundary layer thickness.
The viscous length scale governs the dynamics of the flow in a narrow region near the wall.
The grid resolution required to capture the small flow structures in the wall region reduces
to the viscous length scale and becomes comparable to the grid resolution of a DNS. Hence,
LES becomes much costlier in flows with a wall region. This dissertation focuses on effective
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strategies for LES to simulate wall-bounded flows at high Reynolds numbers and consider
the effects of near-wall flow dynamics without fully resolving them. This research is carried
out at a fundamental level in terms of physics. However, the outcomes represent a significant
contribution to the simulation of high-Reynolds number wall-bounded flows.

1.2 Large Eddy Simulation

Large eddy simulation was originated by Smagorinsky (1963) when he proposed a new ap-
proach for meteorological and atmospheric boundary layer applications. He suggested that
there is no need to resolve all length scales down to the Kolmogorov length scale. The
larger scales of motion contain most of the energy and anisotropy; however, most of the
computational effort in DNS is dedicated to the small and dissipative motions (Pope, 2000).
Hence, LES explicitly resolves the dynamics of large-scale unsteady turbulent motions and
models the effects of smaller scales. This feature makes LES more computationally efficient
than DNS and a more accurate method than Reynolds-averaged approaches, especially when
unsteady flow structures are present.

The velocity u(x, t) in LES is decomposed into a filtered component ũ(x, t) and a subgrid
scale (SGS) term u′(x, t) through a predefined filtering operation, where x represents the
location in the flow. The filtered velocity field is solved using the filtered NSE to resolve
the large-scale eddies, and the SGS motions are introduced to the governing equations via a
residual stress tensor. Using a low-pass filtering operation, a relatively coarse grid suffices to
resolve the filtered velocity field ũ(x, t). The filtering operation is expressed by

ũ(x, t) =
∫
G(r, x)u(x− r, t) dr, (1.2)

where G(x, r) is the filtering function, and r defines the coordinate in which the velocity field
is filtered (Leonard, 1975). The most commonly used filter in LES is a Gaussian function.
After applying the filtering operation to the velocity field, the velocity decomposition is
defined as follows:

u(x, t) = ũ(x, t) + u′(x, t), (1.3)

where u′(x, t) is the residual velocity. The decomposition in Eq. 1.3 is analogous to the
Reynolds decomposition but ũ(x, t) is a random field, and the mean of the residual component
is not zero:

u′(x, t) 6= 0. (1.4)
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Applying the spatial-filtering operation to continuity and the NSE results in the following
governing equations:

ũi,i = 0 (1.5)

˙̃ui + (ũiuj),j = −p,i
ρ

+ νũi,jj − τ ∗ij,j, (1.6)

where τ ∗ij is the SGS stress tensor. The LES approach is described in Appendix A in more
detail.

1.3 High-Reynolds Number Wall-bounded Flows

Turbulence is composed of eddies of different sizes with specific velocity and length scales.
The largest eddies are generated by instabilities at higher Reynolds numbers. They undergo
a breakup process and transfer their kinetic energy to smaller eddies through a cascade
of energy from large to small scales. This process continues until the Reynolds number is
sufficiently small that molecular viscosity is able to dissipate the transferred energy as heat.
The size of the important motions to be resolved by LES depends on the Reynolds number
and boundary conditions. According to Kolmogorov’s similarity hypothesis, the molecular
viscosity ν and dissipation rate ε determine a universal length scale, which governs the
statistics of small-scale motions at sufficiently high Reynolds numbers (Pope, 2000). Given
ν and ε, the Kolmogorov length scale, velocity scale, and time scale are defined as follows:

η ≡ (ν3/ε)1/4,

uη ≡ (νε)1/4, and

τη ≡ (ν/ε)1/2.

(1.7)

Using the scaling ε ∼ u3
0/l0, where u0 and l0 are the velocity and size of the energetic eddies,

and the definition of the Kolmogorov length scale, the ratio of the smallest to the energetic
length scale as a function of Reynolds number is given by

η/l0 ∼ Re−3/4
x , (1.8)

where Rex = U∞ x/ν. The parameter x is the distance from the leading edge, and U∞ shows
the freestream velocity. It is evident that for increasing Reynolds number, the ratio η/l0

decreases, which leads to a wider range of eddies to be resolved. This implies that for
turbulent flow a higher grid resolution is required when the Reynolds number increases.
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In addition to the general effect of Reynolds number just discussed, the energy-containing
eddies decrease in size and become comparable to the viscous length scale δv near the wall.
The grid resolution used in LES is too coarse to capture small-scale motions in the near-
wall region. Chapman (1979) demonstrated that the number of grid points to resolve a
wall-bounded flow depends on the Reynolds number (Ntotal ∝ Re2.4

x ). At higher Reynolds
numbers, this requires unaffordable resolution and is comparable to that of DNS, which leads
to the alternative strategy of wall modeling. Wall modeling allows the use of a coarse grid
near the wall, where there are important small-scale flow dynamics. The effects of these
small-scale flow motions must be expressed in an averaged framework (Piomelli and Balaras,
2002). Since the flow motions in the wall layer experience several life cycles during a single
time step in the outer layer, the instantaneous governing equations are unable to resolve
them.

Depending on whether an equilibrium (where the advection and pressure gradient effects
can be neglected) or non-equilibrium flow is assumed in the near-wall region, a simple alge-
braic function or a simplified form of the RANS equations is implemented to model the wall
layer (Larsson et al., 2016). The wall model transmits the correct wall shear stress to the
outer layer. Chapman (1979) estimated that the number of grid points required to resolve
a wall-modeled flow is significantly reduced (Ntotal ∝ Re0.4

x ). Although wall models mitigate
the computational costs, they often result in poor prediction of the skin friction (Lee et al.,
2013; Yang et al., 2017). One challenge for the wall modeling is to couple the LES and RANS
regions, where an instantaneous field (LES) feeds the wall layer (RANS) at the top boundary.
The wall layer experiences high-frequency fluctuations at the top, whereas it varies smoothly
in time. This is manifest as a mismatch of mean velocity profiles in the overlap region. So-
called dynamic wall models have been developed to accommodate the unsteadiness at the
top boundary and alleviate the mismatch.

In the simulation of a turbulent boundary layer (TBL), starting from the leading edge is
impractical due to its high computational cost. A short section in the turbulent region can
be selected to study a TBL. However, defining realistic turbulence at the inlet represents
an additional challenge in terms of boundary conditions. A turbulent channel flow employs
periodic boundary conditions to introduce the flow information at the inlet, which allows a
shorter flow domain. Using periodic boundary conditions for a boundary layer is problematic
due to the spatial development. A rescaling method is an alternative strategy that allows
the simulation of a high-Reynolds number TBL on a compact flow domain. The inflow
is generated using the flow information inside a flow domain based on the self-similarity
hypothesis.
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1.4 Objectives and Scope

Large eddy simulation of unsteady wall-bounded turbulent flows at high Reynolds numbers is
the principal objective of this dissertation. Two flow geometries are chosen for this purpose,
which are a pressure-driven turbulent channel flow and a zero pressure gradient turbulent
boundary layer. An in-house LES code is used to solve these flows for different Reynolds
numbers. The turbulent channel flow is initially employed due to its simple boundary con-
ditions to investigate the performance of wall modeling. Then, the TBL is considered where
the wall modeling is integrated with the rescaling technique. The specific objectives of this
study are outlined as follows:

1. Develop a dynamic wall layer model in a fully developed turbulent channel
flow: A dynamic non-equilibrium wall model is developed for a turbulent channel flow
at a high Reynolds number. An innovative technique is proposed to mitigate the log-
layer mismatch in wall-modeling. This would target an improved algorithm/strategy
for exchanging the velocity fields between the wall layer and the LES. Filtering the
velocity as input to the wall layer based on the location of the interface is investigated.
Also, time averaging the flow solution in the wall layer affects the prediction of the wall
shear stress, and a quantitative analysis is conducted to achieve an appropriate time
period for averaging the wall layer.

2. Implement rescaling in a developing TBL together with a wall layer model:
In a TBL, the rescaling method provides a computationally efficient approach for per-
forming a simulation on a compact flow domain. The effective implementation of strate-
gies that address both the near-wall region and the inflow in a developing flow is the
crucial aspect of a wall-modeled TBL.

3. Demonstrate the potential of wall modeling to incorporate the effects of wall
roughness, especially at high Reynolds numbers: The effects of wall roughness
are studied in the context of wall-modeling of high Reynolds number turbulent channel
flows. The effects of wall roughness are modeled by applying a modification to Prandtl’s
mixing length hypothesis. An alternative strategy is proposed to estimate the wall shear
stress at the wall since the wall is covered with roughness elements. The proposed wall
model is implemented for rough channel flows at high Reynolds numbers.
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1.5 Expected Contributions

This thesis will present an efficient methodology for resolving a high-Reynolds number TBL.
Most of the computational tasks in the simulation of a wall-bounded flow are dedicated to
resolving the flow field in the near-wall region, where essential turbulent structures appear.
Modeling the wall layer circumvents this issue by introducing the flow dynamics as a wall
shear stress to the outer layer. Wall layer modeling is accompanied by the challenge of
coupling the outer layer to the wall. Strategies to mitigate the log-layer mismatch will be
addressed in the context of wall-modeling. Simulation of a zero pressure gradient TBL is
used to study the effect of a higher Reynolds number. Recycling and rescaling will be used
to implement a compact computational domain for the simulation of high-Reynolds number
TBLs. Roughness is an important feature of many wall-bounded flows. However, roughness
elements occur in the near-wall region where the flow field is modeled instead of being re-
solved. This research attempts to incorporate the effects of wall roughness when modeling
the wall layer. Roughness elements are replaced by an equivalent roughness height since the
outer layer does not interact with the individual roughness elements. However, modeling the
effects of roughness is essential for numerical simulation of high Reynolds number flows.

1.6 Outline of Dissertation

A comprehensive review of the pertinent literature is presented in Chapter 2. First, different
wall models from hybrid models to wall stress models are discussed. Then, the methodology
for generating inflow turbulence in the simulation of turbulent boundary layers is discussed.
Chapters 3 and 4 study wall modeled turbulent channel flows at high Reynolds numbers. The
numerical methodology for wall-modeled simulations is initially described. The governing
equations in LES and the discretization of the first layer of control volumes near the wall are
explored. Full details of a dynamic non-equilibrium wall stress model are presented including
time averaging and temporal filtering schemes. Then, the wall-modeled LES (WMLES) is
investigated for a range of moderate to high Reynolds number turbulent channel flows. The
performance of wall-modeling at high Reynolds numbers is substantiated, and the effects of
time averaging and temporal filtering are investigated. The contents of this chapter were
published in Hosseinzade and Bergstrom (2021).

Large eddy simulation of TBLs is the next objective of this dissertation. It commences with
an introduction to a numerical approach for generating realistic turbulence at the inlet of a
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computational domain for TBLs in Chapter 5. The boundary conditions are also formulated
for the top of the domain and the outlet boundary. Chapter 6 examines the performance of
rescaling inflow generation for a moderate Reynolds number TBL. Different flow character-
istics such as the skin-friction coefficient and shape factor are examined and compared with
experimental data. The sensitivity of the computational domain to grid resolution at the
outlet boundary is tested for low resolution computational domains. Finally, wall-modeling
is employed to explore the performance of the inflow generation method at higher Reynolds
number TBLs.

A new wall stress model is proposed in Chapter 7, which introduces the effects of wall
roughness. A literature review on pertinent roughness models is presented, and the numerical
methodology to include the effects of wall roughness in the dynamic non-equilibrium wall
model is explored. Guided by the available experimental data, the proposed wall model
is implemented in symmetric and asymmetric rough channel flows at different Reynolds
numbers. This chapter examines the mean velocity profiles, Reynolds stresses, and turbulence
kinetic energy production. Finally, Chapter 8 presents the conclusions and contributions of
this research and outlines potential future work.
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Chapter 2

Background to Wall-modeling and
Inflow Generation Methods

There are two main challenges in the simulation of wall-bounded turbulent flows using LES.
First, it is required to properly include the effects of the energetic small-scale flow motions
near the wall. Wall-modeling is a useful method for including wall effects in LES. Hence, the
first part of this chapter attempts to provide a comprehensive background in wall-modeling
methods, especially at high Reynolds numbers. The second challenge relates to the need
for defining physically realistic flow conditions at boundaries in the simulation of TBLs.
Hence, the second part of this chapter is dedicated to boundary conditions in generating
realistic turbulence at the inlet boundary. A review of well-known inflow generation methods
is presented for turbulent boundary layers. Finally, the methods implemented in this thesis
are introduced.

2.1 Wall-modeling

Despite of the advantages of LES in resolving the large turbulent flow structures, it suffers
from the excessive computational cost of resolving the flow in the near-wall region, which
is characterized by extremely small length scales. The viscous length scale is typically used
to scale the spatially filtered flow structures close to a solid surface, which contain much
of the energy in a turbulent flow. On the other hand, the viscous length scale is inversely
proportion to the Reynolds number (Pope, 2000). A coarse grid in the wall region will contain
many small eddies. Instead of resolving these small motions, a wall model will consider time-
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averaged effects (Piomelli and Balaras, 2002). The time step determined by the outer flow
is sufficiently large that the small eddies experience several life cycles during each time step.
For a sufficient number of near-wall eddies, one could consider the time-averaged statistics of
the flow dynamics and their effects on the outer layer. For wall-modeling, the LES needs to
implement a coarse grid in the wall layer on the order of ∆x+,∆z+ > 500 in the wall parallel
directions and y+ > 50 in the wall-normal direction.

Deardorff (1970) proposed the idea of wall-modeling for the first time, and later Schumann
(1975) developed an innovative approach. Schumann (1975) introduced the wall shear stress
as an approximate wall boundary condition in the simulation of a turbulent channel flow. He
suggested relating the local wall shear stress to the local instantaneous velocity. If the plane-
averaged streamwise velocity (u) at the first grid point is considered to be in the logarithmic
law region, then the instantaneous wall shear stress in the streamwise direction (τw,xy) varies
around the mean value as given below:

τw,xy = 〈τw〉
〈ũ(x, Y, z)〉 ũ(x, Y, z), (2.1)

where 〈·〉 indicates the mean value, x and z represent the location in the wall-parallel plane,
and Y is the distance of the first node from the wall. Assuming a linearly varying spanwise
velocity (w) and a constant viscosity the local spanwise wall shear stress is determined as
follows:

τw,zy = µ
w̃(x, Y, z)

Y
. (2.2)

The wall-normal velocity v is zero at the wall. Later, Piomelli et al. (1989) proposed that the
local wall shear stress should relate to the instantaneous velocity at a distance ∆s downstream
of the specified location to consider the inclination of elongated vortical structures;

τw,xy = 〈τw〉
〈ũ(x, Y, z)〉 ũ(x+ ∆s, Y, z),

τw,zy = 〈τw〉
〈ũ(x, Y, z)〉w̃(x+ ∆s, Y, z),

(2.3)

where ∆s is approximated by the empirical correlation ∆s = Y cotα (α is 8◦ for 30 <

Y + < 50 and 13◦ for larger values of Y +). These changes improved the results through a
closer agreement with the experimental data for a plane channel flow. This simple algebraic
correlation suffices to transmit the effects of the wall to the outer flow where there is no
pressure gradient. In high-Reynolds number and separated flows, the effects of pressure
gradient and advection are significant and should be considered in the wall region. Hence,
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the full boundary layer partial differential equations were proposed to resolve the wall layer
and estimate the wall shear stress (Balaras et al., 1996). Different wall models have been
proposed which can be categorized in two main groups as shown in Fig. 2.1. The Hybrid
RANS/LES approaches are constructed based on two distinct layers, whereas the wall layer
is modeled as an embedded layer in the wall stress models. The following sections elaborate
on the most popular approaches to wall-modeling.

Figure 2.1: Categories of wall models for high-Reynolds number turbulent flows.

2.1.1 Hybrid RANS/LES Wall Model

The hybrid RANS/LES approaches can be classified into two different groups (Larsson et al.,
2016; Chaouat, 2017). The first group, referred to as the zonal method, relies on two different
models, i.e. a RANS turbulence model and an SGS model. Each of them is implemented
in a specific domain to model the turbulent fluctuations. A sharp or dynamic interface
transmits the information from the RANS to LES domain. The zonal methods are not
limited to RANS/LES, and different approaches can be implemented in each domain such as
in the very large eddy simulation (VLES) of Speziale (1998) or the scale adaptive simulation
(SAS) of Menter and Egorov (2005). The second group is the seamless method in which the
location of the interface is dependent on the flow field solution and/or the grid. The governing
equations in the seamless methods transition between RANS and LES behaviors according
to updated criteria during the computation. The most well-known seamless method is the
detached eddy simulation (DES) used as a wall model by Nikitin et al. (2000).
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Interestingly, both the zonal and seamless hybrid RANS/LES methods over-predict the
mean velocity profile around the interface in comparison with experimental data. A review
of hybrid methods and their performance for separated flows was provided by Heinz (2020),
which identified some promising models for this category of the wall-modeling. Although
several hybrid methods have been proposed, the main drawback is the fundamental inconsis-
tency of the RANS and LES equations due to their temporal framework (the instantaneous
solution obtained from LES in contrast to the time-averaged solution from RANS). The
unsteady LES approach produces fluctuations whereas the RANS is incompatible with such
fluctuations. Hence, an artificial buffer layer and unrealistic physical structures are expected
in hybrid methods. The numerical errors associated with the unrealistic interface might con-
taminate the flow solution in the LES domain away from the matching layer. Recently, a
consistent match between the RANS and LES equations has been developed by enforcing an
additional source term to provide proper boundary conditions at the interface (Xiao et al.,
2017). Nonetheless, the computational cost associated with this modification is comparable
with the cost of LES. In another solution, a blending function was introduced to the interface
that smoothly changes the mixing length scale from the turbulence model in RANS to the
SGS model in LES (Shur et al., 2008). It is not yet clear whether this method is robust at
different grid resolutions or for different numerical methods.

2.1.2 Wall Stress Model

Wall stress models are considered as the second group of wall-modeling approaches. In
contrast to the hybrid methods, the wall shear stress is introduced to the LES as a new
boundary condition as shown in Fig. 2.2. j indicates the number of the control volume start-
ing from the wall, and un is the wall-normal velocity. The wall-modeling grid is embedded

Figure 2.2: Transferring data at the matching point between the wall layer and LES.
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inside the LES domain, and flow information is introduced as the top boundary conditions to
the wall layer. As shown in Fig. 2.1, there are different approaches in the wall stress models;
however, the two most popular models are discussed in the following sections, i.e. the wall
function model and the dynamic non-equilibrium wall model. For a more detailed review of
other wall-modeling methods refer to Piomelli and Balaras (2002), Larsson et al. (2016), and
Bose and Park (2018).

2.1.3 Wall Function Model

Wall functions have been developed to produce a low-cost method to estimate the resistance
of the wall region to the momentum transport above (Craft et al., 2004). Empirically de-
rived velocity profiles are used to construct the wall functions. Wall functions are restricted
to simple flows where the turbulence production and dissipation are in balance. The wall
function is classified as a wall stress model in Fig. 2.1, since it provides a value of the wall
shear stress to the LES domain. In an alternative method, the friction velocity is replaced by
the turbulence kinetic energy (k = 1

2〈u
′
iu
′
i〉, where u′i is the velocity fluctuations) to scale the

velocity at the first node (Launder and Spalding, 1974). The performance of wall functions
can be improved by applying this modification, especially in non-equilibrium flows.

Most of wall functions scale the velocity using an assumed logarithmic velocity distribution
in the wall region of the form

〈u〉
uτ

= 1
κ

ln
(
yuτ
ν

)
+B, (2.4)

where 〈u〉 is the mean streamwise velocity in the outer layer, κ is the von Karman constant, y
is the distance from the wall, uτ is the friction velocity, and B is a constant. The logarithmic
law can also be used conditionally for local instantaneous velocities if the size of the grid cell
(filtered volume) is large enough to contain a significant number of inner layer eddies (Piomelli
and Balaras, 2002). The instantaneous log-law is strongly dependent on the size of the grid
cell and valid when the horizontal grid scale is greater than 1800 in wall units (Nakayama
et al., 2004). Eq. 2.4 is similarly implemented to calculate the instantaneous velocity u

instead of 〈u〉. The instantaneous log-law is widely used in meteorology to model the wall
layers, while also including some improvements. In a recent study by Bae et al. (2018), the
wall function was developed for boundary conditions with transpiration or slip boundary
conditions. Their model implements the slip boundary condition as follows to estimate the
velocity at the wall:

ui
∣∣∣
w

= li
∂ui
∂y

∣∣∣∣∣
w

+ vi, (2.5)
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where the subscript i indicates the Cartesian direction, “w” indicates the quantity at the wall,
vi is the slip velocity, and li is the slip length. Given Eq. 2.5 for the boundary condition, the
wall shear stress at the wall is defined by introducing the tangential SGS stress tensor τSGS

12

and the slip boundary condition u1u2

∣∣∣
w
as follows:

〈τw〉
ρ

= ν

〈
∂u1

∂y

∣∣∣∣∣
w

〉
−
〈
u1u2

∣∣∣
w

〉
−
〈
τSGS

12

〉
, (2.6)

The results indicate that the new wall function can compensate for the deficit or excess of
mean momentum at the wall and improve the underestimation of the wall shear stress which
is a common problem in wall-modeling.

2.1.4 Dynamic Non-equilibrium Wall Model

The wall-modeling in the wall stress model can be categorized into equilibrium and non-
equilibrium models. In equilibrium models, it is assumed that the convection is balanced by
the pressure gradient, and the partial differential equation (PDE) converts into an ordinary
differential equation (ODE). Hence, the momentum equation can be integrated in the wall-
normal direction to estimate the wall shear stress since the viscous forces become dominant
in the wall layer (Wang and Moin, 2002). However, most turbulent flows include a pressure
gradient and/or significant convection that violates the assumptions of an equilibrium wall
model. Balaras et al. (1996) retained all terms of the momentum equation to resolve the
wall layer, i.e. the full boundary layer PDEs. This model, the so-called non-equilibrium
wall model, can capture some non-equilibrium effects in a turbulent flow. Therefore, it is
implemented for flows with separation or complex geometries where the convective term
is non-trivial. Low-Reynolds number (LRN) wall models have been developed following
Launder and Spalding (1974). The turbulence kinetic energy is solved in the near-wall region
where the shear stress is considered constant, and a linear variation is assumed for the
turbulent length scale across the wall layer.

Amano (1984) solved the transport equations for both the dissipation ε and turbulence
kinetic energy k using cell-averaged production and dissipation rates to estimate the Reynolds
stresses and subsequently the wall shear stress. His model predicts separated and reattached
flows accurately, and the wall proximity characteristics are independent of flow Reynolds
number. However, the computational cost of the k−εmodel resulted in applying assumptions
that simplify LRN models. Solving the full PDEs requires a separate grid in the wall region
that should have similar grid resolution requirements to a RANS grid. This is the main
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disadvantage of non-equilibrium wall models. Iacovides and Launder (1984) assumed that
the pressure variations across the wall layer are negligible. This assumption avoids solving the
pressure field in the wall layer, which provides a low-cost model. Instead of the pressure, the
wall-normal velocity is calculated from the continuity equation to conserve mass in the wall
layer. Craft et al. (2004) discretized the boundary layer transport equations using the finite-
volume method in one dimension along the wall. The diffusion term is only integrated in the
wall-normal direction, and a simplified LRN model is applied to determine the eddy viscosity.
The main drawback of the LRN wall models is that they are generally computationally
expensive due to solving additional transport equations for the dissipation and turbulence
kinetic energy. Balaras and Benocci (1994) proposed the thin boundary layer equations
(TBLE) for a square duct which solve the wall layer as follows:

∂ 〈ui〉
∂t

+ ∂ 〈unui〉
∂y

= −1
ρ

∂p

∂xi
+ ∂

∂y

[
(ν + νt)

∂ 〈ui〉
∂y

]
, (2.7)

where the subscript “n” indicates the wall-normal direction, and νt is the eddy viscosity.
Eq. 2.7 is solved in wall-parallel planes, and the wall-normal velocity is obtained by solving the
continuity equation. A very simple mixing length model is used to estimate the eddy viscosity
and close the governing equations. Similarly, the wall layer is assumed to be sufficiently thin
that the pressure gradient across the wall layer is zero. Thus, the pressure information is that
imposed by the outer layer and is introduced to a source term. Moving to higher Reynolds
number flows, Balaras et al. (1996) suggested including the streamwise advection in the
TBLE:

∂ 〈ui〉
∂t

+ ∂ 〈u1ui〉
∂x

+ ∂ 〈unui〉
∂y

= −1
ρ

∂p

∂xi
+ ∂

∂y

[
(ν + νt)

∂ 〈ui〉
∂y

]
, (2.8)

where the subscript 1 denotes the streamwise direction.

There are different methods for estimating eddy viscosity. The conventional zero-equation
eddy viscosity based on the mixing length hypothesis proposed by Prandtl (1925) and intro-
ducing a damping function for the inner part of a boundary layer is represented as follows:

νt = (κy)2
∣∣∣∣∣∂ 〈u〉∂y

∣∣∣∣∣D,
D =

[
1− exp (−y+/A+)

]2
,

(2.9)

where D is the van Driest wall damping function, y+ = yuτ/ν is the distance from the wall
in inner coordinates, and A+ is a constant. Johnson and King (1985) showed that Eq. 2.9
is valid for non-zero pressure gradient flows, and it reduces to νt = κyuτD for zero pressure
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gradient flows with a simple adjustment in the damping function to replace y2 dependency
with a y dependency. They used A+ = 15 for zero pressure gradient flows compared to
A+ = 26 for non-zero pressure gradient turbulent flows. There are several studies based on
the zero-equation eddy viscosity model that implemented different formulations in different
flow geometries as shown in Table 2.1.

Table 2.1: Different zero-equation eddy viscosity models.

Models Flow νt D A+

Johnson and King (1985) ZPGTBL κyuτD 1− exp (−y+/A+) 15

Johnson and King (1985) NZPGTBL (κy)2 |S|D 1− exp (−y+/A+) 26

Balaras et al. (1996) Channel (κy)2 |S|D 1− exp (−y+/A+)3 25

Cabot (1995) Channel κyuτD [1− exp (−y+/A+)]2 19

Cabot and Moin (2000) Channel κyuτD [1− exp (−y+/A+)]2 17

Kawai and Larsson (2013) ZPGTBL κyuτD [1− exp (−y+/A+)]2 17

ZPGTBL: zero pressure gradient turbulent boundary layer
NZPGTBL: non-zero pressure gradient turbulent boundary layer

The eddy viscosity νt indicated in Eqs. 2.7 to 2.9 not only represents the effects of the resid-
ual Reynolds stresses but also should include the effects of subgrid scale stresses introduced
by the outer layer, which indicates the essential role of the eddy viscosity in non-equilibrium
wall models. Cabot and Moin (2000) reviewed wall stress models and found that the eddy
viscosity model over-predicts the magnitude of the eddy viscosity using the zero-equation
model. The LES resolves a portion of the non-linear stresses at the interface using a coarse
grid. The wall model and LES use the same wall-parallel grid resolution and velocities at
the interface. Hence, the non-equilibrium wall model is assumed to predict only the unre-
solved portion of stresses to estimate an accurate wall shear stress. In this regard, Wang
and Moin (2002) suggested the turbulent eddy viscosity in the wall layer should match the
SGS eddy viscosity at the interface which is represented by use of a dynamic value of κ, i.e.
κ = 〈νSGS〉/〈y+D〉 with D = [1− exp (−y+/A+)]2. The angle bracket here refers to a spatial
average in the spanwise direction and a time-average over a certain number of previous time
steps. This model, the so-called dynamic wall model, later was further developed by Kawai
and Larsson (2013) where the von Karman constant κ varies linearly from the wall to the
matching point,

κ = 0.41K + κ̂(1−K), (2.10)
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where κ̂ = 〈νSGS〉/〈hwmuτD〉, hwm is the height of the wall layer, and K is a function of y,
the distance from the wall, and varies between 0 and 1. They asserted that up to a specific
height, there is no effect of the resolved stress, and the standard value (κ = 0.41) can be
used. Above this height, the κ-value reduces in a linear profile to balance the turbulent
eddy viscosity against the SGS eddy viscosity. This critical height is specified using ad hoc
correlations which failed the dynamic wall model in some high-Reynolds number flows.

Park and Moin (2014) further improved the dynamic wall model by calculating the resolved
and modeled Reynolds stresses separately. They proposed that the Reynolds stresses in the
conventional RANS equations should balance the resolved and modeled stresses in the non-
equilibrium wall model as follows:

2νtSij −
2
3kδij −Rij ≈ 2ν∗t Sij −

2
3k
∗δij, (2.11)

where Sij is the strain rate tensor, δij is the Kronecker delta, Rij = −u′iu′j is the resolved
Reynolds stress, and superscript ∗ indicates the value is modeled using the correlations
presented in Table 2.1 with the standard value of the model coefficients. The right-hand side
of Eq. 2.11 refers to the total Reynolds stresses. The first two terms on the left-hand side
are the modeled Reynolds stresses and the third term, Rij, is the resolved Reynolds stresses
in the non-equilibrium wall model. Applying the least squares method to Eq. 2.11, an eddy
viscosity related to the unresolved Reynolds stresses can be obtained. They validated this
model in a separating flow over an airfoil, a high-Reynolds number turbulent boundary layer,
and a channel flow, and results were in good agreement with the references.

2.1.5 Other Wall Models

Besides the zero-equation eddy viscosity models, other methods have been used to approx-
imate the wall boundary conditions. The linear stochastic estimate (LSE) method was de-
veloped to predict the wall shear stress using the best mean square estimate instead of first
order statistics (Bagwell et al., 1993). A set of linear estimations was introduced to relate the
averaged wall shear stress to a vector of events such as the local velocity field, pressure, veloc-
ity gradients, quadratic products, or any other quantities that characterize the wall stresses.
A two-point spatial correlation tensor is implemented to resolve the coherent structures in
the wall layer and provide an accurate estimation of the wall shear stress. This model works
very well in low-Reynolds number channel flows, but for high Reynolds numbers the success
is limited, perhaps due to a weak linkage between errors in the outer layer and wall models.
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Nicoud et al. (2001) implemented a controller for the LSE method for wall stress fluctuations
by introducing an additional time integration. In the control process, they only considered
discrete terms of the momentum equation explicitly at the current time step and ignored
any old values. This model, which is the so-called suboptimal control model, introduces
a cost function based on the difference between the mean velocity and the log-law. They
also considered the effects of wall shear stress in the cost function. By optimizing the cost
function at each time step, the local wall shear stress is estimated for the next time step.
Notwithstanding the acceptable performance of the suboptimal control model for coarse-grid
high-Reynolds number LES, the cost is much larger than the cost of explicit wall stress
models.

Chung and Pullin (2009) developed an ODE using a stretched-vortex SGS model to esti-
mate the wall shear stress without the need to resolve the wall layer. A filtered governing
equation is discretized in the wall-normal direction while only streamwise diffusion is consid-
ered and the pressure-gradient across the wall layer is assumed to be negligible. Applying this
ODE to the first cell near the wall and using the resolved-scale LES quantities to determine
other terms, the wall shear stress is obtained. This model can be applied to inhomogeneous
turbulent flows since it is entirely local. The proposed model has been used in channel flows
over a wide range of Reynolds numbers with acceptable outcomes. However, the prediction
of separated flows using the reduced form of the TBLE is questionable.

Duprat et al. (2011) developed an ODE for the wall layer modeling based on a simple
relation proposed by Wang and Moin (2002). They neglected the convective transport and
temporal terms in Eq. 2.8. The pressure gradient and diffusion terms are retained and
integrated over the wall-normal direction to give

0 = −1
ρ

∂p

∂x
y + (ν + νt)

∂ 〈u〉
∂y
− τw

ρ
. (2.12)

A different scaling is applied to Eq. 2.12 to make it dimensionless. Instead of the friction
velocity uτ , an extended inner scaling is implemented as follows:

u∗ = 〈u〉
uτp

, y∗ = yuτp
ν

, (2.13)

where uτp =
√
u2
τ + u2

p, and the additional velocity scale up is related to the streamwise
pressure gradient, up = [ν/ρ (∂p/∂x)]1/3. The advantage of this scaling over the classical
wall coordinates is that it remains valid even for separated and reattached flows (uτ = 0).
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Hence, Eq. 2.13 is expressed as

∂u∗

∂y∗
=

sign
(
∂p

∂x

)
(1− α)3/2y∗ + sign(τw)α

1 + νt
ν

. (2.14)

For further description of α, νt, and “sign” in their relation see Duprat et al. (2011). This wall
stress model was tested on adverse and favorable pressure gradient flows, and the results were
in good agreement with DNS. Furthermore, the matching point in this model can be located
from the viscous sublayer (y+ = 5) to the log layer (y+ = 120). The wall model predicts
the wall stress very well; however, its performance at high Reynolds number is questionable
since the convection term is neglected.

Bose and Moin (2014) proposed a slip boundary condition using a modified low-pass differ-
ential filter for wall-bounded turbulent flows to specify the filtered velocity with no estimation
of the wall shear stress. They considered a second-order linear operator of elliptic filters to
find the velocity at the wall as described by

φ̃− ∂

∂xi

(
lp
∂φ̃

∂xi

)
= φ, (2.15)

where φ̃ is the filtered scalar, lp is the length scale regularization parameter, and φ is the
unfiltered variable or the actual value. Employing Eq. 2.15 at the wall in directions tangential
to the wall surface, it can be assumed that lp = 0 and the filter width gradient is ∂lp

∂xk
= 0.

Hence, the velocity at the wall is as follows (φ = u):

ũi − C∆w
∂ũi
∂y

= 0. (2.16)

Note that the actual velocity at the no-slip wall is assumed to be u|w = 0. The magnitude
of C∆w, which is known as the slip length, represents the filter length scale at the wall and
is estimated through the use of the Germano identity. Using Eq. 2.16 for a wall-modeled
LES on a coarse mesh, the filter width is a non-vanishing length scale, which results in
the tangential velocity at the wall. This dynamic slip wall-modeling predicts separated
and attached flows correctly when the LES grid size is refined in the wall-normal direction
compared with previous wall stress models. However, it is sensitive to the SGS model and
numerical method used. In contrast to the dynamic slip wall model studied by Bae et al.
(2018), this dynamic model represents the filtered velocity as a boundary condition to the
LES domain instead of the wall shear stress.

19



Yang et al. (2015) developed an integral wall model based on the RANS equations in which
the wall-normal velocity is obtained by integrating the continuity equation from the wall to
the matching point. They asserted that their integral WMLES considers all the physics
of the inner layer such as the pressure gradient, advection, and unsteadiness. Their model
treated the solid surface as an immersed boundary. Although the integral wall model evalu-
ates roughness effects with acceptable results, it is mathematically complicated and requires
constrained coefficients in the LES to control the coupling of the wall layer to turbulent
fluctuations in the LES region.

Suga et al. (2019) further investigated non-equilibrium wall stress models to develop a
simple ODE from the TBLE. They considered the TBLE in the wall-normal direction and
assumed that all terms except the diffusion term are constant inside a near-wall cell. This
assumption simplified the TBLE to a reduced-form ODE. In this analytical wall function, the
eddy viscosity is estimated using a one-equation-like correlation that contains the turbulence
kinetic energy and the dissipation length scale based on the filtered velocity field. The model
was studied in turbulent channel flows for a limited range of Reynolds numbers. It was shown
that the log-layer mismatch can be suppressed using the algebraic non-equilibrium wall stress
model.

Among the wall models discussed, the dynamic non-equilibrium wall model proposed by
Park and Moin (2014) has the potential for the simulation of TBLs. The wall model im-
plements the TBLE to resolve the flow motions in the near-wall region and requires no flow
information a priori. It is less sensitive to the location of the matching point and successfully
predicts both separated and reattached flows. Although the dynamic non-equilibrium wall
model has demonstrated good performance, further studies are required on the coupling of
the LES domain and wall layer at the matching point since they are based on two different
temporal frameworks. The flow statistics inside the wall layer should also be investigated to
determine a proper time averaging scheme. In this regard, the present thesis seeks to improve
the performance of the dynamic wall-model, as will be discussed in Chapter 3.

2.2 Inflow Generation Methods

Spatially developing turbulent flows such as boundary layers are challenging due to their
high computational memory size and simulation run-time. The advent of supercomputers has
improved spatial and temporal resolution for a given computational cost. However, obtaining
a simulation with coherent flow structures depends on creating a realistic turbulent flow at
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the inflow. To achieve real turbulent flow structures, the most straightforward approach
is to calculate the boundary layer from the leading edge. Although realistic turbulence
fluctuations are achievable, the high computational cost of a long computational domain
and limited Reynolds numbers are the main drawbacks of this method. This issue has led
to the development of inflow generation methods that prescribe realistic turbulence at the
inlet boundary. Physically realistic boundary conditions are necessary at all boundaries of a
computational domain, but for a boundary layer the inlet is especially important. Generating
realistic turbulence at the inflow affects the downstream flow dynamics over the entire domain.

An efficient inflow generation method should be able to faithfully recreate desired turbu-
lence statistics by enforcing the two-point spatial correlations, higher-order moments, and
spectral distribution of turbulence kinetic energy (Dhamankar et al., 2018). The method
should require no further adjustment at the inlet to introduce realistic turbulence without
spurious artifacts like non-physical periodicity or acoustic waves. Generating continuous flow
statistics at the inflow boundary during a simulation without the need for storing and read-
ing the inflow data is another feature of an effective inflow generation method. The method
should be easily implemented in parallel computational cores and adjustable to a variety
of flow problems. Furthermore, it should be compatible with different spatial discretization
methods (finite volume method or finite difference method) and grid types (structured and
unstructured grids).

There are various techniques to introduce inflow boundary conditions ranging from cyclic
approaches to artificial turbulence methods. Any errors within the inflow generation model
require a development section downstream of the inlet boundary to eliminate unrealistic tur-
bulence fluctuations. In general, turbulent inflow generation methods are categorized as: 1)
transition-inducing methods, 2) library-based methods, 3) synthetic methods, and 4) recy-
cling methods (Bazdidi-Tehrani et al., 2016; Dhamankar et al., 2018). Fig. 2.3 summarizes
the main methods and subcategories for generating inflow turbulent boundary conditions for
boundary layers.

2.2.1 Transition-inducing Methods

To generate real turbulent flow dynamics, a straightforward approach is to impose a distur-
bance to the laminar regime and resolve the transition to turbulence. This is in contrast
to natural transition where Tollmien-Schlichting waves would be formed. Resolving natural
transition requires a long domain which only makes it appropriate when the transition pro-
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Figure 2.3: Categories of inflow generation methods.

cess is the focus of the research (Fasel et al., 1990; Sayadi et al., 2013). In general, a desired
mean velocity profile with superimposed random fluctuations is introduced far upstream in
the laminar region, and the turbulent boundary layer is spatially developed within the flow
domain after the transition to turbulence. Most solvers implement dissipative methods to
enhance the numerical stability which can smooth out small fluctuations in the flow field. A
very long computational domain and limited Reynolds numbers are the main disadvantages
of the transition-inducing method.

2.2.2 Library-based Methods

Library-based methods rely on an outside source to generate the inflow data for the main
simulation. A separate precursor simulation, that is most often a channel flow, is simulated
using periodic boundary conditions to achieve fully developed realistic turbulence (Keating
et al., 2004). The velocity field in a plane normal to the streamwise direction is either stored
to be used for a later simulation or simultaneously introduced at the inlet boundary of the
main simulation. Li et al. (2000) stored a time series of velocity planes in a periodic simulation
with time intervals comparable to the integral time scale. They transformed this signal into
a periodic one that could be used for unlimited time steps in a spatially developing turbulent
mixing layer. Schlüter et al. (2004) proposed a variant of the library-based method for
hybrid RANS/LES simulations. This method imposes precomputed turbulent fluctuations
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on a target mean velocity profile that can develop into realistic eddies. The flow database
can also be used for different flow configurations and Reynolds numbers by scaling the flow
statistics obtained from the precursor simulation to produce appropriate flow structures.
The proposed method was implemented in a confined swirling flow, and the results were in
good agreement with the experimental data. Use of a precursor simulation to produce a
library or database of the turbulent flow for the main simulation increases the computational
cost. Druault et al. (2004) used experimental data to estimate the inflow boundary conditions
based on a proper orthogonal decomposition (POD) method and linear stochastic estimation.
Their method extracts coherent structures to predict the behavior of large-scale structures
at an inflow section and couples them with random fluctuations to make realistic turbulence.

An alternative method is to generate the inflow data simultaneously by running an auxiliary
simulation as shown Fig. 2.4. The geometry and operating conditions of the auxiliary domain
are analogous to the main domain. The auxiliary simulation runs to achieve a fully developed
turbulent flow using periodic boundary conditions (Spalart, 1988) or recycling methods which
will be discussed in Section 2.2.4 (Lund et al., 1998). Then, the velocity field at a sampling
location is introduced to the inlet plane through a communication channel at each time
step. Although a library-based method supplies physically realistic turbulent flow struc-
tures, which are temporally and spatially correlated, it is impractical for a wide variety of
flow geometries (Dhamankar et al., 2018).

2.2.3 Synthetic Methods

For synthetic turbulence methods, pseudo-random artificial unsteadiness is produced and
superimposed on a predefined mean flow to provide flow data at the inlet of a computa-
tional domain. There are various ways to generate pseudo-random fluctuations which include
white-noise random fluctuations (Neto et al., 1993), spectral approaches (Lee et al., 1992),
POD (Druault et al., 2004), digital filter-based inflow (Klein et al., 2003), and synthetic
eddy methods (Jarrin et al., 2006). In some methods like the white-noise fluctuations, in-
flow data lack spatial and temporal coherence, and superimposed fluctuations are suppressed
within a short distance downstream. Lee et al. (1992) proposed a method in which random
fluctuations were estimated by a predefined power spectrum. This ensures that small-scale
flow motions contain insignificant energy whereas the highest level of energy is assigned to
well-resolved eddies. Turbulent statistics such as vorticity and turbulence intensity indicated
good agreement with the experimental data, while the statistics of the dilatation showed
differences. Later, Le et al. (1997) modified this approach by scaling the velocity fluctuations
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Figure 2.4: Library-based inflow generation method using an auxiliary simulation in a tur-
bulent boundary layer.

to be comparable with the target Reynolds stresses and inlet boundary layer profile. The
generated signals demonstrated satisfying second-order statistics, but they lost the statistical
characteristics shortly after the inlet plane and only re-established realistic turbulence after a
transition length. Physically realistic turbulence flow structures are obtained after the initial
developing region and constructing phase information between real turbulent structures.

Keating et al. (2004) reviewed various inflow conditions for LES to reveal the role of
phase information in generating appropriate inlet boundary conditions. They showed that
uncorrelated random noise and small-scale eddies will dissipate quickly, and the library-based
method using a separate calculation needs flow structures comparable to or larger than the
integral length scale. It was found that the synthetic turbulence generation using reduced
information from RANS simulations is more successful in developing realistic turbulence than
using the Reynolds stress information due to imposing the increased wall-normal velocity
fluctuations. Batten et al. (2004) proposed a synthetic turbulence generation method that
controls the second moment and wavelength spectra. Their model superimposed random
frequencies and wavenumbers on sinusoidal modes that stretched eddies in the direction of the
larger Reynolds stresses. This is accompanied by more realistic anisotropic eddies, especially
near the wall. A synthetic digital filtering method has been proposed by Béchara et al.
(1994) where the velocity signals are spatially correlated using an imposed energy spectrum.
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The summation of Fourier modes was implemented to approximate homogeneous isotropic
turbulence at the inlet boundary. The lack of temporal correlation between two instants
resulted in white noise instead of real turbulence. A digital filter through convolution with a
Gaussian filter was used to impose a temporal coherence over a random temporal sequence.
Klein et al. (2003) suggested imposing spatial coherence on random spatial data points to
generate artificial velocity data with second-order statistics and a realistic autocorrelation
function. The model implements an inverse Fourier transform and has the advantages of
defining the length scale locally in each coordinate direction and being adaptable to the
recorded experimental data as input.

In general, most synthetic turbulence methods are unreliable in practical applications.
The efficiency of synthetic approaches is strongly dependent on the length of the initial de-
velopment region required to establish turbulent flow structures, which is the main drawback
of these methods. These methods produce a Reynolds stress budget that may be different
than the one in a real turbulent flow (Keating et al., 2004). Furthermore, the dissipation
depends on the implemented model spectrum in the synthetic method, whereas the spectral
distribution of turbulence affects the dissipation in a turbulent flow. This issue results in a
rapid decay of the wall-normal Reynolds stresses, and consequently a lower production and
reduced streamwise Reynolds stresses. However, the flow redevelops towards more realistic
turbulence some distance downstream after the transition process. This implies that the syn-
thetic methods still require a fairly long development region to establish physically realistic
turbulent structures.

2.2.4 Recycling Methods

The concept of recycling was proposed by Spalart and Leonard (1987) where the spatial
growth of the boundary layer is controlled by the skin friction and momentum thickness to
generate realistic turbulence using a form of periodic boundary conditions in the streamwise
direction. A systematic multiple scale procedure was used to estimate the boundary layer
growth. The NSEs are transformed into a new coordinate system in which the streamwise
velocity field is homogeneous. As a result, several terms are introduced to the governing
equations that are complicated to estimate. Although their method had advantages over
previous periodic methods, it has been implemented in only a few studies to generate inflow
data. Lund et al. (1998) modified Spalart and Leonard’s (1987) method by computing the
spatial development of boundary layer in a Cartesian coordinate system. Their approach,
known as the LWS (Lund-Wu-Squires) method, extracts instantaneous velocities at a recy-
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cling plane downstream which is fairly far from the inlet plane as shown in Fig. 2.5. Then,
the velocities are decomposed into the mean and fluctuating components. Each component is
rescaled by applying wall or outer coordinates depending on its location from the wall. The
rescaled fluctuating component is imposed on the rescaled mean component and introduced
to the inlet boundary. All terms in the LWS method used to rescale the velocities are directly
estimated from the mean flow field, and merely a single empirical correlation is used to relate
the law of the wall at the inlet boundary to the flow field downstream.

Figure 2.5: A schematic of recycling rescaling inflow generation.

Lund et al. (1998) performed the simulation of a TBL in two distinct domains. The first
domain (driver) was shorter and used as a library database for the second domain, which
was the main simulation as shown in Fig. 2.4. The recycling rescaling inflow generation
method was implemented in the first domain. Once the flow solution in the driver domain
became statistically stationary, the flow data from the mid-plane were extracted and used
to update the inlet boundary condition of the main domain. Kataoka (2008) simplified the
LWS method by recycling only the fluctuation components. He prescribed a constant mean
velocity profile at the inlet and introduced the recycled-rescaled fluctuating components to
the mean velocity. This led to a shorter length in the driver domain in contrast with LWS.
Ferrante and Elghobashi (2004) suggested a modification to the LWS method by estimating
the energy spectrum and Reynolds stresses in the driver domain and introducing additional
steps before the rescaling process. This method preserves the production rate of turbulence
kinetic energy, and a statistical correlation between the Reynolds stresses near the wall is
sustained. As a result, a constant value for the velocity-derivative skewness is achieved
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throughout the simulation which ensures vortex stretching and the transfer of energy from
large-scale eddies to smaller vortices.

Despite the acceptable performance of the LWS method in flat-plate boundary layers, there
are some inherent limitations. For instance, it needs an equilibrium region to develop the
scaling terms (Dhamankar et al., 2018). In complex geometries, it is required to make an
additional region upstream where the scaling laws become valid. This is in contrast to the
main advantage of the LWS method which is producing a fully developed boundary layer
without adjustments at the inlet. Furthermore, there is a potential for contaminating the
solution by introducing spurious low-frequency components, which depend on the location
of the recycling station and the mean convective speed of the flow (Morgan et al., 2011).
There is also a risk of locking the turbulent structures in the spanwise direction when a short
domain is used due to its lower computational cost for the inflow turbulence generation with
periodic boundary conditions. Munters et al. (2016) proposed a clever technique to prevent
the spanwise locking in a flow domain without increasing the streamwise domain length.
They shifted the recycling plane uniformly in the spanwise direction within a predefined
and constant distance. This approach was mainly conducted for channel flows, but it can
be extended to the recycling rescaling method for a flat-plate TBL. Jewkes et al. (2011)
modified the LWS method by mirroring the flow structures at the inlet boundary to avoid
spurious linking between the recycling and inlet planes. They also replaced the boundary
layer thickness (δ) with displacement thickness (δ∗) to rescale the outer region since δ is a
poorly conditioned parameter and varies with small velocity variations.

Recall that running concurrent simulations (auxiliary and main domains) as used by Lund
et al. (1998) increases the complexity of the simulation by transferring the flow data through a
communication channel between the auxiliary and main domain. Including the recycling box
in the main computational domain, i.e. so-called internal mapping, reduces this complexity
and the corresponding computational cost. In an earlier version of the LWS method, Wu
et al. (1995) estimated the inflow conditions from the velocity field at a location close to
the outflow boundary but in a single domain as shown in Fig. 2.5. Choosing the location
of the recycling plane far from the inlet boundary is effective in mitigating the spurious
periodicity (Wu, 2017). In contrast, moving the recycling station far downstream may result
in uncorrelated time scale and spanwise length scale of flow structures at the recycling and
inlet planes and increase errors. However, the internal mapping method has been widely
implemented in studies of TBLs (Urbin and Knight, 2001; Tabor and Baba-Ahmadi, 2010;
Araya et al., 2011; Inoue and Pullin, 2011).
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Later, a dynamic recycling inflow generation method was developed. Liu and Pletcher
(2006) pointed out the slow response of the LWS method to generate turbulence down-
stream. They introduced a dynamic recycling plane which is initially located close to the
inlet boundary, and then it moves to a predefined station downstream. The numerical time
that they required to develop the TBL is shorter than the LWS method. This method,
which is subject to ZPGTBLs, significantly reduces the numerical transient at the beginning
of the simulation. However, the proposed recycling rescaling inflow generation methods are
unable to produce inflow turbulence in boundary layer flows with pressure gradients. Araya
et al. (2011) developed a methodology that relates the velocity and length scales at the inlet
and recycling stations through a dynamic multiscale approach in the rescaling process. An
additional plane is introduced between the inlet and recycling planes that is the so-called
test plane. The development of a boundary layer between the test and recycling planes is
monitored to estimate the friction velocity at the inlet. This feature enables the dynamic mul-
tiscale method to be used in zero, favourable, and adverse pressure gradient boundary layers.
The authors reported that due to the dependence of the flow on the spatial development of
the boundary layer downstream, this method is not recommended for boundary layers with
strong non-equilibrium transitions like flow separation or relaminarization. However, it can
capture the effects of roughness in the inflow generation.

Cardillo et al. (2013) performed the dynamic multiscale approach on a ZPGTBL with a
rough surface. They modified the rescaling factors in the dynamic model of Araya et al. (2011)
near the wall to consider the effects of surface roughness. The viscous sublayer is disturbed
in a boundary layer by the presence of roughness, and the estimation of the friction velocity
by traditional methods is difficult if not impossible. Hence, the momentum integral equation
is used to calculate the scaling factor at the inner layer based on a power-law variation of
the momentum thickness. They evaluated their model on a low-Reynolds number turbulent
boundary layer (Reθ = 2077−2439) with a sand grit roughness, and the results showed good
agreement with experiments. They found that the effects of the surface roughness on the
Reynolds stresses are dependent on the roughness scale.

There are numerous inflow generation methods with some modifications outlined in this
study to provide realistic inflow conditions. Bazdidi-Tehrani et al. (2016) investigated the
performance of some of the inflow generation methods discussed in the previous sections
in the simulation of flow around a model building in a turbulent atmospheric boundary
layer. Their study indicated that the recycling method has some advantages over three
other methods including the generation of high-frequency velocity fluctuations and larger
turbulence intensity, higher energy levels, and coherent structures. Dhamankar et al. (2018)
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reviewed inflow generation techniques with more attention given to the synthetic method due
to its application in industrial problems.

Although there are successful synthetic methods for the simulation of turbulent boundary
layers, the simplicity of the LWS method is compelling. The LWS method recycles the
flow dynamics to the inlet plane where they are rescaled using the friction velocities at the
recycling and inlet stations. It needs no further analysis such as a power spectrum or phase
information. However, the auxiliary domain in the LWS method is a significant disadvantage,
which directly affects the computational cost. This study implements the LWS method to
generate realistic turbulence at the inlet plane without any auxiliary domain. Instead, the
recycling station is located inside the main domain. Locating the recycling station requires
careful consideration to avoid contaminating the inflow by numerical errors at the inlet and
outlet boundaries, which will be discussed in Chapter 5.
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Chapter 3

Numerical Methodology in
Wall-modeled Large Eddy Simulation

In LES, the filtered continuity and NSEs are used to resolve the flow dynamics, and the
residual stresses are modeled using an SGS model. An in-house LES code is implemented
for all simulations in this thesis. The code allows for different SGS models, however, the
dynamic nonlinear SGS model proposed by Wang and Bergstrom (2005) is employed for all
simulations. This chapter outlines the mathematical equations and numerical methods im-
plemented in the LES and wall-modeling. First, the algorithm for solving the momentum
equations for an incompressible flow is elaborated. Spatial and temporal discretization meth-
ods are discussed, and the numerical algorithm for applying the wall shear stress at the first
node as a boundary condition in the WMLES is explained. To describe the methodology of
wall-modeling, the boundary layer equations are introduced. Finally, the method in which
the wall layer communicates with the outer layer is presented.

3.1 Governing Equations

The flow of an incompressible Newtonian fluid with constant properties is considered in this
study; it is governed by the relations for conservation of mass and momentum as shown in
Eqs. 1.5 and 1.6. The governing equations are discretized based on the finite-volume method,
and a second-order central-difference scheme is used to approximate all spatial derivatives
on a collocated grid. A two-step fractional step method is used to temporally advance the
momentum equations. The second-order explicit Adams-Bashforth scheme developed by Kim
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and Moin (1985) splits the momentum equation into the following equations:

(ũ∗i − ũni ) = ∆t
2
(
3Hn

i −Hn−1
i

)
, Hi = − ∂

∂xj
(ũiũj + τ ∗ij) + ν

∂2ũi
∂xj∂xj

, (3.1)

ũn+1
i − ũ∗i

∆t = −∂p
n+1

∂xi
, (3.2)

where ∆t is the time step to advance the simulation, ρ is the density of the fluid, the
superscript n indicates the current time step, and ũ∗i indicates the intermediate velocity in
the fractional step method. The new velocity ũn+1

i is achieved by solving the pressure field at
the second step of fractional step method (shown by superscript n+1). A pressure-correction
method is implemented to calculate the pressure components by solving the filtered continuity
equation.

3.1.1 Pressure-correction Method

Using the finite-volume method and locating the mass flux at the faces of the control volume
shown in Fig. 3.1, the continuity equation is given as

(ṁe − ṁw) + (ṁn − ṁs) + (ṁf − ṁb) = 0. (3.3)

where ṁe = ρũeAe is the mass flux at the east face, and Ae is the face area at east. Eq. 3.3
can be rewritten as

ũw − ũe

∆x + ṽs − ṽn

∆y + w̃b − w̃f

∆z = 0. (3.4)

Figure 3.1: A sketch of the control volume used in the pressure-correction method.
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The width of control volume in the streamwise, wall-normal, and spanwise directions is shown
by ∆x, ∆y, and ∆z, respectively.

The intermediate velocity ũ∗i in Eq. 3.2 does not guarantee mass conservation over the
control volume, and a velocity correction is required to satisfy continuity. In this regard, the
mass flux at the face is linked to the nodal pressure-correction field on a collocated grid, so
that

ũe = ũ∗e −
∆t

ρ ∆xe
(p′E − p′P), (3.5)

where ∆xe is the cell width at the east face as shown in Fig. 3.1, and p′ is the pressure
correction. Substitution of the corrected velocity in Eq. 3.4 above results in the following
discrete Poisson equation for the pressure-correction field:

aP p′P =
∑

aNP p′NP + b, (3.6)

where the subscript NP represents the neighbouring nodes, and the coefficients are defined
as 

aE = aW = Ax
∆t
∆x , aN = aS = Ay

∆t
∆y , aF = aB = Az

∆t
∆z ,

aP = ∑
aNP,

b = ρ[Ax(ũ∗e − ũ∗w) + Ay(ũ∗n − ũ∗s ) + Az(ũ∗f − ũ∗b)],

(3.7)

where Ai indicates the face area normal to the direction i. To implement the pressure-
correction method, the face velocity at the intermediate step, e.g. ũ∗e, is estimated as follows:

ũ∗e = ũ∗P + ũ∗E
2 − ∆t

ρ ∆xe
(pE − pP). (3.8)

The solution of pressure-correction field obtained from Eq. 3.6 is employed to update the
pressure components at nodes,

p(n+1) = pn + p′, (3.9)

which is used to calculate the new velocity in the second step of the fractional step method
as expressed in Eq. 3.2.

3.1.2 Numerical Solver and Convergence Criteria

The discrete equation given in Eq. 3.6 can be solved to obtain p′P. Note that the pressure-
correction at the center node p′P is estimated based on information at the neighboring nodes,
while each neighbor is also dependent on its neighboring nodes. There are different methods
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to solve the discrete equation, especially when the field is multi-dimensional. In this case,
an alternating direction implicit (ADI) solver based on the tri-diagonal matrix algorithm
(TDMA) is used to solve the pressure-correction equations. The direct solver is applied in
only one direction, and it needs to be repeated to obtain the final solution.

The main computational task in CFD relates to solving the pressure-correction field. The
elliptic characteristic of the pressure-correction equation increases the challenge of solving
the pressure field in large flow domains. Multigrid solvers have been developed to accelerate
the convergence process by smoothing out the errors of wavelengths at different frequencies
using a hierarchy of grid levels (Stüben and Trottenberg, 1982). There are forms of multigrid
solvers with different grid levels and iterations. In this study, a multigrid solver with four grid
levels and a control strategy to move the solution to an appropriate grid level is implemented
to achieve robust and fast convergence. Full details of this pressure solver are provided in
Yin (2008).

To examine convergence, the residual of the pressure-correction equation “r” at each node
is calculated for all grid points. The sum of the residuals for all grid points is obtained as
follows to monitor the convergence:

R =
∑
|rj| where rj =

∑
aNPp

′
NP + b− aPp

′
P. (3.10)

The conventional method is to compare the difference between the new residual Ri and the
old residual Ri−1 (from the previous iteration) for convergence. If the difference is less than
a small fraction α of the old residual, the convergence is satisfied,∣∣∣Ri −Ri−1

∣∣∣∣∣∣Ri−1

∣∣∣ ≤ α. (3.11)

However, using Eq. 3.11 does not necessarily guarantee convergence. Hence, the new residual
is compared with an initial residual Ro, which is obtained at the beginning of the iteration
process, i.e., ∣∣∣∣∣Ri

Ro

∣∣∣∣∣ ≤ α. (3.12)
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3.2 Discretization of the First Cell in the LES Domain

The first issue in wall-modeling is how the wall shear stress is introduced to the LES as a
boundary condition. To clarify this issue, consider the discrete filtered NSE for the first cell
off the wall,

∂ũ

∂t
+ ∂

∂xj
(ũiũj) = − ∂p

∂xi
+ ∂

∂xj

(
ν
∂ũi
∂xj

)
+
∂τ ∗ij
∂xj

. (3.13)

To simplify the explanation, all terms except the diffusion are represented by Gij as follows:

Gij + ∂

∂xj

(
ν
∂ũi
∂xj

)
= 0 where Gij = ∂ũ

∂t
+ ∂

∂xj
(ũiũj) + ∂p

∂xi
+ ∂τij
∂xj

. (3.14)

For the control volume shown in Fig. 3.2, Eq. 3.14 is integrated in the wall-normal direction
as

∫ t+∆t

t

∫ n

s

(
Gij + ∂

∂xj
(ν ∂ũi
∂xj

)
)

dydt =

Gn − Gs + νn
∂ũi
∂y

∣∣∣∣∣
n
− νs

∂ũi
∂y

∣∣∣∣∣
s︸ ︷︷ ︸

τw,i/ρ

∆t, (3.15)

where τw,i is the wall shear stress in the i-direction. The discrete form of Eq. 3.15 represents
a discrete Poisson equation written as

aPũP =
∑

aNPũNP + bo − τw,i∆t/ρ︸ ︷︷ ︸
b

. (3.16)

Figure 3.2: First cell off the wall in LES.
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This formulation is used in the x- and z- directions, while a conventional discretization is
employed in the wall-normal (y) direction with a no penetration boundary condition at the
south face.

3.3 Wall Layer Modeling

The dynamic non-equilibrium wall model proposed by Park and Moin (2014) is implemented
in an embedded near-wall mesh as shown in Fig. 3.3 to resolve the wall layer. The model
is based on the unsteady three-dimensional Reynolds-Averaged Navier-Stokes equations. A
dynamic eddy viscosity model is employed to complement the resolved Reynolds stresses in
the prediction of an accurate wall shear stress. The governing equations for the momentum
transport are based on the two-dimensional boundary layer equations proposed by Balaras
and Benocci (1994) as given in Eq. 2.7. The wall layer is assumed to be thin enough that
the pressure gradient across the wall layer is negligible, and the thin boundary layer behaves
analogous to a Couette flow driven by the outer flow. Balaras et al. (1996) later improved
this method by introducing convection in the streamwise direction. Since the pressure field is
enforced by the outer flow, a different approach should be used for the conservation of mass.
Consequently, the momentum equations are only solved in the streamwise and spanwise
directions, and the continuity equation is implemented to estimate the wall-normal velocity
and conserve mass in the wall layer. The discretization of the governing equations will be
described in the following section.

Figure 3.3: A schematic of a three-dimensional embedded mesh in the first cell of the LES
domain.

35



3.3.1 Discrete Form of the Thin Boundary Layer Equations

To discretize the TBLEs in a three-dimensional wall layer, a simple form of Eq. 2.8 for the
control volume shown in Fig. 3.4 is adopted in the streamwise direction,

∂u

∂t
+ U f

∂u

∂x
+ V f

∂u

∂y
= −1

ρ

∂p

∂x
+ ∂

∂y

[
(ν + νt)

∂u

∂y

]
, (3.17)

where U f and V f are the face velocities in the streamwise and wall-normal directions, respec-
tively. An overbar indicates the parameter is time-averaged, which will be discussed further
in Section 3.3.3. A second-order central-difference scheme is used for space integration, and
a backward Euler method is used for time integration. The discrete form of each term in
Eq. 3.17 is given as follows:

∂u

∂t

∣∣∣∣∣
1

o

= u1
P − uoP
δt

,

U f
∂u

∂x

∣∣∣∣∣
e

w
= U f,e ue − U f,w uw

δx
, ue = uE + uP

2 , uw = uW + uP

2

= U f,e
uE + uP

2δx − U f,w
uW + uP

2δx ,

V f
∂u

∂y

∣∣∣∣∣
n

s
= V f,n

uN + uP

2δy − V f,s
uS + uP

2δy ,

−1
ρ

∂p

∂x

∣∣∣∣∣
e

w
= 1
ρ

pe − pw

δx

= pE − pW

2ρδx ,

∂

∂y

[
(ν + νt)

∂u

∂y

]n

s
= (ν + νt)

∂u

∂y

∣∣∣∣∣
n
− (ν + νt)

∂u

∂y

∣∣∣∣∣
s

=
[
(ν + νt)n

uN − uP

δyn
− (ν + νt)s

uP − uS

δys

]
.

(3.18)

Inserting the discretized terms in Eq. 3.18 into Eq. 3.17 and arranging the TBLE in neigh-
boring groups,

aPuP =
∑

aNPuNP + b, (3.19)
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Figure 3.4: A schematic of the control volume used in the wall-modeling.

where the coefficients are as follows:

aE = −1
2U f,eAx , aW = 1

2U f,wAx,

aN = −1
2U f,nAy + (ν + νt)n

Ay
δyn

, aS = 1
2U f,sAy + (ν + νt)s

Ay
δys

,

aP = δV

δt
+ 1

2U f,eAx −
1
2U f,wAx + 1

2U f,nAy −
1
2U f,sAy + (ν + νt)n

δyn
Ay + (ν + νt)s

δys
Ay

bP = −Ax2ρ [pE − pW] + δV

δt
uoP,

(3.20)

where δV is the volume of the cell, and uoP indicates the old velocity. The same procedure
is implemented to solve the wall layer in the spanwise direction. Given the streamwise and
spanwise velocity components, the continuity equation is discretized and solved to obtain the
wall-normal velocity, i.e.,

uw − ue

δx
+ vs − vn

δy
+ wb − wf

δz
= 0, (3.21)

where vs and vn are unknown. To calculate the wall-normal velocities, Eq. 3.21 must be
solved from the wall to the top of the wall layer, assuming vs = 0 for the first cell due to
the impermeability of the wall. Given the face velocities, a linear interpolation is used to
approximate the wall-normal velocity at the node.
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3.3.2 Dynamic Eddy Viscosity

The eddy viscosity model used in the wall-modeling is a zero-equation eddy viscosity model
based on Prandtl’s mixing length hypothesis:

νt = (κy)2|S|D, (3.22)

where |S| is the magnitude of the rate-of-strain tensor defined as |S| =
√

2SijSij. The van
Driest wall-damping function is given by D = [1− exp(−y+/A+)]2 with A+ = 26. The eddy
viscosity must be lower than its typical RANS value in Eq. 3.22 due to the contribution
of the resolved Reynolds stresses in the convection term as suggested by Wang and Moin
(2002) and Park and Moin (2014). This implies that conventional RANS models the entire
Reynolds stress, whereas a fraction of the Reynolds stress is resolved in the outer layer and
imposed to the wall layer. Hence, the dynamic eddy viscosity model should only account for
the unresolved part of the Reynolds stresses. To achieve this, the eddy viscosity obtained
from the conventional RANS with the conventional value should equate to the sum of the
resolved and modeled Reynolds stresses in the wall layer (Park and Moin, 2014), i.e.,

2νtSij −
2
3kδij −Rij ≈ 2ν∗t Sij −

2
3k
∗δij, (3.23)

where ν∗t represents the modeled eddy viscosity obtained from Eq. 3.22 with the conventional
value, i.e. κ = 0.41. The turbulence kinetic energy (k and k∗) on both sides of Eq. 3.23
should balance if they are modeled precisely. Rij is the resolved Reynolds stresses in the wall
layer given by Rij = −u′iu′j. The strain rate is Sij = 1

2(ui,j + uj,i).

To approximate νt, a least-square minimization is implemented as follows:

εij = 2(νt − ν∗t )Sij −
2
3(k − k∗)δij −Rij , ε ≡ εijεij, (3.24)

and applying ∂ε/∂νt = 0, the wall-modeled eddy viscosity is determined to be

νt = ν∗t + RijSij
2SijSij

. (3.25)

Given νt = (κwmy)2|S|D and ν∗t = (κy)2|S|D, the dynamic eddy viscosity of Eq. 3.25 can be
expressed using the von Karman constant as follows:

κ2
wm = κ2 + RijSij

2SijSij
1

y2|S|D
. (3.26)
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Substituting the dynamic von Karman constant into Eq. 3.22, the eddy viscosity of the
non-equilibrium wall model is obtained.

3.3.3 Time Averaging and Temporal Filtering

Another topic that should be addressed in the wall-modeling is the period of time used
for averaging the flow field. Wall functions and equilibrium wall-models implement a Time
Averaging scheme over the entire simulation period (Schumann, 1975; Cabot and Moin, 2000).
The full RANS equations are applied to resolve the wall layer in some non-equilibrium wall-
models (Kawai and Larsson, 2013). Taking the average over too long a time period makes
the wall model unresponsive to the essential stress-carrying flow structures in the outer
layer. Other wall-models apply a Time Averaging scheme on the TBLE to resolve the flow
in the near-wall region (Cabot and Moin, 2000; Wang and Moin, 2002). The time-averaged
approach implemented in this study uses a predefined time period. Flow properties in the
wall layer are averaged over a certain number of (previous) time steps to provide a more
realistic instantaneous wall shear stress to the outer flow. However, choosing the number of
time steps for Time Averaging is a challenge.

Since the wall layer is resolved using a form of the unsteady RANS (URANS) equations,
a Time Averaging operator is required to average the flow parameters. An exponentially
weighted-averaging function, which ensures that the flow parameters at recent times are
more significant than older values, is defined as follows (Xiao and Jenny, 2012):

φ(t) = 1
Tav

∫ t

−∞
φ(τ)e−δt/Tavdτ, (3.27)

where t and τ are the current and previous times, respectively, Tav is the characteristic
averaging time scale, and δt is the computational time step. Using a first-order approximation
and Leibniz’s rule for differentiation under an integral, Eq. 3.27 can be simplified into a linear
correlation (Tunstall et al., 2017). As such, a combination of weighted terms based on the
previous time-averaged value and the new value is implemented to estimate the time-averaged
parameter in the current time and reduce the memory load (Meneveau et al., 1996):

φ
n+1 = εavφ

n+1 + (1− εav) φn , εav = δt/Tav

1 + δt/Tav
, (3.28)

where φn is the time-averaged parameter from the previous time step, and φn+1 is the new
value. The characteristic averaging time scale Tav is comparable to the convective time scale
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taken as a ratio of the channel height to the velocity at the center of the channel. The
Time Averaging scheme using this strategy ensures a wall model that can respond to the
instantaneous flow structures in the LES.

The wall layer is coupled to the instantaneous velocity and pressure fields in the LES
at its upper boundary. These flow parameters can fluctuate at high-frequencies and with
short wavelengths. The input of high-frequency fluctuations to the wall layer can lead to an
over-prediction or under-prediction of the skin friction that manifests in the mean velocity
field as the log-layer mismatch (Larsson et al., 2016). The input data into the wall layer
should correspond to the time scale of the wall layer since the wall model is implemented
in an URANS framework. One solution to mitigate this mismatch is using a Temporal
Filtering for the input flow data at the matching point over a particular time period to
provide the low-frequency fluctuations in the LES (Yang et al., 2015, 2017). Eliminating the
high-frequency unsteadiness reduces the log-layer mismatch. Hence, the top boundary of the
wall layer becomes more compatible with the wall-model’s averaging time scale. A similar
exponentially weighted operator is employed to filter the velocity and pressure parameters in
the LES at the matching point (Yang et al., 2015),

φ̂(t) = εflφ(t) + (1− εfl) φ̂(t− δt) , εfl = δt

Tfl
, (3.29)

where the hat symbol represents a temporal-filtered parameter. In contrast to the Time
Averaging, the characteristic time scale Tfl used in Temporal Filtering is defined based on the
turbulent diffusion time scale across the wall layer.

Throughout this dissertation, turbulent channel flows and turbulent boundary layers use
the numerical methodology discussed in this chapter to resolve the flow dynamics in the LES
domain. The subgrid scale flow structures are modeled using the dynamic non-linear model
(DNM), which is explained in Appendix A.3. In the WMLES test problems, the wall layer
is modeled using the dynamic non-equilibrium wall model discussed in Section 3.3.
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Chapter 4

Large Eddy Simulation of Channel
Flows at Moderate and High
Reynolds Numbers

Fully developed turbulent channel flows are widely implemented in the investigation of wall-
bounded turbulent flows due to their simple geometries, which makes them a classic bench-
mark flow geometry for numerical testing and exploring the flow dynamics. The channel
flow is homogeneous in the streamwise (x) and spanwise (z) directions. Hence, the mean
flow field is invariant in the x- and z-directions, and the flow is statistically one-dimensional.
The presence of high shear and small-scale flow dynamics in the inner layer, δ/y < 0.1, led
researchers to investigate relatively low Reynolds number channel flows. Deardorff (1970)
implemented LES to calculate a three-dimensional turbulent channel flow and examined the
characteristics of turbulence. Later, Moin and Kim (1982) studied a turbulent channel flow
at a higher Reynolds number (Reτ = 640, where the Reynolds number is defined based on
the friction velocity as Reτ = uτδ

ν ) using a fine grid. They indicated that the LES method
can predict turbulent flow structures effectively, and the low- and high-speed streaks are
dominant characteristics in the wall region. Use of the channel flow geometry is not limited
to these studies, and there are numerous works that have implemented a channel flow to
conduct their research objectives.

The present research considers an incompressible turbulent channel flow at Reynolds num-
bers ranging from Reτ = 395 to Reτ = 2000 to investigate the performance of LES and
wall-modeling. First, the wall-resolved LES (WRLES) channel flow is studied at a moder-
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ate Reynolds number, and the results are compared to reference studies. Then, the non-
equilibrium wall model is implemented for the same Reynolds number using a coarse grid to
compare the computational cost. The location of the matching point is investigated in the
wall-modeled channel flow at moderate-Reynolds number. The WMLES is used to examine
the performance of wall-modeling at different Reynolds numbers up to Reτ = 2000. Finally,
the effects of time averaging and temporal filtering schemes on the log-layer mismatch in the
wall-modeling are investigated in the high Reynolds number channel flow.

4.1 Numerical Method

The computational domain for the wall-resolved and wall-modeled turbulent channel flows at
different Reynolds numbers is 2πδ × 2δ × 4

3πδ in the streamwise, wall-normal, and spanwise
directions, respectively as shown in Fig. 4.1, where δ is half-channel height. The flow domain
size in the periodic directions is motivated by use of a pseudo-spectral method in another
study to provide the best possible resolution to capture high wavenumber components (Moin
and Kim, 1982). No-slip boundary conditions are implemented at the upper and lower walls,
and the flow is periodic in the streamwise and spanwise directions. In the WRLES channel
flow at Reτ = 395, a mesh with 963 grid points was used to resolve the flow field, which has
a uniform grid in the wall-parallel planes and a non-uniform distribution in the wall-normal
direction. The grid resolution is presented in Table 4.1, where ∆x+, ∆y+

c , and ∆z+ show
the grid spacing in the streamwise direction, wall-normal direction at the center of the chan-
nel, and spanwise direction, respectively, in wall coordinates. The first node near the wall is
located at y+

1 ≈ 0.87. To begin the simulation, the initial velocities were estimated based on
Spalding’s mean velocity profile (Spalding, 1961) shown in Eq. 4.1 and introducing random
fluctuations on the order of 5% of the local mean velocity,

y+ = u+ + 0.1108
[
exp (0.4u+)− 1− 0.4u+ − (0.4u+)2

2 − (0.4u+)3

6 − (0.4u+)3

24

]
. (4.1)

Figure 4.1: A schematic of flow domain used in the simulation of turbulent channel flows.
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Table 4.1: Grid and temporal resolution of turbulent channel flows at different Reynolds
numbers.

Turbulent channel flow nx × ny × nz ∆x+,∆y+
c ,∆z+ y+

1 Nm h+
wm T δt+

WRLES, Reτ = 395 96× 96× 96 26, 15, 17 0.87 - - 3360 0.336
WMLES, Reτ = 395 64× 32× 48 38, 25, 34 12.0 4th 84.5 5800 0.783
WMLES, Reτ = 550 64× 32× 64 54, 34, 34 17.2 4th 117.5 7050 0.671
WMLES, Reτ = 950 96× 48× 64 62, 39, 62 19.8 5th 173.2 8700 0.730
WMLES, Reτ = 2000 96× 64× 64 130, 62, 130 31.2 5th 272.2 9300 1.338

Nm: Node location of the matching point in the LES domain
h+

wm: Height of the wall layer

The simulation was run for a sufficient time period for the transition from the initial random
fluctuations to real turbulence. Once the flow statistics stabilized, the simulation was run
for a non-dimensional time T = t/tv, where tv is the viscous time scale and is defined as
tv = ν/u2

τ .

The WMLES channel flow at Reτ = 395 has a lower resolution, i.e. 64× 32× 48, but with
a uniform grid distribution in the wall-normal direction and the matching point located at
the 4th node in the LES domain with h+

wm ≈ 84.5 in wall coordinates. Thirty grid points
in the wall-normal direction are used in the wall layer with the same grid resolution for the
LES domain in the wall-parallel planes. For the other wall-modeled channel flows, the grid
distribution was similar to what was used for the WMLES channel flow at Reτ = 395 but
with different resolutions as shown in Table 4.1. A Courant number of CFL = 0.3 was used
in the LES region and CFL = 15 in the wall-layer. The time step varies according to the
Courant number, and the average time step non-dimensionalized by the viscous time scale
(tv) is δt+ = 0.783. The wall layer statistics are averaged over the convective time scale given
by Tav = δ/uc, where uc is the mean velocity at the center of the channel. The filtering time
scale is determined as a fraction of Tfl = hwm/κuτ , where hwm is the height of the wall layer.

4.2 Wall-resolved LES Channel Flow at Reτ = 395

The first set of results pertains to a wall-resolved fully developed channel flow at a moderate-
Reynolds number of Reτ = 395. Both the dynamic Smagorinsky model (DSM) and the
dynamic nonlinear SGS model (DNM) are implemented to calculate the effects of the unfil-
tered flow dynamics. Fig. 4.2a shows the mean velocity profiles in wall coordinates compared
with the DNS study of Moser et al. (1999). The DSM shows a deviation in the outer layer
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(a) Mean velocity profile in wall coordinates (b) Velocity fluctuations

Figure 4.2: (a) The mean velocity profile and (b) rms of velocity fluctuations (bottom to top:
v′+rms, w′

+
rms, u′

+
rms) in a wall-resolved channel flow at Reτ = 395 using the DSM and DNM.

while improved performance is observed for the DNM. Both simulations used a single compu-
tational domain with similar grid resolution. A better prediction is also observed for the root
mean square (rms) of velocity fluctuations using the DNM as shown in Fig 4.2b. In general,
the DNM effectively calculates the velocity fluctuation, especially in the near-wall region.
However, the results of the DSM show noticeable discrepancies for all velocity fluctuations.

To further investigate the performance of the DSM and DNM, contours of the instantaneous
resolved and SGS dissipation in a vertical plane across the channel are presented in Fig. 4.3.
The rate of resolved viscous dissipation εr and the SGS dissipation εSGS of the turbulence
kinetic energy are defined as,

εr = 2νS̃ijS̃ij , εSGS = −τ ∗ijS̃ij. (4.2)

The top section of Fig. 4.3a corresponds to the resolved dissipation using the DSM whereas
the resolved dissipation of the DNM is shown below. The peak of the resolved dissipation,
which occurs at the filtered scale, is mainly attributed to the local velocity gradients in
the wall region. It is clear that the LES using DNM captures more details of the flow
structures in comparison with the DSM. This behavior is also observed in Fig. 4.3b where
the SGS dissipation of turbulence kinetic energy is presented. It can be concluded that
the performance of the SGS model used to estimate the SGS dissipation affects the flow
structures. The over-prediction of the mean velocity profile presented in Fig. 4.2a and under-
prediction of the velocity fluctuations shown in Fig. 4.2b using the DSM indicate a deficiency
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(a) Resolved dissipation (b) SGS dissipation

Figure 4.3: The rate of dissipation of turbulence kinetic energy ε in a vertical plane perpen-
dicular to the flow stream, the DSM at the top and the DNM on the bottom.

in the DSM. Moreover, the time-averaged rate of the resolved and SGS turbulent kinetic
energy dissipation indicates similar behavior as shown in Fig. 4.4. The resolved dissipation
reaches a plateau when moving towards the wall. On the other hand, the SGS dissipation
decreases when moving towards the wall due to the grid resolution used in the WRLES
channel flow that is similar to the grid resolution used in the DNS. Hereafter, all simulations

Figure 4.4: Profile of the resolved and SGS dissipation in the wall-resolved channel flow.
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throughout this research implement the DNM approach for modeling the SGS motions.

4.3 Wall-modeled LES Channel Flow at Reτ = 395

The dynamic non-equilibrium wall model discussed in Section 3.3.2 is implemented to model
the flow dynamics in the wall layer and transmit the wall shear stress to the LES domain.
In the first simulation, the wall-modeling is performed for the same Reynolds number of
the wall-resolved channel flow at Reτ = 395. Then, the results of WMLES channel flow
are compared with the WRLES, although wall-modeling is intended for simulation of high-
Reynolds number flows. The location of the matching point between the wall layer and the
LES domain is carefully examined. Recall that the wall layer is embedded in the LES domain
as shown in Fig. 4.5a. It extends from the wall to meet the LES domain at the matching
point as shown in Fig 4.5b. At the matching plane, the velocities and pressure are set as
Dirichlet conditions for the wall layer, and the wall shear stress returns to the LES as a
boundary condition.

1.1e+00

8.2e+00

2
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4
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U

Wall layer

LES

Wall layer

(a) Embedded wall layers in LES (b) Grid distribution in wall layer and LES

Figure 4.5: Interaction between the wall layer and LES domain in a side view of the channel
flow; (a) the extent of the wall layer on the vertical symmetry plane showing streamwise
velocity contours, and (b) a schematic of wall-modeling grid embedded in the LES domain.

One issue often encountered in WMLES is the log-layer mismatch which is the consequence
of errors associated with either the wall model or the LES at the first grid point off the
wall (Kawai and Larsson, 2013). Regardless of the accuracy of the wall-model, using LES at
the first grid cell near the wall is associated with errors since the filter width is larger than
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the energy-containing motions in the wall region (Nicoud et al., 2001). The performance of
LES at the first grid point is inevitably affected by neglecting these stress-carrying motions.
Consequently, the prediction of the wall model is inaccurate, which leads to a mismatch
between the mean velocity profile and the logarithmic law. This mismatch can be either
negative for wall stress models using a staggered grid for incompressible flows or positive
for wall stress models with a collocated grid or hybrid RANS/LES approach. This shows
that the mismatch is also dependent on the numerical method applied in the code and the
modeling in LES. Studies have found that locating the matching point between the top of the
viscous layer (y+ > 50) and the outer layer (y/δ < 0.2) better predicts the effects of the solid
surface (Kawai and Larsson, 2012). In high Reynolds number flows, the efficacy of the SGS
model deteriorates significantly on a coarse mesh (Bae et al., 2018). A remedy for avoiding
this problem is to locate the matching point far away from the wall where the requirements
of the SGS model are satisfied by the grid resolution. Hence, the matching point for the
WMLES channel flow is located at the 4th cell away from the wall to locate the height of the
wall layer at h+

wm = 84.5. Time and grid resolutions were presented in Table. 4.1.

Fig. 4.6 presents the mean velocity profiles obtained by the WMLES in a fully developed
channel flow both in wall coordinates and outer coordinates. The results are compared with
the results of the WRLES test case. The over-prediction of the mean velocity profile is clearly
observed in Fig. 4.6a for the grid points below the matching point. The coarse grid near the
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Figure 4.6: Mean velocity profiles in the WMLES channel flow at Reτ = 395 in different
coordinates.
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wall is inconsistent with the requirements of the SGS model, which eventually results in
the over-prediction of mean velocities for grid points below the matching point. Above the
matching point, the mean velocity profile matches the WRLES profile. Fig. 4.6b reconfirms
the acceptable performance of the WMLES in the outer layer above the matching point, i.e.
the 4th node. The promising point for using wall-modeling is revealed when the CPU-hours
of computing the WMLES and WRLES test problems are compared. Both simulations were
performed in a single core of Intel Xeon E5-1620 3.7 GHz with 32 GB of RAM. However, the
WMLES test case required 7 CPU-hours in contrast to 141 CPU-hours spent for the WRLES
test case. Furthermore, the computational memory size for the WMLES is 9 times smaller
than what is needed for the WRLES, when the number of grid points provided in Table 4.1
are compared.

The resolved velocity fluctuations obtained from the WMLES channel flow are documented
in Fig. 4.7a. The normalized rms of the velocity fluctuations are compared with the results
of the WRLES test problem at the same Reynolds number. Again, the inconsistency between
the grid resolution and the SGS model results in over-prediction of the velocity fluctuations
in the wall layer. The distribution of the Reynolds shear stress across the channel is shown
in Fig. 4.7b for both the WMLES and WRLES channel flows normalized by the total shear
stress τtot. The prediction of the WMLES matches the τtot/τw curve for grid points above
the matching point. However, at the first nodes near the wall the WMLES is unable to
accurately predict the Reynolds shear stress.

(a) (b)

Figure 4.7: Velocity fluctuations and Reynolds shear stress for the WMLES channel flow
at Reτ = 395: (a) rms of velocity fluctuations, bottom to top: v′+rms, w

′+
rms, u

′+
rms, symbols;

WMLES, solid line; WRLES (b) shear stress.

48



The location of the matching point affects the log-layer mismatch as discussed earlier.
Hence, different locations for the matching point are studied for the channel flow. Fig. 4.8
shows the mean velocity profiles of the WMLES channel flow when the matching point moves
from the first node at the wall to the 4th node. In all cases, 30 grid points are used to resolve
the wall layer. The profiles are shifted by five units upward for clarity. It is obvious that
moving the matching point to higher nodes results in a better prediction of the wall shear
stress. The matching points at the first and second nodes over-predict the wall shear stress
while moving the matching point to the third and fourth nodes leads to a better prediction.
This issue will be further investigated in Section 4.5.5 for a high Reynolds number channel
flow.

Figure 4.8: The mean velocity profiles for a wall-modeled channel flow at Reτ = 395 using
different locations for the matching point.

4.4 Effects of Reynolds Number in Wall-modeling

The performance of wall-modeling is more reliable at high Reynolds numbers since the wall
model represents the averaged effects of the near-wall eddies on the outer layer (Piomelli
and Balaras, 2002). The coarse grid near the wall should contain a large sample of near-wall
eddies to enable a RANS approach. Increasing the Reynolds number implies that the number
of small eddies in the wall layer increases, which permits the application of wall-modeling.
Hence, the Reynolds number is increased up to Reτ = 2000. Fig. 4.9 shows the mean velocity
profiles of the WMLES channel flow for moderate to high Reynolds numbers. The matching
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point is located at the 4th and 5th nodes as indicated in Table. 4.1. The velocity profiles are
shifted upward five units for clarity. In general, the performance of the wall model is good
for different Reynolds numbers based on comparison with the DNS results.

Figure 4.9: The prediction of the mean velocity profile at Reτ = 395, 550, 950, and 2000 in
a WMLES channel flow.

Table 4.2 shows the standard deviation between the WMLES and the DNS results. It
is clear that the deviation at the 1st node decreases for increasing Reynolds number. The
deviation at the 2nd node shows no dependence on the Reynolds number. The error at the
2nd node is due to the error at the 1st node and the poor performance of the SGS model
used in the coarse grid. Excluding the first two nodes, the mean velocity profile predicted
by the WMLES has a lower deviation for the higher Reynolds numbers. In general, the
performance of wall-modeling improves when moving to high Reynolds numbers as shown in
the last column of Table. 4.2. The quantified comparison between the WMLES and DNS
profiles indicates the discrepancy in the mean velocity profiles is low (less than 1%) over the

Table 4.2: The standard deviation between the mean velocities obtained from the WMLES
channel flow and the DNS results presented in Fig. 4.9; all values are in percent.

WMLES Channel Flow 1st node 2nd node Entire range excluding
first two nodes

Reτ = 395 13.43 1.69 0.88
Reτ = 550 7.97 4.08 0.45
Reτ = 950 4.08 1.30 0.68
Reτ = 2000 3.49 2.32 0.39
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outer regions, where is the focus of wall-modeled turbulent flows. Use of experimental data
to quantitatively evaluate the prediction of wall-bounded flows increases complexity of an
assessment due to experimental uncertainties associated with measurement techniques.

The velocity fluctuations at Reτ = 550 and 950 are shown in Fig. 4.10; a further investiga-
tion of the WMLES channel flow at Reτ = 2000 will be given in Section 4.5.1. The velocity
fluctuations at Reτ = 950 are shifted by three units for clarity. The wall-normal velocity fluc-
tuation (v′+rms) matches the DNS results of Lee and Moser (2015) after the peak in the wall
layer, although different locations for the peak are observed. A better prediction is observed
for the streamwise and spanwise velocity fluctuations in the outer layer in contrast to the
predictions in the wall layer. A plausible explanation is that the governing equations in the
streamwise and spanwise directions implement the wall shear stress as a boundary condition,
whereas a no-slip boundary condition is used to resolve the flow domain in the wall-normal
direction.

Figure 4.10: Velocity fluctuations at Reτ = 550 and 950 in the WMLES channel flows; from
bottom to top: v′+rms, w′

+
rms, u′

+
rms.
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4.5 Time Averaging and Temporal Filtering in WM-
LES Turbulent Channel Flows

Regardless of what wall-modeling approach is employed from those listed in Fig. 2.1, the
wall-modeling potentially suffers from the log-layer mismatch (Chen et al., 2012; Larsson
et al., 2016; Yang et al., 2017; Frère et al., 2017; Bae et al., 2018). This section attempts
to address the mismatch issue using the dynamic wall model proposed by Park and Moin
(2014) in the simulation of a turbulent channel flow at a Reynolds number of Reτ = 2000.
To mitigate the log-layer mismatch, two temporal schemes are introduced to average the
wall layer solution and to filter the flow information input to the wall layer as discussed in
Section 3.3.3.

4.5.1 WMLES Channel Flow at Reτ = 2000

First, the results of a fully developed channel flow using a much shorter computational domain
compared to the study of Park and Moin (2014) and with the DNM rather than the DSM
are presented. The wall-modeling uses the time-averaged TBLEs (URANS), and a temporal
filtering scheme recently employed by Yang et al. (2017) is also implemented. Park and
Moin (2014) used a dimensionless time period of TW = 1.0 to average the eddy viscosity in
their study (where TW = Tav uc/δ). The performance of WMLES in this research is initially
investigated using a similar averaging time scale. An initial dimensionless filtering time
period of TF = 1.0 is employed (where TF = Tfl κuτ/hwm), Tfl is the filtering time period, and
hwm/κuτ is the turbulent diffusion time scale. This time period was recommended to reduce
the log-layer mismatch (Yang et al., 2017). Figs. 4.11 and 4.12 demonstrate the results of
using the time averaging on the TBLE in the wall-modeling strategy and compares them with
results taken from the literature. The mean velocity profile and rms of velocity fluctuations
are non-dimensionalized using the friction velocity uτ , which is obtained from the wall layer.
The wall shear stress is calculated using the time-averaged velocity at the first grid point of
the wall layer (τw = µdudy ), and the friction velocity is defined by uτ =

√τw
ρ .

As shown in Fig. 4.11, the mean velocity profile obtained from the LES follows closely both
the DNS results of Hoyas and Jiménez (2006) and the WMLES of Park and Moin (2014).
The velocity profiles in both Fig. 4.11a using inner coordinates and Fig. 4.11b using outer
coordinates match the reference profiles. However, an over-prediction is observed below the
matching point down to the wall. According to the previous studies, this deviation relates
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Figure 4.11: Mean velocity profiles at Reτ = 2000 with TW = 1.0, TF = 1.0.

to the implementation of a very coarse grid in the wall region, where the subgrid scale flow
structures are not captured by the SGS model. Instead, the mean velocity profile obtained
from the wall-modeling has the potential to predict the flow field below the matching point.
This issue will be discussed further in the following sections. An over-prediction is observed
where the results of the WMLES are compared with the results of Park and Moin (2014).
Recall that the domain size implemented by Park and Moin (2014) is longer and wider than
the flow domain used in this study. Abe et al. (2007), Lozano-Durán and Jiménez (2014),
and Lee and Moser (2015) studied the effects of domain size in the streamwise direction for
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turbulent channel flows using DNS. They found that the large-scale flow structures diminish
when the size of the flow domain decreases for the same Reynolds number and grid resolution.
Lozano-Durán and Jiménez (2014) showed that an over-prediction can be observed at the
center of a channel using a very short domain. Note that the central region of the channel flow
using the DNS has a grid resolution comparable to the grid resolution near the wall region
using the WMLES. Furthermore, the shorter domain might result in introducing statistical
noise to the solution and increasing the velocity variance.

The results at the center of the channel are promising. They confirm the improved per-
formance of the DNM compared to the DSM in calculating the rate of turbulence kinetic
energy transfer between the filtered and subgrid scales (Wang and Bergstrom, 2005). Due to
the inconsistency of the SGS model with the grid resolution in the near-wall region, a poor
prediction is obtained for the velocity fluctuations in the wall region as shown in Fig. 4.12.
The prediction of the velocity fluctuations improves when moving towards the center of the
channel in comparison with the results of Park and Moin (2014). The u′+rms profile matches
the prediction of the streamwise velocity fluctuation by Park and Moin (2014), and both pro-
files indicate an under-prediction of u′+rms compared with the DNS. In contrast, the other two
velocity fluctuation profiles demonstrate better predictions above the matching point, and
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Figure 4.12: Velocity fluctuations and Reynolds shear stress profiles at Reτ = 2000 with
TW = 1.0, TF = 1.0 (w′+rms and u′

+
rms profiles are shifted by +0.5 and +1.0, respectively)
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smoothly reduce to match the results of Park and Moin (2014) at the center of the channel.
Excellent agreement is observed between the turbulent shear stress (u′v′+) and the reference
data above the matching point. In Fig. 4.12, only the v′+rms profile decreases towards the
wall whereas the u′+rms and w′

+
rms profiles indicate over-predictions below the matching point.

Note that the zero-velocity boundary condition is only applied to the wall-normal velocity
(v) at the wall. Overall, the results in Fig. 4.11 and 4.12 confirm the potential of the wall
model. The following sections will investigate the flow characteristics in the wall layer and
the effects of different time averaging and temporal filtering schemes on the performance of
the wall model.

4.5.2 Eddy Viscosity in the Wall Layer

The dynamic non-equilibrium wall model of Park and Moin (2014) implements Eq. 3.25 to
modify the eddy viscosity in the wall layer. As discussed in Section 3.3.2, a portion of the
Reynolds stresses in the wall layer is resolved. The velocity fluctuations in the streamwise
and spanwise directions (u′+rms and w′

+
rms) indicate a rapid increase when moving towards the

matching point, as shown in Fig. 4.13. This is due to the instantaneous velocity field input
from the LES domain as the top boundary condition. However, the wall layer is governed
by the time-averaged governing equations that model the velocity fluctuations. The wall-
normal velocity fluctuation linearly increases across the wall layer. An explanation is that
the wall layer is resolved only in the x- and z-directions using the TBLEs. Instead, the
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Figure 4.13: Resolved velocity fluctuations and Reynolds shear stress across the wall layer.
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wall-normal velocity is estimated using the continuity equation, which consequently affects
the wall-normal velocity fluctuation (v′+rms). Comparing the resolved velocity fluctuations
in the wall layer with the velocity fluctuations in the filtered flow field shown in Fig. 4.12
reveals that the velocity fluctuations and Reynolds shear stress in the wall layer are an order
of magnitude smaller than the velocity fluctuations and Reynolds stress in the LES domain.
The magnitude of the resolved velocity fluctuations and Reynolds shear stress relates to their
role in modifying the eddy viscosity according to Eq. 3.25.

The modified eddy viscosity profile across the wall layer at Reτ = 2000 is presented
in Fig. 4.14. The eddy viscosity obtained by Prandtl’s mixing length hypothesis is also
shown (Prandtl, 1925). Based on the mixing length hypothesis, the eddy viscosity is esti-
mated by νt = κuτyD, where D is the van Driest damping function. The eddy viscosity
profile matches Prantdl’s mixing length profile in the near-wall region. However, the eddy
viscosity decreases as it approaches the matching point at y+ = 272. The prediction of the
eddy viscosity very close to the matching point indicates high fluctuations due to instanta-
neous flow information input from the LES domain and is removed for clarity. Recall that the
wall layer experiences instantaneous velocities at the top boundary from the LES domain.
Hence, the velocity fluctuations and consequently the Reynolds stresses Rij increase at the
interface. Based on the contribution of the second term on the right-hand side of Eq. 3.25,
the eddy viscosity is modified when moving towards the matching point. This confirms the
concept of the dynamic non-equilibrium wall model reducing the eddy viscosity to represent
only the unresolved Reynolds stresses in the wall layer.

Figure 4.14: Eddy viscosity across the wall layer.
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4.5.3 Temporal Filtering and Time Averaging Schemes

First, the effects of the temporal filtering scheme are studied. Based on the location of the
matching point, two scenarios are introduced: Scenario A and Scenario B. The matching
point is located at the first node off the wall in Scenario A, while the fifth node inside
the LES domain is used for the matching point in Scenario B. The mean velocity profiles
using inner coordinates for both scenarios are presented in Fig. 4.15 with TW = 1.0 and
TF = 1.0. The case studies without temporal filtering are also presented. The instantaneous
flow field from the LES is directly implemented as the top boundary condition for the wall
layer in no-filtering cases. In a previous study by Yang et al. (2017), the effects of temporal
filtering on the simulation of a turbulent channel flow using a wall function based on the
logarithmic law were studied. They found that temporal filtering had a significant effect
on the results when the matching point is located at the first node. In the present study,
the non-equilibrium wall-model, which can respond to the temporal-filtered inputs from the
LES domain, is implemented instead of the wall function. For clarity, vertical dotted lines
are employed to highlight the location of the matching point, and the profiles in Scenario B
are shifted upwards. Scenario A shows that even though the difference between the results
with and without temporal filtering is small, temporal filtering reduces the mismatch. In
contrast, there is no significant difference between the two cases in Scenario B, indicating
that when the matching point is sufficiently far from the wall, temporal filtering is ineffective

Figure 4.15: Temporal filtering versus no-filtering with TW = 1.0 and TF = 1.0.
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and may be unnecessary. Yang et al. (2017) concluded that temporal filtering is essential
when the matching point is located at the first node off the wall. In the wall layer and below
the matching point, the mean velocity profile obtained from the wall-modeling (dashed-line)
matches the DNS results of Hoyas and Jiménez (2006) very well, and it can serve as an
alternative solution to the results of the LES in the wall region. Recall that the results
presented in Fig. 4.15 were achieved with TW = 1.0 and TF = 1.0 for the temporal-filtered
cases. In the following paragraphs, the use of different values for the time averaging and
temporal filtering time periods are investigated to reveal their effects on the mean velocity
profile.

Fig. 4.16 presents the performance of wall-modeling for other values of the time averaging
and temporal filtering characteristic time scales. The values TW = 0.1 and TF = 0.1 show
the effects of shorter time periods for averaging the wall layer and filtering input from the
LES domain. A smaller value for TF implies that the top boundary of the wall layer is now
responsive to the higher frequency turbulent fluctuations. Two values, TF = 1.0 and 0.1, are
introduced to evaluate the effects of temporal filtering, while two characteristic time scales,
TW = 1.0 and 0.1, are investigated for time averaging. The upper set of mean velocity
profiles in Fig. 4.16a relate to Scenario A, where the wall layer is resolved with a temporal
filtering using TF = 0.1. The mean velocity profiles are under-predicted regardless of the time
averaging period. In the lower set of profiles with TF = 1.0, the velocity profile at TW = 1.0
matches better with the DNS results. The overall conclusion of Fig. 4.16a is that a better
prediction is obtained for the results with TF = 1.0 compared to the results with TF = 0.1.

(a) Scenario A (b) Scenario B

Figure 4.16: The effects of various filtering and averaging time periods: (a) Scenario A with
the matching point at the first node, and (b) Scenario B with the matching point at the fifth
node.
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It substantiates the role of filtering high-frequency flow information from the outer layer to
reduce the mismatch in the simulations for a matching point located at the first node.

Next, Scenario B is considered and the results are shown in Fig. 4.16b. At first glance, the
results look independent of the temporal filtering scheme in contrast to Fig. 4.16a. However,
a smaller time averaging period (TW = 0.1) results in a better prediction of the flow field for
both temporal filtering cases. In general, the mean velocity profiles with TF = 1.0 are slightly
closer to the DNS than the results with TF = 0.1. Additional simulations were conducted for
test cases without temporal filtering. The results (not shown here) reconfirm that a smaller
value for time averaging, i.e. TW = 0.1, improves the prediction of the mean velocity profile.

The performance of time averaging and temporal filtering as a function of the location of
the matching point is evaluated and also shown in Fig. 4.16. The mean velocity profiles in
Scenario A are under-predicted in all cases, which is the consequence of the over-prediction of
the friction velocity due to the use of the SGS model on a coarse grid in the near-wall region,
as discussed earlier. Higher values of TF and TW indicate better performance in Scenario A.
On the other hand, Scenario B shows a minimal dependence on the variations of the averaging
schemes. According to the small changes observed, a combination of a higher value of TF and
a lower value of TW seems to improve the performance of the averaging schemes in Scenario
B. Comparing Scenario A with Scenario B based on time averaging and temporal filtering
schemes, note that moving the location of the matching point to a higher node in the LES
domain implies more grid points are used to resolve the wall layer, which then increases the
computational cost of the wall-modeling. For instance, the wall layer is resolved with 20
nodes in the wall-normal direction in Scenario A whereas 30 nodes are used in Scenario B.
This leads to a lower resolution at the top of the wall layer (matching point) in Scenario B,
i.e. ∆y+ ≈ 16, while Scenario A has a grid spacing of ∆y+ ≈ 0.5 for the last node in the
wall-normal direction.

To examine the interaction between the LES and the wall model, two probes tracked the
velocity components in the channel flow close to the matching point (x = πδ, y = hwm, z =
2
3πδ). One of them recorded the instantaneous and temporal-filtered streamwise velocities
inside the LES domain, while the other probe tracked the time-averaged velocity in the wall
layer at the last node in the wall-normal direction. Figs. 4.17 and 4.18 present the velocity
fluctuations recorded by these probes over a finite time period, where the time T is normalized
by the convective time scale. Note that the temporal-filtered velocity is introduced to the
wall layer as a top boundary condition. The upper set of profiles in Fig. 4.17 corresponds to
TW = 1.0 and are shifted a half unit upwards for clarity. The lower set of profiles pertain to
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Figure 4.17: Tracking the streamwise velocity at the matching point (5th node) for the
instantaneous and temporal-filtered LES and time-averaged wall layer with the dimensionless
filtering time period TF = 1.0.

the test cases with TW = 0.1. It is obvious that for both cases in Fig. 4.17 with TF = 1.0,
the temporal-filtered velocity and consequently the wall layer velocity does not respond to
the high-frequency fluctuations in the LES field at the matching point.

In contrast, the upper set of profiles in Fig. 4.18, which presents the results for TF = 0.1
and TW = 1.0, indicates that the temporal-filtered velocity now begins to respond to the
stronger fluctuations in the LES domain. However, there is no minimal response to the
stronger fluctuations in the wall layer velocity. The values of TW = 0.1 and TF = 0.1 are
applied to the test cases in the lower region of Fig. 4.18. The results show a rapid response to
the high-frequency fluctuations in the temporal-filtered velocity, which is also observed in the
wall layer when a shorter period is used for time averaging. Although using TF = 0.1 creates
a very responsive wall model, non-essential high-frequency fluctuations are introduced to the
wall layer, and the wall layer is unable to respond to the essential stress-carrying turbulent
motions. This issue was evident in Fig. 4.16a where the mean velocity profiles are under-
predicted. Further analysis of the effects of different values of TW and TF on the mean velocity
field is given below.
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Figure 4.18: Tracking the streamwise velocity similar to Fig. 4.17 with TF = 0.1.

4.5.4 Wall Layer Response to Input Velocity

To investigate the effect of the time period employed for time averaging the flow solution
in the wall layer, the streamwise velocity inside the wall layer was tracked at the first node
near the wall, in the buffer region, and in the log-law region using three probes. A channel
flow with TF = 1.0 and the matching point located at the fifth node was used to conduct
the numerical experiment. The temporal-filtered velocity at the top boundary of the wall
layer, which drives the flow motions in the wall layer, was also monitored. Non-dimensional
velocity fluctuations tracked by each probe over time are shown in Fig. 4.19. A local peak
is observed at T = 76 for the temporal-filtered profile used as input to the wall layer. The
probe inside the wall layer at y+ = 112 indicates a peak at T = 81 as shown in Fig. 4.19a.
Local peaks for the next two probes at y+ = 40 and y+ = 0.87 are observed at T = 96
and T = 117, respectively. The first node off the wall represents the fluctuations in the
wall shear stress. A blue line connects the local peaks of each probe with a slope of 1/5200.
Although the temporal-filtered velocity varies too quickly to precisely identify the local peak
that drives the other peaks, a plausible peak in the temporal-filtered velocity is shown, but
it was not included in determining the slope. Fig. 4.19a indicates that the wall layer with
TW = 1.0 responds to a strong fluctuation in the LES domain over a relatively long time span
(36 times the convective time scale). A different trend was observed when TW was decreased
to 0.1. Fig. 4.19b displays the local peaks for the velocity at the input, highest, middle, and
lowest probes at T = 80, 82, 85, and 88, respectively. This implies that a specific fluctuation
passes through the wall layer and reaches the wall in less than 500 time steps (8 times the
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(a)

(b)

Figure 4.19: Response of wall-modeling to LES field for dimensionless averaging time periods
of (a) TW = 1.0, and (b) TW = 0.1.

convective time scale). In comparison to Fig. 4.19a, this local peak approaches the wall at
least six times faster. Another set of local peaks is also identified, and the slopes of the
fitted-blue lines for these two sets of peaks are approximately 1/100 and 1/30. This shows
a more responsive wall layer to the oscillations in the flow field at the top boundary. One
can conclude from Fig. 4.19 that implementing an averaging time period comparable to the
convective time scale (TW = 1.0) leads to a relatively slow response in the wall layer to the
fluctuations in the LES region. This behavior resembles that in the study of Park and Moin
(2014).

The main feedback to the LES from the wall layer is the wall shear stress, which will
be scrutinized in the following analysis. Fig. 4.20 indicates the wall shear stress with time
advancement. Since the wall shear stress is estimated by τw = µdudy , the velocity at the first
node in the wall layer is representative of the wall shear stress. The variations in wall shear
stress for four different test cases are presented in Fig. 4.20 using different values for TW

and TF as previously discussed with Fig. 4.17 and 4.18. The wall shear stress fluctuations
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Figure 4.20: Wall shear stress fluctuations for various TF and TW values for the WMLES
channel flow at Reτ = 2000.

and velocity variations in the LES are normalized by the corresponding mean values. The
profiles with TW = 1.0 show slow variations over time, whereas the profiles with TW = 0.1
indicate more rapid variations. It can be concluded that a lower value for time averaging is
the proper choice for wall-modeling. The case with TF = 1.0 damped high-frequency signals
in the LES, while the case with TF = 0.1 admits more variations with higher frequencies.

The results of a wall-resolved channel flow are introduced to investigate the wall shear
stress fluctuations in addition to the WMLES turbulent channel flow, as shown in Fig. 4.21.
However, due to the high computational cost of the high resolution required for a wall-
resolved channel flow at a Reynolds number comparable to the WMLES channel flow, i.e.
Reτ = 2000, the wall-resolved channel flow was simulated for Reτ = 395. Fig. 4.21 shows
the τw fluctuations for both the wall-resolved and wall-modeled moderate Reynolds number
channel flow, while the results of the WMLES channel flow at Reτ = 2000 are also included
with TF = 1.0 and TW = 0.1. Comparing the τw fluctuations in the WMLES at Reτ = 395
and Reτ = 2000, a higher amplitude is observed for the WMLES channel flow at Reτ = 395.
Recall that the wall-modeling was intended for turbulent flows at high Reynolds numbers
since the coarse grid near the wall represents the time-averaged effects of the small flow
structures in the near-wall region (Piomelli and Balaras, 2002). For wall-modeling at a
moderate Reynolds number, some of the small turbulent structures can be resolved due to
a higher grid resolution compared to the grid resolution used at higher Reynolds numbers.
The variation of the wall shear stress for the WRLES at Reτ = 395 is also shown to provide
a better comparison between the wall-resolved and wall-modeled channel flows. Since the
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Figure 4.21: Comparison of wall shear stress fluctuations of WMLES (at Reτ = 2000 and
Reτ = 395 with TF = 1.0 and TW = 0.1) with WRLES at Reτ = 395 with/without temporal
filtering with TF = 1.0.

input to the wall model is filtered over TF, the temporal-filtered wall shear stress obtained by
the wall-resolved channel flow is also presented for comparison. Hence, a temporal filtering
scheme analogous to what is used for the WMLES channel flows is implemented for τw

for the WRLES channel flow with TF = 1.0. Both the WRLES and WMLES profiles at
Reτ = 395 show the variations in τw based on the flow velocity at y+ ≈ 0.8. It is clear
that the fluctuations in the WMLES profile respond slowly to the LES input at the matching
point in contrast to the temporal-filtered WRLES. Using an unsteady approach, the WRLES
is able to track the instantaneous wall shear stress whereas the Reynolds-averaged value in
the WMLES varies slowly over time. However, the amplitude of the variations in the wall
shear stress obtained from the WMLES is higher than that of the WRLES at a moderate
Reynolds number.

4.5.5 Grid Distribution and Matching Point

Given the results in previous sections, one can conclude that the WMLES obtains better
performance in the prediction of the wall shear stress using TF = 1.0 and TW = 0.1. Those
values correspond to the turbulent diffusion time scale for the wall layer and a time scale
which is smaller than the convective time scale used for temporal filtering and time averaging,
respectively. In this section, two other scenarios are introduced to further investigate the
characteristics of the wall layer. In Scenario C, the matching point is moved to the 3rd node,
and the grid distribution in the wall-normal direction changes to maintain the first node (in
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the wall layer) at y+
1 ≈ 0.87 with the same number of grid points, i.e. 30. Scenario D keeps the

matching point at the first node in the LES domain while the wall-normal grid distribution
in the wall layer is modified to locate the first grid point (in the wall layer) at y+

1 ≈ 0.17.
The number of wall-normal grid points increases to 30 in contrast to Scenario A which used
20 nodes. The mean velocity profiles for Scenario A to D using TF = 1.0 and TW = 0.1 are
shown in Fig. 4.22. The upper set of profiles pertains to Scenario B and C with the matching
point above the first node. A better prediction is observed using temporal-filtered cases,
while the cases without temporal filtering (NTF) slightly under-predict the mean velocity
profiles. Recall that the TF and NTF cases in Fig. 4.15 show similar results. In that case,
the wall layer was averaged with TW = 1.0 whereas the time averaging period implemented
in Fig. 4.22 is much shorter. It is observed that the effects of moving the matching point
from the 5th to the 3rd node have minimal effect on the final results. The matching points,
i.e. y+ = 272 for Scenario B and y+ = 155 for Scenario C, are located above the buffer layer
and in the log-law region.
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Figure 4.22: Comparison of four scenarios with TF = 1.0 and TW = 0.1 using the temporal
filtering (TF) and non-temporal filtering (NTF) schemes. The profiles in the lower region
pertain to Scenario A and D, where the matching point is located at the first node. The
upper region presents the results for Scenario B and C with the matching point located at
the 5th and 3rd nodes, respectively.
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The lower set of profiles in Fig. 4.22 pertains to Scenario A and D. The cases without
temporal filtering indicate a noticeable mismatch, while the cases with temporal filtering
demonstrate better results for both scenarios. A comparison between Scenario A and D for
similar filtering conditions reveals that Scenario D yields a better prediction of the mean
velocity profile, which demonstrates the potential of moving the first node in the wall layer
closer to the wall (e.g. y+

1 ≈ 0.17) to alleviate the mismatch in the velocity profiles. A
plausible reason is that the wall layer is more dependent on the flow motions inside the
viscous sub-layer region than the flow structures at the top boundary in the prediction of the
friction velocity. The main conclusion from this analysis is that the temporal filtering and
time averaging schemes are able to mitigate the mismatch, and that the location of the first
node in the wall layer relative to the wall should also be considered, especially in cases with
the matching points located at the first node in the LES.

4.6 Conclusions

Wall-modeled and wall-resolved turbulent channel flows were studied at Reynolds numbers
ranging from Reτ = 395 to 2000. The instantaneous flow structures were solved by the
filtered NSEs. The performance of the DSM and DNM in a wall-resolved channel flow at
Reτ = 395 was investigated in terms of the dissipation of the filtered and unfiltered motions.
It was found that the DSM underestimates the residual flow motions, which results in the
over-prediction of the mean velocity profile and velocity fluctuations. Hence, the DNM was
applied to calculate the residual stresses for all simulations. Next, a dynamic non-equilibrium
wall model was implemented to model the wall layer at the same Reynolds number with a
lower grid resolution, especially near the wall. The results indicated that the WMLES can
predict the mean velocity profile and velocity fluctuations compared to available numerical
studies although some nodes below the matching point are overestimated. The performance
of the SGS models in the near-wall region is inadequate due to the use of a very coarse grid
which on the other hand reduces the simulation run-time. Furthermore, different locations
for the matching point were studied, and it was concluded that the matching point should
be located away from the wall for a better prediction of the friction velocity.

The characteristic time scale of time averaging in the wall layer and temporal filtering
at the matching point were investigated together with the location of the matching point
in a high Reynolds number channel flow at Reτ = 2000. An analysis of averaging in the
wall layer indicates that the wall model responds very slowly to the variations at the top
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boundary when too large a time period is employed for time averaging. Consequently, neither
the temporal-filtered nor unfiltered flow data from the LES domain provide an appropriate
boundary condition for the wall model. A realistic wall shear stress from the wall model
is achieved when a smaller time averaging period is implemented. The role of temporal
filtering of the input to the wall layer is more essential when the matching point is located
close to the wall. A period comparable to the turbulence diffusion time scale is recommended
for temporal filtering in all scenarios regardless of the location considered for the matching
point. However, temporal filtering with TF = 1.0 and time averaging with TW = 0.1 yield a
better prediction and more responsive wall layer when the matching point is located farther
away from the wall. In contrast, a longer time period for time averaging (i.e. TW = 1.0)
indicates better performance for cases with a matching point at the first node (y+ < 100).
Overall, it is shown that time averaging and temporal filtering schemes reduce the mismatch
of the mean velocity profile for WMLES turbulent flows.
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Chapter 5

Numerical Approach to Inflow
Generation for Turbulent Boundary
Layers

Using simply periodic boundary conditions to generate realistic turbulence at the inlet bound-
ary of a TBL results in the growth of the boundary layer. Some modifications are required
to rescale the flow field before recycling it back to the inlet. In the recycling method, the
velocity field obtained from the recycling station at an appropriate distance from the exit
plane is rescaled and transferred to the inflow boundary. In this chapter, the numerical
methodology of the Lund-Wu-Squires (LWS) method is described and implemented for the
simulation of TBLs in Chapter 6. The LWS method is reliable if the location of the recycling
plane is correctly specified. Note that many recycling methods that originated from the LWS
method have been modified for specific flow problems. The TBL considered in this research
has a simple geometry without any surface roughness. Hence, the LWS method is selected
to generate realistic turbulence at the inlet boundary of the simulation domain.

5.1 LWS Method

The Spalart-type inflow generation method needs a coordinate transformation to produce
streamwise homogeneity, and it requires multiple simulations to estimate the growth terms.
In contrast, the LWS method is conducted in a Cartesian coordinate frame and is compatible
with conventional flow solvers. The spatial growth of the boundary layer is computed directly
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from the mean flow field downstream to estimate the rescaling parameters. A fixed boundary
layer thickness at the inlet boundary is used, and a single empirical correlation calculates the
friction velocity at the inlet station. In general, turbulent boundary layers follow a scaling law
that suggests a similarity coordinate. More specifically, the mean velocity in the inner region
conforms with the law of the wall, whereas the defect law prevails in the outer region (Wu
et al., 1995).

The first step of the rescaling method is to decompose the velocity components at the
recycling station into the fluctuating and mean parts. The mean velocity U in Eq. 5.1 is
obtained by averaging in time and the spanwise direction. Subsequently, the fluctuating part
is obtained as follows (Lund et al., 1998):

u′i(x, y, z, t) = ũi(x, y, z, t)− Ui(x, y), (5.1)

where u′ is the fluctuation, and ũ is the filtered instantaneous velocity. For clarity, the
streamwise, wall-normal, and spanwise velocity components are denoted by ũ, ṽ, and w̃ and
the corresponding coordinate directions as x, y, and z, respectively.

5.1.1 Rescaling the Mean Velocity

The mean velocity field is divided into a near-wall and outer region. The similarity coordinate
in the inner and outer regions is given by y+ = yuτ/ν and ζ = y/δ, respectively, where y+ is
the wall coordinate, y is the distance from the wall, and δ is the boundary layer thickness.
Hence, the law of the wall and the defect law are expressed as

U inner = uτ f1(y+) Law of the wall,

U∞ − Uouter = uτ f2(ζ) Defect law,
(5.2)

where uτ =
√
ν(∂U/∂y)wall is the friction velocity, and f1 and f2 are two universal functions.

f1 and f2 indicate the functional dependence and scaling acceptance, and they are required
to be determined.

The relations used to determine the rescaled streamwise velocities at the inlet for both the
inner and outer regions are as follows:

U inner
inlet = γ Urecy(y+

inlet), (5.3)

Uouter
inlet = γ Urecy(ζinlet) + (1− γ)U∞. (5.4)
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The mean velocity at the recycling station Urecy in Eq. 5.3 is evaluated for the inner coordinate
y+

inlet at the inlet station. Since the wall unit at the inlet station is different from the one at
the recycling station, a linear interpolation is used for the mean velocity. A similar procedure
should be employed for the velocity in the outer region based on the boundary layer thickness.
The scaling factor γ in Eqs. 5.3 and 5.4 is defined as

γ = uτ,inlet

uτ,recy
. (5.5)

To obtain the mean wall-normal velocity component consistent with the scaling of the
mean velocity profile, V inner ∼ (ν/uτ ) duτ/dx in the inner region and V outer ∼ uτ dδ/dx in
the outer region should be employed based on the continuity equation. Approximating the
derivatives duτ/dx and dδ/dx is problematic. Instead, the following scalings are implemented
as convenient approximations:

V inner = U∞ f3(y+),

V outer = U∞ f4(ζ),
(5.6)

where f3 and f4 are two other universal functions. The mean value of the V velocity at the
inlet station is related to that at the recycling station as follows:

V inner
inlet = γ Vrecy(y+

inlet), (5.7)

V outer
inlet = γ Vrecy(ζinlet). (5.8)

No scaling is required for the mean spanwise velocity, since it is assumed to be zero at the
inlet boundary;

W inner
inlet = W outer

inlet = 0. (5.9)

5.1.2 Rescaling the Fluctuating Velocity

The fluctuating parts are scaled similarly using the wall units and boundary layer thickness
in the inner and outer regions, respectively. The friction velocity as an explicit parameter is
used for scaling the fluctuations to isolate the streamwise inhomogeneity, i.e.

(u′i)inner = uτ f5(x, y+, z, t),

(u′i)outer = uτ f6(x, ζ, z, t).
(5.10)
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The universal functions f5 and f6 are supposed to be homogeneous in the streamwise direc-
tion. In contrast to the periodic boundary condition implemented by Spalart and Leonard
(1987), the fluctuations at the recycling station are transferred to the inlet using Eq. 5.10,
and a convective boundary condition is used at the exit plane. The velocity fluctuations at
the inlet boundary are obtained by

(u′i)inner
inlet = γ (u′i)recy(y+

inlet, z, t), (5.11)

(u′i)outer
inlet = γ (u′i)recy(ζinlet, z, t). (5.12)

5.1.3 Inflow Velocity Component

To combine Eqs. 5.3 to 5.12 into a single equation that provides the velocity components in
both the inner and outer regions, the following expression using a weighting factor is adopted:

ũi,inlet =
[
(Ui)inner

inlet + (u′i)inner
inlet

]
[1−W (ζinlet)] +

[
(Ui)outer

inlet + (u′i)outer
inlet

]
W (ζinlet), (5.13)

where the weighting function W is defined by

W (ζ) = 1
2

[
1 + tanh

[
α(ζ − b)

(1− 2b)ζ + b

]
/ tanh(α)

]
, (5.14)

where α = 4 and b = 0.2 to give a smooth transition between the inner and outer layers
as shown in Fig. 5.1. The parameter b defines the location at which the rescaled velocities
obtained from the inner and outer rescaling coordinates make an equal contribution to the
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Figure 5.1: Weighting function across the boundary layer.

71



final inlet velocity, which implies W = 0.5. The width of the transition region is determined
by α; higher values for α transform the weighting function into a step function at b. A
constraint of W = 1 is imposed for W larger than one.

Scaling parameters uτ and δ are required at both the recycling station and inlet. The
mean velocity profile at the recycling station is employed to estimate the friction velocity
and boundary layer thickness. It was found that using fixed uτ and δ independently at the
inlet leads to an unrealistic solution (Lund et al., 1998). Hence, one of these two parameters
relates to the solution downstream and the other one is used a controlling parameter. The
LWS method fixes δ at the inlet and calculates uτ based on an empirical correlation as follows:

uτ,inlet = uτ,recy

(
θrecy

θinlet

)1/[2(n−1)]

, (5.15)

where θ is the momentum thickness obtained from the following relation using the mean
velocity profile at the recycling station and inlet (White, 2003):

θ =
∫ ∞

0

U

U∞

(
1− U

U∞

)
dy. (5.16)

The empirical relation in Eq. 5.15 is derived from a power-law approximation of the momen-
tum thickness and skin-friction coefficient with n = 5;

θ

x
∼ Re−1/n

x , Cf ∼ Re−1/n
x . (5.17)

5.2 Heaviside Function

Rescaled fluctuations are used only inside the boundary layer; imposing the fluctuations
outside the boundary layer results in sharp changes at the inlet boundary that may propagate
into the flow. A smooth transition from inside the boundary layer to the outside occurs if
the fluctuations are rescaled in the freestream region. However, an unstable top boundary is
observed if the rescaled fluctuations extend outside the boundary layer. Hence, a smoothed
Heaviside function is implemented to suppress the fluctuations outside the boundary layer
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at the inflow boundary as follows (Sussman et al., 1999; Bohr, 2005):

H(φ) =


1 if φ < −ε
1
2
[
1− φ

ε −
1
π sin

(
πφ
ε

)]
if |φ| ≤ ε

0 if φ > ε,

(5.18)

where φ defines the distance from a new coordinate near the edge of the boundary layer as

φ = y − 1.2δinlet − ε. (5.19)

The second term in Eq. 5.19 indicates that the fluctuations begin to reduce after 1.2δinlet, and
they smoothly transition to zero over a distance of 2ε, which is specified as a function of the
boundary layer thickness at the inlet, i.e. ε = δinlet

4 . Fig. 5.2 shows the Heaviside function
for different values of ε.
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Figure 5.2: Heaviside function.

5.3 Boundary Conditions

Boundary conditions are both critical and challenging in the simulation of a TBL. The inlet
boundary was described in the previous sections, and the LWS method was selected for
generating the turbulent velocity field at the inflow plane. The other boundaries, i.e. the
outlet plane, top of the domain, lateral sides, and the lower wall are shown in Fig. 5.3. In
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this section, the boundaries at the top and outlet planes are discussed in detail and different
boundary conditions from the literature are presented.

Figure 5.3: Boundary conditions in the turbulent boundary layer.

5.3.1 Top Boundary Treatment

In the mean flow field, the boundary layer grows along the flow stream as shown in Fig. 5.3.
This is manifest as an increase in the boundary layer thickness δ. As a result, the wall-
normal velocity at the top boundary should take a positive value. This is consistent with
mass conservation, and the wall-normal velocity is estimated by the following relation (Lund
et al., 1998):

ṽ(x) = U∞
dδ∗

dx + (δ∗ − h)dU∞
dx , (5.20)

where h is the height of the simulation domain, and δ∗ is the displacement thickness given
by

δ∗ =
∫ ∞

0

(
1− U

U∞

)
dy. (5.21)

The first term on the right-hand side of Eq. 5.20 relates to the mass flux that should leave
the domain at the top due to the growth of the displacement thickness. The second term
estimates the decrease in the mass flux of the boundary layer due to a finite pressure gradi-
ent. ZPGTBLs are used in this research; hence, the second term on the right-hand side of
Eq. 5.20 is assumed to be zero. The velocity gradients of the streamwise and spanwise veloc-
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ity components are assumed to be zero at the top boundary, so that the boundary conditions
become as follows:

∂ũ

∂y
= 0 , ṽ = U∞

dδ∗
dx ,

∂w̃

∂y
= 0. (5.22)

There are a variety of boundary conditions in the literature presented in Table 5.1 which
are different from those in Eq. 5.22. Ferrante and Elghobashi (2004) used a simple boundary
condition for spatially developing boundary layers: a zero wall-normal velocity at the top
boundary in a zero pressure gradient (ZPG) flow together with the zero gradient condition for
the two other velocity components. A growing boundary layer requires a mass flux at the top
boundary to conserve mass in the flow domain, and this is in conflict with a zero mass flux
at the top boundary. In a boundary layer with adverse pressure gradient (APG), Na (1996)
estimated the wall-normal velocity VTOP based on a blowing-suction velocity distribution
to match the wall-pressure distribution of their experiment. This boundary condition was
also used in a ZPGTBL. A zero-vorticity boundary condition was applied for the streamwise
velocity, while a zero gradient Neumann boundary condition was used to estimate the velocity
component in the spanwise direction. Lee et al. (2010) focused on the streamwise velocity
instead of the vertical velocity. They suggested that the streamwise velocity at the top plane
should have the form of a power-law correlation for a boundary layer with an APG, and
the wall-normal velocity was described by the zero-vorticity boundary condition. The power
exponent m as shown in Table 5.1 takes m = 0, − 0.15, and − 0.2 corresponding to a ZPG,
moderate APG, and strong APG turbulent boundary layer, respectively. Wu and Moin (2009)
considered a transitional boundary layer and suggested using the analytical profile proposed
by Blasius for the estimation of the vertical velocity at the top boundary. The zero-vorticity

Table 5.1: Top boundary conditions in turbulent boundary layers.

u v w

Lund et al. (1998) ∂u
∂y = 0 v = U∞

∂δ∗

∂x

Ferrante and Elghobashi (2004) ∂u
∂y = 0 v = 0

∂w
∂y = 0Na (1996) (APG) ∂u

∂y = ∂v
∂x v = VTOP(x)

Lee et al. (2010) (APG) U∞
(
1− x

xo

)m ∂v
∂x = ∂u

∂y

Wu and Moin (2009) ∂u
∂y = ∂v

∂x VBlasius = 0.86
√
νU∞
x

∂w
∂y = ∂v

∂z
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condition was applied for the streamwise and spanwise velocity components. The last three
studies implemented the zero-vorticity condition for the streamwise velocity. This indicates
a potential for employing the zero-vorticity conditions instead of the zero velocity gradient
while the boundary conditions of Lund et al. (1998) are applied.

5.3.2 Adjustment of Outflow

Several exit boundary conditions have showed appropriate behavior for both boundary layers
and mixing layers. Pauley et al. (1990) applied different boundary conditions at the outlet
for an unsteady laminar separated boundary layer, and they found that the viscous terms
should be removed from the outflow boundary conditions to prevent numerical instability.
The time-dependent convective boundary conditions developed by Lowery (1987) for spatially
evolving mixing layers provided good performance in moving structures out of the simulation
domain.

∂ũi
∂t

+ Uc
∂ũi
∂x

= 0, (5.23)

where Uc is the convective velocity, which is obtained by averaging the mean streamwise
velocity across the exit plane. It is appealing to use a local bulk velocity in this context. A
space-dependent Uc does not guarantee mass balance at each time step between the inflow
and outflow boundaries, and a mass correction is required at the outflow boundary. However,
a negligible difference was observed between case studies using a variable and constant Uc (Le,
1995; Na, 1996).

Assuming the last interior node in the streamwise direction is ie and the fictitious node is
ie+ 1 as shown in Fig. 5.4, the discretization of Eq. 5.23 over the exit plane is as follows:

ũn+1
ie+1 = ũnie+1 −

Uc ∆t
∆xe

(
ũnie+1 − ũnie

)
, (5.24)

where the superscript n + 1 indicates the value of the parameter at the new time step, and
n indicates the value obtained from the old solution.

5.4 Summary

The boundary conditions for the simulation of TBLs were discussed in this chapter. The
inflow boundary uses a modified form of the LWS method without any auxiliary domain
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Figure 5.4: Schematic of control volumes at the exit plane.

to generate realistic turbulence, and the wall-normal velocity is also rescaled. A Heaviside
function is applied to prevent unwanted fluctuations in the freestream region. Zero gradient
conditions are used in the wall-parallel planes at the top boundary, and the wall-normal
velocity is estimated using the growth of the displacement thickness. The exit boundary
implements a convective boundary condition, and the time-averaged bulk velocity is used
as the convective velocity at the outlet plane. These boundary conditions are employed in
studying the TBL at different Reynolds numbers in the next chapter.
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Chapter 6

Large Eddy Simulation of Zero
Pressure Gradient Turbulent
Boundary Layers

Turbulent boundary layers have important applications in engineering and meteorological
problems: for example, the friction drag on an object or the study of the heat and mass
transfers between the atmosphere and ground. Although many surfaces are curved and often
rough, the spatially developing TBL over a smooth flat plate is an important benchmark
study. The most crucial aspect of simulating a TBL is to provide realistic boundary con-
ditions. This chapter considers the simulation of a fully developed TBL over a smooth flat
plate for a range of Reynolds numbers from Reθ = 2037 to Reθ = 25 523. A rescaling inflow
generation method is used to provide realistic turbulence at the inlet.

The first section of this chapter uses a wall-resolved TBL to evaluate the performance of
a recycling rescaling inflow generation method at a moderate Reynolds number. Different
features of turbulent boundary layers, such as the skin-friction coefficient and shape factor,
are compared with experimental studies. Next, the dynamic non-equilibrium wall-modeling
is applied to a TBL at the same Reynolds number but with a lower grid resolution giving
a lower computational cost. Then, the Reynolds number is increased to study the flow
characteristics of high Reynolds number boundary layers using a coarse grid. The results
will show the ability of wall-modeling to predict essential features of TBLs and reduce the
computational cost.
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6.1 Computational Set-up

The computational domain implemented for the simulation of a wall-resolved TBL is 10δ ×
3δ × π

2 δ (Lx × Ly × Lz) in the streamwise, wall-normal, and spanwise directions, respec-
tively, where δ is the boundary layer thickness at the inlet station. The recycling station is
located at 8δ downstream of the inlet and sufficiently far from the exit plane to avoid any
contamination from the outflow boundary. A uniform grid is used in wall-parallel planes with
a resolution of ∆x+ ' 71 and ∆z+ ' 25 upstream of the flow domain in the streamwise
and spanwise directions, respectively. A non-uniform grid distribution in the wall-normal
direction locates the first node at y+

1 ' 1.2 and gives ∆y+
max ' 36 at the top boundary as

shown in Table 6.1. The no-slip boundary condition is applied at the wall, and the flow is
periodic in the spanwise direction. The LWS inflow generation method generates realistic
turbulence at the inlet. At the top boundary, zero-gradient velocity boundary conditions are
used for the streamwise and spanwise directions, and the wall-normal velocity is obtained
based on the streamwise development of the displacement thickness as discussed in Table 5.1,
which conserves mass in the computational domain (Lund et al., 1998). Convective bound-
ary conditions are employed at the exit plane as discussed in Section 5.3.2. To begin the
simulation, initial velocities are prescribed using Eq. 4.1 for the mean streamwise velocity
with random fluctuations. A Courant number of CFL = 0.5 is used to prevent numerical
instabilities. The simulation is run for 190δ/U∞ to eliminate any initial transients. The
mean flow characteristics such as the momentum thickness θ in the recycling rescaling inflow
generation method or the displacement thickness δ∗ in the boundary conditions at the top of
the computational domain are estimated using empirical correlations, i.e. δ/x = 0.37/Re1/5

x

and U/U∞ = (y/δ)1/7 (Schlichting and Gersten, 2017). These parameters, after the flow
statistics are recorded for 300δ/U∞, are obtained directly from the mean flow field using
δ∗ =

∫∞
0 (1− U/U∞)dy and θ =

∫∞
0 (U/U∞)(1− U/U∞)dy.

In the wall-modeled test cases, the grid resolution and the size of the computational domain
change according to the specifications presented in Table 6.1. The matching point in all cases
is located in the log law region and above the first grid point in the LES domain. Thirty grid
points in the wall-normal direction are employed to resolve the wall-layer using the dynamic
non-equilibrium wall model of Park and Moin (2014) in all test problems except test case 5
which used 50 grid points. These grid points have a non-uniform distribution in the wall-
normal direction while the grid resolution in the wall-parallel planes is the same as in the
LES domain. The recycling station in the last two test problems moves to 12δ downstream
of the inlet plane to ensure robust input for the inlet turbulence generation. The Courant

79



Ta
bl
e
6.
1:

C
om

pu
ta
tio

na
ls

pe
ci
fic
at
io
ns

fo
r
fla

t
pl
at
e
tu
rb
ul
en
t
bo

un
da

ry
la
ye
r
sim

ul
at
io
ns
.

Te
st

Pr
ob

le
m

1
2

3
4

5
W
al
l-r
es
ol
ve
d

W
al
l-m

od
el
ed

R
e θ

24
96
-2
93
0

20
37
-2
99
6

74
49
-8
83
3

11
90
6-
13

56
5

22
06
0-
25

52
3

R
e τ
†

11
30

93
9

31
50

42
75

85
35

R
e δ
†

27
18
0

23
02
5

86
40
0

12
37

50
25
90

50
R
e δ

∗
†

36
56

34
49

12
94
1

18
53
5

38
80
0

L
x
,L

y
,L

z
10
δ,

3δ
,
π 2
δ

10
δ,

3δ
,2
δ

15
δ,

4δ
,2
δ

n
x
×
n
y
×
n
z

14
4
×

64
×

64
12

8
×

48
×

32
16

0
×

48
×

32
25

6
×

64
×

48
38

4
×

64
×

48
∆
x

+
,∆
y

+ m
ax
,∆
z+

71
,3

6,
25

75
,8

1,
59

18
2,

24
7,

18
0

23
0,

33
5,

16
3

29
6,

14
75
,3

15
y

+ 1
1.
2

15
46

62
49

N
m

-
5th

5th
4th

5th

h
+ w

m
-

13
9

42
2

42
7

45
5

δt
+

(δ
t
u

2 τ/
ν

)
0.
19
7

0.
49
4

0.
48
5

0.
93
7

1.
83
5

† :
A
t
re
cy
cl
in
g
st
at
io
n

N
m
:

Lo
ca
tio

n
of

th
e
m
at
ch
in
g
po

in
t
in

th
e
LE

S
do

m
ai
n

h
+ w

m
:
H
ei
gh

t
of

th
e
w
al
ll
ay
er

80



number is also reduced to CFL = 0.3 in the LES domain, and with a CFL = 15 in the
wall layer. Time averaging and temporal filtering schemes, which were discussed earlier in
Sections 3.3.3 and 4.5.3, are implemented in the wall-modeling with TF = 1.0 and TW = 0.1
values to ensure a responsive wall layer.

6.2 Wall-resolved Boundary Layer at Reθ = 2710

The performance of the inflow generation method is initially studied in a wall-resolved TBL.
First, two probes at the inlet plane tracked the instantaneous streamwise velocity inside the
wall layer (y/δ = 0.035) and the freestream region (y/δ = 2.0). The results are shown in
Fig. 6.1 where the velocities are normalized by the freestream velocity and the time advance-
ment is normalized by the convective time scale. The upper profile indicates approximately
zero fluctuations after T = 40 whereas the lower one shows high-frequency fluctuations after
T = 25 which depicts turbulence. Recall that the probes are located at the inlet plane, and a
finite time is required for the turbulent flow at the inlet boundary to approach the exit plane
and generate a fully developed TBL. To ensure fully developed turbulence, the simulation is
initially advanced for 130δ/U∞ to eliminate the effects of starting transients as suggested by
Urbin and Knight (2001) for a similar flow geometry. Once the flow is stabilized, the flow
statistics are collected for 520δ/U∞ to achieve the following results.

Figure 6.1: Time series of streamwise velocity in the wall layer at y/δ = 0.035 (y+ ≈ 31) and
in the freestream region at y/δ = 2.0.

The mean velocity profile at the recycling station of the wall-resolved boundary layer
is shown in Fig. 6.2. Inner coordinates are used to compare the streamwise velocity with
experimental references in Fig. 6.2a. The DNS study of Rai and Moin (1993) and Spalart
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Figure 6.2: Mean velocity profiles for the wall-resolved boundary layer at Reθ = 2710 in (a)
inner coordinates, and (b) defect formulation (WRLES: solid line, (U∞ − U)/uτ ; WRLES:
dashed line, (U∞ − U)δ/U∞δ∗; Degraaff and Eaton (2000): 4, (U∞ − U)/uτ ; Degraaff and
Eaton (2000): l, (U∞ − U)δ/U∞δ∗).

(1988) are shown for a better comparison. All profiles follow each other closely in the near-
wall region. Moving to the buffer region, the WRLES profile shows an over-prediction, which
implies a low grid resolution in resolving the flow structures and under-estimation in modeling
the subgrid scales. However, it improves when moving towards the logarithmic region. A
clear wake region is observed before approaching the freestream flow. The WRLES profile at
Reθ = 2710 follows closely the experimental data of Degraaff and Eaton (2000) at Reθ = 2900,
whereas the results of Schlatter et al. (2009) indicate higher values for a lower Reynolds
number at Reθ = 2512. The scale of the flow dynamics in the outer layer is characterized
by the global flow properties such as the boundary layer thickness δ and freestream velocity
U∞. Hence, Fig. 6.2b presents the mean velocity profiles in terms of the velocity defect law,
i.e. (U∞ − U)/uτ , as a function of y/δ together with the experimental data of Degraaff and
Eaton (2000). The WRLES and experiment are not quite identical throughout the boundary
layer; however, they display similar trends. In a similar study presented by Wu and Moin
(2009) to compare the DNS results of a TBL with experimental data, under-estimation was
observed for the DNS velocity defect profile analogous to what is shown in Fig. 6.2b. They
proposed a modified scaling law of Zagarola et al. (1998), which yielded self-similar profiles
with a better collapse in most regions. Hence, the mean velocity in the modified scaling law,
i.e. (U∞ − U)δ/U∞δ∗, is also presented. The mean velocity profile is qualitatively similar to
the experimental data of Degraaff and Eaton (2000).
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The velocity fluctuations and Reynolds shear stress across the boundary layer are shown
in Fig. 6.3 and compared with the numerical study of Lund et al. (1998) for a wall-resolved
boundary layer at Reθ = 2050 and the experimental study of Degraaff and Eaton (2000) at
Reθ = 2900. The shear stress, u′v′+, indicates good agreement with the experimental and
numerical data. The predictions for the velocity fluctuations (u′+rms, v′

+
rms, and w′

+
rms) in the

wall layer show similar trends with the results of Lund et al. (1998) and are close to the
experimental values. The peak of the streamwise velocity fluctuation, u′+rms, has the value of
3.5 whereas the experiment indicates 2.8, both at the same location y/δ = 0.012. One can
infer that the grid resolution in the streamwise direction is lower than the requirements of
the LES, which results in a poor prediction of u′+rms. In contrast, the wall-normal velocity
fluctuation, v′+rms, which is obtained for a fine mesh near the wall, matches the profile of Lund
et al. (1998). The wall-parallel grid resolution in this study is ∆x+ = 71 and ∆z+ = 25 while
Lund et al. (1998) implemented ∆x+ = 64 and ∆z+ = 15. The spanwise velocity fluctuation,
w′+rms, compares well with the other numerical studies; no experimental data were measured by
Degraaff and Eaton (2000). The profiles for u′+rms, v′

+
rms, and w′

+
rms approach the experimental

data in the region 0.1 < y/δ < 0.4 with a small under-prediction. The WRLES profiles
closely follow the other numerical results and give a slightly better prediction at y/δ = 1.

Figure 6.3: Velocity fluctuations and Reynolds shear stress in the wall-resolved TBL at
Reθ = 2710; symbols: experiment by Degraaff and Eaton (2000) at Reθ = 2900.
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Two parameters that describe a fully developed boundary layer are shown in Fig. 6.4.
The shape factor H = δ∗/θ, which represents the prediction of displacement thickness and
momentum thickness, is shown as a function of the Reynolds number based on momentum
thickness in Fig. 6.4a. The displacement thickness and momentum thickness are estimated
using the integral definitions as discussed in Section 6.1. Two LES studies by Lund et al.
(1998) and Schlatter et al. (2009) are also presented. The results of the WRLES are similar
to those of Lund et al. (1998); both studies under-predict the shape factor in comparison to
the experiment of Österlund (1999). The results of Schlatter et al. (2009) show less deviation
due to a grid resolution that is roughly three times higher than for the other numerical
simulations. Fig. 6.4b presents the skin-friction coefficient as a function of Reynolds number.
A short region upstream and a small section downstream of the flow domain are excluded due
to the numerical errors in applying the boundary conditions at the inlet and exit planes. The
qualitative trend of the WRLES shows good agreement with the experimental studies. The
skin friction depends directly on the wall shear stress, which relates to the grid resolution near
the wall region. The first node that is used to estimate the wall shear stress (τw = µ dU/dy)
is located inside the viscous sub-layer at y+

1 = 1.2.

To further examine the performance of the recycling rescaling method, the scaling factor
γ given in Eq. 5.5 is compared with empirical correlations. The power-law exponent λ is

1000
2000
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1.2
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(a) Shape factor (b) Skin-friction coefficient

Figure 6.4: Characteristics of the mean velocity for the wall-resolved boundary layer at
moderate Reynolds numbers.
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presented for ZPG boundary layers as follows (Araya et al., 2011):

λ =
ln
(
uτ,inlt

uτ,recy

)

ln
(
δinlt

δrecy

) , (6.1)

where the ratio in the numerator, which represents the scaling factor, can be obtained by
calculating the momentum thickness from the mean solution at the inlet and recycling stations
using Eq. 5.15. A time series of the power-law exponent is shown in Fig. 6.5, where T = t/tv

is the dimensionless time advancement of the simulation. It is observed that the computed
λ varies mildly around a value of −0.125 while stronger local fluctuations are indicated. The
value of −0.125 can be obtained using the classical empirical correlation proposed by White
(2006) for the friction velocity as uτ/U∞ ∼ Re−0.125

δ . However, the power-law exponent
depicted in Fig. 6.5 varies in a narrower range compared to the results of Araya et al.
(2011), who implemented a dynamic approach in generating inflow turbulence. Recall that
the friction velocity and boundary layer thickness are two main parameters to rescale the
velocity components, and Fig. 6.5 indicates that the rescaling is in accordance with the
empirical correlation.

Figure 6.5: Variation of the power-law exponent λ (solid line) in comparison with the empir-
ical value (-0.125, dashed line) in a spatially developing ZPGTBL.
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6.3 Sensitivity to Grid Resolution

The transition from a WRLES to a WMLES is a challenging process due to coarse grid used
near the wall. Additional challenges are encountered in the simulation of turbulent bound-
ary layers related to the boundary condition at the outlet and inflow turbulence generation.
One challenge is unphysical numerical oscillations in CFD simulations. Fig. 6.6a shows un-
desirable streamwise oscillations in the freestream region when the grid points used in the
wall-resolved TBL (Section 6.2) are reduced to 96× 48× 32 at the same Reynolds number.
A probe was used to track the instantaneous streamwise velocity at the spanwise center of
the computational domain near the edge of the boundary layer. Fig. 6.6c shows the time
variation of velocity normalized by the mean velocity. A sinusoidal acceleration-deceleration
is observed at a higher frequency, which is superimposed on low-frequency oscillations. These
oscillations emerge when a coarse grid and the non-dissipative central-difference scheme are
employed (Xu and Yang, 2021). There are different methods to avoid these numerical in-
stabilities such as using upwind schemes or artificially increasing the viscosity. However,
the most straightforward solution is grid refinement in regions of rapid flow acceleration or
deceleration (Sabau and Raad, 1999).

Grid refinement was initially applied at the outlet region by adding 16 additional layers
of control volumes. These control volumes are fitted in a short region downstream, which

(a) (b)

T1 T2
0.8

0.9

1

1.1

1.2

(c)

Figure 6.6: Instantaneous velocity contours on a control vertical plane in a WRLES boundary
layer using a coarse grid with (a) streamwise unphysical oscillations, (b) oscillations at the
outflow region, and (c) time variation of streamwise velocity near the edge of the boundary
layer.
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approximately occupy one percent of the length of the flow domain. The results are presented
in Fig. 6.6b. It is observed that the streamwise oscillations disappear in most regions and
persist only in the outflow region. This implies that the numerical solution is sensitive to the
outlet boundary when too coarse a grid is implemented. Xu and Yang (2021) suggested using
one refined layer of grids at the critical boundary, such as the outlet boundary. However, one
refined layer in the current computational domain was insufficient to improve the oscillation
issue. Hence, two layers of grid points with one fifth of the grid resolution defined for the flow
domain in the streamwise direction were added to the outflow boundary region to remove
the unphysical numerical oscillations. This grid refinement is applied to all the wall-modeled
LES turbulent boundary layers in the following sections to avoid numerical instabilities.

6.4 Wall-modeled LES of Turbulent Boundary Layers
at Reθ = 2037 - 25 523

Wall-modeling promises to reduce the computational cost of numerical solutions. This section
begins with calculations of the same TBL as discussed in Section 6.2 but using the wall-
modeling methodology and a lower number of grid points. As presented in Table 6.1, the
number of grid points decreases from 589 824 (144 × 64 × 64) nodes in the wall-resolved
boundary layer to 196 608 (128× 48× 32) control volumes in a wall-modeled boundary layer,
which represents a 66% reduction. Note that the WMLES needs only 1% of the control
volumes that were used in the DNS study of Schlatter et al. (2009) for a similar Reynolds
number and flow domain. The mean velocity profile of the WMLES turbulent boundary layer
at Reθ = 2620 is shown in Fig. 6.7 using inner coordinates. An over-prediction is observed
for the velocities below the matching point, i.e. the 5th node, similar to the wall-modeled
turbulent channel flows demonstrated in Fig. 4.9. However, the prediction improves when
moving towards the logarithmic region, and a clear wake region is observed in the outer layer
adjacent to the freestream.

To further evaluate the WMLES, the Reynolds number was increased to higher values.
For the same computational domain and grid points, the Reynolds number was increased
to Reθ = 8400, which represents one third of the grid resolution used for test problem 2 as
shown in Table 6.1. There are no numerical or experimental results for a WRLES turbulent
boundary layer at the same Reynolds number to the knowledge of the author. The highest
Reynolds number in the literature pertains to Schlatter et al. (2010) at Reθ = 4300, which
used 37 million grid points for a similar size of flow domain. In contrast, the WMLES uses
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Figure 6.7: Mean velocity profiles of TBLs using inner coordinates, WMLES: solid lines,
at Reθ = 2620, 8400, 13 100, and 24 500 from bottom to top; experiments: symbols; log law
[κ = 0.39 and B = 5.0 for the two bottom profiles and κ = 0.384 and B = 4.17 for the
two top profiles (Nagib and Chauhan, 2008)]: dashed line. Dotted lines show the location of
the corresponding matching point. The profiles are shifted with increments of five units for
clarity.

less than 1% of the grid points at twice the Reynolds number. In general, a good prediction
of the mean velocity profile is presented. However, a slight under-prediction is observed in
the outer region and above the matching point, which is located at y+ = 422.

Next, the length of the computational domain was increased to 15δ to reduce the risk of
contaminating the solution with errors associated with the inflow generation approach at
the inlet plane for higher Reynolds numbers. A wall-modeled TBL at Reθ = 13 100 was
simulated in test problem 3. The velocity profile follows the experimental results of Vallikivi
et al. (2015) at Reθ = 15 100, although it over-predicts the experimental data of Degraaff
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and Eaton (2000) at Reθ = 13 000. Note that the grid resolution remains approximately
constant compared to the grid resolution of test case 2. The log law profile suggests the
experimental profile of Vallikivi et al. (2015), which was obtained using nanoscale anemom-
etry probes with an uncertainty lower than 2.2%, is in better agreement with the solution
of the WMLES turbulent boundary layer. In the last test problem (number 4), a TBL was
simulated at Reθ = 24 500. The grid resolution in wall coordinates is one half of the previous
test case. An under-prediction for the experimental results of Degraaff and Eaton (2000) is
again observed in the outer region although the corresponding Reynolds number is higher
than the Reynolds number of Vallikivi et al. (2015). The WMLES profile closely matches
the experimental data of Vallikivi et al. (2015) at Reθ = 26 900. Fig. 6.7 demonstrates the
performance of wall-modeling is reliable across a range of Reynolds numbers in terms of the
mean velocity field.

Fig. 6.8 shows the mean defect profile using outer coordinates and the modified scaling law
for different Reynolds numbers. The numerical results are compared with the measurements
of Degraaff and Eaton (2000) over a wide range of 2620 < Reθ < 31 000. The mean velocities
for the WMLES display identical trends as those of the experimental data and are well
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Figure 6.8: Mean velocity profiles in deficit coordinates for wall-modeled turbulent boundary
layers. experiments: symbols (Degraaff and Eaton, 2000).
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collapsed across the outer region of the boundary layer. Self-similarity is observed between
the experimental and numerical profiles in the outer region. However, the mean defect profile
is under-predicted close to the wall for test problem 3 at Reθ = 8400. A plausible reason is
the inaccurate estimation of the displacement thickness δ∗ using a coarse grid near the wall.
The mean velocities at the very first nodes near the wall show higher deviations from the
experimental data in contrast to the mean velocities at Reθ = 13 100 and Reθ = 24 500, which
significantly affect the estimation of an accurate mean velocity deficit, i.e., (U∞ − U)δ/U∞δ∗.
The mean velocity U was evaluated earlier in Fig. 6.7, and no over-prediction was observed.
The role of δ and δ∗ becomes less significant when moving towards the outer region since
U∞ − U approaches zero. This issue is also observed at Reθ = 13 100 and Reθ = 24 500.
However, using denser control volumes inside the boundary layer at test problems 4 and 5
improves the estimation of δ and δ∗.

The WMLES is incapable of calculating the skin-friction coefficient Cf given the von Kar-
man integral momentum equation, i.e. Cf/2 = dθ/dx. Obtaining θ based on the mean
velocity profile obtained from the LES domain results in inaccurate values due to the low
grid resolution near the wall. Instead, the wall-modeling circumvents this by directly apply-
ing the wall shear stress from a resolved wall layer. In this regard, the skin-friction coefficient
for the test problems is presented in Fig. 6.9 as a function of the Reynolds number based on
momentum thickness. Experimental data are also presented at different Reynolds numbers
for comparison. There are different correlations to empirically estimate the skin-friction coef-
ficient (Nagib et al., 2007). The Cole-Fernholz relation which is a best-fit to the logarithmic

Figure 6.9: The skin-friction coefficient as a function of Reynolds number based on momen-
tum thickness for high-Reynolds number turbulent boundary layers using wall-modeling.
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law is employed in this study,

Cf = 2[1/κ ln(Reθ) + C]−2, (6.2)

where κ = 0.384 and C = 4.127. The results for the WMLES turbulent boundary layers are
shown using solid lines over discrete ranges of Reynolds numbers. All profiles are in good
agreement with the Cole-Fernholz correlation and the experimental data. Recall that the
skin-friction coefficient is representative of the wall shear stress τw in the wall layer, which
demonstrates the ability of wall-modeling to predict τw as a boundary condition for the LES.

6.5 Study of a High-Reynolds Number Wall-modeled
Turbulent Boundary Layer at Reθ = 24 500

The performance of wall-modeling is better at a higher Reynolds number as discussed earlier
in the simulation of turbulent channel flows. Hence, the TBL at Reθ = 24 500 is further
studied in this section. Approximately 50 grid points are used inside the boundary layer to
resolve the essential flow structures (ny/δ = 40). The density of grid points in the wall-parallel
planes are nx/δ = nz/δ ≈ 25, which is comparable to that of Park and Moin (2014) and
Kawai and Larsson (2012). Fig. 6.10 presents the mean velocity profiles in inner coordinates
and outer coordinates. The experimental data of Vallikivi et al. (2015) at Reθ = 26 900
and Degraaff and Eaton (2000) at Reθ = 31 000 are included for comparison. Experimental
data of Souverein et al. (2010) at Reθ = 50 000 and the numerical results of Park and Moin
(2014) at Reθ = 31 000 and Kawai and Larsson (2012) at Reθ = 50 000 are also presented
for comparison. The matching point is shown by a vertical dotted line which is located
at the fifth cell in the LES domain. The wall-modeling velocity profile is also presented
using a dotted-dashed line; the mean velocity in the wall layer is well predicted as shown in
Fig. 6.10a. The over-prediction of velocities below the matching point is a generic problem
in WMLES solutions due to the poor performance of the SGS model in the wall layer where
a coarse grid is employed. Above the matching point, the profile matches the experimental
data of Vallikivi et al. (2015), which extends to the freestream region. A better prediction
is observed in contrast to two other numerical results. The WMLES profile displays a wake
region with the same qualitative trends as the experimental data of Vallikivi et al. (2015).
Although there is a discrepancy between the WMLES profiles and those of Degraaff and
Eaton (2000) and Vallikivi et al. (2015), the experimental study of Souverein et al. (2010)
suggests that the prediction of the velocity in the wake region by the WMLES is reliable.
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(a) (b)

Figure 6.10: Mean velocity profiles in (a) inner coordinates and (b) outer coordinates for
WMLES at Reθ = 24 500, black solid line; log law (κ = 0.384, B = 4.17), dashed line; Park
and Moin (2014) at Reθ = 31 000, blue solid line; Kawai and Larsson (2013) at Reθ = 50 000,
red solid line; Degraaff and Eaton (2000) at Reθ = 31 000, m; Vallikivi et al. (2015) at
Reθ = 26 900, r; Souverein et al. (2010) at Reθ = 50 000, 4.

Outer coordinates are implemented in Fig. 6.10b. The results collapse well in the outer
region. The WMLES profile gives an under-prediction when moving towards the wall, but it
matches the experimental data of Vallikivi et al. (2015).

The next set of profiles relates to the Reynolds shear stress and rms of velocity fluctuations
in the high-Reynolds number wall-modeled TBL. The streamwise velocity fluctuation across
the boundary layer is shown in Fig. 6.11a in outer coordinates. As expected, the WMLES
profile shows a poor prediction in the near-wall region. Moving towards the outer edge of
the boundary layer, a slight peak emerges in the range of 0.2 < y/δ < 0.5. This peak is
different than the near-wall peak, which is invariant with Reynolds number and occurs at
approximately y+ = 15. The second outer peak appears in high Reynolds number TBLs and
relates to outer phenomena (Marusic et al., 2010). Fig. 6.11b shows the inner and outer peaks
of the fluctuating streamwise velocity in wall coordinates. Note that, given the wall-modeling
using a coarse mesh near the wall, the inner peak is undetectable since the first cell is located
far away from the traditional location for the inner peak, i.e. y+ = 15.

The wall-normal velocity fluctuation is presented in Fig. 6.11c. A good prediction is
observed for v′+rms, whereas an over-prediction is observed near the wall. Recall that the
first cell near the wall in the WMLES is treated by a no-slip boundary condition even though
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Figure 6.11: Velocity fluctuations and Reynolds shear stress in the wall-modeled TBL at
Reθ = 24 500: (a) streamwise velocity fluctuation in outer coordinates, (b) streamwise velocity
fluctuation in inner coordinates, (c) wall-normal velocity fluctuation, and (d) Reynolds shear
stress across the boundary layer. For details of experimental data (symbols) refer to Fig. 6.10.

it is outside the viscous sub-layer so that a linear velocity profile is incorrect. This leads to
the over-prediction of v′+rms observed in the range of 0 < y/δ < 0.2. However, the prediction
improves for the logarithmic region. This issue is also manifest in the prediction of Reynolds
shear stress u′v′+ in Fig. 6.11d. The WMLES over-predicts the Reynolds shear stress by
25% in the outer peak region near y/δ ≈ 0.4. A similar behavior was observed in the study
of Kawai and Larsson (2013) and Park and Moin (2014) for wall-modeled TBLs at high-
Reynolds numbers. The WMLES profile is closer to the experimental data near the wall.
Some oscillations are observed in the region of y/δ < 0.6, which relate to the low number
of control volumes used inside the boundary layer. This issue improved in the numerical
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study of Kawai and Larsson (2013), where they implemented denser grid points inside the
boundary layer.

The total shear stress (τ) consists of the viscous shear stress (ν dU
dy ) and the Reynolds

shear stress (-u′v′). A plot of the three quantities is shown in Fig. 6.12 where they have been
normalized using the wall shear stress τw. The total shear stress is approximately equal to the
Reynolds shear stress over most of the boundary layer. The contribution of the viscous shear
stress to the total shear stress is only significant for y+ < 200. It is expected the turbulent
and viscous stresses contribute equally to the total shear stress at y+ ≈ 10, where the
maximum of turbulence kinetic energy production occurs (Rotta, 1962; Degraaff and Eaton,
2000). However, the grid refinement in the wall region is insufficient to resolve this crossing
point. Some oscillations are observed in the total shear stress profile, which is attributed
to using a low number of grid points to resolve the flow motions inside the boundary layer.
Furthermore, the total shear stress should form a plateau near the wall, whereas both the
experimental data and the WMLES profile show some variations. In general, the prediction
for the shear stress is in good qualitative agreement with the experiment.
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Figure 6.12: Total shear stress: solid line (experiment: l), Reynolds shear stress: dashed
line (experiment: m), and viscous shear stress: dotted-dashed line (experiment: o) across
the boundary layer compared to the experimental data of Degraaff and Eaton (2000).

The rate of energy production P in the wall region is shown in Fig. 6.13, where it is
normalized as P+ = Pν/u4

τ . Degraaff and Eaton (2000) stated that in the logarithmic region
the production can be rewritten as follows assuming the total shear stress is approximately
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Figure 6.13: Turbulence kinetic energy production in the WMLES TBL at Reθ = 24 500.

constant and equal to τw:

P = −u′v′
(
dU
dy

)
,

P+ = Pν
u4
τ

= −u′v′+
(
dU+

dy+

)
= 1
κy+ .

(6.3)

The line of 1/κy+ is plotted using a dashed line and matches the experimental data of Degraaff
and Eaton (2000) in the logarithmic region. The results of the WMLES and experimental
data collapse well in the outer region. However, an over-prediction is observed for the first few
control volumes near the wall as an inherent characteristic of wall-modeling. This deviation
relates to the over-estimation of the Reynolds shear stress in the wall layer as shown earlier
in Fig. 6.11d and the calculation of the mean velocity gradient on a coarse grid, which results
in numerical errors in the discretization of dU/dy.

The final figures of this chapter consider the rms of velocity fluctuations and eddy viscosity
inside the wall layer. The velocity fluctuations in Fig. 6.14a indicate similar behavior to
the results of the turbulent channel flow presented in Fig. 4.13. The streamwise velocity
fluctuation (u′+rms) is smaller than in the channel flow. Recall that the grid resolution in the
x-direction used in the TBL is lower, which implies a smaller resolved velocity fluctuation.
Both velocity fluctuations in the x- and z-directions (u′+rms and w′+rms) evidence a rapid increase
as they approach the matching point. Instead of using the TBLEs, which solve for the wall
layer in the x- and z-directions, the wall-normal velocity is obtained using the continuity
equation. Thus the wall-normal velocity fluctuation (v′+rms) indicates a different behavior.
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Figure 6.14: Flow characteristics across the wall layer in the WMLES TBL at Reθ = 24 500.

This issue also affects the prediction of the Reynolds shear stress (−u′v′) compared to the
velocity fluctuations. Fig. 6.14b presents the modified eddy viscosity profile across the wall
layer. Prandtl’s mixing length hypothesis is employed to estimate the empirical eddy viscosity
that is shown by a red line. A decrease is observed in the WMLES profile near the matching
point as expected based on Eq. 3.25 since the Reynolds stresses (Rij) increase, which is similar
to the result of the wall-modeled channel flow shown in Fig. 4.14. This behavior is attributed
to the dynamic non-equilibrium wall model accounting for the unresolved Reynolds stresses
in the wall layer by reducing the eddy viscosity.

6.6 Conclusions

The recycling rescaling inflow generation method has been evaluated by the wall-resolved
TBLs at moderate Reynolds number. Various flow characteristics including mean velocity
profiles were studied and compared with experimental and numerical reference data. The
mean streamwise velocity and rms of velocity fluctuations were shown across the boundary
layer using different inner and outer coordinates. The results qualitatively matched exper-
imental data in the viscous sub-layer, buffer region, and logarithmic region, although some
discrepancies were observed. The variation of the skin-friction coefficient and shape factor
as a function of momentum Reynolds number indicated acceptable performance at moderate
Reynolds number. The turbulence kinetic energy production and viscous dissipation were
compared with experiments and theoretical correlations, which confirmed the reliability of
the WRLES. Furthermore, the rescaling inflow generation method was investigated based on
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the variation of the power-law exponent over the simulation run-time. The results indicated
the rescaling method is successful in generating realistic turbulence and a fully developed
TBL, and the power-law exponent is consistent with the classical empirical correlation.

A grid refinement sensitivity of the wall-resolved TBL was studied prior to implementing
the wall-modeling technique. It was found that two layers of grid points at the outlet bound-
ary with a higher resolution minimize unphysical oscillations in the computational domain
when a coarse mesh is implemented. This technique was used for the wall-modeled TBLs.
The wall-modeled boundary layer was initially run at the same Reynolds number at the wall-
resolved case. Next, test problems at higher Reynolds numbers with lower grid resolution
indicated the performance of wall-modeling improves at high Reynolds numbers. To achieve
self-similar profiles for the mean streamwise velocities, a modified scaling law was employed,
and the velocity profiles collapse well over most regions. The prediction of the skin-friction
coefficient improved at higher Reynolds numbers where the wall-modeling represented the
flow dynamics near the wall. Further evaluations of the velocity fluctuations, Reynolds shear
stress, and energy production were conducted on a wall-modeled TBL at Reθ = 24 500. In
general, the results of the WMLES turbulent boundary layers correctly predict the flow fea-
tures in the outer region. However, as would be expected the LES predictions below the
matching point are not accurate.
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Chapter 7

Wall Stress Model with the Effects of
Surface Roughness

7.1 Introduction to Roughness

Surface roughness has received sustained attention in many turbulent flows with engineering
or geophysical applications. At first sight, roughness is a feature of the flow geometry which
increases the drag force. However, it has some positive contributions in engineering problems
such as delaying separation on an airfoil which reduces the drag force compared to a smooth
surface (McMasters and Henderson, 1979). Although all surfaces have physical roughness in
the real world, the effects of roughness can be neglected in some turbulent flows. To better
understand surface roughness, a standard definition has been introduced to illustrate how
roughness affects flow structures in the wall region.

Wall-bounded flows are characterized by two scaling parameters which are the kinematic
viscosity ν and friction velocity uτ (Raupach et al., 1991; Jimenez, 2004). The viscous length
scale is obtained from these two parameters, i.e. δv = ν/uτ . Roughness affects the flow
dynamics in the outer region when its length scale becomes comparable to the viscous length
scale. Since the viscous length scale decreases with increasing Reynolds number, the effect of
roughness is crucial in high Reynolds number flows. Given the equivalent roughness height
ks, a dimensionless roughness height is defined by

k+
s = ks uτ

ν
, (7.1)
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which can be used to evaluate the effects of roughness elements on a flow. For insight into the
methodology for estimating the equivalent roughness height, refer to the review of Jimenez
(2004).

Recall that in the overlap region, the logarithmic law is defined as follows (Schlichting and
Gersten, 2017):

lim
y+→∞

u+(y+) = 1
κ

ln y+ + C+, (7.2)

where C+ is a constant of integration for smooth wall-bounded flows and a function of k+
s

for rough surfaces. Hence, Eq. 7.2 can be written as

lim
y+→∞

u+(y+) = 1
κ

ln y+ + C+(k+
s )

= 1
κ

ln y

ks
+ C+

r (k+
s ),

(7.3)

where
C+

r (k+
s ) = C+(k+

s ) + 1
κ

ln k+
s . (7.4)

Tani (1988) developed and evaluated Eq. 7.4 for different values of k+
s . He found that the

function C+
r (k+

s ) is equal to the smooth wall value for k+
s < 5, and the drag is the same

as over a smooth wall. As long as the roughness elements are below this limit, the flow is
hydraulically smooth. In contrast, the limit of function C+

r (k+
s ) as k+

s approaches infinity
is equal to 8.0. In such flows, the roughness elements fill up the entire wall layer, and the
viscosity becomes less important. A flow with roughness elements k+

s > 70 is referred to as
fully rough. Based on these limits, roughness is described by the following three regimes:

hydraulically smooth: 0 ≤ k+
s ≤ 5, C+ ≈ 5.0

transitionally rough: 5 < k+
s < 70, C+

r (k+
s )

fully rough: 70 ≤ k+
s , C+ ≈ 8.0.

Flow over rough surfaces was studied by Nikuradse (1950), who focused on the mean ve-
locity shift ∆U+ in the logarithmic profile. In general, the vertical shift in the mean velocity
profile is expressed as a function of an effective roughness height, and the results obtained
from experiments are used to estimate the hydrodynamic roughness length scale a posteri-
ori (Anderson and Meneveau, 2011). In the numerical field of research, the effects of rough
walls on the turbulent flow structures has been studied using DNS (Orlandi and Leonardi,
2008). However, the computational cost in resolving roughness elements becomes prohibitive
at high Reynolds numbers. Reynolds-averaged models have been also modified to represent
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the roughness effects on the mean flow field. In RANS methods, the turbulence models re-
quire sufficient knowledge about the surface properties (Alves Portela and Sandham, 2020).
Large eddy simulation is a more feasible approach than DNS. Recall that LES introduces
the effects of small-scale flow structures using an SGS model. Hence, expressing the effects
of small-scale roughness comparable to the unfiltered flow dynamics is a challenge (Jimenez,
2004). This chapter presents a method to implement the WMLES approach in resolving
high-Reynolds number turbulent flows while the effects of wall roughness are introduced via
wall-modeling. The grid resolution used in the wall layer is higher compared to traditional
RANS methods, which helps to resolve the roughness elements. First, the history of some
roughness models is presented. Then, the methodology of introducing the effects of wall
roughness is described and implemented in the simulation of rough wall channel flows. Fi-
nally, the results of WMLES turbulent channel flows including wall roughness are presented
and discussed.

7.2 Background to Wall Roughness Modeling

Wall roughness models can be categorized into homogeneous and sparse element roughness.
Homogeneous roughness replaces the stochastic roughness length scales with an equivalent
height, which is known as the effective roughness. There are different methods to determine
the equivalent height of roughness, which consider the spacing between roughness elements
and their shape (Dirling, 1973). On the other hand, each element is usually resolved in the
sparse element category, and the effects are introduced to the control volume. The effects
of roughness are introduced via the turbulence model when a RANS approach is employed,
whereas the roughness elements affect the momentum equation via an additional drag force
when using DNS or LES (Schultz and Flack, 2007; Krumbein et al., 2017). According to the
roughness categories, there are two generic methods to model wall roughness: 1) equivalent
sand grain roughness, and 2) discrete element approach (Taylor et al., 1985). The following
sections will elaborate on these methods.

7.2.1 Equivalent Sand Grain Roughness

In the equivalent sand grain approach, homogeneous roughness is considered with a uniform
roughness length scale on the wall. Schlichting (1936) conducted a comprehensive set of
experimental tests to correlate the effective roughness height (ks) with the height and shape
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of the roughness and its surface density. He proposed sparse and dense regimes for rough
walls. In the sparse regime, in which the roughness elements occupy less than 15 percent of
wall-parallel area, the effect of roughness increases with increasing the density of roughness
elements. The dense regime indicated an opposite behavior since the roughness elements
now shelter each other. Coleman et al. (1984) re-evaluated Schlichting’s results, and the case
studies with very sparse roughness were included to make a comprehensive reference for other
studies.

Several turbulence models have been developed to allow the calculation of wall-bounded
turbulent flows over rough walls. Rotta (1962) suggested including the effects of wall rough-
ness by shifting the surface plane upwards by a distance ∆y comparable to the equivalent
roughness height. A non-zero velocity boundary condition in the direction opposite to the
mean flow is introduced to the reference plane (at y = 0) to satisfy the no-slip boundary
condition at the shifted plane. Despite achieving the desired effect on the law of the wall,
the estimated shift is often higher than the height of the roughness element, which shows no
direct physical connection to the flow. Cebeci and Chang (1978) were inspired by the shifting
hypothesis in solving the boundary layer equation over a rough plate. They proposed that
the shifting distance can be included in the mixing length model as follows:

`m = 0.4(y + ∆y)D , D =
[
1− exp

(
−y + ∆y

A

)]
, (7.5)

where ∆y is expressed as a function of equivalent sand grain roughness by

∆y = 0.9
(
ν

uτ

) [√
k+

s − k+
s exp

(
k+

s
6

)]
. (7.6)

Eq. 7.5 is expected to be valid over a wide range of k+
s , but it may lose accuracy over a

complete spectrum of flow problems with similar geometries since the proposed model was
studied only in a limited range of roughness geometries and pressure gradients.

Later, Krogstad (1991) proposed a new modification to the van Driest damping function D
to adjust the eddy viscosity near the wall. He believed that the main role of wall roughness
is to increase turbulence near the roughness elements. Hence, turbulent shear stresses are
calculated by relating the increase in turbulence to the wall roughness. The modified damping
function is given by

F = 1− exp
(
− y

+

A+

)
+ exp

− y+

A+

(
R+

k+
s

)3/2

√√√√1 + exp

(
−R

+

k+
s

)
, (7.7)
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where A+ = 26 and R+ = 70. This model is limited to a range of roughness heights, and
the results of very small or very large roughness values showed discrepancies between the
proposed model and experiments.

Spalart (2000) developed an early and well-known turbulence model, i.e. the so-called one-
equation Spalart-Allmaras model, to introduce the effects of surface roughness. The eddy
viscosity obtained from the transport equation (ν̃) is modified as follows:

νt = fv1 ν̃ , fv1 = χ3

χ3 + C3
v1

, Cv1 = 7.1, (7.8)

where νt is the modified eddy viscosity which contains the effects of roughness. He used χ to
include the wall roughness as follows:

χ = ν̃

ν
+ CR1

ks

d
, CR1 = 0.5. (7.9)

He also proposed an extension to the original model in which a non-zero boundary condition
was assumed for the eddy viscosity at the wall to imitate the effects of roughness.

∂ν̃

∂n
= ν̃

d
, (7.10)

where n is the direction normal to the wall, and d is defined by
d = dmin + do

dmin: distance to the wall
do = ks exp(−8.5 κ) ≈ 0.03 ks.

Aupoix and Spalart (2003) compared this modified Spalart-Allmaras model with experimen-
tal studies. They found that the results were in fair agreement with experiments when the
roughness height is much smaller than the boundary layer thickness. Furthermore, the heat
transfer is over-predicted by introducing the effect of roughness in the eddy viscosity model
compared to the prediction of the skin friction.

Modeling the effects of roughness is not limited to one-equation turbulence models. Zhang
et al. (1996) introduced the height of equivalent roughness to turbulence model functions (f1

and f2) in a low-Reynolds number k− ε model. The model functions in the k− ε model play
a damping role for the eddy viscosity near the wall similar to van Driest’s damping function.
Hellsten and Laine (1997) modified the k − ω model by adding a roughness parameter to
the turbulence frequency ω and achieved acceptable results for rough boundary layers and
airfoils. Dutta et al. (2017) evaluated the performance of three turbulence models over rough
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boundary layers with non-zero pressure gradients. The results indicated that most models are
sufficiently accurate in mild pressure gradients, although some errors were observed close to
the separation and reattachment regions due to the fundamental eddy viscosity assumption.
Note that all models proposed in this section are employed in RANS turbulence models,
which require solving additional transport equations to estimate the Reynolds stresses.

7.2.2 Discrete Element Method

The discrete element method introduces the effects of roughness elements on a flow as a form
drag term to the momentum equation (Taylor et al., 1985). This additional term pertains
to the blockage effects of roughness on the near-wall flow structures. The flow resistance of
roughness includes the form and viscous drag. The form drag is exerted on roughness elements
whereas viscous shear is exerted on the smooth area between the roughness elements. Hence,
the wall shear stress can be expressed based on these two components as follows:

τw = µ
∂u

∂y
+ FD

Ay
, FD = 1

2CD ρu2AP, (7.11)

where Ay is the wall-parallel surface area, AP is the projected area of a single roughness
element, and u is the local streamwise velocity. There are different methods to determine the
magnitude of CD (Taylor et al., 1985).

The discrete element method has been employed in different applications. Taylor et al.
(1985) used the discrete element method on a Reynolds-averaged two-dimensional TBL.
Reynolds stresses are modeled with a simple zero-equation Prandtl mixing length model and
CD is described as a function of the Reynolds number,

logCD = −0.125 log(Red) + 0.375 , Red < 6× 104

CD = 0.6 , Red ≥ 6× 104.
(7.12)

Busse and Sandham (2012) proposed a parametric forcing approach in the simulation of
a turbulent channel flow using DNS. Instead of resolving a rough surface, the momentum
equation contains an additional term to consider the effects of roughness as follows:

∂ui
∂t

+ ∂ujui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂x2

i

+ fi, (7.13)
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where fi is the forcing term and defined as

fi = −αiFi(y, hi)ui|ui|. (7.14)

The parameter αi is the roughness factor which indicates the sparseness of roughness ele-
ments, and Fi is the roughness shape function that adjusts the strength of the forcing term
at a specific distance from the wall. The parameter hi is the height of a particular roughness
element. The form of (−ui|ui|) ensures that the roughness always resists the flow. Eq. 7.14
indicates that the wall roughness is determined through the αi and Fi(y, hi) parameters. The
results suggest that the value of αi in the x-direction has the most significant effect whereas
αy and αz only have a weak drag effect. They assigned a Gaussian profile to the shape
function as follows:

Fi(y, hi) = exp
(
−y

2

h2
i

)
, (7.15)

where y is the distance from the wall. Although this model represents reliable results in fully
rough and transitional rough regimes, it is strongly dependent on specifying an appropriate
shape function and a correct roughness factor for a particular flow problem.

The parametric forcing approach only considers a form drag of roughness whereas some
areas between the roughness elements experience relatively slow flows (Forooghi et al., 2018).
At these locations, the quadratic term of the form drag in Eq. 7.14 is not the only dominant
force, and a linear forcing term can be introduced to account for the viscous drag. Hence,
the last term on right-hand side of Eq. 7.13 becomes

fi = fL,i + fQ,i = −A(y)ui −B(y)ui|ui|. (7.16)

There is a clear analogy between this model and the classical Darcy-Brinckmann-Forchheimer
equation for flows in porous media where linear (Darcy) and quadratic (Forchheimer) terms
are used to represent, respectively, viscous and inertial resistance to the flow (Vafai and
Kim, 1995). Therefore, A(y) is accounted for in the context of porous media while B(y)
represents the form drag of a bluff body as a roughness element. Kuwata and Kawaguchi
(2019) re-evaluated the parametric forcing approach of Forooghi et al. (2018) by spatially
averaging the drag force in the wall-parallel planes. Their forcing term is very similar to
the previous study, but it is implemented in the simulation of turbulent rough walls using
a Lattice-Boltzmann approach. The proposed model is only valid in turbulent flows over
sparse roughness elements.

Krumbein et al. (2017) assessed the performance of a discrete element method in a hybrid
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RANS/LES model. This model was developed based on the concept of VLES of Speziale
(1998). The forcing term in their model is defined as follows:

fi = −1
2 ũjũj

ũi√
ũkũk

D(y)
L

, (7.17)

where 1
2 ũjũj is the dynamic pressure, L is the maximum height of the roughness, andD(y) is a

drag function very similar to the shape function in Eq. 7.15. The drag function D is specified
based on a complementary DNS by spatially averaging data sets in the streamwise and
spanwise directions and estimating the drag force associated with the RANS equation in the
streamwise direction. Later, Krumbein et al. (2019) proposed another rough wall model based
on the discrete element method, in which both viscous drag and form drag are considered
similar to Eq. 7.16. Using the volume-averaged Navier-Stokes (VANS) method developed by
Whitaker (1996), they modeled the effect of roughness as an equivalent porosity. However,
both models require the results of DNS in advance to a priori determine the coefficient in
the forcing term correlation or the drag function.

7.3 Roughness in Wall-modeling

With the advent of wall-modeling methodology, the effects of roughness have been studied in
the context of estimating the wall shear stress. In an early work, Mason (1994) proposed a
wall function based on the logarithmic law and using the Monin-Obokhov similarity theory
boundary conditions to model drag in a flow. The flow information at the first grid point
above the roughness is used to estimate the wall shear stress. Anderson and Meneveau (2011)
modified this model by introducing a forcing term, which includes the wall shear stress, to
the momentum equation. They argued that only the roughness elements larger than the filter
scale are resolved. Hence, the unresolved roughness elements were modeled and introduced
as a wall shear stress to the first cell near the wall. The wall shear stress is linearly adjusted
to the instantaneous local velocity as follows:

τw(x, z) = 1
ρ

 κ U(x, z)

log
(
ym − d
ks

)


2

ui(ym)
U(x, z) , (7.18)

where U(x, z) =
√
u2 + w2, ym is the height of the first node, d is the resolvable height of

roughness, and ui is the local instantaneous velocity. The value of the von Karman constant
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should be adjusted for different flow geometries. This model was tested in LES of high-
Reynolds number flows over various rough surfaces and results were promising. In addition
to the wall stress models, there are other methods in modeling the wall layer where the effects
of roughness are included, which will be discussed in the following sections.

7.3.1 Virtual Wall Model

A new wall model (the virtual wall model) to be coupled with LES was proposed by Chung
and Pullin (2009). A slip boundary condition is assumed at a raised virtual wall by integrating
the effects of flow motions across the wall layer. The streamwise momentum equation at the
first control volume near the wall is filtered in a wall-parallel layer where the width of the
filter is larger than the viscous length scale. The streamwise momentum equation is shown
as follows:

∂ũ

∂t
+ ∂ũu

∂x
+ ∂ũv

∂y
+ ∂ũw

∂z
= −∂p̃

∂x
+ ν

∂2ũ

∂y2 . (7.19)

After averaging over the wall-parallel layer and integrating ∂ũv∂y and ν ∂
2ũ
∂y2 in the wall-normal

direction, Eq. 7.19 becomes:

∂〈ũ〉
∂t

+ ∂〈ũu〉
∂x

+ ∂〈ũw〉
∂z

= − 1
hwm

ũv
∣∣∣
hwm
− ∂p̃

∂x

∣∣∣∣∣
hwm

+ ν

hwm

(
∂ũ

∂y

∣∣∣∣∣
hwm

− ∂ũ

∂y

∣∣∣∣∣
0

)
, (7.20)

where hwm is the height of the wall layer, and 〈.〉 indicates a spatially averaged parameter
in a wall-adjacent layer. Saito et al. (2012) improved this model by modifying the temporal
term to include the effects of surface roughness. The unsteady term in Eq. 7.20 is resolved
within a general form of inner scaling, and increased momentum deficit due to roughness is
accounted for as follows:

ũ = uτ
(
F (y+)−∆U+

)
, (7.21)

where ∆U+ is the roughness function or shifted velocity profile downward, and F (y+) is
a generic term considered for both rough and smooth walls. The roughness function is
formulated based on the roughness geometry and universal correlation proposed by Colebrook
(1939) as

∆U+ = 1
κ

ln
(
1 + 0.26 k+

s

)
. (7.22)

He studied the performance of this model in transitionally rough and fully rough pipe flows
and compared the results with the Moody diagram. Favorable agreement with empirical
correlations was observed.
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7.3.2 Immersed Boundary Method

Orlandi and Leonardi (2008) resolved the geometry of roughness elements by refining the
mesh near the wall together with an efficient immersed boundary method (IBM) using DNS
and LES. They conducted several simulations with different kinds of roughness shapes to
create a database for the parameterization of the roughness function. They proposed that the
modifications of the flow structures in the wall region are best represented by the wall-normal
velocity distribution. Hence, they proposed a roughness function based on the wall-normal
fluctuations ũ+

2 |w as follows:

∆U+ = B
ũ+

2 |w
κ

(7.23)

with B = 5.5 and κ = 0.41. Note |w indicates the value at an imaginary plane that contains
the crests of the roughness elements. This correlation is useful in both numerical and ex-
perimental studies to evaluate the friction velocity over rough surfaces. Piomelli and Yuan
(2013) proposed an LES approach to resolve the roughness elements using IBM based on the
volume-of-fluid method. The desired equivalent roughness in their study was generated by
introducing a sufficient number of cubes at random heights that fluctuate around a specific
height ks (Scotti, 2010). The fraction of volume not occupied by the roughness element is
used to estimate the velocity at each cell near the wall. They implemented this methodology
to visualize hairpin packets in the near-wall region and turbulent structures in the outer
layer.

7.3.3 Other Models

Yang et al. (2015) introduced an integral WMLES to study high-Reynolds number TBLs,
which includes the effects of wall roughness. The momentum equation in the wall layer using
the RANS equations has a form drag term as follows:

fx = −CD aLx|U |〈ũ〉 , fz = −CD aLz|U |〈w̃〉, (7.24)

where CD is the drag coefficient, |U | =
√
〈ũ〉2 + 〈w̃〉2 is the velocity magnitude, and aLx and

aLz are the roughness area density. 〈 .̃ 〉 indicates the parameter is spatially filtered and
temporally averaged over an appropriate time period. Furthermore, the effect of roughness
is considered in the estimation of the wall shear stress

τw = (ν + νt)
∂〈ũ〉
∂y

∣∣∣∣∣
y=0

+
∫ hwm

0
CD aLx |U |〈ũ〉dy. (7.25)
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This model, which is a form of discrete element method, was evaluated in different flow
geometries, and promising results for flows over rough surfaces were observed.

Alves Portela and Sandham (2020) presented an approach that resolves the inner layer
using DNS and the outer layer using URANS. They blended the DNS and URANS equations
by combining the Reynolds stresses to make a model-free NSE. A blending factor is introduced
to the new momentum equation, and it varies gradually when switching from DNS to URANS.
Moreover, a parametric forcing approach developed by Busse and Sandham (2012) discussed
in Section 7.2.2 is implemented in the DNS domain to resolve wall roughness elements. A
mismatch is observed between the DNS and RANS stresses at the interface and requires
special considerations. However, the computational cost of the proposed method is reduced
significantly.

7.4 Methodology for Introducing Surface Roughness to
Dynamic Non-equilibrium Wall Stress Model

There are different methods for including the effects of wall roughness in calculating the flow
structures in the near-wall region. The discrete element method represents a reliable approach
for resolving the flow dynamics in the wall layer. However, use of the wall-modeling implies
that the near wall flow is modeled and introduced to the outer layer as a wall shear stress
in a time-averaged framework. Hence, resolving the roughness element, which the discrete
element method relies on, is incompatible with the notion of wall modeling, i.e. reducing the
computational cost and expediting the simulation process. In this study, a modified mixing
length `m = κyF is employed to model the effects of the roughness elements. The correction
proposed by Krogstad (1991) to the van Driest damping function as shown in Eq. 7.7 is
implemented in the dynamic eddy viscosity in Eq. 3.25 to modify the eddy viscosity as
follows:

νt,wm = (κyF)2|S|+ RijSij
2SijSij

,

F = 1− exp
(
− y

+

A+

)
+ exp

− y+

A+

(
R+

k+
s

)3/2

√√√√1 + exp

(
−R

+

k+
s

)
,

(7.26)

with A+ = 26 and R+ = 70. The value of R+ represents the lower limit for fully rough
regimes as discussed earlier in Section 7.1.
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Using Eq. 7.26 to model the effects of wall roughness requires additional considerations.
First, it is essential to locate the matching point sufficiently higher than the equivalent rough-
ness height (Saito et al., 2012; Yang et al., 2015; Alves Portela and Sandham, 2020). There
is an analogy between this constraint and the mismatch treatment discussed in Section 4.3,
where the efficiency of the SGS model declined when using a coarse mesh near the wall,
and the location of the matching point was moved to higher grid points in the LES domain
to mitigate this deficiency. The proposed damping function (F) for two different roughness
heights is shown in Fig. 7.1. The original damping function, i.e. D = 1 − exp (−y+/A+), is
also presented for comparison. For both rough cases, the F profile approaches one (red line)
and the effect of the damping function becomes negligible when y+ is 50% larger than the k+

s

value. Therefore, in the study of turbulent channel flows with different roughness heights,
the matching point is located at least 50% farther than the roughness height.

Figure 7.1: Modified damping functions in Eqs. 7.5 and 7.26 for wall roughness with
R+ = 70.

The next consideration pertains to the estimation of the wall shear stress. For the smooth
case studies, the wall shear stress is directly calculated from the mean velocity gradient at
the wall, i.e. τw = µ dU/dy. However, applying the modified mixing length results in lower
velocity gradients near the wall below the roughness height. Consequently, a lower wall shear
stress is predicted using the slope of the mean velocity profile whereas a higher value is
expected for flow over the rough wall.

The time-averaged x-momentum equation is a more convenient way to estimate the wall
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shear stress (Burattini et al., 2008),

1
ρ

dP
dx = ν

d2U

dy2 −
d
dyu

′v′, (7.27)

which can be rewritten as

dP
dx = dτ

dy , τ = µ
dU
dy − ρu

′v′, (7.28)

where τ is the total shear stress. This method relates the wall shear stress to the pressure
gradient, and it has been successfully implemented in several experimental and numerical
studies of turbulent channel flows (Krogstad et al., 2005; Busse and Sandham, 2012; Forooghi
et al., 2018; Krumbein et al., 2019). However, the main drawback is that it does not apply
to flows with zero pressure gradient.

In this study, the wall shear stress is predicted by extrapolation from two points inside
the wall layer as shown in Fig. 7.2. The total shear stress is calculated using Eq. 7.28 and
the mean velocity profile. The eddy viscosity is obtained from Eq. 7.26, and Boussinesq’s
hypothesis is implemented to estimate the Reynolds shear stress as follows:

−ρu′v′ = νt,wm
dU
dy . (7.29)

By a linear extrapolation, the wall shear stress is obtained as

τ2 − τw

τ2 − τ1
= y2 − 0
y2 − y1

. (7.30)

Hypothetically, points “1” and “2” should be located below the matching point and above the
roughness height to achieve a reliable result. This correlation can be simplified for channel
flows with similar rough surfaces on both walls. In such channel flows, the total shear stress
becomes zero at the center of the channel (τ2 = 0), and one can locate point 2 at the center
of the channel (y2 = δ). Hence, Eq. 7.30 can be expressed as

τw = τ1

1− y1/δ
. (7.31)
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Figure 7.2: Schematic of total shear stress in wall-bounded turbulent flows used to estimate
the wall shear stress by a linear extrapolation.

7.5 Numerical Method

Two flow geometries are implemented to evaluate the proposed wall model. First, a turbulent
channel flow with rough surfaces on both walls, i.e. top and bottom walls, is studied. Then,
the effective roughness is applied only to the bottom wall, and the top wall is assumed to
be smooth. These test cases are employed due to the available experimental data sets to
validate the performance of the wall model. The computational domain to resolve the rough
channel flow for all test cases is 2πδ×2δ× 4

3πδ in the streamwise, wall-normal, and spanwise
directions, respectively. A uniform grid distribution is applied in all directions with the grid
resolution presented in Table 7.1 for each channel flow. The fifth node in the LES domain is
used for the location of the matching point. Initial velocity conditions to begin the simulation
are analogous to what was described in Section 4.1. The grid resolution for the wall layer
is the same in the wall-parallel planes, and it has a non-uniform grid distribution in the
wall-normal direction with 30 grid points. The Courant number is CFL = 0.3 and 15 in the
LES domain and wall layer, respectively, and no-slip boundary conditions are applied at the
walls while periodic boundary conditions are used in the streamwise and spanwise directions.
The time averaging and temporal filtering schemes use TW = 0.1 and TF = 1.0 to provide
a responsive wall layer. In the symmetric rough channels, A2 and B2, two rough walls are
considered, whereas for the asymmetric cases C1 and D1, a rough wall at the bottom and a
smooth wall at the top are implemented.
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Table 7.1: Specifications of wall-modeled turbulent channel flows with rough walls at different
Reynolds numbers.

Case Reτr nx × ny × nz ∆x+,∆y+,∆z+ k+
s h+

wm
A2 615 48× 32× 48 78, 38, 52 62 163
B2 2080 80× 64× 64 157, 62, 130 62 272
C1 640 48× 32× 48 70, 33, 46 62 146
D1 1160 64× 48× 48 94, 40, 83 112 174

7.6 Wall-modeled Turbulent Flow in a Symmetric Rough
Channel

The test cases with roughness on the top and bottom walls are evaluated in this section
(A2 and B2). The symmetric channel flows are pressure-driven, so that a constant pressure
gradient is introduced in the source term of the momentum equation. For test case A2, the
dimensionless equivalent roughness height is k+

s = 62, and the Reynolds number based on
the friction velocity of the rough surface is Reτr = 615. The mean flow field is obtained by
recording the flow statistics over T+ = 19 900 with an average time step of δt+ = 0.972 (the
definition of the dimensionless simulation run-time T+ and mean time step δt+ were discussed
earlier in Section 4.1). An additional simulation with the same computational domain is also
run in a smooth channel to study the mean velocity shift ∆U+.

Fig. 7.3 shows the mean velocity profile of the test case A2 in wall coordinates and outer
coordinates. The experimental results of Krogstad et al. (2005) are also presented, in which
smooth and rough channel flows were conducted at a similar Reynolds number and roughness
height. They initially performed measurements using a hot wire anemometer over a smooth
channel flow, then non-staggered square rods were placed on both walls to achieve the desired
roughness height. A visual comparison between the wall-modeled rough channel flow and
experimental study of Krogstad et al. (2005) in Fig. 7.3a indicates a good prediction of the
mean velocity profile in the outer region for the rough case, while the mean velocity in the
near-wall region is over-predicted. This deviation is inherent in the wall-modeling, and it was
discussed earlier in the simulation of wall-modeled channel flows in Chapter 4. The downward
mean velocity shift in the logarithmic region is ∆U+ = 7.8, which is shown with a dashed
line. Nikuradse (1950) suggested a value of ∆U+ = 8.5 for a fully rough pipe flow whereas
Schlichting (1936) used ∆U+ = 8.0 for a fully rough boundary layer. The experimental
study of Krogstad et al. (2005) also provides ∆U+ = 8.7 for the rough channel flow. Using
Colebrook’s correlation as shown in Eq. 7.22 gives ∆U+ = 7.4 for the corresponding roughness

112



(a) Inner coordinates (b) Outer coordinates

Figure 7.3: Mean velocity profile of the wall-modeled channel flow with roughness on both
walls at Reτr = 615 with k+

s = 62; smooth WMLES at Reτr = 655, dashed line; Krogstad
et al. (2005) at Reτr = 600 with k+

s = 63, r; Krogstad et al. (2005) at Reτs = 670, 4; log law
for the smooth test case, κ = 0.4 and B = 5.0; the location of the matching point is shown
with a dotted line.

height. Fig. 7.3b shows the mean velocity profile in outer coordinates, and no significant
discrepancy is observed between the WMLES profile and experiments.

The rms of the velocity fluctuations and Reynolds shear stress profiles across the channel
are shown in Fig. 7.4 and compared to the experimental data of Krogstad et al. (2005). The
velocity fluctuations are well predicted, although a slight deviation is observed at the center
of the channel. The accuracy of the predictions decreases in the near-wall region due to the
inconsistency between the SGS requirements and grid resolution. The Reynolds shear stress(
u′v′

+) matches the experimental profile in most regions, with a deviation observed in the
wall region. The profiles of v′+rms and u′v′+ indicate a gradual decrease in magnitude when
moving towards the wall. This feature relates to the wall-normal velocity, which experiences
the no-penetration boundary condition at the wall directly.

The next set of results in this section were obtained from a turbulent channel flow at a
higher Reynolds number of Reτr = 2080 with k+

s = 62. The mean velocity profiles of case
B2 are presented in Fig. 7.5. The results are compared with the velocity distribution of the
standard k − ε turbulence model modified by Suga et al. (2006) using an analytical wall
function. A small difference is observed between the WMLES profile and k − ε model. The
mean velocity profile is shifted upward which can be due to under-estimating the friction
velocity over a rough surface. For the smooth case, the mean velocity profile is in good
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Figure 7.4: Velocity fluctuations and Reynolds shear stress in a channel flow at Reτr = 615
with k+

s = 62. Symbols: experiments by Krogstad et al. (2005), solid lines: WMLES. The
profiles of w′+rms and u′

+
rms are shifted up by 0.5 and 1.0 for clarity, respectively.

agreement with the DNS results of Hoyas and Jiménez (2006) at Reτ = 2000. The mean
velocity is shifted downward by ∆U+ = 6.6 which is somewhat lower (11%) than the value
obtained from Colebrook’s correlation, i.e. ∆U+ = 7.4. A part of this discrepancy relates to

Figure 7.5: Mean velocity profile of the rough channel flow at Reτr = 2080 with k+
s = 62;

smooth WMLES at Reτs = 1970, dashed line; Suga et al. (2006) at Reτr = 2580 with
k+

s = 63, m; Hoyas and Jiménez (2006) at Reτs = 2000 with smooth walls, thin solid line;
matching point, dotted line.
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the under-estimation of the friction velocity uτr for the rough wall.

7.7 Wall-modeled Turbulent Flow in Asymmetric Rough
Channel

Cases C1 and D1 represent asymmetric channel flows with roughness on the bottom and a
smooth wall at the top of the computational domain. The wall-modeling is applied to both
boundaries to estimate the wall shear stress. Fig. 7.6 shows the mean velocity distribution
for both cases in wall coordinates. The experimental results of Burattini et al. (2008) are also
shown with symbols. Measurements were performed over a channel flow with roughness on
one wall, where the height of transverse square rods is 10% of the channel half-height, using a
hot wire anemometer. Case C1 predicts the mean flow field of the asymmetric channel flow at
Reτr = 640 with k+

s = 62 whereas case D1 is the asymmetric channel flow at Reτr = 1160 with
k+

s = 112. For each test case, an additional simulation with smooth walls is calculated using
the same flow domain and pressure gradient (as a pressure-driven flow problem) to obtain the
mean velocity shift in the logarithmic region. A slight over-prediction of the mean velocity
profiles is observed over the rough wall. The mean velocity shift is found to be ∆U+ = 8.4
for case C1 and ∆U+ = 9.8 for case D1, which is shown with a dashed line for each case.
The corresponding values obtained from Colebrook’s correlation (Eq. 7.22) are 7.4 and 8.8,
respectively. Although the rough WMLES profile closely follows the experimental profile in
Fig. 7.6a, a higher value is found for the shifted mean velocity ∆U+ compared to case A2. It
can be concluded that not only does the effective roughness height affect the mean velocity
shift, but also the presence of roughness over one wall or both walls. The ratio of the friction
velocity for the rough wall to that for the smooth wall is shown in Table 7.2. Burattini et al.
(2008) obtained uτr/uτs = 1.44 for an experimental rough channel flow at Reτr = 640 and
1.48 for a rough channel flow at Reτr = 1160. There is no significant difference between the
ratios obtained from experiments and corresponding values for cases C1 and D1.

The mean velocity profiles of cases C1 and D1 in outer coordinates are shown in Fig. 7.7
while the profiles are displaced towards the smooth wall by the rough wall. Note that the
mean velocity distribution is over-predicted in the outer layer, although the profiles are in
good agreement with the experimental results of Burattini et al. (2008). The location of
the maximum streamwise mean velocity across the channel is yu/δ = 1.24 and 1.28 for cases
C1 and D1, respectively. These values are 6.0% in the case C1 and 3.8% in the case D1 off
the experimental values reported within the experimental study of Burattini et al. (2008).
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Table 7.2: Summary results for symmetric and asymmetric rough channel flows using the
wall-modeling.

Case Reτr = δuτr/ν Reτs = δuτs/ν k+
s ∆U+ uτr/uτs yu/δ T+ δt+

A2 615 655 62 7.8 - 1.0 19 900 0.97
B2 2080 1970 62 6.6 - 1.0 42 200 2.14
C1 640 420 62 8.4 1.47 1.24 36 200 1.81
D1 1160 760 112 9.8 1.53 1.28 47 000 2.35

(a) Case C1 (b) Case D1

Figure 7.6: Mean velocity profile of asymmetric channel flows for (a) case C1 at Reτr = 640
with k+

s = 62, and (b) case D1 at Reτr = 1160 with k+
s = 112; the location of the matching

point is shown with a dotted line.

Recall that the grid resolution implemented in the wall-modeled simulations is much lower
than used the DNS references to fully resolve the flow structures (Lee and Moser, 2015). The
profile for case D1 at Reτr = 1160 indicates a better prediction in contrast to case C1 at
Reτr = 640. This reconfirms that the performance of the wall-modeling improves at higher
Reynolds numbers.

The velocity fluctuations and shear stress for cases C1 and D1 are given in Fig. 7.8.
The profiles of w′+rms and u′+rms are shifted one-half unit and one unit upward for clarity,
respectively. The symbols are experimental values of the corresponding channel flow collected
by Burattini et al. (2008). In general, all profiles indicate good agreement between the
wall-modeled numerical studies and experiments. The maximum velocity fluctuations and
Reynolds shear stresses are observed near the rough wall, while the minimum values occur
near yu, but do not coincide with it. The streamwise velocity fluctuation, u′+rms, shows an
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Figure 7.7: Distribution of mean velocity profile in asymmetric rough channel at Reτr = 640
with k+

s = 62 for case C1 and Reτr = 1160 with k+
s = 112 for case D1. The profiles for case

D1 are shifted a half unit upwards. The location of the matching point is shown with a
dotted line.

under-predication in the range 0.3 < y/δ < 1.3 for both cases, which coincides with the
over-predicted mean velocities in the same region as shown in Fig. 7.7. This implies that the
grid spacing is too coarse to capture the short wavelength’s fluctuations. However, this issue
is less at the higher Reynolds number due to the nature of wall-modeling as discussed earlier
in Section 2.1.

To further investigate the performance of the proposed wall-model, the turbulent produc-
tion and turbulence kinetic energy are considered in the following section. The turbulent
production is defined as follows (Pope, 2000):

P = −u′v′ ∂U
∂y

. (7.32)

The rate of turbulence production across the channel is shown in Figs. 7.9a and 7.9b. The
production for both cases is in good agreement with the experimental values. The maximum
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(b) Case D1

Figure 7.8: Velocity fluctuations and Reynolds shear stress in channel flows for (a) case C1
at Reτr = 640 with k+

s = 62 and (b) case D1 at Reτr = 1160 with k+
s = 112. Symbols:

experiments by Burattini et al. (2008), solid lines: WMLES. The profiles of w′+rms and u′+rms
are shifted upward by 0.5 and 1.0, respectively.

rates occur near the rough wall where a slight under-prediction is also observed, which again
improved for the higher Reynolds number test case (D1).

The turbulence kinetic energy profiles for cases C1 and D1 are shown in Fig. 7.10. The
profiles are normalized by the square of the friction velocity over the rough wall, k/u2

τr . Both
profiles demonstrate a maximum value near the rough wall while they are displaced towards
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Figure 7.9: The rate of production P normalized by δ/u3
τr for (a) case C1 at Reτr = 640 with

k+
s = 62, and (b) case D1 at Reτr = 1160 with k+

s = 112.
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the smooth wall. The k profiles match each other over most of the channel, although the
maximum turbulence kinetic energy has different values for test cases C1 and D1 depending
on the Reynolds number. The minimum of k is located close to yu. This implies that there
are some flow structures at yu which contain a portion of the total energy in the flow although
no local production occurs as was shown in Fig. 7.9.
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Figure 7.10: Turbulence kinetic energy in asymmetric rough channel flows for test cases C1
and D1.

7.8 Conclusions

The dynamic wall stress model was modified to introduce the effects of wall roughness on
the prediction of the wall shear stress. A modified mixing length was implemented for the
eddy viscosity parameter in wall-modeling. Four test cases were investigated to validate the
performance of the proposed wall model in high-Reynolds number turbulent channel flows.
For the first two test cases, a symmetric rough channel was employed to study the flow at
Reτr = 615 and 2080. For two other cases an asymmetric channel flow with roughness on the
bottom boundary and a smooth wall on the top boundary was simulated at Reτr = 640 and
1160. The solution of the mean flow field was used to study the mean velocity profile using
the inner and outer coordinates, the rms of velocity fluctuations, and the turbulence kinetic
energy. It was shown that the mean velocity profiles are in good agreement with experiments,
and the mean velocity shift for different Reynolds numbers and roughness heights was well
predicted. The location of the matching point for the wall layer should be selected according
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to the roughness height and the performance of the SGS model. For the asymmetric test cases,
the maximum velocity and minimum velocity fluctuations were displaced by approximately
25% of the half channel height towards the smooth walls. The turbulence production matched
the experimental results, and self-similarity was observed in the prediction of turbulence
kinetic energy profiles. A slight under-prediction was observed in the velocity fluctuations and
over-prediction in the mean velocity profiles. In general, the proposed dynamic wall model
shows promise for the simulation of high-Reynolds number channel flows with transitionally
to fully rough regimes using low grid resolution.
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Chapter 8

Conclusions, Contributions, and
Recommendations

8.1 Conclusions

The challenges associated with the prediction of wall-bounded turbulent flows were addressed
in this study. The length scale of the flow dynamics in the near-wall region becomes compara-
ble to the viscous length scale, which requires a much higher grid resolution. Wall-modeling
is a technique to circumvent the associated computational cost by introducing the time-
averaged effects of the flow dynamics in the wall layer to the outer region as a boundary
condition. Wall-modeling was implemented in this research to study high-Reynolds number
wall-bounded flows with a significantly lower computational cost. A coarse mesh was imple-
mented to resolve the near-wall region in the LES domain, which reduced the computational
cost. To quantify this issue, the computational memory size required for a wall-modeled
channel flow was one order of magnitude lower than the memory size for a wall-resolved
channel flow at a moderate Reynolds number. For the specific flow considered, the reduc-
tion of CPU-hours of computation was even greater due to the performance of CPU cores
in performing large computational tasks. However, the significance of wall-modeling was in
high Reynolds numbers, and the advantages were problem and hardware specific. The coarse
mesh was inconsistent with the requirements of an SGS model. This resulted in an unreliable
prediction of the flow characteristics below the matching point by the LES. Fully developed
channel flows were tested using the WMLES over a wide range of Reynolds numbers. The
results showed that the performance of wall-modeling improved at higher Reynolds numbers.
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The next step of this research considered the simulation of ZPGTBLs. Beginning the
simulation of TBLs from the leading edge presents another challenge. When the focus is on
the prediction of the flow characteristics in the turbulence regime, resolving the flow field
from the leading edge is unnecessary. This issue was addressed by adopting a recycling
rescaling inflow generation method to introduce realistic turbulence at the inlet of the flow
domain. In the outer region, self-similarity was observed in the mean velocity profile of TBLs
at moderate to high Reynolds numbers. The numerical results were compared with experi-
mental studies. The mean velocity profiles collapsed well across the boundary layer using a
modified scaling law. Furthermore, a promising prediction was observed for the skin-friction
coefficient using wall-modeling. Over a wide range of Reynolds numbers, the wall-modeling
represented a reliable method to estimate the skin-friction coefficient, based on comparisons
to experiments and empirical correlations. Comparing different flow characteristics, such as
the mean velocity profile and velocity fluctuations, indicated that the grid resolution inside
the boundary layer and above the matching point should be consistent with the length scale
of the energy-containing flow structures.

The flow structures above a rough wall are affected by the shape and height of the roughness
elements. The effects of roughness become more significant at higher Reynolds numbers since
the viscous length scale decreases with increasing Reynolds number. However, resolving the
roughness elements in a high-Reynolds number flow is accompanied at a high computational
cost. This research included the effects of roughness in wall-modeling. The eddy viscosity
was modified for roughness by adding a correction to the damping function. The rough
wall model was studied for symmetric and asymmetric rough channel flows over a range
of Reynolds numbers. The results were compared with experimental measurements of the
mean velocity profile and velocity fluctuations. Good agreement was obtained between the
WMLES and experiments, and the roughness shift in the mean velocity was verified with
experimental data.

8.2 Major Contributions

The first objective of this research focused on the performance of wall-modeling in predicting
the flow characteristics in the wall layer. The time averaging and temporal filtering schemes
implemented in the wall-modeling made the wall layer more responsive to the flow structures
in the outer layer. It appeared that use of a time period smaller than the convective time
scale for averaging the wall layer resulted in a more responsive wall layer, which reduced
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the mismatch of the mean velocity profile. Filtering the input from the LES domain to the
wall layer improved the results by removing fluctuations at high frequencies, which could
lead to an under-prediction or over-prediction of skin friction. A time scale comparable to
the turbulent diffusion time scale for filtering the input from the LES domain improved the
prediction of wall shear stress. The present study showed that the role of temporal filtering
is more crucial when the matching point is located at the first node near the wall. However,
using a higher location for the matching point mitigated the log-layer mismatch. The wall-
modeling also indicated the potential for the prediction of the mean velocity profile in the
wall layer instead of using the result obtained from the LES.

The simulation of TBLs presented the challenge of defining proper boundary conditions to
stabilize the numerical solution and avoid unphysical instabilities. Using a rescaling method
to generate realistic turbulence at the inlet boundary created a strategy to reduce the size
of a computational domain. This promised faster simulations in the study of high-Reynolds
number boundary layers with a lower computational cost. Analysis of the grid resolution
revealed that additional layers of grid points are required near the outflow boundary to
prevent unphysical oscillations for a wall-modeled TBL. In the inner region, replacing a well-
refined mesh with a coarse one occurred at the cost of losing accurate predictions of the mean
flow field, which is essential for the recycling rescaling inflow generation method. In contrast,
the results of wall-modeling showed potential for a better prediction of the mean velocity
profile inside the wall layer. It was also shown that the logarithmic law might need a lower
value for the von Karman coefficient at higher Reynolds numbers.

Wall roughness is a common characteristic of wall-bounded turbulent flows. Since the focus
of this research was on the prediction of high-Reynolds number flows using a wall stress model,
the effects of roughness were included in the context of wall-modeling. The main outcome
of a wall stress model is the wall shear stress. However, the wall shear stress cannot be
calculated using the mean velocity gradient at the wall. Instead, a linear extrapolation of the
total shear stress in the wall layer and above the roughness height was used to estimate the
wall shear stress at the wall. The results showed that the proposed dynamic non-equilibrium
wall model is able to capture the flow dynamics in a rough channel flow at high Reynolds
numbers.
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8.3 Future Work

The proposed wall-model, which includes the effects of surface roughness, was tested on
turbulent channel flows at high Reynolds numbers. Although promising results were obtained,
limited Reynolds numbers and roughness heights were studied. It would be of interest to
apply the proposed wall model to a rough TBL (Schultz and Flack, 2007; Squire et al., 2016).
Note that the simulation of TBLs is accompanied by challenges at the inlet boundary. The
conventional rescaling methods are dependent on estimating the friction velocities on smooth
flat plate boundary layers. Hence, the rescaling inflow generation requires some modifications
as studied by Cardillo et al. (2013) and Yang and Meneveau (2016). Then, the wall model can
be implemented in the simulation of high-Reynolds number boundary layers for a wide range
of roughness heights. The roughness elements are replaced with an equivalent sand-grain
roughness or k-roughness in the proposed wall model. However, a distribution of multiscale
roughness heights is observed in many flows such as the formation of turbulent boundary
layers over fractal-like rough surfaces in geophysics (Anderson and Meneveau, 2011). The
proposed wall model has the potential to be developed into an innovative model that resolves
dynamic wall roughness.

Boundary treatment is the main challenge in the simulation of TBLs. The boundary con-
ditions at the top of a computational domain were briefly discussed in this research. Defining
proper boundary conditions at the top depends on the flow conditions. For compressible
flows, a non-reflective sponge layer has been developed to absorb turbulent fluctuations and
any reflections from the top boundary (Mani, 2012). Non-physical oscillations at the top
boundary also have the potential to contaminate the entire computational domain in an
incompressible flow. The height of the flow domain can increase to avoid the penetration
of unphysical oscillations at the top into the freestream region, which on the other hand,
results in a higher computational cost. This issue indicates the need for more exploration
of top boundary conditions to balance the risk of a contaminated flow domain against the
corresponding high computational costs. This study focused on the computationally efficient
simulation of ZPGTBLs; however, non-zero pressure gradient TBLs are of interest to a wide
range of researchers. TBLs with adverse and favourable pressure gradients are accompanied
by a variable freestream velocity, thus they require a different top boundary treatment (Na,
1996; Lee et al., 2010). In the simulation of non-zero pressure gradient TBLs, the chal-
lenges in boundary conditions are not restricted to the top boundary. The recycling rescaling
method should be adapted to a non-zero pressure gradient condition (Araya et al., 2011).
Hence, it is required to develop a strategy to integrate the recycling rescaling method with
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the wall layer modeling in the simulation of more complex high-Reynolds number TBLs.

The WMLES employs a coarse grid and is unable to resolve unfiltered small-scale flow
structures in the wall region. However, hairpin vortices are important flow structures in wall-
bounded turbulence, and they have been investigated in several recent studies (Perret and
Kerhervé, 2019). The transition of energy-containing vortical flow structures in the wall layer
to the logarithmic law region and above can be investigated in terms of the grid resolution
used in WMLES. The turbulent energy is produced in small-scale motions near the wall and
transported towards large-scale motions at the edge of the boundary layer. This creates
a strong relationship between the velocity fluctuations close to the wall and turbulent/non-
turbulent interface (TNTI) large-scale motions. Investigation of the interface morphology and
velocity fluctuations near the interface including their correlation with large-scale motions
can advance our knowledge of TBLs. An amplitude modulation analysis revealed that the
large-scale motions in the outer layer affect the near-wall small-scale flow dynamics (Mathis
et al., 2009). The amplitude modulation was also employed in an experimental study to
estimate the instantaneous wall shear stress (Mathis et al., 2013). The amplitude modulation
indicates the potential for developing an innovative wall model that predicts the wall shear
stress without resolving or modeling the flow dynamics in the wall layer. Aligned with
the amplitude modulation, the POD analysis is a powerful tool to extract the signature of
energetic large-scale motions in the outer layer and at the TNTI.

Wall-modeling has been used in the simulation of turbulent boundary layers and channel
flows. However, there is a strong desire to circumvent resolving the wall layer and focus on
large-scale eddies far from the wall in more complex geometries, such as the wake region
of a bluff body or the recirculation region of a backward facing step flow. Another wall-
bounded flow that has the potential to employ wall-modeling is the plane turbulent wall jet.
The driving potential is the jet exit momentum, and the inner layer resembles a boundary
layer that interacts with a free shear flow in the outer region. The jet spread in the inner
layer contributes momentum to the wall layer in addition to the inputs for the top boundary
of the wall layer. The proposed dynamic non-equilibrium wall-model, which considers the
convection and pressure gradient, would need to incorporate the jet momentum in resolving
the wall layer.
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Appendix A

Subgrid Scale Models

A.1 Smagorinsky Model

The SGS stress tensor, also known as the residual stress tensor, can be decomposed into
anisotropic and isotropic components as follows:

τ ∗ij = τ rij + 2
3δijk, (A.1)

where τ rij is the anisotropic residual stress, and k is the kinetic energy of the residual motions.
Smagorinsky (1963) described the anisotropic residual stress by an analogy to the eddy
viscosity model and the mixing length hypothesis as follows:

τ rij = −2 νr S̃ij, (A.2)

where

νr = `2
s |S̃|

= (CS∆)2 |S̃|,
(A.3)

where `s is the Smagorinsky length scale, CS is the Smagorinsky coefficient, and ∆ is the
filter width. |S̃| is the characteristic rate of strain, and it is estimated by

|S̃| =
√

2S̃ijS̃ij,

S̃ij = 1
2(ũi,j + ũj,i).

(A.4)
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The only unknown parameter in the estimation of the residual stresses is the Smagorinsky
coefficient (CS). Note that the LES approach is specifically developed for large-scale turbulent
structures. Applying the filter width to the inertial subrange, CS = 0.17 is implemented
in the simulation of homogeneous isotropic turbulence (Pope, 2000). However, there are
limitations in the application of this value. For turbulent flows with the filter width in the
dissipative range, the estimated value for the Smagorinsky coefficient decreases to CS = 0.13.
In opposite, when the filter width is very large, the Smagorinsky length `s tends towards
the mixing length. In laminar flows, the appropriate value for the Smagorinsky coefficient is
CS = 0 since the residual stresses are zero. Hence, it is difficult to specify a generic empirical
value for the Smagorinsky coefficient applicable to all flow geometries.

A.2 Dynamic Smagorinsky Model

The Smagorinsky model was unable to adjust CS at different flow regimes, which led to the
development of a dynamic model. The dynamic model locally adapts CS based on the physics
of the flow. Germano et al. (1991) proposed a method that dynamically computes CS based
on an algebraic identity between two different grid resolutions, i.e. a resolved grid level and
a test-grid level. The grid spacing in the test-grid level is usually twice larger than that of
the resolved grid level. The anisotropic part of the residual stresses is now described at two
gird levels as follows:

τ ∗ij −
1
3δijτkk = −2CS∆̃2|̃S|Sij, (A.5)

T ∗ij −
1
3δijTkk = −2CS

˜̂∆2
|̃Ŝ|Ŝij, (A.6)

where T ∗ij is the residual stress at the test-grid level, and ˜̂. indicates the filtered parameter at
the test grid-level. The Germano identity is defined based on the differences between Eq. A.5
and Eq. A.6 as follows:

Lij = T ∗ij − τ ∗ij = CSMij,

Mij = −2( ˜̂∆2
|̃Ŝ|Ŝij − ∆̃2|̃S|Sij).

(A.7)

By multiplying two sides of Eq. A.7 by S̃ij, the Smagorinsky coefficient is described as

CS = 1
2
LijS̃ij
MijS̃ij

. (A.8)
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This dynamic model not only does exhibit an appropriate asymptotic behavior near the solid
surfaces but accounts for the backscatter as well since CS can take negative magnitudes.
One drawback for the proposed method is the unclear physical meaning of Eq. A.8 when the
denominator vanishes or becomes so small as to lead to an unstable coefficient CS. Later,
Lilly (1992) modified this model by applying a least squares approach and minimizing the
errors. The square of error can be estimated by

Q = (Lij − 2CSMij)2, (A.9)

and setting ∂Q/∂CS = 0 results in a modified correlation for the Smagorinsky coefficient,

CS = 1
2
LijMij

MijMij

. (A.10)

In contrast to Eq. A.8, the denominator of Eq. A.10 vanishes only when each of the five
independent components of Mij becomes zero. However, the dynamic models are associated
with a few drawbacks like the risk of numerical instability due to excessive backscatter or
assuming equilibrium between production and dissipation of the SGS turbulence kinetic
energy.

A.3 Dynamic Nonlinear Subgrid Scale Model

Wang and Bergstrom (2005) proposed a dynamic nonlinear model (DNM) based on an ex-
plicit nonlinear tensorial polynomial constitutive relation. The DNM is based on analogies
with non-Newtonian fluids for closing the Reynolds stress model in the RANS turbulence
modeling. There are eleven independent tensorial elements pertaining to the products of the
rotation rate. However, only four components are implemented in the DNM to avoid the high
computational cost and complexity of the algorithm. The DNM also improves the unrealistic
effects of the SGS dissipation due to the restriction on the model coefficient to be positive.
The dynamic nonlinear subgrid scale model estimates the residual stresses based on both the
symmetric (strain rate) and asymmetric (rotation rate) parts of the filtered velocity gradient
as follows:

τ ∗ij = −CSβij − CWγij − CNηij, (A.11)

and the residual stress tensor at the test-grid level is

T ∗ij = −CSαij − CWλij − CNζij. (A.12)
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The new tensor notations are defined as

βij = ∆̃2 |̃S|Sij,

γij = 4∆̃2(S̃ikΩ̃kj − Ω̃ikS̃kj),

ηij = 4∆̃2(S̃ikS̃kj −
1
3 S̃mnS̃nmδij),

αij = ˜̂∆2 |̃Ŝ|Ŝij,

λij = 4˜̂∆2( ˜̂Sik ˜̂Ωkj −
˜̂Ωik

˜̂
Skj),

ζij = 4˜̂∆2( ˜̂Sik ˜̂Skj − 1
3
˜̂
Smn

˜̂
Snmδij).

(A.13)

where Ωij represent the rotation rate with the correlation of Ωij = 1
2(ui,j−uj,i). Substituting

Eqs. A.11 and A.12 into the Germano identity equation (Lij = T ∗ij − τ ∗ij) and using the least
squares approach developed by Lilly (1992), the coefficients CS, CW , and CN are determined
by solving the following matrix:

MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij

 .

CS

CW

CN

 =


LijMij

LijWij

LijNij

 , (A.14)

where Wij = λij − γij and Nij = ζij − ηij.
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