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Abstract

Due to the lack of conventional drainage systems on the Canadian Prairies, when excess water runs off

the landscape because of the snow-melt and heavy rainfall, the water may be trapped in surface depressions

ranging in size from puddles to permanent wetlands and may cause local flooding. Hydrological processes play

an important role in the Canadian Prairies regions, and using hydrological simulation models helps people

understand past hydrological events and predict future ones. In order to obtain an accurate simulation, higher-

resolution systems and larger simulation areas are introduced, and those lead to the need to solve larger-scale

problems. However, the size of the problem is often limited by available computational resources, and solving

large systems results in unacceptable simulation durations. Therefore, improving the computational efficiency

and taking advantage of available computational resources is an urgent task for hydrological researchers and

software developers. The Wetland DEM Ponding Model (WDPM) was developed to model the distribution of

runoff water on the Canadian Prairies. It helps determine the fraction of Prairie basins contributing flows

to stream while these change dynamically with water storage in the depressions. In the WDPM, the water

redistribution module is the most computationally intensive part. Previously, the WDPM has been developed

to run in parallel with one CPU or one GPU that makes the water redistribution module more efficient. Multi-

device parallel computing is a common method to increase the available computation resources and could

effectively speed up the application with an appropriate parallel algorithm.

This thesis develops a multiple-GPU parallel algorithm and investigates efficient data transmission meth-

ods compared to the CPU parallel and one-GPU parallel algorithm. A technique that overlaps communication

with computation is applied to optimize the parallel computing process. Then the thesis evaluates the new

implementation from several aspects. In the first step, the output summary and the output system are com-

pared between the new implementation and the initial one. The solution shows significant convergence as the

simulation processes, verifying the new implementation produces the correct result. In the second step, the

multiple-GPU code is profiled, and it is verified that the algorithm can be re-organized to take advantage of

multiple GPUs and carry out efficient data synchronization through optimized techniques. Finally, by means

of numerical experiments, the new implementation shows performance improvement when using multiple

GPUs and demonstrates good scaling. In particular, when working with a large system, the multiple-GPU

implementation produces correct output and shows that there is around 2.35 times improvement in the

performance compared using four GPUs with using one GPU.
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Chapter 1

INTRODUCTION

1.1 Motivation

Graphics processing units (GPUs) are a popular platform for executing general-purpose parallel applications.

With many GPU programming systems such as CUDA, OpenACC, and OpenCL, programmers can parallelize

an application into thousands of threads that execute the same code. Many applications show significant

performance improvement when working with GPUs. These applications cover various fields such as physics

(ANSYS, which simulates the interaction of liquids and gases with surfaces [4]), biological sciences (Basic

Local Alignment Search Tool, which is one of the most widely used bioinformatics tools [5]), chemistry (Vienna

Ab-initio Simulation Package, which is used for quantum mechanics and molecular dynamics simulation

[6]), and weather forecasting (The Weather Research and Forecasting Model, a numerical weather forecast

system [7]). Meanwhile, other studies have explored how to fully utilize the computation ability of GPUs.

However, obtaining peak GPU performance requires significant programming effort. In addition to some

general methods to optimize the code, programmers need to design the code such that it is compatible with

the characteristics of the underlying GPU hardware. Sometimes, this kind of extra work is necessary, but

hardware-specific algorithms require programmers to have sufficient hardware knowledge, but then at the

same time, the application’s portability is reduced. In this case, instead of designing an application that

perfectly fits a particular GPU hardware configuration, increasing the degree of parallelism is a promising

approach [8]. The focus of this thesis is parallel computing with multiple GPUs.

The Wetland DEM Ponding Model (WDPM) was developed by the Centre for Hydrology at the University

of Saskatchewan to model the distribution of runoff water on the Canadian Prairies. It helps determine the

fraction of Prairie basins contributing flows to stream while these change dynamically with water storage in

the depressions. The model has also been used to demonstrate the extent of flooding on Prairie landscapes [2].

The program was initially written in Fortran and adapted to CPU parallel computing with OpenMP. Later,

it was translated to C, and the parallel computation was implemented in OpenCL, a cross platform parallel

programming language. With OpenCL, the WDPM can ran faster and is able to run on a GPU. After this

evolution, the performance of this program improved significantly. For example, a simulation that originally

took a year to complete now only took seven weeks. Large problems require more advanced techniques that

accelerate the simulation and allow researchers to solve the problem in real time.
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This thesis investigates how the WDPM can be correctly and efficiently executed with multiple GPUs in

parallel. This thesis also applies some general GPU programming optimization methods. But as mentioned

above, fine-tuning the algorithm does not make a significant difference, and the WDPM has been well

developed for several years. So the performance improvement is mainly embodied by applying multiple-GPU

parallelism.

1.2 Contributions

Based on an existing code (WDPM version 1.0 [2]) that solves WDPM in parallel with one GPU or one

CPU, a new main loop is contributed to apply the application for one host containing multiple GPUs, and an

advanced data synchronization method is introduced to reduces the overhead and improves the performance.

All these processes are implemented with OpenCL.

The multiple-GPU parallel algorithm is developed referring to the CPU parallel and GPU parallel methods

applied to WDPM. The correctness of this parallel method is verified by evaluating the output summaries

and the errors of multiple-GPU output maps. A more efficient data synchronization method was worked

out to overlap the data communication with computation. The experiments that test the running time of

working with different numbers of GPUs (up to four) when solving problems of different scales are performed

to evaluate the performance of the new implementation. It is observed that for the small system (about

500×500), using multiple GPUs actually makes the performance worse, around 1.69 times slower when using

2 GPUs compared with using 1 GPU. But as the scales of the problems increase, using multiple GPUs shows

better performance. For a system of approximate size 2500×3000, the maximum speedup is 1.61 when using

2 GPUs. For a system of approximate size 4500×4500, the maximum speedup is 1.92 when using 3 GPUs.

For a system of approximate size 6000×6000, the maximum speedup is 3.1 when using 4 GPUs. These results

verify the significant performance improvement of running the WDPM on multiple GPUs, and they further

prove the good scaling of the new implementation. As a result, it can be expected that the performance

improvement would be more significant when the systems become even larger.

1.3 Outline

The remaining parts of this thesis are organized as follows. Section 2 introduces some background knowledge

This section includes the literature review about CPU and GPU computing technique, the knowledge about

programming and hardware architecture, and the numerical methods related to the WDPM. Chapter 3

discusses in detail the parallel computing algorithm and digs into the GPU computing optimization for

WDPM. Chapter 4 demonstrates the results and does performance analysis. Finally, Chapter 5 concludes

and discusses future research directions.
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Chapter 2

Background Knowledge

2.1 ArcGIS

ArcGIS is a geographic information system (GIS) that works with maps and geographic information main-

tained by the Environmental Systems Research Institute (ESRI). It has wide applications in creating and

using maps, compiling geographic data, analyzing mapped information, and discovering geographic informa-

tion. A GIS file contains a system that recognizes the raster graphics pixel as the smallest individual grid

unit building block of an image [9]. Also, the system size, default value of the non-observation point, and

pixel size are described in the title of the GIS file. Digital elevation models (DEMs) are geospatial datasets

that contain elevation values sampled according to a regularly spaced rectangular grid [10]. A DEM can be

stored in several different formats, such as a GIS file. Figure 2.1 shows a sample DEM (Digital Elevation

Model) rasters in GIS that present the elevations of terrain.

Figure 2.1: Sample GIS file: basin5.asc.

WDPM needs a DEM file and a “water” file as inputs that show the ground elevation and water depth

separately. The combination of these two files roughly draws the water distribution of a prairie area. In

Figure 2.2, yellow is the ground area, blue is the water coverage area, and black is the non-observation area.

The non-observation area refers to the points for which no ground elevation is given and to which no water

is added.

The study was conducted in the Smith Creek Research Basin (SCRB), located in southeastern Saskatchewan,

Canada, approximately 60 km southeast of Yorkton, SK. The basin area is 393.4 km2 and is relatively flat

with slopes fluctuating from 2% to 5% and elevation ranging from 490 m to 548 m [11]. There are five

sub-basins (from “basin1” through “basin5”) in this area. The thesis mainly focuses on three sub-basins of

different sizes (“basin1”, “basin4”, and “basin5”). The sub-basin names and the system scales are shown in

3



Figure 2.2: Input visualization

Table 2.1. The “smithcreek_dem1m_sb5.asc” is the same area as the “basin5.asc” but with higher resolution.

Also, a DEM system outside the SCRB, which is larger than all the sub-domains in the SCRB, is introduced

to provide a large enough experiment sample. Thus, the performance efficiency of the new implementation

can be better investigated.

Table 2.1: Input System

System Size

basin5.asc 482×471

basin4_5m.asc 2520×1833

culvert_basin1_5m.asc 3794×3986

smithcreek_dem1m_sb5.asc 4712×4826

patched.asc 5877×5519

2.2 Wetland DEM Ponding model

The purpose of the WDPM is to model the spatial distribution of runoff water on the Canadian Prairies

based on an input DEM system [11], where the DEM is a 3D computer graphics representation of elevation

data to represent terrain, commonly of a planet (e.g., Earth). Because of the recent post-glacial history, the

Canadian Prairies do not have a conventional drainage system [2]. When excess water runs off the landscape,

generally due to snow-melt in the spring, it may be trapped in surface depressions ranging in size from

puddles to permanent wetlands and may cause local flooding [2]. The WDPM simulates this precipitation,

snow melting, evaporation, and drainage system, and it produces the final water distribution map as the

4



output.

The WDPM has also been introduced to the Land and Infrastructure Resiliency Assessment (LIRA)

project to provide improved flood hazard information for Prairie landscapes and the application of the WDPM

to LiDAR (Light Detection and Ranging) DEMs have been particularly useful for Prairie landscapes where

filling of wetlands is a dominant factor contributing to flooding [12]. The accuracy of spatially distributed

runoff information has been verified against ground and aerial photographs, remote sensing imagery, and

most importantly community stakeholder experience [13]. By now, at least four LIRA case studies have

been successfully completed that show the value of this simple, spatially focused approach to assessing flood

hazards across wetland dominated landscapes [13].

There are three modules in WDPM (“add”, “subtract”, and “drain”). The combination of these modules

simulates how water routes in a prairie after rainfall or snow-melt. The input of the WDPM is a rectangle

raster system (GIS file), and the elevations of the territory are written in the grid points of the system. The

non-observation points in the system are given a no-data value. For example, the no-data value of the system

shown in Figure 2.1 is -99999. In WDPM, no water depth is added to the non-observation area, and water

does not flow to non-observation grid points either. Therefore, the non-observation area plays the role of a

dam that prevents water from leaking out of the map.

The “add” module simulates rainfall and snow-melt by adding a specific depth of water to the input DEM

system, and a runoff fraction can also be set to simulate water infiltration to the soil. In most cases, the “add”

module can simulate this process and produce the final water distribution maps to meet the requirements. A

water redistribution algorithm is performed to route the water from high elevation to low elevation, making

the water surface smooth in the DEM system. However, in some situations, the “add” module cannot finish

the simulation itself. If a stream or river runs through the target territory, the “add” module routes the water

to the stream channel. As mentioned before, water does not flow to the non-observation area, which makes

the edge of the territory act as a dam. Therefore, the water in the river or stream cannot flow out of the

territory, and the water is backed up over the landscape. However, after heavy rainfall, water should flow

out of the landscape through the river instead of being stored in it. In this case, the “drain” module always

follows after the “add” module to simulate the drain system.

The “drain” module simulates water runoff from a stream or river by removing water on the DEM system

from the lowest point at each iteration. In this way, it can gradually drain backed-up water away [2]. There-

fore, the combination of the “add” and the “drain” modules achieves a more realistic simulation. However,

the “drain” module needs to move a large volume of water over a long distance, so this module usually takes

the longest time to execute.

The “subtract” module simulates water evaporation by subtracting a specific depth of water. This module

typically takes the shortest time to finish because a minimal spatial redistribution of water is usually required.

It is worth mentioning that the “subtract” module is not the reverse of the “add” module. In the WDPM,

each module is performed sequentially. When performing the “add” module, a specific depth of water is
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added to all the cells in the input system (except the non-observation points) at first, and an initial system is

produced. Then the WDPM iterates to redistribute the water until the water surface is smooth. Finally, an

output system is produced. In this case, performing the “subtract” module removes a specific depth of water

from the output system of the previous “add” module, not the initial system. So for example, if 10 mm of

water is added to a DEM in the “add” module, the original water file cannot be obtained by deleting 10 mm

of water with the “subtract” module.

2.3 Relevant Hydrological Models

2.3.1 D8 Algorithm

The D8 method is widely used and implemented in many GIS software packages [14]. It assumes that the

water in a cell can only flow into the eight adjacent cells. It uses the steepest slope method to determine the

direction of water flow. For example, on a 3×3 DEM grid, it calculates the distance drop between the center

grid point and each adjacent grid point. The grid point with the largest distance drop is the outflow grid

point. In practice, for the neighbor cells with direction coding 1, 4, 16, and 64, the water distance drop is

equal to the water level difference between the center cell and the neighbor cell. For the neighbor cells with

direction coding 2, 8, 32, and 128, the water distance drop is computed by the water level difference divided

by
√
2. The principle of the so-called steepest gradient method assumes that the surface is impervious to

water, and the rainfall is uniform [15]. Then, the water on each grid point always flows to the lowest place.

At present, one of the most widely used technology is watershed feature extraction based on flow direction

analysis and confluence analysis. Jenson and Domingue [16] designed an algorithm utilizing this technique.

The algorithm includes three processes: flow direction analysis, confluence analysis, and watershed feature

extraction.

Flow direction analysis determines the water flow direction for each cell. It uses eight numbers to represent

the direction. So given a water level matrix, there is a corresponding direction matrix shown in Figure 2.3

[17].

In this step, there are some special situations that need to be considered, for example, “depression”

and “flat” in the DEM. A “depression” means that the elevation of a certain cell is lower than that of its

neighboring cells. This phenomenon happens when the river valley width is smaller than the size of one pixel;

this commonly occurs in the basin’s upper reaches. “Flat” ground means that the adjacent eight units have

the same elevation. This situation happens because the size of the pixel is too small or the terrain of the

area is flat. These two phenomena are quite common in DEMs. Before the flow direction analysis, the DEM

needs to be filled to change the “depression” to “flat” and determine the “flat” flow direction by a complex

set of iterative algorithms [16]. This thesis does not study this algorithm in-depth because the Shapiro

and Westervelt Algorithm (SW algorithm) is used in the WDPM. Unlike D8 drainage, the SW algorithm is

iterative, and this is more suitable for parallel programming [11]. More information about the D8 algorithm
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can be found in [16].

Figure 2.3: D8 algorithm

2.3.2 Shapiro and Westervelt Algorithm

The WDPM is a fully distributed model of wetland storage and runoff that was described by Shook and

Pomeroy [18]. The model finds the final spatial distribution of excess precipitation (water) evenly applied

over a LiDAR-based DEM using the iterative algorithm of Shapiro and Westervelt [19]. Different from the

D8 algorithm, the SW algorithm allows water in the center cell to flow to its eight neighbors. Figure 2.4

visually shows this water redistribution method, where “DEM” refers to the ground elevation and “WATER”

refers to the water depth.

Figure 2.4: SW algorithm [2]

Using the notation shown in Table 2.2, the SW algorithm is described in Algorithm 1. As shown in Figure

2.2, there is non-observation area in the input system that is outside the Smith Creek region. The WDPM

does not do any computation on non-observation points. So if a center cell is a non-observation point, the

WDPM skips this point and computes the next point. If a neighbor cell is a non-observation point, the SW

algorithm does not move water from the center cell to it.
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At each iteration, the algorithm is imperfect because the depth of water transferred may result in an

inaccurate representation of the final water surface. However, over thousands of iterations, the movement of

water results in a realistic water surface [2]. In WDPM, the user-specified elevation tolerance determines the

degree of convergence of the simulation. The algorithm runs 1000 iterations without interruption. After that,

it calculates the maximum water level difference between two consecutive iterations. If this value is larger

than the elevation tolerance set by the user, it moves on to the following 1000 iterations. The termination of

the algorithm occurs when the maximum change of the water level is smaller than the elevation tolerance [12].

Compared with the water redistribution method used by other hydrology applications, the SW algorithm

does not have strong competitiveness in terms of computational efficiency because the water level changes

are small at each iteration, resulting in slow convergence. A significant advantage of WDPM is it allows

out-of-order calculations, and this is a good feature for parallel computing.

Table 2.2: Notations in the Algorithm

Notation Meaning

N0 The center cell

Ni The eight neighbor cells

Ewc The center cell water elevation

Ewni The neighbor cell water elevation

Edc The center cell DEM elevation

Dwc The center cell water depth

Algorithm 1 SW algorithm
if N0 6= missingvalue then

for Ni from N1 to N8 do

if (Ewc > Ewni) AND (Ni 6= missingvalue) then

if Edc > Ewni then

move 1
8Dwc to Ni

else

move 1
8 (Ewc − Ewn) to Ni

end if

end if

end for

end if
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2.4 GPU Computing with OpenCL

C

2.4.1 GPU Computing

In GPU computing, the CPU offloads some of the compute-intensive and time-consuming portions of the code

to the GPU. In contrast, the rest of the application still runs on the CPU. The application runs faster from

a user’s perspective because it uses the GPU’s massively parallel computing power to boost performance. A

typical contemporary CPU consists of four to eight CPU cores, whereas a typical contemporary GPU consists

of thousands of smaller cores. This massively parallel architecture is what gives the GPU its high compute

performance [5].

In this thesis, most of the GPU programming and simulations are completed on the Cedar compute cluster

of Compute Canada that is equipped with 4 NVIDIA Tesla P100 GPUs. By introducing the specification of

this GPU product (shown in Table 2.4), the hardware architecture and the theoretical peak performance of

the GPU are further discussed.

Figures 2.5 is a diagram of a Stream Multiprocessor (SM) in the Tesla P100. SMs are the part of the

GPU that runs the CUDA kernels. Each SM contains thousands of registers that can be partitioned among

threads of execution and several caches that provide shared memory for fast access between GPU threads.

Thousands of computation kernels (which do integer and floating-point computation), LDUs (Load-Store

Units), and SFUs (Special-Function Units) are also included. The Texture / Processor Cluster is a group

made up of several SMs, a texture unit, and some logic controls. The Tesla P100 has 3584 shared FP32 /

INT32 CUDA cores and 1792 FP64 CUDA cores in total.

Table 2.3: Abbreviation in the Equation

IPC instructions per cycle

TPC transfers per cycle

IPS instructions per second

FPI floating-point operations per instruction

Then according to the abbreviations defined in Table 2.3, the data list in Table 2.4, and the relevant

formula (described in Chapter C-2 in [20]), the peak FP64 instruction throughput of the Tesla P100 is

1 IPC× 1480 MHz× 1792 cores ≈ 2.68× 1012 IPS. (2.1)

Because two FLOPs are processed in one instruction, the peak performance of FP64 can be computed as

2.68× 1012 IPS× 2 FPI = 5.36 TFLOPs. (2.2)
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Finally, the peak memory bandwidth for the Tesla P100 can be computed as

2 TPC× 715 MHz× 4096 bits× 1

8
bytes/bit ≈ 732.16 GB/s. (2.3)

Nowadays, there are many APIs and development tools for GPU programming. CUDA is a parallel

computing platform and programming model that NVIDIA developed for general computing on its own

GPUs, the NVIDIA GPU, that is currently the GPU market leader. CUDA is a programmer-friendly GPU

programming tool that results in a relatively short development cycle in the industrial environment (compared

with OpenCL). Also relevant studies have proved that CUDA has a better performance compared with other

APIs. Kamran Karimi and Neil G. Dickson [21] compare the performance of OpenCL and CUDA when

working with a Monte Carlo simulation. They do the comparison by timing the kernel execution time and

data transfer time. The conclusion is that CUDA is 13% – 63% faster than OpenCL in kernel execution and

16% – 67% in data transfer. Tetsuya Hoshino and Naoya Maruyama [22] compare the performance of CUDA

and OpenACC. By doing experiments on fluid dynamics applications, the performance of OpenACC shows

approximately 50% lower than CUDA. CUDA and NVIDIA GPUs have been adopted in many areas that

need high floating-point computing performance, such as computational finance, climate, ocean modeling,

data science, deep learning, medical imaging, etc. The most significant limitation of CUDA is that it only

supports NVIDIA GPU. However, in the first quarter of 2020, NVIDIA takes up about 69.19% of the GPU

market share, while the remaining 30.81% is taken by AMD [23]. So CUDA is currently the most popular

GPU API.

Table 2.4: The Specifications of the NVIDIA Tesla P100 [1]

SMs 56

FP32 CUDA Cores / SM 64

FP32 CUDA Cores / GPU 3584

FP64 CUDA Cores / SM 32

FP64 CUDA Cores / GPU 1792

Memory clock 715 MHz

GPU Boost Clock 1480 MHz

Peak FP32 GFLOPs 10600

Peak FP64 GFLOPs 5300

Memory Size 16 GB

Memory Interface 4096-bit HBM2

L2 Cache Size 4096 KB

Register File Size (SM) 256 KB

OpenCL (Open Computing Language) is another widely used GPU API. Compared with CUDA, the most

significant advantage of OpenCL is its cross-platform capabilities that are an industry-standard framework
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Figure 2.5: Pascal GP100 SM Unit

for programming computers composed of a combination of CPUs, GPUs, FPGAs, and other processors [24].

These so-called heterogeneous systems have become an essential class of platforms, and OpenCL is the first

industry-standard that directly addresses their needs [24]. With OpenCL, a single program can run on a

wide range of systems, from cell phones to nodes in massive supercomputers. No other parallel programming

standard has such a broad reach. To some extent, OpenCL is a low-level language because it provides little

abstraction of programming concepts and is close to actual machine instructions. Many processes have to be

completed by the programmer manually, such as device detecting, memory allocating, and I/O controlling.

The choice is made in this thesis to use OpenCL because it is desired to make WDPM apply to all potential

users who might be using an AMD GPU or do not even have access to a GPU and would like to run it faster

with parallel CPUs. Chapter 5 discusses the future work on WDPM implementation on FPGA that would

fully take advantage of the portability of OpenCL.

There are many other GPU programming APIs. OpenMP is mainly used in the system with shared mem-

ory and CPU parallel computing. C++ Accelerated Massive Parallelism (C++ AMP) accelerates execution

of C++ code by taking advantage of data-parallel hardware such as a GPU on a discrete graphics card [25].

However, it only works with the Windows system. OpenACC is another popular GPU programming API.

OpenACC intends to simplify the parallel programming of heterogeneous computing (CPU/GPU) systems

[26]. Programmers can add comments to C, C++, and Fortran source code to indicate the code segments that

need to be accelerated by compiling instructions or other functions. OpenACC is similar to OpenMP in writ-

ing style and is easy to get started. However, the relatively poor performance compared to the performance

of pure CUDA code [22] is the main disadvantage of OpenACC.

11



2.4.2 OpenCL

Table 2.5: Part of the Device Information

Platform Name NVIDIA CUDA

Platform Version OpenCL 1.2 CUDA

Number of Device 1

Device Name Quadro P400

Device Type GPU

Max Clock Frequency 1252 MHz

Max Dimension 3

Max Work Item Size 1024×1024×64

Max Work Group Size 1024

An OpenCL program is composed of a host function that runs on a CPU and one or several kernel functions

that run on the OpenCL devices. A host function is the outer control logic that performs the configuration

for a GPU-based application. It mainly detects the OpenCL platform, configures the OpenCL environment,

compiles the kernel functions, and controls the data flow. Kernel functions run on powerful computing devices

that work on the most computationally intensive part of an application.

Figure 2.6 shows the programming flow of OpenCL. The OpenCL platform model defines a high-level

representation of any heterogeneous platform used with OpenCL, and a set of computing devices that an ap-

plication uses to execute code are associated with each platform. clinfo is a simple command-line application

that enumerates all possible (known) properties of the OpenCL platform and devices available on the system.

Inspired by the AMD program of the same name, it is coded in the C programming language. It tries to

output all possible information, including that which is provided by platform-specific extensions while trying

not to crash on unsupported properties. Table 2.5 show part of the device information of a machine that is

equipped with NVIDIA Quadro P400. According to Table 2.5, when working on a two-dimensional system,

the maximum number of work-items can be computed is 1024×1024. Contexts are used to manage objects

such as command-queues, memory, programs, and kernel objects. Multiple devices can be associated with one

context. Kernel functions are compiled inside the host function by building the program. Then operations

like executing kernel and data transferring between device and host are performed under the instruction of

the command queue.

Similar to the other GPU programming APIs, OpenCL organizes the computing units hierarchically. The

qualifier of the kernel variables can be declared to determine the storage location of them. The private

variables are stored in a work-item’s memory, which is similar to a register. It is always defined in the kernel

function and can only be read and written by one work-item. The local variable stores in the global memory
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Figure 2.6: OpenCL programming flow

of a work-group. GPU threads are grouped into fixed-size SIMD (single-instruction, multiple-data) warps

that are called work-groups in OpenCL. So local memory can provide fast read-write access to the local

variables for the work-items in a work-group. Finally, in the device global memory, the readable and writable

global variables and the read-only constant variables are stored [3]. When working on a two-dimensional

matrix, data are mapped in the device as shown in Figure 2.7. All of these work items can be executed in

parallel. When programming the kernel function, “global work id” and “local work id” are used to target the

specific work item. Finally, Figure 2.8 shows a complete memory hierarchy of multiple devices.

2.4.3 Pipe API in OpenCL

As discussed before, the strong cross-platform capability is one of the biggest advantages of OpenCL. The

field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or

a designer after manufacturing – hence the term “field-programmable”. Usually, an FPGA is programmed

with a hardware description language (HDL). The C-programming-language-based OpenCL makes it easier

to program the FPGA. The pipeline API concept has been introduced to OpenCL GPU computing since

OpenCL 2.0 [27]. But it was already supported on FPGA in the previous OpenCL version. Figure 2.9 shows

the different parallelism strategies between GPU and FPGA.

The critical difference between kernel execution on GPUs versus FPGAs is how parallelism is handled.
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Figure 2.7: An example of how the global IDs, local IDs, and work-group indices are related for a
two-dimensional NDRange. Other parameters of the index space are defined in the figure. The shaded
block has a global ID of (gx, gy) = (6, 5) and a work-group plus local ID of (wx, wy) = (1, 1) and (lx,
ly) =(2, 1). [3]

Figure 2.8: Memory hierarchy
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Figure 2.9: Comparison of SIMD parallelism versus pipeline parallelism

GPUs are SIMD devices, where groups of processing elements perform the same operation on their individual

work-items. On the other hand, FPGAs exploit pipeline parallelism, where different stages of the instructions

are applied to different work-items concurrently. [28]

According to Figure 2.9, the two parallelism strategies could achieve a similar performance when the

kernel is simple. But in some cases, like when handling branching conditions, the FPGA pipeline could show

its advantages. An SIMD unit (GPU) operates a single instruction at a time; all code-paths taken by the

individual work-items must be executed one after another, with individual work-items disabled or enabled

based upon how they evaluated the branching condition. As a result, encountering a branching condition with

N options could potentially result in execution time equal to the sum of execution times for all N options

(for N up to the SIMD width). Branching is less of an issue on FPGAs because all code-paths are already

established in hardware. All branch options can be executed concurrently or even computed speculatively in

some cases to allow overlap with a branch condition computation [28]. Figure 2.10 shows this process.

FPGA parallel computing is not the focus of this thesis. More information can be found in the paper of

Zeke Wang and Bingsheng He [29] that studies how OpenCL applications are optimized on FPGA by applying

pipeline and the paper of Ahmed Sanaullah and Martin C. Herbordt [30] that achieves high speedups for 3D

Fast Fourier Transforms (FFTs) with FPGA OpenCL.

2.4.4 Overlapping Communication with Computation

For data parallel applications, effective use of accelerators is indispensable for higher system performance

and energy efficiency. Communication management between multiple heterogeneous devices is one of the

most challenging problems because host CPUs and accelerators generally have disjoint memory spaces. In

particular, large-scale super-computing applications suffer from this issue either because the data do not fit
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Figure 2.10: Comparison of SIMD parallelism versus pipeline parallelism

into the GPU memory, inter-node communication at the end of each time step requires data to be present at

the host, or parts of the application are executed on the CPU. Moreover, because super-computing systems are

large investments, even a 10-percent speedup can often save millions of dollars. So it is especially important

to save this extra time. To be specific, an appropriate technique should be applied to partially or entirely hide

communication delays behind the heterogeneous devices computation. Here, two techniques are introduced

that are relevant to the WDPM.

Loop indexing: In domain decomposition applications, the domain is usually decomposed into inner and

outer regions [31]. Boundary data to be communicated may be produced earlier by updating the outer

regions first followed by the inner regions. This technique requires rearrangement of the loop index. A data

dependency analysis is required in order to ensure correctness.

Loop distribution: This technique separates independent computation from dependent computation in a

single loop into multiple loops [31].

As mentioned before, in the WDPM, the SW algorithm reads and writes to a 3×3 matrix when working on

a water redistribution component. So each point in the system is interdependent on the surrounding points.

When doing domain decomposition on the input system, boundary data cannot be extracted directly. The

idea is to create the outer part of the domain that includes the boundary data by applying loop distribution.

Then loop indexing can be used to make sure the outer part finishes computation before the inner part. The

detailed parallel programming method and the implementation are discussed in Chapter 3.
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Chapter 3

Implementation

3.1 Previous Work

Originally, WDPM was written in Fortran using OpenMP and can run in parallel with multiple CPU

cores. Then WDPM was translated to the C programming language, and the parallel computation was

implemented in OpenCL to improve the speed and responsiveness and utilize the GPU.

Before further introducing the parallel algorithm, pre-processing for the input system needs to be done.

According to the SW algorithm 1, each water redistribution component covers a 3×3 matrix. To make sure

each cell in the DEM has eight neighbors, WDPM extends the input matrix as in Figure 3.1. The additional

points are defined as the non-observation points, and they are given a no-data value.

Figure 3.1: Input matrix pre-processing

Before discussing the parallel algorithms, Table 3.1 shows the meaning and the values of the variables

used in the algorithms.
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Algorithm 2 Parallel CPU implementation
continue = true

while continue = true do

for i = 1 to Niter do

OMP PARALLEL (compute sub-matrices)

for row from 2 to numrows+ 1 do

for col from startcols(thread_num) to endcols(thread_num) do

if bigwater(row, col) > 0.0 AND bigdem(row, col) > missingvalue then

do SW algorithm 1

end if

end for

end for

OMP END PARALLEL

OMP BARRIER

OMP PARALLEL (compute the boundaries)

if numslice > 1 then

for row from 2 to numrows+ 1 do

for col from boundary_start_col(thread_num) to boundary_end_col(thread_num) do

if bigwater(row, col) > 0.0 AND bigdem(row, col) > missingvalue then

do SW algorithm 1

end if

end for

end for

end if

OMP END PARALLEL

end for

if The maximum water elevation change is smaller than the tolerance then

continue = false

end if

end while
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Table 3.1: Variables in the Algorithms

Variable Meaning Value in practice

Niter the number of iterations 1000

Sg the size of sliding grid 3

Nd the number of GPUs -

id the index of the GPU -

Nr the number of rows -

Nbc the number of boundary columns -

3.1.1 Parallel Programming on one CPU with OpenMP

Figure 3.2: CPU parallel computing

The original WDPM Fortran code uses the algorithm that divides the water matrix into slices, and each

slice is assigned to a separate thread. Because the SW algorithm works on a 3×3 matrix each time, two

columns are maintained between every two slices in order to prevent the boundary data from being written

to by two CPU processors simultaneously. In Figure 3.2, all the colored matrices (excluding black) are

computed in parallel, and the points with the same color are computed by the same CPU processor. After

all slices finish computing, the algorithm then handles the regions in between the slices that are called the

“boundaries” (marked by the blue boxes in Figure 3.2).

The CPU parallel implementation is given in Algorithm 2.

3.1.2 Parallel Programming on one GPU with OpenCL

According to the previous section, the parallel CPU programming method is quite straightforward. Basically,

domain is divided into slices, and each slice is computed with one CPU core. In each slice, a large proportion
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of data is independent, in the sense that the slices do not read and write to other slices, so the race condition

can be easily solved by separately handling the boundary of each slice. Unlike CPUs, GPUs have thousands

of cores. Dividing the domain into thousands of slices is unrealistic. As discussed before, each cell is inter-

dependent on its neighbor cells when using the SW algorithm. So performing the algorithm on two adjacent

cells simultaneously results in a race condition. In this case, the sliding window method can solve this

problem. In the sliding window method, a window of specified size moves over the data, sample by sample,

and computations are performed over the data in the window. The output for each input sample is the

computational result of the current sample and the previous samples. In the first time step, to compute

the first outputs when the window does not have enough data yet, the algorithm fills the window with a

non-observational value. In the subsequent time steps, to fill the window, the algorithm uses samples from

the previous data frame. In the WDPM, the sliding window size is set to three, and Figure 3.3, Figure 3.4,

and Figure 3.5 demonstrate how to use this method. The black cells shown in each figure are computed in

parallel, and by looping over the sliding window index i and j from 1 to 3, all the cells in the input system

can execute the SW algorithm without race condition.

Figure 3.3: The sliding windows when i=1 and j=1
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Figure 3.4: The sliding windows when i=1 and j=2

Figure 3.5: The sliding windows when i=3 and j=3
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The kernel function that runs on the GPU is given in Algorithm 3, and the host function that runs on

the CPU is given in Algorithm 4.

Algorithm 3 Kernel function

1: row
′
= global_id(0)

2: col
′
= global_id(1)

3: row = (j − Sg) + row
′ × Sg

4: col = (k − Sg) + col
′ × Sg

5: if bigdem(row, col) > missingvalue AND bigwater(row, col) > 0.0 then

6: do SW algorithm (Algorithm 1)

7: end if

Algorithm 4 Host function
1: continue = true

2: while continue = true do

3: for i from 1 to Niter do

4: for j from 1 to Sg do

5: for k from 1 to Sg do

6: Write the j and k to the kernel function

7: Execute kernel function (Algorithm 3)

8: end for

9: end for

10: end for

11: if The maximum water elevation change < elevation tolerance then

12: continue = false

13: end if

14: end while

3.2 Multiple-GPU Implementation

3.2.1 Multiple-GPU parallel algorithm

Inspired by the CPU parallel computing method, the domain is divided into slices, and each slice is sent to

one GPU. However, the CPU parallel method is based on a shared memory system, where completing data

synchronization is relatively easy. Referring to the OpenCL memory hierarchy diagram shown in Figure 2.8,

the CPU-GPU architecture is a distributed memory system. When doing data synchronization, the host CPU

needs to read data from the GPUs, and the data communication is completed in the host. After that, the
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host CPU writes the updated data back to the GPUs, and then the algorithm starts the next iteration. This

process is shown as Figure 3.6. Here, D_matrix refers to the sub-matrix computed on the device (GPU),

and the H_matrix refers to the boundary part computed on the host (CPU).

Figure 3.6: Data flow during data synchronization

Data transmission is a time-consuming operation; in particular, WDPM does data synchronization in each

iteration, and thousands of iterations need to be done in the whole simulation. By a rough estimate, half of

the running time is spent on data synchronization if transferring all of the data between the devices and the

host, and this results in a longer running time with two GPUs than with one GPU. Fortunately, OpenCL

allows users to manually control the data transmission by modifying some OpenCL function parameters.

Furthermore, it is unnecessary to transfer all the data because only the boundary data need to be handled

during data synchronization. As a result, the communication cost can be minimized by transferring the

boundary data only between host and devices.

OpenCL has built-in support for processing image data (two-dimensional data). Using image objects,

image data that resides in host memory can be made available for processing in a kernel executing on an

OpenCL device [3]. Image objects simplify the process of representing and accessing image data because they

offer native support for a multitude of image formats [3]. However, many OpenCL devices do not support

the image feature. To check for image support from the host, the clGetDeviceInfo function can be called

with the “CL_DEVICE_IMAGE_SUPPORT” option. If the result is “CL_FALSE”, the device does not

support images [32]. Because the WDPM developers expect the software to work for all OpenCL users,

the two-dimensional input system is stored in a one-dimensional buffer. In this case, the data are stored in

column-major order (Figure 3.7). The multiple-GPU parallel algorithm is given in Algorithm 5.

3.2.2 Overlapping Communication with Computation

According to Algorithm 5, the boundary data are handled in serial CPU after the GPUs have finished all

their computation. The GPUs are idle when the host CPU is working on computing the boundaries. So, if

CPU computation and GPU computation can be done simultaneously, the data communication cost can be

reduced.

In order to work with the distributed memory of multiple GPUs, data communication requires boundary

data to be present at the host. Loop indexing, which has been introduced in Chapter 2, is a suitable technique
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Figure 3.7: 2D to 1D

Algorithm 5 Multiple-GPU parallel programming
continue = true

while continue = true do

for i from 1 to Niter do

if i 6= 1 then

Write the boundary data from CPU to GPUs

end if

for idevice from 0 to Nd − 1 do

for j from 1 to Sg do

for k from 1 to Sg do

Write the j and k to the kernel function

Execute kernel function (Algorithm 3)

end for

end for

end for

Block function

if i 6= Niter then

Read the boundary data from GPUs to CPU

Do SW algorithm (Algorithm 1) in serial to the boundary data

end if

end for

if The maximum water elevation change < elevation tolerance then

continue = false

end if

end while
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Figure 3.8: Programming flow

to overlap this communication with GPU computation. As discussed previously, loop indexing requires the

domain in each GPU to be divided into two parts: the inner part and the outer part. The inner part contains

the independent data and does not read and write to the domains in other GPUs, whereas the outer part

includes the boundaries. By managing the loop order, the outer part of the domain is computed in GPU at

first, and the host CPU reads the boundary data back after that. In this way, the inner part of the GPU

computation and the boundary part CPU computation can be computed simultaneously. However, because

of the event schedule mechanism of OpenCL, the data transfer between CPU and GPUs cannot be overlapped

by any computation.

3.2.3 Optimization Algorithm

Without loss of generality, consider a system with three GPUs. One sub-domain is sent respectively to each

of the three GPUs.

Figure 3.9 shows the outer parts (marked in black) of the sub-domains. In one iteration, GPUs first

compute these outer parts. So that after this step, the boundary columns (8, 9, 10, 11 and 18, 19, 20, 21) are

not read or written any more. Then, the GPU computation is paused, and the host CPU reads the boundary

columns back. As shown in Figure 3.10, the boundary columns are merged into boundary matrices that are

computed simultaneously with GPU computation of the inner part. At the end of this iteration, the host

takes the boundary matrices apart and writes the updated boundary columns back to each sub-domain.
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Figure 3.9: Computing the outer part

Figure 3.10: Computing the inner part and the boundary
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Algorithm 6 Overlapping communication and computation
1: continue = true

2: while continue = true do

3: for i from 1 to Niter do

4: if i 6= 1 then

5: Write the boundary data from CPU to GPUs

6: end if

7: for idevice from 0 to Ndevice − 1 do

8: for j from 1 to Sg − 1 do

9: for k from 1 to Sg do

10: Write the j and k to the kernel function

11: Execute kernel function (Algorithm 3)

12: end for

13: end for

14: end for

15: Block function

16: if i 6= Niter then

17: Read the boundary data from GPUs to CPU

18: end if

19: for id from 0 to Nd − 1 do

20: Set k = Sg

21: for j from 1 to Sg do

22: Write the j and k to the kernel function

23: Execute kernel function (Algorithm 3)

24: end for

25: end for

26: for i from 1 to Nr do

27: for j from 1 to Nbc do

28: Do SW Algorithm 1

29: end for

30: end for

31: Block function

32: end for

33: if maximum water elevation change < elevation tolerance then

34: continue = false

35: end if

36: end while
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Chapter 4

Experiment and Analysis

4.1 Output Comparison

In this chapter, the sample systems used for the experiments are described in Table 2.1. The WDPM needs

a DEM file and a water file as inputs that separately show the ground elevation and water depth, and the

WDPM produces the final water distribution map as the output. Before discussing the parallel performance

of the WDPM multiple-GPU implementation, the final water distribution compared with running with one

GPU is evaluated to ensure the new implementation produces the correct output.

When a simulation is over, WDPM generates a brief output summary. The summary includes the output

system information, such as the maximum water depth, the mean water depth, etc. Table 4.1 shows the

sample summaries of the three modules (add, subtract, and drain) separately. Then to make sure it is easier

to see the output difference between using one GPU and multiple GPUs, a large input value is set, which

is adding 300 mm water. The output systems of adding 300 mm water to the DEM and draining the water

away from the river using two GPUs are produced to check the output system difference. Figure 4.1 and

Figure 4.2 show the water distribution after adding 300 mm water to the domain and then drain the water

away from the river when running with two GPUs. In general, the multiple-GPU implementation produces

the correct final (steady-state) results, but the intermediate outputs are not exactly the same.

Table 4.1: The Output Summary Comparison

Module Add Subtract Drain

number of GPUs 1 2 1 2 1 2

Initial volume (m3) 0.0 0.0 0.0 0.0 110036.0 110036.0

Final volume (m3) 56550681.0 56550681.0 160215.7 160215.7 97577.6 97577.6

Water coverage 7.4% 7.4% 7.0% 7.0% 10.1% 10.1%

Mean depth (mm) 40.6 40.6 60.3 60.3 87.4 87.4

Max depth (mm) 1791.4 1791.5 1124.9 1124.8 1038.3 1038.2

An explanation for this observation is the computation order. Rotating the input system can change

the computation order. With rough experiment, the output summaries of the same system with different
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Figure 4.1: The water distribution after
adding 300.0 mm water

Figure 4.2: The water distribution after
draining the water away from the river

rotation angles are different. In this case, a further experiment is introduced to see if the solution convergent

as the simulation goes further. The water depth difference of the output system is calculated to check the

differences in final water distribution between running with different numbers of GPUs. As described in

Section 2.3.2, users need to input an elevation tolerance to determine the degree of the convergence of the

simulation. The water surface is close to flat when given a small water elevation tolerance. It also provides

a method to verify the convergence of the solution. The test object is “basin5.asc”. Running with two GPUs

and one GPU, the experiment adds 300 mm depth of water and then drains the water from the system. The

water depth errors of all the pixels are calculated, and the error map is plotted (shown as Figure 4.3 and

4.4). A significant solution convergence is shown when using a small water elevation tolerance; the maximum

error is about 4 × 10−4 with 1.0 mm tolerance and about 5×10−5 with 0.1mm tolerance. It further proves

that the multiple-GPU implementation is correct.
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Figure 4.3: The error map when the elevation
tolerance is 1 mm

Figure 4.4: The error map when the eleva-
tion tolerance is 0.1 mm

4.2 Profiling Results

On Compute Canada, profiling a CUDA program or an OpenACC program is more straightforward than

profiling an OpenCL program. Compute Canada provides the PGI profiler that is a powerful and simple

tool for analyzing the performance of parallel programs written with OpenMP, MPI, OpenACC, or CUDA

[33]. Using the PGI profiler usually consists of two steps: data collection and analysis. Data collection

is performed by running the application with the PGI compiler with profiling enabled. The analysis is

performed by visualizing the data produced in the first step. Users can save the performance data into a

file. Then the performance data file can be uploaded to a performance analysis tool, like Nsight System,

to visually investigate bottlenecks and pursue optimizations with a higher probability of performance gains

[33]. However, the NVIDIA profiling tool cannot profile the OpenCL program, and at present Compute

Canada does not have AMD GPU profiling tools that are better for OpenCL profiling. Fortunately, OpenCL

has an event-based profiling tool. It provides this mechanism by having the “cl_event” objects hold timing

information. This timing information can be captured using an OpenCL function.

4.2.1 Method

In OpenCL, the “command queue” contains instructions to inform the devices of the “context” (that is, the

group of devices that have been chosen for use) to execute a particular command. Basically, the commands

include reading data from the device to the host, writing data from the host to the device, and executing the

kernel function. In the new implementation, each “command queue” controls one device. OpenCL also has an

event scheduler that allows the programmer to target the process associated with one OpenCL command. The

event scheduler is used for two purposes. First, the running time of one command can be recorded with the
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device time counters associated with the specified event. Second, the blocking functions (clWaitForEvents)

can be associated with the specified event to stop the execution until one command finishes. In this way, the

running time of each segment can be tested.

By using the OpenCL function clGetEventProfilingInfo, getting the running time of one OpenCL

command is straightforward. As described in Section 3.2.2, the overlapping communication and computation

technique is applied to optimize the multiple-GPU parallel algorithm, and the OpenCL profiling function

only works for timing an OpenCL command. A rigorous method to test both GPU computing and CPU

computing needs to be found. Section 3.2.2 discussed that the sub-domain in each device is divided into

the outer part (includes the boundary data) and the inner part (without boundary data). The overlapping

technique is applied to the inner part GPU computing and boundary data CPU computing. In practice, the

OpenCL blocking function is placed after the CPU computation so that the boundary data computation can

start without waiting for the end of the GPU computation. This programming flow modification is shown

in Figure 4.5. To verify the effect of the overlapping technique, the position of the blocking function needs

to be changed so that the inner part GPU computation and the boundary CPU computation are executed

sequentially. In this way, the success of the overlapping technique is verified if the running time of the first

programming flow in Figure 4.5 is shorter than the second one.

Figure 4.5: The experiment programming flow

4.2.2 Results

As reference, Table 4.2 shows the profiling result of WDPM running with one GPU. Table 4.3, Table 4.4,

and Table 4.5 respectively show the profiling results of different systems when running with two GPUs, three

GPUs, and four GPUs. As discussed in the previous section, each “event” is associated with a “command

queue”, and each “command queue” is associated with a GPU. So the running time of each GPU is tested

separately. The experimental results in the table are the cumulative running time of 1000 iterations of the

“add” module. Here are some explanations about the tables. First, “read time” is the running time for reading

data from a GPU by the host CPU. Second, “write time” is the running time of writing data from the host

CPU to a GPU. Third, “outer time” is the running time of executing the outer region in a GPU. Fourth,

“inner time” is the running time of executing the inner region on a GPU. Fifth, “boundary time” is the running

time of computing the boundary data in serial on the host CPU. Finally, “wall clock time” represents the

running time in practice. There are two wall clock times reported, one associated with the outer time and one
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associated with the inner and boundary times. Because kernel functions in different GPUs are expected to

execute in parallel, the “wall clock time” of the “outer time” is the running time from the first kernel function

that starts to run to the last kernel function that runs, corresponding to the "outer time". The “wall clock

time” reported in the rightmost column is the total running time of the inner region computation plus the

boundary serial computation.

According to the profiling result in Table 4.2, 4.3, Table 4.4, and Table 4.5, we make the following

observations.

• The “read time” and the “write time” are relatively long for the GPUs in the middle (GPU2 when using three

GPUs, GPU2 and GPU3 when using four GPUs); that is because the sub-domains in the middle have two

more boundary columns that increase the amount of data that needs to be transferred.

• The workload of each GPU is unbalanced. In any system, there are non-observation points on which WDPM

does not do any computation. So each sub-domain does not necessarily have the same size. But according

to the running time of “outer time”, computations on multiple GPUs can nonetheless be parallelized well.

• The overlapping communication and computation method performs well when working with a large system.

In such cases, the running time when using the overlapping technique is significantly shorter than running

the GPU computation and CPU computation sequentially. For example, when using two GPUs to work with

“patched.asc” (shown in Table 4.3), the boundary data computation (2.09979 s) is almost fully hidden behind

the inner region computation on the GPU computation (9.47106 s) because the total wall clock time of the

inner and boundary time is 9.48504 s. However, the experiment performed on “basin5.asc” with four GPUs

(shown in Table 4.5) shows that the boundary data computation (0.41139 s) takes much longer than the

inner GPU computation (0.04385 s), and hence the overlapping technique does not offer any computational

advantage.

Table 4.2: The Profiling Result of Using One GPU

read time (s) write time (s) kernel time (s)

system basin5.asc (471×482)

GPU 1 0.00014 0.00030 0.18487

system basin4_5m.asc (2520×1833)

GPU 1 0.00276 0.00602 4.46162

system culvert_basin1_5m.asc (3794×3986)

GPU 1 0.00896 0.01968 29.26780

system smithcreek_dem1m_sb5.asc (4712×4826)

GPU 1 0.01347 0.02958 31.90098

system patched.asc (5877×5519)

GPU 1 0.01924 0.04291 55.75925
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Table 4.3: The Profiling Result of Using Two GPUs

read time (s) write time (s) outer time(s) inner time (s) boundary time (s)

system basin4_5m.asc (2520×1833)

GPU 1 0.00345 0.00719 1.74791 0.87262
0.38743

GPU 2 0.00343 0.00747 1.20557 0.59462

wall clock time 1.84967 0.88447

system culvert_basin1_5m.asc (3794×3986)

GPU 1 0.00653 0.01674 8.25735 4.12102
1.89684

GPU 2 0.00617 0.01722 11.11832 5.54391

wall clock time 11.28418 5.57077

system patched.asc (5877×5519)

GPU 1 0.00832 0.02986 18.90109 9.47106
2.09979

GPU 2 0.00792 0.02986 18.19111 9.09789

wall clock time 18.99330 9.48504

Table 4.4: The Profiling Result of Using Three GPUs

read time (s) write time (s) outer time (s) inner time (s) boundary time (s)

system basin4_5m.asc (2520×1833)

GPU 1 0.00361 0.00599 1.14232 0.57013

0.88357GPU 2 0.00680 0.10730 1.02638 0.50787

GPU 3 0.00342 0.00639 0.64678 0.32639

wall clock time 1.25262 0.97548

system culvert_basin1_5m.asc (3794×3986)

GPU 1 0.00650 0.01335 3.94846 1.97606

3.13170GPU 2 0.01224 0.02091 8.84756 4.39119

GPU 3 0.00596 0.01379 6.52940 3.26627

wall clock time 9.01920 4.43428

system patched.asc (5877×5519)

GPU 1 0.00835 0.02284 11.08195 5.54000

4.24901GPU 2 0.01646 0.03159 15.72594 7.86060

GPU 3 0.00793 0.02330 10.10486 5.05297

wall clock time 15.88408 7.89801
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Table 4.5: The Profiling Result of Using Four GPUs

read time (s) write time (s) outer time (s) inner time (s) boundary time (s)

system basin5.asc (471×482)

GPU 1 0.00177 0.00227 0.08768 0.04385

0.41139
GPU 2 0.00345 0.00450 0.09065 0.04491

GPU 3 0.00352 0.00454 0.08777 0.04352

GPU 4 0.00178 0.00232 0.08013 0.03996

wall clock time 0.11070 0.57250

system basin4_5m.asc (2520×1833)

GPU 1 0.00352 0.00546 0.64573 0.32040

1.35556
GPU 2 0.00688 0.00943 1.07178 0.52759

GPU 3 0.00710 0.01017 0.47532 0.23279

GPU 4 0.00178 0.00585 0.37852 0.18788

wall clock time 1.25001 1.43666

system culvert_basin1_5m.asc (3794×3986)

GPU 1 0.00620 0.01170 2.18561 1.09400

4.37358
GPU 2 0.01247 0.01849 5.91543 2.94556

GPU 3 0.01274 0.01930 6.60300 3.28824

GPU 4 0.00606 0.01211 4.44874 2.20622

wall clock time 7.83544 4.48975

system smithcreek_dem1m_sb5.asc (4712×4826)

GPU 1 0.00754 0.01531 4.02102 2.00870

4.64050
GPU 2 0.01418 0.02311 8.48651 4.22610

GPU 3 0.01408 0.02399 6.32994 3.15144

GPU 4 0.00690 0.01572 2.39133 1.18867

wall clock time 8.56870 4.74995

system patched.asc (5877×5519)

GPU 1 0.00872 0.01936 7.21244 3.59759

6.08359
GPU 2 0.01642 0.02812 11.53983 5.75371

GPU 3 0.01642 0.02879 12.23909 6.09307

GPU 4 0.00794 0.01975 5.82081 2.89596

wall clock time 12.47135 6.24318
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4.3 Performance Evaluation

4.3.1 Performance Comparison of Previous Study

This section tests the OpenMP CPU parallel code and OpenCL GPU parallel code with the systems in Table

2.1. It is worth mentioning that the serial C code is faster than the serial Fortran code. As a result, the

performance improvement of running in parallel with CPU and GPU are compared separately. The CPU is

Intel(R) Core(TM) i7-2600 3.40GHz. The running times and the speedup are shown from Table 4.6 to Table

4.9. Running with multiple CPU cores has a decent speedup compared with running in serial. However,

limited by the number of cores equipped on the machine, it is hard to achieve a greater speedup. The GPU

is an NVIDIA Tesla P100, and the test results are given in Table 4.10. From this table, it can be observed

that running on GPU gains significant speedup. Also, the speedup is not ideal when using too many CPU

cores because of the large overhead of data synchronization. The previous CPU and GPU parallel methods

provide inspiration on how to implement multiple-GPU parallelization and also a reminder of the need for

minimizing overhead due to data communication methods.

Table 4.6: OpenMP Performance Test with Basin5.asc

basin5.asc (471×482)

threads 1 2 4 8

system run time(s) run time(s) speedup run time(s) speedup run time(s) speedup

add 5mm 1074.32 632.25 1.70 465.60 2.31 420.53 2.56

subtract 5mm 4.47 2.62 1.71 2.47 1.81 21.12 0.21

drain 39.33 23.70 1.66 19.81 1.99 61.10 0.64

Table 4.7: OpenMP Performance Test with Basin4_5m.asc

basin4_5m.asc (2520×1833)

threads 1 2 4 8

system run time(s) run time(s) speedup run time(s) speedup run time(s) speedup

add 0.5mm 4565.74 2800.6 1.63 1968.75 2.32 1242.05 3.68

subtract 3mm 99.27 52.15 1.90 39.46 2.51 37.89 2.62

drain 121.87 62.80 1.94 46.52 2.62 42.36 2.88
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Table 4.8: OpenMP Performance Test with Culvert.asc

culvert.asc (3794×3586)

threads 1 2 4 8

system run time(s) run time(s) speedup run time(s) speedup run time(s) speedup

add 0.5mm 3490.48 1758.71 1.98 1136.90 3.07 808.15 4.32

subtract 5mm 126.82 65.42 1.94 49.91 2.54 46.20 2.75

drain 502.41 286.63 1.75 201.12 2.50 188.35 2.67

Table 4.9: OpenMP Performance Test with Patched.asc

patched.asc (5877×5964)

threads 1 2 4 8

system run time(s) run time(s) speedup run time(s) speedup run time(s) speedup

add 0.5mm 6415.66 3290.08 1.95 1748.14 3.67 1255.51 5.11

subtract 5mm 301.11 153.63 1.96 103.12 2.92 87.53 3.44

drain 1256.78 694.35 1.81 453.71 2.77 402.81 3.12

Table 4.10: Test Result of Running on GPU

Serial C (s) GPU (s) speedup

system basin5.asc (471×482)

add 5mm 852.65 6.8 125.39

subtract 5mm 2.74 0.72 3.81

drain 24.75 1.83 13.52

system basin4_5m.asc (2520×1833)

add 5mm 3162.61 37.05 85.36

subtract 5mm 17.22 3.45 4.99

drain 619.48 37.05 16.72

system culvert.asc (3794×3586)

add 5mm 9068.72 61.65 147.10

subtract 5mm 101.18 8.97 11.28

drain 551.46 28.28 19.50
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4.3.2 Performance Comparison of Using Multiple GPUs

This section evaluates the performance of the new implementation when using different numbers of GPUs.

The experiment was performed on the Cedar cluster of Compute Canada that is equipped with four NVIDIA

Tesla P100 GPUs, so four GPUs at most are used in the experiment. Through the experiment, running with

multiple GPUs does not necessarily improve the run time. Specifically, according to Figure 3.10, four-column

boundary data matrices are produced when using multiple GPUs to do data synchronization between two

adjacent sub-domains, and the boundary data are handled sequentially in the host CPU. In this case, if

the input system is small, the boundary part accounts for a large proportion of the overall data, and hence

the overhead of data communication becomes relatively large. Specifically, every time when using one more

GPU, there is one more four-column boundary data matrix being produced. The performance is quite poor

when using four GPUs to run a small system (basin5.asc). However, the purpose of using multiple GPUs is

to shorten the running time when solving large problems, and the WDPM itself has been well developed to

solve general problems. The rest of this chapter demonstrates the performance improvement of working with

large systems.

Chapter 3.2 discusses the domain decomposition method in WDPM. The input system is divided into

several slices, and each of them is sent to one GPU. In a real system, there are non-observational areas on

which no computations are done. In this case, the computation scales of different sub-domains are different.

As a result, the workload of each GPU is unbalanced. To see an ideal acceleration, some artificial systems are

produced manually with a random number generator. The sizes of the systems are 1000×1000, 2000×2000,

3000×3000, 4000×4000, 5000×5000, and 6000×6000. The running times of the three modules are recorded

for each system, and each task is performed three times to give some idea of the stability of the results. The

minimum value (tmin) is taken as the final result.

Then, the relative speedup compared with running with one GPU is computed as

S =
t
(1)
min

t
(n)
min

(n = 2, 3, 4) (4.1)

The complete experimental data can be found in Appendix A and Appendix B, and the performance

improvements can be calculated according to Equation 4.1. The test results are shown in Figure 4.6, Figure

4.7, and Figure 4.8.

First, by analyzing the acceleration of the “add” module shown as Figure 4.6, it is observed that the

speedup is more significant when the input system is large. Specifically, about three times speedup is achieved

when working on a 6000×6000 system with four GPUs.

According to Figure 4.7 and Figure 4.8, the speedup of the “subtract” module and the “drain” module are

less significant than the “add” module. This is because the computational amounts of different modules are

different. By profiling the serial CPU code working with “basin5.asc”, when running the “add” module, the

SW function is called 110, 036, 000 times every thousand iterations on average. When running the “subtract”
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module, the SW function is called 5, 992, 000 times every thousand iterations on average. And when running

the “drain” module, the SW function is called 7, 029, 997 times every thousand iterations on average. So there

is a large difference in the calculation scales between in different modules. In WDPM, the SW algorithm only

works on the pixels whose water depth is larger than 0. These pixels are called the active points. The “add”

module adds a specific depth of water to all the observation points (however, the non-observation points are

given a no-data value). So the active points of the “add” module are all the observation points. However, for

the “subtract” and the “drain” modules, only a small proportion of the observation points are active points.

So working on the “subtract” module and the “drain” module is, to some extent, working with a relatively

small system. As discussed previously, the multiple-GPU implementation shows its efficiency when working

with a large system because of data synchronization overhead. So that explains why the “add” module has

the most significant speedup when using multiple GPUs.

Figure 4.6: The running time and relative speed of the “add” module

Figure 4.7: The running time and relative speed of the “subtract” module
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Figure 4.8: The running time and relative speed of the “drain” module

Finally, the experiment is performed on the real systems that listed in Table 2.1. Table 4.11 shows the

running time of different systems when using different numbers of GPUs. As reference, the running time

when running with Intel(R) Xeon(R) CPU E5-2650 (2.20 GHz) in serial and in parallel CPU (32 threads) is

recorded. By comparison, it is clear that running with GPUs makes the simulation much faster. Also, the

speedup using different numbers of GPUs compared with using one GPU is shown in Figure 4.9. As mentioned

previously, because the proportions of the non-observational area in each sub-domain are different in the real

systems, the workloads across the devices are unbalanced. Therefore, the performance improvement is not

significant as it is when experimenting with the artificial system. Currently, the largest real system is the

“patched.asc” with size 5877×5519. For this experiment, the speedup reaches its best (2.35 times) when using

four GPUs.

Figure 4.9: The performance comparison of real system experiment
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Table 4.11: The Test Results of the Real Systems (the “Add” Module) (Group 1)

Add

System
basin5

(+10 mm)

basin4_5m

(+5 mm)

culvert_basin1_5m

(+3 mm)

smithcreek_dem1m_sb5

(+3 mm)

patched

(+3 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

CPUs
1 1132.47 55958.42 360950.93 413045.16 ≈ 1115604.75

32 77.86 2409.92 13758.98 18168.44 44624.19

GPUs

1 8.23 500.70 3203.29 4296.58 11149.74

2 14.77 311.79 1889.50 2863.56 6079.70

3 24.04 315.86 1680.17 2320.75 4976.20

4 32.12 405.81 1683.01 2329.13 4673.24
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The Wetland DEM Ponding Model plays an important role in Canadian prairie hydrology simulation. It

models the spatial distribution of runoff water on the Canadian Prairies based on an input DEM system.

It has completed many case studies and has been adapted to a few applications (e.g., LIRA). Due to the

desire to work with larger systems, it is important to make the water redistribution and routing simulation

more efficient to run within a reasonable period of time. For this purpose, an implementation capable of

running across multiple GPUs is performed to increase the performance. In particular, this thesis contributes

to research in the WDPM in the following aspects.

1. By studying the previous CPU parallel algorithm and the single GPU parallel algorithm, a multiple-

GPU parallel algorithm is developed. The correctness of the implementation is verified in Section 4.1

by evaluating the output summaries and the errors of multiple-GPU output maps. Specifically, the

experiment produces the error raster system with one GPU output system and multiple-GPU output

systems. By simulating with more iterations, we see a significant convergence of the solutions. This

result verifies that the multiple-GPU implementation produces the correct result.

2. In the experiment, the event-based technique is used to profile the OpenCL program. As described in

Section 4.2.2, although the workload is not the same in each GPU, multiple GPUs can be parallelized

well. Furthermore, to fully utilize the computation resource, the new implementation uses overlapping

communication and computation techniques to do CPU computation and GPU computation simul-

taneously. By profiling the simulation when working with different sizes of systems, the overlapping

technique is demonstrated to show its efficiency when working with a large system, where the CPU

computation can be mostly hidden behind the GPU computation.

3. The running time of working with different numbers of GPUs (up to four) is tested when solving

problems of different sizes. Synthetic systems of different sizes are also produced to calculate an ideal

performance improvement when working with multiple GPUs. By observation, for small systems, such

as “basin5.asc” (471×482), using multiple GPUs actually worsens the performance, which is around

1.59 times slower when using 2 GPUs compared with using 1 GPU. But as the sizes of the problems
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increase, using multiple GPUs shows better performance. For the “basin4_5m.asc” (2520×1833), the

maximum speedup is about 1.61 when using 2 GPUs. For the “smithcreek_dem1m_s.asc” (4712×4826),

the maximum speedup is about 1.92 when using 3 GPUs. For the “patched.asc” (5877×5519), the

maximum speedup is 2.35 when using 4 GPUs. Furthermore, a 6000 ×6000 DEM synthetic system

is produced to experiment with an ideal (load-balanced) system, and the maximum speedup is about

3.1 when using 4 GPUs. These results verify the significant performance improvement of running the

WDPM on multiple GPUs, and they further prove the good scaling of the new implementation.

5.2 Future Work

Here are some possible directions that can be followed to extend the studies in this thesis:

1. Section 2.4.3 discusses the different parallel strategies of GPU and FPGA. Briefly, GPUs are good

at space parallelism that uses thousands of threads doing the same computation simultaneously. In

OpenCL, this method is implemented with the ND-Range kernel function, whereas the FPGA exploits

pipeline parallelism, where different stages of the instructions are applied to different work-items con-

currently. Also, FPGA has higher energy efficiency and bandwidth compared with GPU. So FPGA is

a promising accelerator for WDPM to achieve better performance. It also helps WDPM adapt to more

types of platforms and hardware.

Currently, an experimental version of WDPM has been developed to run on FPGA with ND-Range

kernel function, but it shows performance that is worse than running in serial on a CPU. The SW

algorithm decomposition might be necessary in order to implement the water redistribution model in

pipeline.

2. The Prairie Region Inundation Mapping (PRIMA) Model aims to provide an accurate and comprehen-

sive storage dynamics simulation and inundation mapping in the prairies. Compared with WDPM, the

convergence of PRIMA requires fewer iteration to complete a simulation [34]. A study has verified that

PRIMA is more efficient than WDPM when concentrating more water in smaller areas and moving

more water downstream to the river (near the outlet) [34]. Originally, the PRIMA can only run on

a serial CPU. Currently, PRIMA is investigated to be adapted to GPU parallel computing. With a

similar parallel algorithm as the WDPM, PRIMA may significantly speed up when running on a GPU.

However, more investigation is needed to analyze the errors compared with running in serial to verify

the GPU parallel algorithm produces the correct result for the PRIMA. Also, the GPU parallel im-

plementation only reproduces the water redistribution and routing model in PRIMA. As future study,

the water travel time computing function will be added to the parallel program. Furthermore, when

the PRIMA is completely transferred to the GPU code, a comparison between the WDPM and the

PRIMA in terms of algorithm efficiency, parallel performance, and how well they simulate the actual

water distribution can be investigated.
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Appendix A

The Experiment Data of Synthetic Systems

Table A.1: The Running Times (s) of the Synthetic System (Group 1)

Module Add Subtract Drain
GPUs 1 2 3 4 1 2 3 4 1 2 3 4

1000×1000 6.51 4.69 4.65 5.73
2000×2000 28.22 15.1 13.94 15.45 2.89 2.26 2.64 2.83 4.94 3.54 4.05 4.64
3000×3000 62.85 35.99 27.05 28.25 6.21 4.84 4.83 5.14 6.41 5.15 5.24 5.12
4000×4000 113.01 62.73 48.62 44.68 11.15 8.55 8.25 8.54 11.41 8.7 8.46 8.94
5000×5000 172.39 99.33 69.33 64.56 16.5 12.96 12.25 12.65 16.99 13.08 12.21 12.7
6000×6000 252.62 144.72 100.31 87.13 24.03 18.85 17.28 17.26 24.53 19.38 17.33 17.6

Table A.2: The Running Times (s) of the Synthetic System (Group 2)

Module Add Subtract Drain
GPUs 1 2 3 4 1 2 3 4 1 2 3 4

1000×1000 6.71 4.19 4.75 5.66
2000×2000 28.45 15.82 14.34 15.66 3.04 2.45 2.63 2.74 4.97 4.00 5.58 4.35
3000×3000 63.26 34.98 28.01 28.07 6.67 5.17 5.23 5.05 6.43 5.16 5.43 5.19
4000×4000 113.80 63.31 46.97 44.79 11.63 9.06 8.57 8.66 12.02 9.38 8.62 10.04
5000×5000 173.94 96.00 70.55 64.50 17.30 13.88 12.65 12.73 17.04 14.31 12.86 16.22
6000×6000 251.82 141.38 100.44 86.89 24.13 20.00 17.79 17.33 26.36 20.50 18.32 17.45

Table A.3: The Running Times (s) of the Synthetic System (Group 3)

Module Add Subtract Drain
GPUs 1 2 3 4 1 2 3 4 1 2 3 4

1000×1000 6.62 4.18 4.48 5.72
2000×2000 28.56 15.42 13.88 15.53 3.17 2.28 2.58 2.62 5.05 4.62 4.29 4.34
3000×3000 63.09 34.65 27.20 28.29 6.39 5.32 4.97 5.01 6.60 6.06 5.09 5.28
4000×4000 113.95 63.16 46.57 45.08 11.67 9.17 8.57 8.54 11.73 10.19 8.68 8.66
5000×5000 173.60 95.75 70.55 66.93 16.87 13.84 12.89 12.42 17.90 13.84 12.91 12.72
6000×6000 253.79 139.97 100.74 87.41 24.26 21.70 18.05 17.18 25.79 20.24 18.14 17.86
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Appendix B

The Experiment Data of Real Systems

Table B.1: The Running Times (s) of the Real Systems (Add Module) (Group 1)

Add

System basin5
(+10 mm)

basin4_5m
(+5 mm)

culvert_basin1_5m
(+3 mm)

smithcreek_dem1m_sb5
(+3 mm)

patched_YQ
(+3 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 8.72 516.8 3239.15 4307.72 11189.83
2 14.26 310.33 1888.08 2860.79 6049.24
3 23.75 314.12 1664.7 2303.22 4938.27
4 32.68 401.51 1691.02 2324.29 4585.54

Table B.2: The Running Times (s) of the Real Systems (Subtract Module) (Group 1)

Subtract

System basin5
(–10 mm)

basin4_5m
(–5 mm)

culvert_basin1_5m
(–3 mm)

smithcreek_dem1m_sb5
(–3 mm)

patched_YQ
(–3 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 0.89 40.56 71.66 1324.44 28.01
2 1.07 36.22 58.06 1173.04 24.58
3 1.36 44.06 64.91 1288.16 24.55
4 2.26 54.80 74.82 1477.24 26.05

Table B.3: The Running Times (s) of the Real Systems (Drain Module) (Group 1)

Drain
System basin5 basin4_5m culvert_basin1_5m smithcreek_dem1m_sb5 patched_YQ
Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 2.69 8.44 14.65 1788.13 29.83
2 3.32 6.80 12.24 1446.01 28.67
3 4.26 8.08 14.53 1672.78 26.66
4 6.01 9.25 15.69 1768.10 26.67

Table B.4: The Running Times (s) of the Real Systems (Add Module) (Group 2)

Add

System basin5
(+10 mm)

basin4_5m
(+5 mm)

culvert_basin1_5m
(+3 mm)

smithcreek_dem1m_sb5
(+3 mm)

patched_YQ
(+3 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 8.04 492.32 3184.36 4292.94 11129.12
2 15.18 313.92 1886.87 2864.99 6100.16
3 24.34 320.49 1694.97 2329.64 5009.25
4 32.03 408.29 1675.91 2329.33 4735.54
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Table B.5: The Running Times (s) of the Real Systems (Subtract Module) (Group 2)

Subtract

System basin5
(–10 mm)

basin4_5m
(–10 mm)

culvert_basin1_5m
(–10 mm)

smithcreek_dem1m_sb5
(–10 mm)

patched_YQ
(–10 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 0.84 39.68 71.43 5336.18 27.37
2 0.88 37.56 64.37 4585.33 26.45
3 1.46 45.03 70.44 5301.78 26.53
4 2.01 53.73 76.68 5643.63 26.43

Table B.6: The Running Times (s) of the Real Systems (Drain Module) (Group 2)

Drain
System basin5 basin4_5m culvert_basin1_5m smithcreek_dem1m_sb5 patched_YQ
Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 2.68 8.49 14.86 6701.48 29.44
2 2.87 7.23 13.15 5521.70 28.23
3 4.79 8.06 13.51 6756.42 27.49
4 5.96 9.10 13.55 6485.01 27.17

Table B.7: The Running Times (s) of the Real Systems (Add Module) (Group 3)

Add

System basin5
(+10 mm)

basin4_5m
(+5 mm)

culvert_basin1_5m
(+3 mm)

smithcreek_dem1m_sb5
(+3 mm)

patched_YQ
(+3 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 7.92 492.99 3186.35 4289.07 11130.21
2 14.86 311.12 1893.54 2864.91 6089.70
3 24.04 312.97 1680.85 2329.38 4981.07
4 31.66 407.64 1682.11 2333.76 4698.65

Table B.8: The Running Times (s) of the Real Systems (Subtract Module) (Group 3)

Subtract

System basin5
(–10 mm)

basin4_5m
(–10 mm)

culvert_basin1_5m
(–10 mm)

smithcreek_dem1m_sb5
(–10 mm)

patched_YQ
(–10 mm)

Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 1.06 40.48 71.03 5345.59 27.17
2 1.13 37.20 63.72 4548.95 26.18
3 1.34 45.08 71.42 5199.47 26.08
4 2.22 53.81 81.25 6523.38 27.50
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Table B.9: The Running Times (s) of the Real Systems (Drain Module) (Group 3)

Drain
System basin5 basin4_5m culvert_basin1_5m smithcreek_dem1m_sb5 patched_YQ
Size 471×482 2520×1833 3794×3986 4712×4826 5877×5519

GPUs

1 3.15 7.99 14.69 6702.39 40.60
2 6.16 6.98 12.66 5460.61 27.89
3 9.08 9.24 13.54 6501.6 27.65
4 6.52 9.26 13.95 6523.38 27.50
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