
Self-Consistent Study of Topological

Superconductivity in Two-Dimensional

Quasicrystals

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the dual Master of Science program

in the Department of Physics and Engineering Physics

University of Saskatchewan, Saskatoon

and the Department of Applied Physics, Graduate School of Science

Tokyo University of Science, Tokyo, Japan

By

Masahiro Hori

©Masahiro Hori, Month 2022. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis

belongs to the author.



Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement,

recommendation, or favoring by the University of Saskatchewan. The views and opinions of

the author expressed herein do not state or reflect those of the University of Saskatchewan,

and shall not be used for advertising or product endorsement purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or

part should be addressed to:

Head of the Department of Physics and Engineering Physics

116 Science Place, Rm 163

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5E2

OR

i



Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

ii



Abstract

In the past several years, there has been a burst of theoretical and experimental activities

in the field of topological superconductors. Topological superconductivity (TSC) results

in a novel superconducting state characterized by a nonzero topological invariant in the

bulk. There is a relation between the bulk and edges or surfaces, which is called the bulk-

edge correspondence. The bulk-edge correspondence implies that the topological invariant

in the bulk is equivalent to the number of zero-energy excitations per edge or surface. Due

to particle-hole symmetry inherent in a superconductor, in the case of TSC, the edge or

surface modes in a topological superconductor are zero-energy Majorana fermions. Majorana

fermions are their own antiparticles and due to the non-Abelian exchange statistics that they

obey, they open the door to new and powerful methods of topological quantum computing.

Majorana fermions have been detected, e.g., along the edges of a two-dimensional topological

superconductor. Theoretically, so far TSC has only been studied in periodic crystals such as

square lattice systems. In such systems with translational symmetry, the superconducting

order parameter is uniformly distributed.

Motivated by the recent discovery of superconductivity in a quasicrystal (QC), we inves-

tigate the occurrence of TSC in two-dimensional QCs. Although QCs present Bragg peaks,

they have no periodicity. We generalize a tight-binding model for TSC in two dimensions,

which was originally proposed for square lattice systems, for QCs. As the most fundamental

examples, the Penrose and Ammann-Beenker QCs are studied. QCs are inherently fractal,

and characterized by self-similarity. It is interesting to ask whether a stable TSC phase can

exist in QCs, despite their aperiodic and fractal structure.

In this thesis, we solve the Bogoliubov-de Gennes (BdG) equations― coupled Schrödinger-

like equations for the electron and hole components of quasiparticle excitation ― on the

tight-binding model for TSC generalized for QCs. This model describes two-dimensional

TSC with broken time-reversal symmetry, whose topological nature is governed by the first

Chern number in periodic systems. For QCs, we calculate the Bott index as the topologi-

cal invariant of the system, which is equivalent to the first Chern number in the presence

of translational symmetry. The mean-field approximation is applied to the model Hamilto-
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nian of TSC and the superconducting order parameter as well as the spin-dependent Hartree

potential are obtained self-consistently.

Our numerical results confirm the existence of a stable TSC state in QCs and the ap-

pearance of a Majorana zero mode along edges of a QC, despite the lack of translational

symmetry. However, we find that the self-consistently obtained mean fields are both spa-

tially inhomogeneous. In particular, we examine how the underlying aperiodic structure of

a QC is reflected in the superconducting order parameter.
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1 Introduction

1.1 Topological Insulators and Topological Supercon-

ductors

Topological insulating behavior and topological superconductivity (TSC) [1, 2, 3] are two of

the most fundamental topological quantum phenomena. Recently, these topological quantum

phenomena have been paid intensive attention in the field of materials science. A piece of

supporting evidence is that the founders of this research area were awarded the Nobel Prize in

Physics in 2016 [4]. As a first example, topological insulators are unconventional insulators,

whose interior is an insulator while the surface is a conductor [5, 6]. An example of the

topological insulator is (Bi1−xSbx)2Te3 thin films, where a current without energy loss has

been experimentally observed [7]. In analysis of the wave functions of electrons, the concept

of topology is imported from mathematics and is made good use of [8, 9]. The topological

insulating phase can be explained in terms of nontrivial topology associated with the occupied

single-electron states. The second example, TSC, results in a novel superconducting state

also characterized by a nonzero topological invariant in the bulk [10, 11, 12]. In a topological

material, there is a relation between the bulk and edges or surfaces, which is called the bulk-

edge correspondence [13, 14]. The bulk-edge correspondence implies that the topological

invariant in the bulk is equivalent to the number of edge or surface zero-energy modes. The

edge or surface modes in topological superconductors are Majorana fermions, which has been

first proposed in Ref. [15].

The emergence of Majorana fermions as elementary excitations in topological supercon-

ductors is what makes this research field significant not only from the fundamental point of

view, but also for technological applications. Majorana fermions are their own antiparticles

[16] and due to the non-Abelian exchange statistics that they obey, they open the door to new
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and powerful methods of topological quantum computing [17, 18]. Majorana fermions have

been detected in both one-dimensional systems [10] and two-dimensional systems [11, 12] us-

ing scanning tunneling microscopy. A conceptual diagram of a scanning tunneling microscope

is shown in Fig. 1.1 (a). By getting a metal probe closer to the surface of a material, the

tunneling current I occurs and is measured by a current measurement system. By changing

bias voltage V induced to the metal probe, the differential tunneling conductance defined as
dI

dV
is measured as shown in Fig. 1.1 (b). Such measurement is called scanning tunneling

spectroscopy. Because the differential tunneling conductance is proportional to the density

of states (DOS) at the Fermi level [19], this technique can be used to obtain the spatial and

energy dependence of the local DOS. In particular, a peak in the differential tunneling con-

ductance at an edge or a surface of the material with no bias energy indicates the existence

of a zero-energy edge or surface mode. A Majorana fermion appears as a zero-energy bound

state at an edge or a surface of a topological superconductor. A Majorana zero mode can

also appear at the interface between a topological superconductor and a trivial material: It

will be trapped at the interface and can go into the bulk of neither material.

For example, as a one-dimensional system, on top of a lead surface, ferromagnetic Fe

atomic chains were deposited in the experiment of Ref. [10]. Lead is a conventional s-wave

superconductor that intrinsically has strong Rashba spin-orbit coupling. The detection of

a Majorana zero-energy mode was conducted using a scanning tunneling microscope. The

spatial and energy dependence of the differential tunneling conductance was obtained. At zero

energy where there is no bias voltage, the differential tunneling conductance was observed to

peak at the end of the chain, indicating the existence of a zero-energy bound state. Also, as a

two-dimensional system, a monolayer lead was grown on a silicon substrate with a magnetic

disk of cobalt in the experiment of Ref. [11]. This s-wave superconducting and ferromagnetic

hybrid system was investigated using a scanning tunneling microscope. Along the surface of

the disk, Majorana fermions were detected as zero-energy bound states. In our study, we

use the model Hamiltonian of TSC with broken time-reversal symmetry which is directly

applicable to this system. In addition, a Majorana zero-energy vortex bound state has been

detected in the topological superconductor FeTe0.6Se0.4 by scanning tunneling microscopy

[12]. Because a scanning tunneling microscope with a high energy resolution was used, the
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Figure 1.1: (a) A conceptual diagram of the scanning tunneling microscope. (b) A
conceptual diagram of a result of scanning tunneling spectroscopy.

detected zero-energy state could be distinguished from low-energy, but nonzero-energy bound

states of regular quasiparticles. Topological quantum computing using Majorana fermions as

qubits is possible by braiding Majorana vortex bound states [20].

Topological materials can be classified according to the topological invariant in the bulk,

which is in turn determined by the symmetries of the system [21, 22]. For example, in the

presence of translational symmetry, a two-dimensional topological system with particle-hole

symmetry and without time-reversal and chiral symmetries is characterized by the Thouless-

Kohmoto-Nightingale-Nijs (TKNN) number [23] or the first Chern number [24, 9], which are

essentially the same.

Superconductivity (SC) is a quantum phenomenon defined by two key features, zero

resistance and perfect diamagnetism. Since the first discovery in 1911 [25], many attempts

have been made for revealing the mechanism of SC [26, 27, 28, 29, 30, 31]. One of the most

significant accomplishments is the Bardeen-Cooper-Schrieffer (BCS) theory of SC [32], which

microscopically describes the superconducting state as a quantum-mechanical many-body

collective phenomenon. In the superconducting state, the gauge symmetry is spontaneously

broken, as the phase of the condensate wave function is fixed macroscopically [19]. Due to

perfect diamagnetism which originates from the spontaneously broken gauge symmetry, SC is

distinguished from perfect conductivity which merely means zero resistance. The difference
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Figure 1.2: Cooling (a) a perfect conductor and (b) a superconductor under external
magnetic field.

between a perfect conductor and a superconductor as they are cooled under external magnetic

field is illustrated in Fig. 1.2. When the external magnetic field B is applied to a material,

the magnetic field inside the material Bin is

Bin = B(1 + 4πχ), (1.1)

where χ is the magnetic susceptibility. Diamagnetism occurs when χ < 0 and perfect dia-

magnetism when χ = − 1

4π
. In the case of a perfect conductor, Bin > 0 after the cooling. In

contrast, in the case of a superconductor, the magnetic field cannot penetrate inside due to

perfect diamagnetism and Bin = 0 after the cooling.

SC is a result of spontaneously broken gauge symmetry, and it is different from ferromag-

netism in metals [33, 34, 35] which is a result of spontaneously broken rotational symmetry

of spin. Both phenomena are due to the spontaneous breaking of the continuous symmetry;

however, behind SC is the Anderson-Higgs mechanism [36, 37, 38], which results in the energy

gap (i.e., a ‘massive’ excitation). On the other hand, the massless Nambu-Goldstone mode

[39, 40] appears in the case of ferromagnetism in metals. The massless Nambu-Goldstone

mode (boson) is associated with collective excitation of the electrons’ spin called a magnon

[41, 42], whose energy dispersion is linear and vanishes as wave vector approaches zero.

While SC is a result of spontaneously broken gauge symmetry, topological materials

present fundamentally different quantum collective phenomena. These topological phenom-

ena emerge not as a result of the spontaneous breaking of any symmetry, but rather due
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to the presence of nontrivial topology in the bulk [21]. Thus, SC and topological phenom-

ena are fundamentally different in their origin and can coexist, as is realized in TSC. The

topological invariant describing TSC is conventionally defined in momentum space [43]. The

momentum-space representation is based on the periodicity or translational invariance of the

system [44]. Conventional crystals have translational symmetry and are periodic. Meanwhile,

the so-called quasicrystals (QCs) [45, 46] without translational symmetry have recently been

studied intensively [47, 48, 49, 50, 51, 52]. QCs are introduced in the subsequent section,

which form a new class of topological materials altogether.

1.2 Quasicrystals

QCs are unconventional materials which show Bragg peaks even though their structure has no

periodicity and possess peculiar rotational symmetry that is forbidden by crystallography [53].

X-ray diffraction of a QC will exhibit Bragg peaks with such unusual symmetry, which would

fill the entire momentum space in the limit of infinite system size [54]. It was Shechtman who

discovered the first QC with icosahedral diffraction symmetry in Al-Mn alloys in 1984 [45, 55],

for which he was awarded the Nobel Prize in Chemistry in 2011 [56]. Such materials showing

Bragg peaks without periodic order that defy the laws of crystallography were dubbed as

QCs [46]. One of the astonishing features of icosahedral QCs is fivefold diffraction symmetry,

which is not realizable in conventional crystals. Other than two, three, four, or sixfold

rotational symmetry, there are no single unit cells that can fill the entire plane or space

without any gap. Fivefold rotational symmetry can be realized by two or more kinds of unit

cells in a QC. For example, Penrose tiling has a two-dimensional quasiperiodic structure,

which is composed of two kinds of unit cells and shows fivefold rotational symmetry. The

Ammann-Beenker (AB) tiling is another example of a two-dimensional QC with two kinds

of unit cells, which shows eightfold rotational symmetry.

QCs have a high potential to be applied for useful products [57]. There are mainly

five good properties of QCs; high resistance metal, low thermal conductance [58], hardness

even at high temperatures, low friction [59, 60], and high water repellency. Utilizing these

properties, QCs can be applied for coating a frying pan, automotive parts, razor blades,

5



needles and surgical tools, and so on, and also they can be used for air-space applications

[61]. The French company Sitram Cybernox used to produce quasicrystalline-coated frying

pans [62]. Using electron beam vapor deposition in vacuum, the surface of a frying pan can be

coated by Al-Fe-Cu QC. The electron beam vapor deposition is a method that by irradiating

a material with an electron beam emitted from an electron gun, the material is heated and

vaporized in vacuum, and a substrate is covered by the material. The Al-Fe-Cu-coated frying

pan can stand high temperatures such as 700 to 800 degrees Celsius, in contrast to Teflon, a

commonly used, coated frying pan without QCs, which can sustain up to 400 to 500 degrees

Celsius. In comparison with Al-Fe-Cu QC, Al itself heats up too quickly and non-uniformly.

Due to the low thermal conductivity of Al-Fe-Cu QC, the temperature of an Al-Fe-Cu-coated

frying pan remains relatively uniform when heated.

There are many unanswered important questions about QCs. For instance, a supercon-

ducting state in QCs is interesting. Soon after Shechtman’s discovery, in 1987, the icosahedral

phase of Mg3Zn3Al2 was reported to show SC [63], although this alloy was not a QC despite

its icosahedral symmetry. Recently, however, SC has been confirmed in an Al-Zn-Mg QC

[49]. The BCS theory can explain the observed thermodynamic properties of SC in the Al-

Zn-Mg QC, implying that it is conventional SC originating in electron-phonon interactions.

It is fascinating that even in a quasicrystalline system a superconducting state is realizable,

considering that the conventional BCS theory assumes translational symmetry and is for-

mulated in momentum space. In the BCS theory, not only the electron-electron attraction

via exchange of phonons, but also a sufficiently high DOS at the Fermi energy are key. In a

QC, however, there may or may not be single-particle states at the Fermi level in the normal

state, depending on the electron density. In particular, QCs tend to have pseudogaps in

their energy spectrum. Moreover, both Penrose and AB QCs are known to have families of

strictly localized states at zero energy. A Penrose QC has an energy gap above and below

zero energy, and would be insulating if the Fermi level is placed in one of those gaps.

While there have been theoretical studies of conventional s-wave SC in Penrose [64, 65]

and AB [66] QCs, it is interesting to examine the possible occurrence of TSC in QCs. Theo-

retically, so far TSC has only been studied in periodic crystals such as square lattice systems.

Thanks to translational symmetry in such systems, topological invariants such as the first
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Chern number are calculated in momentum space. Is translational symmetry required for

the existence of TSC? This question was first addressed in the Fibonacci-Kitaev model as the

simplest example of a one-dimensional quasicrystalline topological superconductor [67]. This

work has recently been generalized for two spatial dimensions in Ref. [68], where topological

phase transitions and TSC have been demonstrated to occur in both Penrose and AB QCs.

For calculating a topological invariant, periodic boundary condition (PBC) is required. QC

approximant is an approximated quasicrystal, which can be considered with PBC. In QC

approximants, the Bott index [69, 70] has been calculated as the topological invariant, which

is equivalent to the first Chern number in translationally symmetric systems. The Bott index

has been shown to signify the non-Abelian nature of the TSC phase in QCs, where Majorana

fermions appear along surfaces or in a vortex [68].

In the work of Ref. [68], however, the superconducting order parameter was assumed to

be uniform. While the order parameter is uniformly distributed in periodic systems, there is

no good reason to assume a uniform order parameter in aperiodic systems such as QCs. So

the question still remains, as to whether a stable TSC phase can occur in QCs, despite their

aperiodic and fractal structure. QCs are inherently fractal, characterized by self-similarity.

This particular feature of QCs is sure to affect the topological superconducting state if it is

realizable, and most likely the possible existence of TSC itself. The goal of this thesis is to

address these questions by solving for the order parameter self-consistently in Penrose and

AB QC approximants; whether TSC can exist stably in QCs and what the properties of such

TSC states are. We use the microscopic mean-field theory of SC formulated in real space,

the Bogoliubov-de Gennes (BdG) theory [71].

1.3 Motivation for Research

Both TSC and QCs are fascinating areas of studies, both from fundamental and applica-

tion perspectives. Meanwhile, not much research has been done in the new area interfacing

these two areas. The major obstacle for research combining TSC and QCs is the absence of

translational symmetry in QCs. In QC systems, due to the lack of translational symmetry,

methods frequently adopted in conventional crystallography such as Fourier transform are not
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applicable. In this thesis, we generalize the tight-binding model for 2D TSC of Sato, Taka-

hashi, and Fujimoto [72] for QC approximants, and we solve the BdG equations [71] directly

and self-consistently [73, 74]. A self-consistent approach can be applied even if the system

does not hold translational symmetry. The considered model describes 2D TSC with broken

time-reversal symmetry as experimentally realized in Pb/Co island on Si(111) [11], whose

topological nature is governed by the first Chern number. For QC approximants, the Bott

index is calculated as the topological invariant of the system, which plays the role of the first

Chern number in the absence of translational symmetry. By solving for the superconducting

order parameter self-consistently, the stability of TSC in QC approximants is examined. The

possible applications would be topological quantum computing using quasicrystals.

1.4 Layout of Thesis

This thesis aims to introduce TSC and to examine how the aperiodic and fractal nature of QCs

affects the TSC states. The thesis is organized as follows. In Chapter 2, the microscopic mean-

field theory of SC as the theoretical background is briefly described. Chapter 3 introduces the

concept of topology in condensed matter physics. Chapter 4 provides the basic background

knowledge on QCs. The outcomes of the calculation are shown and discussed in Chapter 5.

Finally, Chapter 6 concludes the thesis and discusses the main results obtained.
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2 Superconductivity Theory

TSC, the topic of this thesis, is a certain kind of SC. SC is a quantum phenomenon

experimentally discovered in 1911 [25]. The microscopic theory proposed by Bardeen, Cooper,

and Schrieffer (BCS) in 1957 [32], which earned them the Nobel prize in Physics in 1972 [75],

can explain the so-called low-temperature or conventional s-wave SC arising from electron-

phonon interactions. In this chapter, first the BCS theory is briefly described for a better

understanding of TSC introduced later [19]. Then, the BdG theory [71] for the extended

Hubbard model for conventional s-wave SC is discussed.

2.1 The Bardeen-Cooper-Schrieffer Theory of Super-

conductivity

The BCS theory [32] is one of the most fundamental theories of SC, based upon the Landau-

Fermi liquid theory [76, 77]. The Landau-Fermi liquid theory is an effective theory proposed

by Landau in 1956 [76], describing interacting Fermi systems (Fermi ‘liquid’) such as a group

of electrons residing in a substance. Without interactions, free electrons spread through the

substance, each being characterized by a wave number and spin. When the Landau-Fermi

liquid theory is applicable the coherence of electrons as waves is not lost even in the presence

of electron-electron interactions, and the system of interacting electrons can be described as

a gas of free electrons, albeit with a different mass compared to the bare electron mass. Most

importantly, the system is characterized by the existence of a well-defined Fermi surface,

similarly to the case of free electrons.

Based on the Landau-Fermi liquid theory, Bardeen, Cooper, and Schrieffer developed the

theory of SC, now known as the BCS theory [32]. Some important parts of the BCS theory

9



are briefly explained below [78]. The starting point is the “reduced Hamiltonian”,

Ĥred = 2
∑

k

εkb̂
†
kb̂k +

∑

k,k′

Vk′
,kb̂

†
k′ b̂k, (2.1)

where b̂†k (b̂k) is the creation (annihilation) operator of a Cooper pair in a state (k ↑,−k ↓),

and Vk′
,k is the weak electron-phonon interaction that scatters a Cooper pair from k to k′.

The annihilation operator of a Cooper pair (k ↑,−k ↓) is b̂k = ĉ−k↓ĉk↑ , governed by the

commutation relations,
[
b̂k, b̂

†
k′

]
= 0;k (= k′, (2.2)

[
b̂k, b̂k′

]
= 0 =

[
b̂†k, b̂

†
k′

]
, (2.3)

[
b̂k, b̂

†
k

]
= 1−

(
n̂k↑ + n̂−k↓

)
, (2.4)

where the number operator n̂kσ = ĉ†kσ
ĉkσ counts the number of the electrons in (k, σ).

Equation. (2.4) clearly shows that the Cooper pair operators are not bosonic. BCS proposed

a trial many-body wave function as

|Ψ0〉 ∝
∏

k

(
1 + αkb̂

†
k

)
|0〉 (2.5)

for the groud state of the reduced Hamiltonian, where {αk} are the parameters to be deter-

mined by the variational principle to minimize the ground-state energy. It is the simplest to

normalize this wave function by normalizing it for each state k and write it as

|Ψ0〉 =
∏

k

(
uk + vkb̂

†
k

)
|0〉 , (2.6)

where,

uk =
1

1 + |αk|2
(2.7)

is the probability amplitude for the ground state not to contain a Cooper pair (a pair of

electrons in (k ↑,−k ↓)) in state k and

vk =
αk

1 + |αk|2
(2.8)
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is for the ground state to contain a Cooper pair in state k. These uk and vk satisfy the

normalization condition,

|uk|
2+|vk|

2= 1. (2.9)

Using the method of Lagrange multipliers,

δE = δ
〈
Ψ0

∣∣∣ Ĥred − µN̂
∣∣∣Ψ0

〉
= 0 (2.10)

gives 

εk − µ ∆k

∆∗
k −(εk − µ)







uk

vk



 = Ek



uk

vk



 . (2.11)

Here, µ is the chemical potential which is the Lagrange multiplier, N̂ is the number op-

erator to count the number of electrons in the system, and the order parameter ∆k is

self-consistently determined by

∆k = −
∑

k′

Vk′
,kuk′v∗k′ . (2.12)

This turns out to be the energy gap to break up a Cooper pair (k ↑,−k ↓). Accordingly,

Ek =
√

(ε
k
− µ)2 + |∆k|2 (2.13)

is the energy required to create a single-particle (‘ quasiparticle ’) excitation.
The k dependence of the superconducting order parameter is determined by the pairing

interaction Vk′
,k leading to SC, which can have, for example, s-, p-, or d-wave pairing

symmetry. Here s, p, and d refer to the relative angular momentum of a Cooper pair ( = 0, 1,

and 2, respectively. Due to the Pauli exclusion principle, s- and d-wave SC has a spin-singlet

Cooper pair, while p-wave SC has spin-triplet pairing. For isotropic s-wave SC, Vk′k = −V

(V > 0) and ∆k ≡ ∆ (constant), then the self-consistent equation of the order parameter in

Eq. (2.12) reduces to

∆ =
∑

k′

V
∆

2Ek′
, (2.14)

namely,

1 =
V

2

∑

k′

1

Ek′
. (2.15)
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In the continuum model as used by BCS, it is assumed that the electron-phonon interaction

is nonzero within ±h̄ωD about the Fermi surface:

V

2

∑

k′

1

Ek′
, V

2
D(εF )

∫ h̄ωD

−h̄ωD

dε√
ε2 +∆2

, (2.16)

where ωD is the Debye frequency and D(εF ) is the density of states (DOS) at the Fermi

energy assumed to be constant in this narrow energy range. In the weak-coupling limit,

V D(εF ) - 1, and the BCS value of the energy gap at zero temperature is given by

∆ = 2h̄ωDe
− 1

V D(εF ) . (2.17)

The BCS theory can explain the experimental results on conventional or low-temperature

superconductors. For example, the BCS theory predicts the ratio of the minimum excitation

energy from the ground state and the critical temperature of the phase transition between

the normal and superconducting states as [19]

2∆

kBTc
=

2π

eγ
≈ 3.53. (2.18)

Thus, according to the BCS theory, this value is independent of material parameters and

can be used for testing the BCS theory. Table. 2.1 lists experimentally observed values for

some conventional superconductors in comparison with the prediction of the BCS theory

[79, 80]. Considering that the observation error is of the order of ±0.1, the BCS theory

well explains the experimental results except in the case of Hg and Pb. The reason why the

BCS theory does not work well for Hg and Pb is the relatively large V D(εF ) in Hg and Pb.

The BCS theory can also explain other thermodynamic properties such as
∆C

Cn

∣∣∣∣
T=Tc

. Here,

∆C = (Cs − Cn)T→Tc−0, where Cs and Cn are the specific heat at constant volume in the

superconducting and normal state, respectively. The BCS theory predicts

∆C

Cn

∣∣∣∣
T=Tc

=
12

7ζ(3)
≈ 1.43, (2.19)

which is also universal and a good test of the BCS theory. Table. 2.1 also compares experi-

mentally observed
∆C

Cn

∣∣∣∣
T=Tc

and the prediction of the BCS theory [79, 80]. Expect for Nb,

Hg, and Pb, the BCS theory reproduces the experimental results well.

In summary, the BCS theory can explain the properties of conventional or low-temperature

superconductors with weak electron-phonon coupling with smaller V D(εF ). However, the
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Table 2.1: Comparison of the prediction of the BCS theory and experimental results
[79, 80] The “BCS” listed as “Elements” in the last column represents the prediction
of the BCS.

Elements Al V Zn Nb Cd In

Tc [K] 1.196 5.30 0.852 9.23 0.56 3.40

h̄ωD/kB [K] 428 380 327 275 209 108

2∆/kBTc 3.4 3.4 3.2 3.8 3.2 3.6

∆C/Cn|T=Tc 1.45 1.5 1.3 1.9 1.4 1.7

Elements Sn (β) Ta Hg (α) Tl Pb BCS

Tc [K] 3.72 4.39 4.15 2.39 7.19 -

h̄ωD/kB [K] 199 240 71.9 78.5 105 -

2∆/kBTc 3.5 3.6 4.6 3.6 4.3 3.53

∆C/Cn|T=Tc 1.6 1.6 2.4 1.5 2.7 1.43

BCS theory assumes translational symmetry and is formulated in momentum space, and

thus cannot deal with spatial inhomogeneities or applied magnetic field.

2.2 Bogoliubov-de Gennes Theory for the Extended

Hubbard Model for Conventional s-wave Supercon-

ductivity

In this section, the BdG theory [71] is described for the extended Hubbard model for con-

ventional s-wave SC. The BdG theory is a generalization of the BCS theory and formulated

in coordinate space. While it is equivalent to the BCS theory for translationally invariant

systems, it is more general and powerful than the BCS theory as it can incorporate inhomo-

geneities and applied magnetic field. The extended Hubbard model is a tight-binding model

to describe SC. The extended Hubbard Hamiltonian is

H = H0 +H1, (2.20)
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where

H0 =
∑

〈ij〉σ

tij ĉ
†
iσ ĉjσ +

∑

iσ

(εi − µ)n̂iσ, (2.21)

H1 =
∑

i

Uiin̂i↑n̂i↓ +
1

2

∑

〈ij〉

∑

σσ′

Uijn̂iσn̂jσ′ . (2.22)

Here tij is the probability amplitude for the electron to hop from site j to site i, which we

set to be the uniform nonzero value −t(t > 0) only for the hopping between nearest-neighbor

sites and tij = tji. The notation 〈ij〉 above means that the sum is over all lattice sites i

and only nearest-neighbor sites j for each i. ĉ†iσ and ĉiσ are the creation and annihilation

operators of an electron at lattice site i with spin orientation σ =↑ or ↓ which satisfy the

anticommutation relations
{
ĉ†iσ, ĉ

†
jτ

}
= {ĉiσ, ĉjτ} = 0 and

{
ĉiσ, ĉ

†
jτ

}
= δi,jδσ,τ where δi,j is

the Kronecker delta for i and j, n̂iσ = ĉ†iσ ĉiσ counts the number of electrons at lattice site

i with spin σ, εi is a single-impurity (nonmagnetic) potential at site i, µ is the chemical

potential, Uii is the on-site interaction at site i, and Uij is the off-site interaction between

nearest-neighbor sites.

Let εi = 0 at all sites and consider the uniform and attractive on-site interaction Uii =

−U(U > 0) and let Uij = 0; ∀j (= i. Here, U > 0 means that the total energy is lowered

due to the on-site interaction. The Hamiltonian in Eq.(2.20) then reduces to the attractive

Hubbard Hamiltonian,

Hatt = −t
∑

〈i,j〉σ

ĉ†iσ ĉjσ − µ
∑

iσ

n̂iσ − U
∑

i

n̂i↑n̂i↓. (2.23)

The mean-field approximation is applied to the interaction term in Eq.(2.23) which contains

four operators. The mean-field approximation assumes that the difference between operators

and their average value, such as ĉ†i↑ĉi↑ −
〈
ĉ†i↑ĉi↑

〉
or ĉ†i↓ĉi↓ −

〈
ĉ†i↓ĉi↓

〉
, is small and neglects

its square. Using the mean-field approximation and the anticommutation relations that the

creation and annihilation operators of an electron satisfy, the attractive Hubbard Hamiltonian
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in Eq.(2.23) can be reduced to the effective Hamiltonian expressed in the matrix form,

(2.24)
Heff =

∑

ij

(
ĉ†i↑ ĉi↓

)


tij + V diag
ii ∆↓↑

ii

(∆↓↑
ii )

∗ −tij − V diag
ii







ĉj↑

ĉ†j↓





+
∑

i

V diag
ii +

1

U

∑

i

[
(V (H)

ii )2 + |∆↓↑
ii |2
]
,

where the Hartree potential created by electrons with either spin at lattice site i is defined

as

V (H)
ii = −U

〈
ĉ†i↑ĉi↑

〉
= −U

〈
ĉ†i↓ĉi↓

〉
, (2.25)

and the superconducting order parameter at lattice site i is defined as

∆↓↑
ii = −U 〈ĉi↓ĉi↑〉 . (2.26)

Here, V diag
ii = −µ+ V (H)

ii and the Kronecker delta δi,j is implicit for V diag
ii and ∆↓↑

ii .

The (1, 1) element ((2, 2) element) of the matrix in the first term in Eq. (2.24) represents

the single-electron (single-hole) part of the Hamiltonian, while the (1, 2) element ((2, 1) el-

ement) represents the interaction between an electron at lattice site j and a hole at lattice

site i (an electron at lattice site i and a hole at lattice site j). Here, a hole is defined so

that ĉ†iσ (ĉiσ) is the annihilation (creation) operator of a hole at lattice site i with spin σ.

In the superconducting state where the electron-hole interaction is present, the Hamiltonian

in Eq. (2.24) is not diagonalized in the basis of the creation and annihilation operators of

electrons due to the superconducting order parameter in the off-diagonal elements. Thus,

a unitary transformation is required for diagonalizing the Hamiltonian in Eq. (2.24), which

means that the eigenstates of the Hamiltonian in Eq. (2.24) are expressed as linear superpo-

sitions of an electron and a hole. This implies that electrons and holes are not distinguishable

in the superconducting state and a single-particle excitation in a superconductor is always

part electron and part hole, which is called a quasiparticle excitation. In the BdG theory

[71], the eigenvalue equations of the Hamiltonian are called the BdG equations, where the

mean-field Hamiltonian is called the BdG Hamiltonian. The BdG equations are coupled

Schrödinger-like equations for the electron and hole component of a quasiparticle.
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By performing a unitary transformation, the first term in Eq. (2.24) can be diagonalized

as

(2.27)

∑

ij

(
ĉ†i↑ ĉi↓

)


tij + V diag
ii ∆↓↑

ii

(∆↓↑
ii )

∗ −tij − V diag
ii







ĉj↑

ĉ†j↓





=
∑

n,m

(
γ̂†n γ̂n

)


Enδn,m 0

0 −Enδn,m







γ̂m
γ̂†m



 ,

where γ̂†m (γ̂m) is the creation (annihilation) operator of a quasiparticle in a single-particle

state m, which is a linear superposition of the operators of an electron and a hole. After

the diagonalization, the (1, 1) element of the matrix on the right hand side in Eq. (2.27)

is the positive energy required to create a quasiparticle excitation, which is measured from

the chemical potential. All the negative-energy single-particle states are occupied at zero

temperature.

The BdG theory is an expression of the BCS theory in coordinate space, overcoming the

major weak point of the BCS theory. That is, the BCS theory assumes that the system is

homogeneous and momentum is a good quantum number, in which case the superconducting

order parameter is uniformly distributed in space. In the presence of spatial inhomogeneities

as due to impurities or applied magnetic field, however, the superconducting order parameter

cannot be assumed to be uniformly distributed. Because momentum is no longer a good

quantum number, the Hamiltonian should be expressed in coordinate space, and the BdG

theory is helpful.

The Hartree potential in Eq. (2.25) and the superconducting order parameter in Eq.(2.26)

are determined self-consistently using the following method. First, we give an initial guess for

the Hartree potential and superconducting order parameter, and generate the BdG Hamilto-

nian using the initial guess. Then diagonalize the BdG Hamiltonian and obtain the eigenener-

gies and normalized eigenstates. Then, using these eigenenergies and eigenstates, we calculate

the Hartree potential and the superconducting order parameter as in Eq. (2.25) and Eq.(2.26),

which are the next guess for the Hartree potential and superconducting order parameter. We

repeat this procedure, obtaining the guess for the Hartree potential and superconducting

order parameter at the lth (l is a natural number) iteration step by using the guess at the
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(l− 1)th iteration step, until the convergence criterion is satisfied. The convergence criterion

for the lth iteration step is given by

‖-∆(l) − -∆(l−1)‖
‖-∆(l−1)‖

< 10−6, (2.28)

where -∆(l) is a complex vector of length N whose ith element is ∆i of the lth iteration step

and ‖-∆(l)‖ is the norm of -∆(l), where N is the total number of lattice sites. The Hartree

potential must also satisfy the analogous convergence criterion as a real vector of length N .

The self-consistent iterations are repeated until both mean fields are converged under the

given criterion.

2.3 Bogoliubov-de Gennes Theory for Topological Su-

perconductivity

In this section, by adding a magnetic field for Zeeman coupling and Rashba spin-orbit cou-

pling to the effective Hamiltonian in Eq. (2.24), the tight-binding Hamiltonian for TSC

[72, 74] is introduced. With the Zeeman magnetic coupling and Rashba spin-orbit coupling

terms, the Hartree potential becomes spin-dependent and the Hartree potential at lattice site

i felt by an electron with spin σ̄ (= σ is defined as

V (H)
iiσ = −U 〈n̂iσ〉 = −U

〈
ĉ†iσ ĉiσ

〉
. (2.29)

Due to the spin dependence, the effective Hamiltonian now has a 4× 4 structure:

Heff

=
1

2

∑

ij

(
ĉ†i↑ ĉ†i↓ ĉi↑ ĉi↓

)





tij + V diag
ii↑ (V SO

ij )† 0 ∆↓↑
ii

V SO
ij tij + V diag

ii↓ ∆↑↓
ii 0

0 (∆↑↓
ii )

∗ −tij − V diag
ii↑ −(V SO

ij )T

(∆↓↑
ii )

∗ 0 −(V SO
ij )∗ −tij − V diag

ii↓









ĉj↑

ĉj↓

ĉ†j↑

ĉ†j↓





+
1

2

∑

iσ

(
−µ+ hσ + V (H)

iiσ̄

)
+

1

U

∑

i

[
V (H)
ii↑ V (H)

ii↓ + |∆↓↑
ii |2
]
,

(2.30)

where hσ = −h (+h) for σ =↑ (σ =↓), V SO
ij represents the Rashba spin-orbit coupling which

acts between an electron at lattice site i with spin ↓ and an electron at lattice site j with
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spin ↑, σ̄ is the opposite spin of σ, V diag
iiσ = −µ + hσ + V (H)

iiσ̄ , and the Kronecker delta δi,j is

implicit for V diag
iiσ , ∆↓↑

ii and ∆↑↓
ii .

By defining the average of the Hartree potential in a system of N lattice sites,

V̄ (H)
σ =

1

N

∑

i

V (H)
iiσ , (2.31)

the effective Hamiltonian in Eq. (2.30) can be rewritten as

Heff

=
1

2

∑

ij

(
ĉ†i↑ ĉ†i↓ ĉi↑ ĉi↓

)





tij + V diag
ii↑ (V SO

ij )† 0 ∆↓↑
ii

V SO
ij tij + V diag

ii↓ ∆↑↓
ii 0

0 (∆↑↓
ii )

∗ −tij − V diag
ii↑ −(V SO

ij )T

(∆↓↑
ii )

∗ 0 −(V SO
ij )∗ −tij − V diag

ii↓









ĉj↑

ĉj↓

ĉ†j↑

ĉ†j↓





+
1

2

∑

iσ

(
εiσ − µ̃+ δV̄σ + hσ + V (H)

iiσ̄ − V̄ (H)
σ̄

)
+

1

U

∑

i

[
V (H)
ii↑ V (H)

ii↓ + |∆↓↑
ii |2
]
,

(2.32)

where

µ̃ = µ−
V̄ (H)
↑ + V̄ (H)

↓

2
, (2.33)

δV̄ =
V̄ (H)
↑ − V̄ (H)

↓

2
, (2.34)

V̄ diag
ii↑ = −µ̃− δV̄ − h+ V (H)

ii↓ − V̄ (H)
↓ , (2.35)

and

V̄ diag
ii↓ = −µ̃+ δV̄ + h+ V (H)

ii↑ − V̄ (H)
↑ . (2.36)
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3 Topological States of Matter

TSC, the topic of this thesis, is characterized by topology. Topology has been originally

developed in mathematics and later utilized in physics [8, 9]. Classification of quantum-

mechanical many-body states of topological materials can be achieved in terms of topology

[21]. In this chapter, fundamental concepts used in the topological analysis of physical

phenomena are introduced [19]. Also, the topological analysis is illustrated in some example

systems such as the model for the integer quantum Hall effect [81, 82, 83, 84, 23, 85, 9],

Haldane model [86], and Kitaev model [87].

3.1 Parameter-Dependent Hamiltonian

In this section, the fundamental concepts utilized in the analysis of topological quantum

phenomena are briefly introduced [19].

3.1.1 Berry Connection, Berry Curvature, Berry Phase

As an example for the illustration, let a parameter-dependent Hamiltonian be H(R), de-

scribed by M real parameters R = (R1, R1, . . . , RM). The corresponding Schrödinger equa-

tion is

H(R) |m;R〉 = Em(R) |m;R〉 , (3.1)

where m is an index for distinguishing different eigenstates. If it were not for any band

crossings, a complete orthonormal set {|m;R〉} can be chosen so that

〈m;R |n;R〉 = δmn,
∑

m

|m;R〉 〈m;R| = 1. (3.2)

Here, the Berry connection An(R) is introduced as

An(R) =
1

ı

〈
n;R

∣∣ (∇R
∣∣n;R

〉
), (3.3)
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where ı =
√
−1. Let us consider the time development of the state. Suppose that R starts

from R = R0 at time t = 0, and returns to R = R0 at t = τ . Using the dimensionless time

s =
t

τ
, the corresponding time-dependent Schrödinger equation is

ıh̄
d

ds
|ψ(s)〉 = H(R(s))τ |ψ(s)〉 . (3.4)

The initial state is |ψ(s = 0)〉 = |n;R0〉, and the final state is

|ψ(s = 1)〉 = exp

(
− ı

h̄

∫ τ

0

En(R(t))dt

)
exp (−ıγn(C)) |n;R0〉 . (3.5)

These two states are the same state with different phases. The effect of the movement of R

on the phase difference is

γn(C) =

∮

C

An(R) · dR, (3.6)

dubbed as the Berry phase [43].

Here, exp (−ıγn(C)) is a gauge-invariant quantity, namely, invariant under the gauge

transformation. In general, for a given function Λ(r, t), the gauge transformation changes a

scalar potential φ(r, t) and a vector potential An(R) as

φ(r, t) 3→ ψ(r, t)− 1

c

∂Λ

∂t
(3.7)

and

A(r, t) 3→ A(r, t) +∇Λ(r, t), (3.8)

respectively. The electric field E(r, t) and the magnetic flux density B(r, t), which are writ-

ten by φ(r, t) and An(R), are gauge invariant. By changing |n;R〉 to exp (iΛn(R)) |n;R〉,

the Berry connection is changed by ∇RΛn(R). This changing does not affect exp (−ıγn(C))

when both |n;R〉 and exp (ıΛn(R)) |n;R〉 are uniquely defined on C. Also, the Berry curva-

ture is defined as

Bn(R) = ∇R ×An(R), (3.9)

which is related with the Berry phase by Stokes’ theorem as

γn(C) =

∫

S

Bn(R) · dS. (3.10)
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3.1.2 An Example in Two Level System

For instance, a two-level system

Ĥ(R) = R · σ̂ (3.11)

can be considered [19] with R = (X, Y, Z) and σ̂ = 2
s

h̄
. The corresponding Schrödinger

equation is

Ĥ(R) |±;R〉 = ±R |±;R〉 . (3.12)

In this case, the Berry curvature is B±(R) = ± R

2R3
, and thus

∇R ·B±(R) = ±2πδ(R). (3.13)

Here, there are two expressions for |±;R〉 with different singularities:

|+;R〉(A) =
1√

2R(R + Z)
((R + Z) |+〉+ (X + ıY ) |−〉), (3.14)

|−;R〉(A) =
1√

2R(R + Z)
(−(X − ıY ) |+〉+ (R− Z) |−〉), (3.15)

and

|+;R〉(B) =
1√

2R(R− Z)
((X − ıY ) |+〉+ (R− Z) |−〉), (3.16)

|−;R〉(B) =
1√

2R(R− Z)
(−(R− Z) |+〉+ (X + ıY ) |−〉). (3.17)

In the limit of R approaching the positive (negative) part of the z-axis, |+;R〉(A) (|+;R〉(B))

is not uniquely determined. These two states are related as

|+;R〉(B) = exp (−ıφ) |+;R〉(A) (3.18)

and

|−;R〉(B) = exp (ıφ) |−;R〉(A) , (3.19)

where φ = Arg(X + ıY ) is the argment of X + ıY . Put differently, the singular gauge

transformation

A(B)
± (R) = A(A)

± (R)∓∇Rφ (3.20)

21



maps the singularity in the negative part of the z-axis onto the positive part of it. In general,

|n;R〉 is not uniquely determined on the line started from the band crossing point (Dirac

string [88]) and An(R) diverges. The shape of the Dirac string can be transformed under

the singular gauge transformation; however, it can never be removed. Accordingly, Stokes’

theorem can be applied to calculation of the Berry phase in Eq. (3.10) only when the band

crossings never occur on the surface S and the phase of |n;R〉 needs to be selected so that S

does not cross the Dirac strings. Under these conditions, the quantity Φn =

∫

S

Bn(R) · dS

is quantized as an integer multiple of 2π. Here, let S be divided into two surfaces S(A) and

S(B) and the phase of |n;R〉 is selected so that Dirac strings do not cross S(A) or S(B). Then,

Φn =

∫

S

Bn(R) · dS

=

∫

S(A)

Bn(R) · dS +

∫

S(B)

Bn(R) · dS

=

∮

C

A(A)
n (R) · dR−

∮

C

A(B)
n (R) · dR.

(3.21)

Because both |n;R〉(A) and |n;R〉(B) are uniquely determined on C and connected via the

singular gauge transformation, the difference between
∮
C A(A)

n (R) · dR and
∮
C A(B)

n (R) · dR

are an integer multiple of 2π. Therefore, the (first) Chern number
Φn

2π
is an integer quantity,

and an example of a topological invariant. A topological invariant is a quantity that is

preserved under a continuous transformation. It is known that the Chern number is the bulk

topological invariant for all insulators with broken time-reversal symmetry. As long as the

gap does not close, any continuous deformation of the Hamiltonian does not affect the Chern

number.

3.2 Integer Quantum Hall Effect

In this section, the integer quantum Hall effect [81, 82, 83, 84, 23, 85] is briefly described

from the perspective of topology [9, 19]. The integer quantum Hall effect is the precise

quantization of the Hall conductance in a two-dimensional electron gas in a strong magnetic

field at low temperature, the very first example discovered of a two-dimensional topological

insulator. It belongs to the same class as two-dimensional TSC with broken time-reversal
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symmetry of the model used in this thesis and is characterized by the first Chern number [21].

In the original experiment conducted by Hall, a magnetic field was applied to a gold leaf,

and a current was found to flow longitudinally in the leaf. The electric voltage between the

conductor’s lateral edges is called the “Hall voltage”. In the integer quantum Hall systems,

the Hall conductance is quantized as
ne2

h
, where n is an integer characterizing each plateau

as a function of the applied magnetic field.

In a model of the integer quantum Hall effect, the Schödinger equation for a single electron

is

Ĥ |α〉 = εα |α〉 , Ĥ =
π2

2me
+ V (r̂) +

geµBB

h̄
ŝz. (3.22)

The so-called twisted boundary condition

T̂−Leµ |α〉 = exp (ıθµ) |α〉 , (µ = x, y) (3.23)

is imposed where Lex and Ley are periodic vectors, and T̂−Leµ is a translation operator.

Under the singular gauge transformation

∣∣∣ ˜α;θ
〉
= Û(θ) |α;θ〉 , Û(θ) = exp (−ı

θ · r
L

), (3.24)

the Schrödinger equation is changed to

ˆ̃H(θ)
∣∣∣ ˜α;θ

〉
= εα(θ)

∣∣∣ ˜α;θ
〉
, ˆ̃H(θ) = Û(θ)ĤÛ−1(θ) = Ĥ|

π )→π+ h̄θ
L

. (3.25)

The singular gauge transformation maps the twisted boundary condition to the periodic one

since T̂−Leµ

∣∣∣ ˜α;θ
〉
=
∣∣∣ ˜α;θ

〉
, and the single-electron Hamiltonian with the periodic boundary

condition depends on θ. In the thermodynamic limit, the Hall conductivity σxy(θ) is averaged

over θ as

σxy(θ) =

∫ 2π

0

dθx
2π

∫ 2π

0

dθy
2π

σxy(θ), (3.26)

which can be calculated by the TKNN formula [23],

σxy =
e2

h̄

∑

εα≤µ

∫ 2π

0

dθx
2π

∫ 2π

0

dθy
2π

Bα(θ). (3.27)

Here, Bα(θ) is the Berry curvature calculated from Ĥ(θ). The twisted boundary condition

in Eq. (3.23) makes Bα(θ) periodic:

Bα(θx + 2π, θy) = Bα(θx, θy + 2π) = Bα(θx, θy). (3.28)
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The Chern number Nα is

Nα =
1

2π

∫ 2π

0

dθx

∫ 2π

0

dθyBα(θ). (3.29)

Using Eq. (3.27),

σxy = NCh
e2

h̄
, NCh =

∑

εα≤µ

Nα. (3.30)

Since the Chern number is quantized as an integer, the θ-averaged Hall conductivity is also

quantized as an integer multiple of
e2

h̄
. More detailed description of the integer quantum Hall

effect including the existence of the plateaus can be constructed when the energy distribution

of the so-called edge states is taken into account.

3.3 Haldane Model

In this section, the Haldane model [86] is introduced as an example of a topological system

whose phase is classified by the Chern number.

3.3.1 Basics of Graphene

The Haldane model is based upon the structure of graphene. Graphene is made out of carbon

atoms arranged in hexagonal structure, as illustrated in Fig. 3.1. The red and blue dots

represent the lattice points, and the black lines represent the nearest-neighbor connections

between lattice points. Every red (blue) point is connected to blue (red) point, thus the

structure of graphene is said to be bipartite. The lattice vectors of grapene, c1 and c2, and

the corresponding reciprocal lattice vectors, b1 and b2, and the vectors connecting nearest-

neighbor sites δ1, δ2 and δ3 are shown in Fig. 3.4. These are written as

c1 =
c

2
(3,

√
3), c2 =

a

2
(3,−

√
3), (3.31)

b1 =
2π

3a
(1,

√
3), b2 =

2π

3a
(1,−

√
3), (3.32)

and

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1,−

√
3), δ3 = −a(1, 0). (3.33)
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Figure 3.1: The structure of graphene.

Here, a ≈ 1.42 Å is an atomic length between the nearest-neighbor sites, and the reciprocal

lattice vectors are defined by ci · bj = 2πδij. Two points of the first Brillouin zone illustrated

as K and K′ in Fig. 3.4 are called the Dirac points,

K =

(
2π

3a
,

2π

3
√
3a

)
, K ′ =

(
2π

3a
,− 2π

3
√
3a

)
. (3.34)

The open boundary condition (OBC) in one direction and PBC in the other direction, called

the ribbon boundary condition, is applied. There are several graphene ribbons whose edges

are different from each other. Among them, two of the most fundamental ribbons are called

armchair-type and zigzag-type, illustrated in Fig. 3.2 and Fig. 3.3, respectively. The edge

of an armchair-type ribbon resembles an armchair and the edge of a zigzag-type ribbon is

zigzag.

3.3.2 Tight-Binding Model with Nearest-Neighbor Hopping

In this subsection, the energy spectrum of graphene is considered in the scheme of Fig. 3.5.

The unit cell includes two atoms A and B, colored by blue and red. Utilizing the system’s

bipartite symmetry, the wave function has a form of (ΨA,ΨB)T. Here, |ΨA|2 (|ΨB|2) repre-

sents the probability amplitude for the electron to be at the site A (B). First, by considering
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Figure 3.2: Armchair-type ribbon of graphene.

Figure 3.3: Zigzag-type ribbon of graphene.
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Figure 3.4: The lattice vectors c1 and c2, the corresponding reciprocal lattice vectors
b1 and b2, and nearest-neighbor vectors δ1, δ2 and δ3.

only the nearest-neighbor hopping with amplitude t1, the tight-binding Bloch Hamiltonian

is

H0(k) =



 0 h(k)

h†(k) 0



 , (3.35)

with k = (kx, ky) and

h(k) = t1
∑

i

exp (ık · ai). (3.36)

For simplicity, let the lattice spacing be unity. For i = 1, 2 and 3,

ai =

(
cos

2(i− 1)

3
π, sin

2(i− 1)

3
π

)
(3.37)

are the vectors connecting nearest-neighbors.

The Hamiltonian in Eq. (3.35) has three important symmetries. First, because the Hamil-

tonian in Eq. (3.35) does not include the σz component of the Pauli matrices, the bipartite

symmetry is preserved. Put differently, this Hamiltonian is block off-diagonal and

σzH0(k)σz = −H0(k). (3.38)

The bipartite symmetry protects the closed gap at the Dirac points, which is explained later

within this subsection. Second, the Hamiltonian has a threefold rotational symmetry. The
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inside of the exponential in Eq. (3.35) is invariant under the
2π

3
rotation, as the set of

{ai}i=1,2,3 is invariant. Actually, from Eq. (3.37), the
2π

3
rotation maps ai to ai+1, with the

periodic condition a4 = a1. There are six gap closing points in momentum space, among

which two of them are essential due to the threefold rotational symmetry. Finally, the

system has time-reversal symmetry. As Eq. (3.37) does not include any spin terms, the time-

reversal symmetry operator in momentum space is equivalent to the complex conjugation

with k 3→ −k. Using σ∗
y = σT

y ,

H0(k) = H∗
0 (−k) (3.39)

is obtained from Eq. (3.37). The time-reversal symmetry operator maps one Dirac point K

to the other point K’ and vice versa. Combining the bipartite symmetry and time-reversal

symmetry yields particle-hole symmetry,

σzH
∗
0 (−k)σz = −H0(k) (3.40)

By diagonalizing the Bloch Hamiltonian in Eq. (3.35), the energy spectrum E(k) can be

obtained as follows: ∣∣∣∣∣∣

−E(k) h(k)

h†(k) −E(k)

∣∣∣∣∣∣
= 0, (3.41)

E(k) = ±|h(k)|

= ±|t1|

∣∣∣∣∣

3∑

i=1

exp (ık · ai)

∣∣∣∣∣

= ±|t1|

∣∣∣∣∣exp (ık · (1, 0)) + exp

(
ık ·

(
−1

2
,

√
3

2

))
+ exp

(
ık ·

(
−1

2
,−

√
3

2

))∣∣∣∣∣

= ±|t1|

∣∣∣∣∣exp (ıkx) + exp

(
− i

2
kx

)
2 cos

√
3

2
ky

∣∣∣∣∣

= ±|t1|
∣∣∣exp

(
− ı

2
kx
)∣∣∣

∣∣∣∣∣exp
(
3ı

2
kx

)
+ 2 cos

√
3

2
ky

∣∣∣∣∣

= ±|t1|

∣∣∣∣∣exp
(
3ı

2
kx

)
+ 2 cos

√
3

2
ky

∣∣∣∣∣.

(3.42)

This energy spectrum is illustrated in Fig. 3.6, plotted for kx, ky ∈ [−π, π]. The two bands

are touching at the six corners of the Brillouin zone. The corresponding gap closing condition
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Figure 3.5: Structure of graphene and vectors connecting nearest-neighbor sites. The
bipartite lattice sites A and B are colored by blue and red, respectively.

E(k) = 0 gives

∣∣∣∣∣exp (
3i

2
kx) + 2 cos

√
3

2
ky

∣∣∣∣∣ = 0. Two of the solutions for this equation are

so-called the Dirac points,

K =

(
2π

3
,
2π

3
√
3

)
,K ′ =

(
2π

3
,− 2π

3
√
3

)
, (3.43)

which coincides with Eq. (3.34) when a = 1. Due to the threefold symmetry, the six gap

closing points are essentially the same as the two Dirac points. Actually, by adding a certain

reciprocal lattice vector, K or K’ can coincide with any gap closing points. Around the

Dirac points, the two bands are crossing linearly. As this shape resembles a cone, these are

called the Dirac cones. Each Dirac cone corresponds to a massless Dirac fermion.

3.3.3 System with the Broken Bipartite Symmetry

The Dirac cones in Fig. 3.6 are protected by both bipartite and time-reversal symmetries.

Thus, the system does not show any topological feature. The bipartite symmetry can be bro-

ken by introducing an opposite on-site energy M and −M to the sites A and B, respectively.
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Figure 3.6: The energy spectrum of graphene E(k) plotted for kx, ky ∈ [−π, π]. The
Dirac cones reside on the Dirac points K, K’.

The corresponding Hamiltonian HM(k) is expressed by

HM(k) = H0(k) +Mσz. (3.44)

The energy spectrum is changed to

E(k) = ±
√

|h(k)|2+M2. (3.45)

Accordingly, the energy spectrum at the Dirac point K is changed to

E(K) = ±
√

|h(K)|2+M2 = ±
√

|0|2+M2 = ±M. (3.46)

The corresponding closed gap at the Dirac point K is now gapped out due to |M |. Also, at

the other Dirac point K’,

E(K ′) = ±
√

|h(K ′)|2+M2 = ±
√
|0|2+M2 = ±M. (3.47)

Thus, both Dirac cones are gapped out due to |M |. Put differently, |M | turns the massless

Dirac fermions into massive ones.
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The effect of |M | is to make the electrons to be localized in sites A or B. Note that the

time-reversal symmetry is conserved. Mathematically, this is because the added mass term

is not an odd function of k. Due to the time-reversal symmetry, chiral edge states can never

exist. To break the time-reversal symmetry, an odd function of k should be added to the σz

component of the Hamiltonian.

3.3.4 System with Broken Time-Reversal Symmetry

In order to break the time-reversal symmetry of the system, Haldane in 1988 introduced

a staggered magnetic field so that the net field in the system is zero [86]. This staggered

magnetic field is illustrated in Fig. 3.7. The staggered magnetic field is expressed by an

imaginary next-nearest-neighbor hopping ıt2 between the A-A sites or B-B sites, with the

shown counterclockwise pattern. The hopping directions are shown with the orientations

of the arrows. The hopping in the opposite direction is expressed by changing the sign of

the hopping amplitude. Note that all hoppings share the same chirality, and hence the net

magnetic field is zero. The next-nearest-neighbor vectors d1,d2, and d3 are given by

dj =
√
3

(
cos

(
π

2
+

2π

3
j

)
, sin

(
π

2
+

2π

3
j

))
, (3.48)

for j = 1, 2 and 3. The corresponding Hamiltoninan HHal(k) is

HHal(k) = H0(k) +Mσz + 2t2
∑

j

σz sin(k · dj). (3.49)

The second term breaks the bipartite symmetry, and the third term breaks the time-reversal

symmetry. Mathematically, the reason why the third term breaks the time-reversal symmetry

is that it is an odd function of k.

At one of the Dirac points, k=K, the σz component of HHal(K) is

M + 2t2
∑

i

sin (K · di) = M + 2t2

(
sin

(
0 +

2π

3

)
+ sin

(
−π − π

3

)
+ sin

(
π − π

3

))

= M + 2t2

(√
3

2
+

√
3

2
+

√
3

2

)

= M + 3
√
3t2.

(3.50)
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Thus, when t2 = − M

3
√
3
, HHal(K) = H0(K) = 0 and the gap closes at the Dirac point K.

Similarly, at the other Dirac point, k=K’, the σz component of HHal(K
′) is

M + 2t2
∑

i

sin (K ′ · di) = M + 2t2

(
sin

(
0− 2π

3

)
+ sin

(
−π +

π

3

)
+ sin

(
π +

π

3

))

= M + 2t2

(
−
√
3

2
−

√
3

2
−

√
3

2

)

= M − 3
√
3t2.

(3.51)

Thus, when t2 =
M

3
√
3
, HHal(K

′) = H0(K
′) = 0 and the gap also closes at K’. Except for

these conditions, two bands do not touch each other. This fact indicates that the topological

invariant can be defined so that it detects the change of the phase of the system only at

t2 = ± M

3
√
3
. The existence of chiral edge states can be understood by drawing the band

structure. The band structures for ribbons with two different lattice terminations, armchair

and zigzag, are illustrated in Fig. 3.8 and Fig. 3.9, respectively. Here, t1 = 1,M = 0.2, and

kx ∈ [−π, π]. The next-nearest neighbor hopping amplitudes t2 are 0, 0.2, and 0.4 from the

left to the right. The edge or surface states appear when the gap closes, which indicates that

the system is in the topological phase. The band crossing occurs at kx = 0 for an armchair-

type ribbon, and kx = π for a zigzag-type ribbon. These topologically protected Dirac cones

appear when the system enters the topological phase. An example of the corresponding

edge state in an armchair-type ribbon of graphene with 1800-site is shown in Fig. 3.10. The

size of red dots represents the relative electron amplitude (probability amplitude magnitude

squared) of one of the zero-energy modes at each lattice site and the gray dots represent the

lattice points. PBC and OBC are used for the horizontal and vertical direction, respectively.

The electron amplitude of the zero-energy mode is high along the edges.

3.3.5 Chern Number in the Haldane Model

As discussed in the previous subsection, the topological invariant can be defined to classify the

topology of the Haldane model. In this subsection, one of the most fundamental topological

invariants, the Chern number, is introduced to express the topological feature of the Haldane
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Figure 3.7: The staggered magnetic field introduced by Haldane [86].

Figure 3.8: The band structures of an armchair-type ribbon. The next-nearest-
neighbor hopping amplitudes t2 are 0, 0.2, 0.4 from the left to the right. The band
crossing occurs at kx = 0 when the system enters the topological phase. The corre-
sponding Dirac cone is topologically protected.
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Figure 3.9: The band structures of a zigzag-type ribbon. The next-nearest-neighbor
hopping amplitudes t2 are 0, 0.2, 0.4 from the left to the right. The band crossing
occurs at kx = π when the system enters the topological phase. The corresponding
Dirac cone is topologically protected.
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Figure 3.10: The edge state found in an armchair-type ribbon of graphene.

34



model.

The basics of the Chern number, and related topics such as the Berry phase and the

Berry curvature are already explained in Section 3.1. Once again, the Berry phase γ(C) for

a closed loop C in parameter (momentum) space is

γ(C) =

∮

C

A(k) · dk, (3.52)

with the Berry connection

A(k) = ı
〈
ψ(k)

∣∣∇kψ(k)
〉
. (3.53)

Here the Berry connection is obtained by the following steps. First, take the derivatives of

|ψ(k)〉 with respect to kx and ky. Then, take the inner product with 〈ψ(k)|. For simplicity,

C is chosen to be a closed path such that kx is fixed, and ky slowly changes from 0 to 2π.

After adiabatic time-evolution of an eigenstate |ψ(k)〉 from t = 0 to t = T with energy E(k),

the final quantum state is

exp [ıγ(kx)] exp

(
−ı

∫ T

0

E[k(t)]dt

)
|ψ(k)〉 . (3.54)

It is convenient to choose

|ψ(n, t = 0)〉 =
∫ 2π

0

dkx exp (ikxn) |ψ(kx, ky = 0)〉 (3.55)

as an initial state. This initial state expresses a localized state in a single unit cell n. The

coefficient for the site n, exp (ıkyn) is integrated over the first Brillouin zone kx ∈ [0, 2π].

The corresponding final state is given by

|ψ(n, t = T )〉 =
∫ 2π

0

dkx exp (ıkxn) |ψ(kx, ky = 2π)〉

=

∫ 2π

0

dkx exp (ikxn) exp (ıγ(kx)− ıθ(kx)) |ψ(kx, ky = 0)〉 .
(3.56)

Here, θ(kx) =

∫ T

0

E[kx, ky(t)]dt is called the dynamical phase. Due to E(kx) = E(kx + 2π),

θ(kx) is a periodic function of kx:

θ(kx + 2π) =

∫ T

0

E[kx + 2π, ky(t)]dt

=

∫ T

0

E[kx, ky(t)]dt

= θ(kx).

(3.57)
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Then paying attention to the inside of the exponential in Eq. (3.56), the Berry phase needs

to be a periodic function modulo 2π. Put differently, there is a freedom of choosing the Berry

phase with the restriction

γ(kx + 2π)− γ(kx) = 2πW. (3.58)

Here W is an integer, corresponding to the Chern number explained earlier in this chapter.

For simplicity, by choosing θ(kx) so that

θ(kx) = γ(kx)−Wkx, (3.59)

Eq. (3.56) can be rewritten as

|ψ(n, t = T )〉 =
∫ 2π

0

dkx exp (ıkx(n+W )) |ψ(kx, ky = 0)〉

= |ψ(n+W, t = 0)〉 .
(3.60)

At the initial state t = 0, W = 0. After the adiabatic cycle, t = T , and the wave function is

shifted over by W unit cells, which indicates the pumping of W units of charge.

The above discussion can be stated concisely using the Berry curvature Ω(k) as elaborated

below. The Berry curvature Ω(k) is gauge-independently defined by

Ω(k) = ∇k ×A(k)

= [

〈
∂ψ(k)

∂kx

∣∣∣∣
∂ψ(k)

∂ky

〉
−
〈
∂ψ(k)

∂ky

∣∣∣∣
∂ψ(k)

∂kx

〉
].

(3.61)

The Stokes theorem gives

2πW = γ(2π)− γ(0)

=

∫∫

BZ

Ω(k) · dS.
(3.62)

The phase diagram of the system is drawn using the Chern number. The Chern number W is

calculated by conducting the area integration of the Berry curvature over the first Brillouin

zone as

W =
1

2

∫∫

BZ

Ω(k) · dS. (3.63)

In the Haldane model, the Berry curvature contributes to this integral only around the

Dirac points. In fact, the sign of the Berry curvature for the two Dirac points changes at the
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phase boundary t2 = ± M

3
√
3
. The examples of the Berry curvature for the Haldane model

are plotted for kx ∈ [−π, π], ky ∈ [−π, π] in Fig. 3.11. The fixed parameters are t1 = 1 and

M = 0.2. The next-nearest-neighbor hopping amplitude t2 is -0.1, -0.05, 0.0, 0.05 and 0.1

from the upper left to the lower right. When
t2
M

>
1

3
√
3
, the Berry curvature for the two

Dirac points are both positive (to be specific, the contributions to the Chern number are

both
1

2
). At

t2
M

=
1

3
√
3
, the Berry curvature for one of the Dirac points is zero. When

1

3
√
3
>

t2
M

> − 1

3
√
3
, the Berry curvature for one of the two Dirac points is positive, while

the other is negative (one of them contributes to the Chern number by
1

2
, and the other

by −1

2
). At

t2
M

= − 1

3
√
3
, the Berry curvature for one of the two Dirac points is zero (the

opposite one compared to the
t2
M

=
1

3
√
3
case). When

t2
M

< − 1

3
√
3
, the Berry curvature

for the two Dirac points are both negative (the contributions to the Chern number are both

−1

2
). The phase diagram can be drawn efficiently by neglecting the integration other than

around the Dirac points.

3.3.6 Parameter Dependence of Chern Number

In this subsection, the parameter dependence of the Chern number is illustrated. The topol-

ogy of the system depends upon the system parameters, namely, the on-site energy M and

the next-nearest-neighbor hopping amplitude t2. Here, t1 is set to be unity and the energy

units of M and t2 are commonly t1. For calculating the dependence of the parameters of

the Chern number, there is an efficient method proposed by Fukui et al. in 2005 [89]. The

essence of Fukui’s method is briefly explained below. In this scheme, the Brillouin zone is

approximated by a coarsely discretized one. The Hamiltonian is numerically calculated only

on a set of discrete points chosen appropriately within the Brillouin zone. Let the lattice

points kl = (kj1 , kj2)(l = 1, . . . , N1N2) on the discrete Brillouin zone to be described by

kjµ =
2πjµ
qµNµ

, (3.64)

where jµ runs from 0 to Nµ − 1. Assuming that |n(kl +Nµµ̂)〉 = |n(kl)〉, where µ̂ is a vector

along the µ axis with the magnitude
2π

qµNµ
. Setting Nµ = qνNB(µ (= ν), the unit plaquette
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Figure 3.11: The Berry curvature of the Haldane model plotted for kx ∈ [−π, π] and
ky ∈ [−π, π]. The fixed parameters are t1 = 1 and M = 0.2. The next-nearest-neighbor
hopping amplitude t2 is -0.1, -0.05, 0.0, 0.05, and 0.1 from the upper left to the lower
right.
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is a square of the area
2π

q1q2NB
. First, the link variable is defined as

Uµ(kl) =
1

Nµ(kl)
〈n(kl) |n(kl + µ̂)〉 , (3.65)

where the normalization constant is

Nµ(kl) = |〈n(kl) |n(kl + µ̂)〉 | (= 0. (3.66)

Using this link variable, a lattice field strength F̃12(kl) is defined within the principal branch

of the logarithm specified in −π <
1

ı
F̃12(kl) ≤ π by

F̃12(kl) = lnU1(kl)U2(kl + 1̂)U1(kl + 2̂)−1U2(kl)
−1. (3.67)

The Chern number c̃n associated with the nth band is gauge-invariantly defined as

c̃n =
1

2πı

∑

l

F̃12(kl). (3.68)

In the case of the Haldane model, the phase diagram can be approximately obtained by

Eq. (3.68) and focusing around the Dirac points. The calculated phase diagram is illustrated

in Fig. 3.12. The Chern number is calculated for different t2 and M . The horizontal axis and

the vertical axis are t2 and M , respectively. In Fig. 3.13 the phase diagram is compared with

the analytically derived phase boundaries t2 = ± M

3
√
3
. The phase diagram is well reproduced

by the numerical calculation.

3.4 Kitaev Model

The Kitaev model is the simplest model which exhibits unpaired zero-energy Majorana

fermions (Majorana ‘zero modes’), proposed by Kitaev in 2001 [87]. Majorana fermions

are their own antiparticles, described by the Majorana operator γ, which satisfies γ† = γ.

Namely, the Hermitian conjugate of the Majorana operator is itself, and γ is neither creation

nor annihilation operator in the usual sense. Due to this property, Majorana operators obey

unusual anticommutation relations. The Kitaev model describes a one-dimensional p-wave

superconducting wire of spinless fermions,

H1Dwire =
∑

j

[−t(c†jcj+1 + c†j+1cj)− µc†jcj + |∆|(c†j+1c
†
j + cjcj+1)]. (3.69)
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Figure 3.12: Topological phase diagram of the Haldane model for an armchair-type
ribbon of graphene, where the first Chern number is plotted as a function of t2 and M .
Topological phase transitions can be seen where the Chern number changes between 1
and -1.

Figure 3.13: Top view of Fig. 3.12, in comparison with the analytically derived phase
boundaries (red lines).

40



The operator c†j(cj) corresponds to the creation (annihilation) operator of a fermion at the

jth site. Here, j runs from 1 to L where L is the length of the system. We set the lattice

constant to unity. Using the transformation,

cj =
1

2
(γ2j−1 + ıγ2j) (3.70)

or

c†j =
1

2
(γ2j−1 − ıγ2j), (3.71)

the fermion operators are replaced by Majorana operators γj. Here, γ†j (γj) corresponds to

the creation (annihilation) operator of a Majorana fermion at the jth site. The 2j runs from

1 to 2L. Using the usual anticommutation relations for fermion operators, one finds the

anticommutation relations for the Majorana operators as

{γ†j , γj′} = {γj, γj′} = {γ†j , γ
†
j′} = 2δjj′ . (3.72)

The Kitaev Hamiltonian can be rewritten in terms of Majorana operators γj as

H1Dwire =
ı

2

∑

j

(−µγ2j−1γ2j + (t+ |∆|)γ2jγ2j+1 + (−t+ |∆|)γ2j−1γ2j+2). (3.73)

Note that for j = 1, 2, 3, . . . , L,

γ2j−1 = cj + c†j = 26cj (3.74)

and

γ2j =
1

ı
(cj − c†j) = 27cj. (3.75)

Put differently, the fermion operator at the jth site is decomposed into two Majorana

fermions: The real part of the fermion operator is mapped onto the (2j − 1)th Majorana

operator and the imaginary part of the fermion operator is mapped onto the (2j)th Majorana

operator. Thus, a Majorana fermion is half of a normal fermion. As a result, a fermionic

state can be obtained as a superposition of two Majorana fermions.

The Kitaev model exhibits Majorana edge modes with the condition |µ|< 2t, as explained

below. First consider one of the simplest cases, (i) µ < 0, |∆|= t = 0:

H1Dwire = −µ
ı

2

∑

j

γ2j−1γ2j = −µ
ı

2
(γ1γ2 + γ3γ4 + γ5γ6 + . . .+ γ2L−1γ2L). (3.76)
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Figure 3.14: Majorana fermions in the Kitaev model.

Note that the adjacent Majorana operators are coupled to each other including the edges

and this is a trivial phase. This situation is illustrated in the upper graph of Fig. 3.14. Next

consider (ii) µ = 0, |∆|= t > 0. The Hamiltonian in Eq. (3.73) reduces to

H1Dwire = ıt
∑

j

γ2jγ2j+1 = ıt(γ2γ3 + γ4γ5 + γ6γ7 + . . .+ γ2L−2γ2L−1). (3.77)

Note that two adjacent Majorana operators on adjacent sites are coupled to each other;

however, two spatially separated Majorana operators at the edges of the system γ1 and γ2L

have disappeared from the Hamiltonian. Therefore, a Majorana fermion can occupy either

site without any energy cost. This implies the existence of the zero-energy Majorana edge

modes. This situation is illustrated in the lower graph of Fig. 3.14.

The question that immediately arises is what condition is required for the system to allow

the Majorana edge or surface modes. In order to provide the answer, the BdG equations

of the Kitaev model need to be considered. Utilizing translational symmetry of the system,

Fourier transform is conducted as follows:

∑

i

c†ici =
∑

k

c†kck, (3.78)

∑

i

c†i+1ci =
∑

k

eıkc†kck, (3.79)

∑

i

cici+1 =
∑

k

(e−ıkckc−k + eıkc−kck) = −
∑

k

ckc−k2ı sin k. (3.80)
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As a result, the BdG representation is obtained as

HBdG =



−µ− 2t cos k 2ı|∆|sin k

−2ı|∆|sin k µ+ 2t cos k



 (3.81)

The bulk spectrum ε(k) is given by the eigenvalues of this BdG Hamiltonian, which are

ε(k) = ±
√

(2t cos k + µ)2 + 4|∆|2sin2 k. (3.82)

Note that this bulk spectrum is invariant under transformation q 3→ q+π and µ 3→ −µ. This

means (2t cos k + µ)2 3→ (−2t cos k − µ)2 = (2t cos k + µ)2, sin2 k 3→ (− sin k)2 = sin2 k, thus

the inside of the square root in the bulk spectrum does not change under the transformation.

Also, the bulk spectrum is invariant under transformation t 3→ −t and µ 3→ −µ, which yields

(2t cos k+µ)2 3→ (−2t cos k−µ)2 = (2t cos k+µ)2, sin2 k 3→ sin2 k. These invariant properties

indicate that the sign of µ and t does not affect the gap closing condition ε(k) = 0, which is

2|t|= |µ|. Paying attention to k = 0, π/2, and π, the corresponding bulk spectrum is ε(0) =

±
√

(2t+ µ)2 = ±|2t+ µ|, ε(π/2) = ±
√

µ2 + 4|∆|2, and ε(π) = ±
√
(2t− µ)2 = ±|2t− µ|.

Thus the gap at k = 0 and π closes when 2t = −µ and 2t = µ, respectively. And the gap at

k = π/2 closes when µ = 0 and ∆ = 0.

Using the Pauli matrices,

σx =



0 1

1 0



 , σy =



0 −ı

ı 0



 , σz =



1 0

0 −1



 , (3.83)

the BdG Hamiltonian in Eq. (3.81) can be rewritten as

HBdG = (−µ− 2t cos k)σz − 2∆ sin kσy =
(
0 −2∆ sin k −µ− 2t cos k

)





σx

σy

σz




. (3.84)

Thus the projection of the BdG Hamiltonian onto the Pauli matrix space yields the σx

component zero, the σy component −2∆ sin k, and the σz component −µ − 2t cos k. The

parametric plot of these components in σy − σz two-dimensional space yields an ellipse as

illurstrated in Fig. 3.15, where the wave number k runs from −π to π, for t = 1,∆ = 0.5.

The ellipse becomes a circle when ∆ = t. When |µ|> 2t, the ellipse does not enclose the
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Figure 3.15: The Kitaev model BdG Hamiltonian projected onto the Pauli matrix
space is represented by an ellipse (or a circle when ∆ = t). The parametric plot is
drawn for k ∈ [−π, π]. The fixed parameters are ∆/t = 0.5, (a) µ/t = 3, (b) µ/t = 1,
and (c) µ/t = 2.

origin of the Pauli matrix space. On the other hand, when |µ|< 2t, the ellipse encloses the

origin. When µ = ±2t, the ellipse just touches the origin. This critical condition µ = ±2t

corresponds to vanishing of the vector
(
0, −2∆ sin k, −µ− 2t cos k

)
at k = 0 for µ = −2t

and at k = π for µ = 2t. As mentioned earlier in this section, the Kitaev model exhibits

Majorana edge modes when |µ|< 2t. In terms of the Pauli matrix space representation, zero-

energy Majorana edge modes appear when the ellipse does not enclose the origin of the Pauli

matrix space. Unless |µ|< 2t, the ellipse never encloses the origin of the Pauli matrix space.

As a summary of this section, the Kitaev model exhibits zero-energy Majorana edge modes,

and its Pauli matrix space representation helps understanding the topological features of the

system.
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4 Properties of Quasicrystals

QCs, the main subject of this thesis, are unconventional materials whose structures are

without any periodicity, but show Bragg peaks and peculiar rotational symmetry that is

forbidden by traditional crystallography. These unconventional characters lead to interesting

physical properties, such as interplay of fractality and topology. This chapter aims to give an

overview of the definition and basic properties of QCs and their approximants. As examples of

QCs, one-dimensional Fibonacci lattice, two-dimensional Penrose QC, and two-dimensional

AB QC are briefly explained. Finally, as a preliminary study, conventional s-wave SC in AB

QC is examined by solving the BdG equations self-consistently.

4.1 Definition of Quasicrystals

As introduced in Ch. 1, QCs exhibit Bragg peaks without periodic structure and are defined

by quasiperiodicity. They are in stark contrast to conventional crystals that have periodic

structures accompanied by a set of corresponding unit vectors. Such conventional crystals

are generated by repeatedly translating the unit cell, which allows one to utilize Fourier

transform. Meanwhile, QCs do not have any periodicity and accordingly, Fourier transform

is not applicable. Thus, the Bloch theorem [44] does not hold, and interesting electronic

properties such as unusual conductive, thermal, and vibrational properties, strictly localized

states, and pseudogaps emerge. QCs have rotational symmetry such as fivefold, eightfold,

and tenfold, which are impossible in ordinary crystals. Most fundamental examples of QCs

are, Fibonacci lattice, Penrose QC, and AB QC. Penrose QC has fivefold rotational symmetry

while AB QC has eightfold rotational symmetry. Although there are several ways to generate

a given QC, in general, a QC can be expressed as a projection of periodic lattice structure

in higher dimensions onto lower-dimensional space. For example, the Fibonacci lattice or

chain can be generated by taking a projection of a two-dimensional square lattice onto a one-
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dimensional line. The number of nearest-neighbor sites around a given lattice site (‘vertex’) is

called the coordination number and labeled as z, which varies from site to site. For example,

in the case of AB QC, z = 3, 4, 5, 6, 7, 8.

4.2 Fibonacci Lattice

Fibonacci lattice is a system where the on-site chemical potentials on the lattice sites are asso-

ciated with the Fibonacci sequence. The Fibonacci sequence goes as 0, 1, 1, 2, 3, 5, 8, 13,

21, 34, 55, 89, 144, . . .. With the initial condition, F0 = 0, F1 = 1, the nth number in

the Fibonacci sequence Fn is given by Fn = Fn−1 + Fn−2. The golden ratio has a strong

connection with the Fibonacci sequence. The ratio of two consecutive Fibonacci numbers

approaches the golden ratio in the limit of index n going to infinity.

The on-site chemical potentials in a Fibonacci lattice are generated as follows. First,

let two kinds of chemical potentials be µA and µB, and the first generation of the chemical

potential be µA. Using the substitution rule, µA → µB, µB → µAµB, subsequent generations

are generated. The gth generation sequence has length Ng which satisfies Ng = Ng−1 +

Ng−2. Thus, the lattice length Ng forms the Fibonacci sequence, and this sequence of on-

site chemical potentials is called the Fibonacci potential. In Fig. 4.1, the on-site chemical

potentials in a Fibonacci lattice are shown for g = 1, 2, 3, 4, 5. The red (blue) component of

the gth generation sequence matches with the (g − 2)th ((g − 1)th) generation sequence.

It is important to note that the Fibonacci lattice is an example of a one-dimensional

quasiperiodic system. In Fig. 4.2, the Fibonacci lattice is shown to be composed of red and

blue line segments (‘tiles’). These two line segments are the fundamental building blocks of

the Fibonacci lattice, generating a never-repeating aperiodic pattern. Projection of a strip

in a two-dimensional square lattice (gray area in Fig. 4.2) onto a straight line generates

a Fibonacci lattice/chain. The two-dimensional space where the square lattice is used for

projection and generating the Fibonacci lattice in one dimension is called superspace or

hyperspace.
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Figure 4.1: The on-site chemical potentials in a Fibonacci lattice for g = 1, 2, 3, 4, 5.
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Figure 4.2: Projection method for generating a Fibonacci lattice.
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4.3 Fibonacci-Kitaev Model

The Fibonacci-Kitaev model is introduced below as one of the first examples of QCs where

TSC has been shown to exist [67]. The Fibonacci-Kitaev model is based upon the Kitaev

model. As introduced in Ch. 3, the Kitaev model can be described in terms of the Hamilto-

nian,

H =
N−1∑

i=1

(−c†ici+1 +∆cici+1 +H.c.) + µ
N∑

i=1

c†ici. (4.1)

Here, ∆ is assumed to be real and |∆|= ∆, as this assumption does not lose generality. The

hopping amplitude t is set to be unity. In Eq. (4.1), the chemical potential µ is independent

of the lattice coordinate i. By replacing the uniform chemical potential µ with the site-

dependent chemical potential in a Fibonacci lattice, µi,

H =
N−1∑

i=1

(−c†ici+1 +∆cici+1 +H.c.) +
N∑

i=1

µic
†
ici. (4.2)

This Hamiltonian describes the Fibonacci-Kitaev model. As mentioned in the previous sec-

tion, the arrangement of the on-site chemical potentials in a Fibonacci lattice is quasiperiodic.

As a result, the Fibonacci-Kitaev model exhibits unconventional physical properties, and its

topological phase diagram shows a self-similar fractal structure.

The Fibonacci-Kitaev model in Eq. (4.2) can be rewritten with Majorana fermion op-

erators as the basis using the transformation ci =
ai + ıbi

2
, where ai and bi are Majorana

operators, a†i = ai and b†i = bi. In the TSC phase of this system, two Majorana fermions

Qa =
∑

i

αiai and Qb =
∑

i

βibi can appear as zero energy modes, where αi and βi are the

probability amplitudes. The zero energy modes exist when (i) [Qa,H] = [Qb,H] = 0 and (ii)

both Qa and Qb are normalizable in an infinitely large system. The condition (i) is equivalent

to 

αi+1

αi



 = Ai



 αi

αi−1



with Ai =




µi

1 +∆

∆− 1

1 +∆

1 0



 . (4.3)

The condition (ii) is examined in terms of the topological invariant ν = (−1)nf−1. Only when

ν = −1, the condition (ii) is satisfied and the system is in topological phase. Here nf is the

number of eigenstates of Λg =

Ng∏

i=1

Ai whose eigenvalues are smaller than unity. Since Λg is a
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2×2 matrix, nf = 0, 1, 2: ν = −1 for nf = 0, 2 and ν = 1 for nf = 1. Let the two eigenvalues

of Λg be λ1,λ2 where |λ1|< |λ2|. Without loss of generality, ∆ can be assumed to be real

and ∆ ≥ 0. In order to examine self-similarity, the Lyapunov exponent γg({µi},∆) can be

utilized. The Lyapunov exponent is defined as

γg({µi},∆) =
1

Ng
ln |λ2({µi},∆)|. (4.4)

Here, {µi} is the on-site chemical potential of the Fibonacci lattice. Assuming 0 < ∆ < 1,

γg({µi},∆) = γg
({

µi√
1−∆2

}
, 0

)
− 1

2
ln

(
1 +∆

1−∆

)
. (4.5)

Thus the Lyapunov exponent is given by γg0({µi}) = γg({µi}, 0) with rescaling of µi to
µi√
1−∆2

and a shift by
1

2
ln

(
1 +∆

1−∆

)
.

The phase boundary between the topological phase and the trivial phase is |λ2|= 0

or γg = 0. The critical pairing potential ∆c obeys the self-consistent equation ∆c =

tanh γg0

({
µi√

1−∆2

})
. The critical pairing potential for the 17th generation is illustrated

in Fig. 4.3. The horizontal and the vertical axes are µA and µB, respectively. When ∆ = 0,

λ1λ2 = det[Λg] =

(
1−∆

1 +∆

)Ng

= 1. Thus λ2 =
1

λ1
=

|Tr[Λg]|+
√

(Tr[Λg])2 − 4

2
. As a

consequence,

γg0 =






1

Ng
cosh−1 (|1

2
Tr[Λg]|) (|Tr[Λg]|> 2),

0 (|Tr[Λg]|≤ 2).

(4.6)

Here, the nonlinear recursive relation,

Tr[Λg] = Tr[Λg−1]Tr[Λg−2]− Tr[Λg−3], (4.7)

is held, which indicates fractal structure. The fractal dimension is measured using the box-

counting method as follows. First step is to rasterize Fig. 4.3 with

cε(µ) = ε−2

∫

Rε(µ)

c(µ′)d2µ′. (4.8)

The integrated region Rε(µ) above is a box of side length ε centered at µ= (µA, µB),

Rε(µ) =
[
µA − ε

2
, µA +

ε

2

]
⊗
[
µB − ε

2
, µB +

ε

2

]
. (4.9)
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Figure 4.3: Critical pairing potential of the Fibonacci-Kitaev model for the 17th
generation exhibiting fractal phase boundaries. The data points with values lower than
10−4 are colored by the same color as for 10−4.

From the relation between the box size ε and the number of boxes n(ε), n(ε) ∝ ε−D determines

the box-counting dimension D. The extrapolated value of D in the thermodynamic limit

is found to be around 1.7 [67]. This non-integer box-counting dimension indicates that

the Fibonacci-Kitaev model exhibits a self-similar fractal structure in its topological phase

diagram.
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4.4 Penrose Quasicrystal and Approximant

Two of the most well-known examples of QCs are Penrose QC and AB QC. In this section,

some basic properties of Penrose QC and approximant are briefly explained.

4.4.1 Basics of Penrose Quasicrystal and Approximant

Penrose QC is a famous example of two-dimensional QCs, whose tiling is illustrated in

Fig. 4.4. The vertices of Penrose tiling are the lattice sites of Penrose QC. Penrose tiling was

proposed by Penrose in 1974 [90]. After the discovery of Penrose tiling, de Brujin developed

an algebraic approach to produce Penrose tiling [91]. As is shown in Fig. 4.4, Penrose tiling

can be composed of two rhombuses. One of the two rhombuses is a rhombus with angles of

72 degrees and 108 degrees (colored in blue in Fig. 4.4), and the other rhombus is with angles

of 36 degrees and 144 degrees (colored in green in Fig. 4.4). Area ratio of the two rhombuses

is
1 +

√
5

2
. This ratio is the well-known golden ratio. The golden ratio is one of the roots of

the quadratic equation x2 − x− 1 = 0.

It is impossible to consider a QC with PBC since a QC is not periodic. Therefore,

to consider a QC with the PBC, an approximation is required. Approximants are parts

of QCs, whose right (upper) and left (lower) edges can be connected with PBC. A QC

can be regarded as an infinitely large approximant, and the physical properties of QCs are

expected to be similar to that of large approximants. Penrose approximant can be generated,

for example, using multigrid algorithm [92, 93], which is used for the results shown below.

Coordination numbers in Penrose approximant with PBC are represented by colors in Fig. 4.5.

Coordination numbers in Penrose QC and approximant range from 3 to 7. The average

coordination number in Penrose QC is exactly four.

Penrose QC is modeled as a quasicrystalline lattice of vertices of Penrose tiling and we

use a tight-binding vertex model, whose Hamiltonian is given by

H0 = −t
∑

〈i,j〉,σ

(c†iσcjσ + c†jσciσ), (4.10)

in which the conduction electron hops from vertex to vertex, along the side of a rhombus.

Note that as the side lengths of the two rhombuses are the same, all links connecting vertices

52



Figure 4.4: A small patch of Penrose tiling, composed of two rhombuses. This figure is
a public domain image adopted from Wikipedia. https://en.wikipedia.org/wiki/
File:Penrose_Tiling_(Rhombi).svg
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Figure 4.5: Coordination numbers in Penrose approximant with PBC represented by
colors.
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Figure 4.6: The DOS of Penrose QC with 3571 lattice points.

are of the same length. 〈i, j〉 denotes sum over all lattice sites i and nearest-neighbor sites j

for each i. To explore the electronic properties of a Penrose QC, the DOS of the tight-binding

model on a QC with N vertices [94],

ρ(ω) =
1

N

∑

ν

δ(ω − εν), (4.11)

for a 3571-site Penrose approximant is shown in Fig. 4.6. By diagonalizing Eq. (4.10), a set

of eigenenergies {εν} is obtained and the delta function δ(ω − εν) in the DOS is numerically

calculated as the Lorentzian with smoothing width of 0.1/t to plot the DOS.

The pronounced peak at ω/t = 0 corresponds to strictly localized zero-energy states [95].

There are six types of such strictly localized states [96, 97, 98], as illustrated in Fig. 4.7.

Each number on the lattice sites represent the probability amplitude at each site, where

the positive and negative phases of the wave function are distinguished by red and blue,

respectively. In a system of N lattice sites, a strictly localized state |loc〉 is a complex vector

of length N whose ith element is the value written on the ith lattice site in Fig. 4.7 devided

by a normalization constant. Also, H0 in Eq.(4.10) is a N × N matrix, and H0 |loc〉 is a

complex vector of length N . The ith element of H0 |loc〉 is −t times the sum of jth elements

of |loc〉 over nearest-neighbor sites j for i. However, for any given site i where the probability

amplitude of |loc〉 is nonzero, the probability amplitude is zero at all of its nearest-neighbor
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sites {j}. Therefore, for any strictly localized state |loc〉,

H0 |loc〉 = 0 |loc〉 . (4.12)

This means that all localized states in Fig. 4.7 are zero-energy states.

4.4.2 Perpendicular Space of Penrose Quasicrystal and Approxi-

mant

In this subsection, the perpendicular-space representation is introduced by taking Penrose

QC and approximant as an example. Perpendicular space refers to the remainder of the

hyperspace after the periodic lattice structure (‘ hypercubic lattice’) is projected onto lower

dimensions to form a QC. The properties of the QC can be studied in terms of projec-

tion of the hypercubic lattice onto the perpendicular space, called the perpendicular-space

representation.

The physical-space representation of Penrose QC can be obtained by projection of a five-

dimensional hypercubic lattice onto the two-dimensional physical space. The same Penrose

QC can be represented by projecting the five-dimensional hypercubic lattice onto the three-

dimensional perpendicular space. The perpendicular-space representation of Penrose QC

consists of four two-dimensional planes in the three-dimensional perpendicular space. There

are no lattice points other than on these four planes. Accordingly, the perpendicular-space

representation of Penrose QC can be illustrated in four two-dimensional spaces. An example

of the perpendicular-space representation of Penrose QC is shown in Fig. 4.8. By definition,

there is one-to-one correspondence between a point in the physical space and a point in the

perpendicular space. That is, a point in the hyperspace generates a set of two points, one in

the physical space and another in the perpendicular space, and the total number of points is

the same in the physical space and the perpendicular space.

There are mainly two advantages of using the perpendicular-space representation. Firstly,

the effect of local or global environment is well visualized in the perpendicular-space represen-

tation. A distance in the perpendicular space is associated with the local environment. Here,

the environment means the lattice points’ distribution around a certain lattice point. The

local environment with the minimum length scale is represented by given the coordination
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Figure 4.7: Six types of strictly localized zero-energy states in a Penrose QC [96, 97,
98].
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Figure 4.8: Perpendicular-space representation of Penrose QC. The three-dimensional
perpendicular space consists of four planes (a)-(d). The z̃ element of each subspace is
(a) -0.447214, (b) -0.894427, (c) -1.34164, and (d) -1.78885.
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number. In the perpendicular space of Penrose QC in Fig. 4.8, coordination numbers are

represented by colors and points with the same coordination number gather and form sectors

in each of the four planes. As the coordination number determines the local environment of

each lattice site, this means that points with the same local environment are gathered in the

perpendicular-space representation in Fig. 4.8. Thus, effects of the local environment of all

vertices in Penrose QC in the physical space can be studied in the perpendicular space. If

the distribution of a certain physical quantity is not uniform in each sector in the perpen-

dicular space, it follows that the distribution of the physical quantity is not governed by the

local environment such as the number of nearest-neighbor sites, but may be affected by more

distant sites.

Secondly, self-similarity can be well visualized in the perpendicular space. The procedure

associated with self-similarity of Penrose QC is illustrated in Fig. 4.9. Figures 4.9 (a-d) are

the perpendicular-space representation of Penrose QC shown in Fig. 4.8 with added thick

black lines outlining a pentagonal sector at the center in each plane. The lattice points

located inside (outside) these pentagonal sectors are shown in Fig. 4.9 (e) by red (gray) in

the physical space. By connecting the red points in Fig. 4.9 (e), another Penrose QC with a

larger lattice constant and fewer vertices can be generated.

A histogram of coordination numbers of the larger Penrose QC in Fig. 4.9 (e) is shown in

Fig. 4.10. Coordination numbers in this Penrose QC also range from 3 to 7 and the average

coordination number is almost four. The most frequently appearing coordination number

is three, while there are much fewer lattice sites with highest coordination numbers such as

six and seven. These coordination numbers are represented by colors in the physical space

in Fig. 4.11. The distribution of coordination numbers has fivefold rotational symmetry

whose rotational center is represented as a black dot at (x, y) = (53.1418,−36.9852). This

shows that the red points in Fig. 4.9 (e) indeed form another Penrose QC. These coordination

numbers represented by colors are also shown in the perpendicular space in Fig. 4.12. Within

each of the pentagons outlined with the thick black lines in Figs. 4.9 (a, d) and within the

smaller pentagon inside the thick-lined pentagon in Figs. 4.9 (b, c), now we see sectors

formed by different coordination numbers. Note that Figs. 4.12 (a), (b), (c), and (d) (inside

the pentagons which were outlined with the thick lines in Figs. 4.9(a-d)) have the same
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Figure 4.9: (a-d) Perpendicular-space representation of Penrose QC shown in Fig. 4.8
with the outline (thick black lines) of a pentagonal sector at the center in each plane.
(e) The lattice points located inside (outside) each of the pentagonal sectors in the
perpendicular space are colored by red (gray) in the physical space. The red vertices
form a larger Penrose QC.
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Figure 4.10: Histogram of coordination numbers of the larger Penrose QC connecting
the red vertices in Fig. 4.9 (e).

structure as Figs. 4.9 (d), (c), (b), and (a), respectively.

This procedure can be repeated as illustrated in Fig. 4.13. Figures 4.13 (a-d) show the

perpendicular-space representation shown in Figs. 4.12 (a-d) with added thick black lines

outlining a pentagonal sector at the center in each plane. The lattice points located inside

these pentagonal sectors are shown in Fig. 4.13 (e) as blue vertices in the physical space, in

addition to the gray and red lattice points in Fig. 4.9 (e). By connecting the blue points in

Fig. 4.13 (e), another Penrose QC with a larger lattice constant can be generated.

This procedure which generates another, larger Penrose QC by extracting some lattice

points in Penrose QC can be repeatedly performed to Penrose QC with enough number of

lattice points, and this property is called self-similarity. Although it is difficult to find a set

of lattice points which form another Penrose QC in the physical space, such lattice points

gather inside a center pentagon in each subspace of the perpendicular space, as illustrated

in Figs. 4.9 (a-d) and Figs.4.13 (a-d). It follows that, for example, if the distribution of the

magnitude of a superconducting order parameter which is rescaled so that the minimum value
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Figure 4.11: Coordination numbers of the larger Penrose QC that consists of the red
vertices in Fig. 4.9 (e) in the physical space.
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Figure 4.12: Coordination numbers of Penrose QC formed by the red vertices in
Fig. 4.9 (e) in the perpendicular space. The z̃ element of each plane is (a) -0.447214,
(b) -0.894427, (c) -1.34164, and (d) -1.78885.
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Figure 4.13: (a-d) Perpendicular-space representation of Penrose QC shown in
Fig. 4.12 with added thick black lines outlining a pentagonal sector at the centre in
each plane. (e) The lattice points located inside each of the pentagonal sectors in the
perpendicular space are colored by blue in the physical space.

64



is zero and the maximum value is one in the entire perpendicular space is the same as that of

the distribution of the magnitude of the superconducting order parameter rescaled inside the

thick-lined pentagons in Figs. 4.9 (a-d), then the distribution of the superconducting order

parameter also shows the self-similarity that Penrose QC has.

4.5 Ammann-Beenker Quasicrystal and Approximant

In this section, another famous example of two-dimensional QCs, AB QC is introduced.

4.5.1 Basics of Ammann-Beenker Quasicrystal and Approximant

An example of AB QC is shown in Fig. 4.14. Similarly to Penrose tiling, AB tiling can be

constructed with two tiles. AB tiling can be composed of a rhombus with angles of 45 degrees

and 135 degrees, and a square with the same side length as that of the rhombus. The area

ratio of the rhombus and the square is 1 +
√
2, and this ratio is the well-known silver ratio.

The silver ratio is one of the roots of the quadratic equation x2− 2x− 1 = 0. A histogram of

coordination numbers of AB QC shown in Fig. 4.14 is presented in Fig. 4.15. Coordination

numbers in AB QC range from 3 to 8. The most frequently appearing coordination number

is three, while there are much fewer vertices with highest coordination numbers such as seven

and eight. The average coordination number in AB QC is exactly four, which is the same as

that of Penrose QC.

An AB QC consists of the vertices of AB tiling as the lattice sites, and we use the tight-

binding vertex model. As in a Penrose QC, the side lengths of rhombus and square are all

the same, so all links connecting lattice sites are of the same length. Following the algebraic

approach of de Brujin’s work for Penrose tiling, Beenker proposed the cut and project method

for producing AB QCs in 1982 [99]. However, Ammann is the one who first invented AB

tiling [100], and the lattice is named after the two researchers Ammann and Beenker. We

generate AB approximants using inflation mapping [101, 68].

To explore the electronic properties of an AB QC, the DOS in Eq. (4.11) of the tight-

binding model on a 8119-site AB QC is shown in Fig. 4.16 [66]. The DOS is calculated with

the tight-binding vertex model Hamiltonian in Eq. (4.10), where the sum is over lattice sites
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Figure 4.14: AB QC with 1393 lattice points.

Figure 4.15: Histogram of coordination numbers in AB QC shown in Fig. 4.14.
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Figure 4.16: The DOS of AB QC with 8119 lattice points.

{i} and nearest-neighbor sites for each i along links shown in Fig. 4.14. The filling factor

n(µ) is defined as n(µ) =

∫ µ

−∞
dωρ(ω). As in Penrose QC case, there is a large peak at ω = 0

in Fig. 4.16. This is a key character related with the local topology of the octagonal tiling.

There is a pseudogap at ω ≈ −1.9t, corresponding to the filling
2

s2
, where s is the silver

ratio s = 1 +
√
2. The corresponding filling factor is plotted as a function of the chemical

potential µ in Fig. 4.17. The black line indicates half filling n(µ) = 1.000, while the red line

indicates n(µ) =
2

s2
. Reflecting the peak at ω = 0 in the DOS, the filling factor jumps at

µ = 0. Also, reflecting the pseudogap at ω ≈ −1.9t in the DOS, the filling factor jumps at

the corresponding µ.

4.5.2 Perpendicular Space of Ammann-Beenker Quasicrystal and

Approximant

In this subsection, the perpendicular space of AB QC and approximant is introduced. Simi-

larly to the case of Penrose QC, the physical-space representation of AB QC can be obtained

by projection of a four-dimensional hypercubic lattice onto the two-dimensional physical

space, and the corresponding perpendicular space is two-dimensional. The perpendicular-

space representation of AB QC is illustrated in Fig. 4.18, whose coordination numbers are
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Figure 4.17: The filling factor of AB QC with 8119 sites as a function of the chemical
potential µ.
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Figure 4.18: The perpendicular-space representation of an AB QC, where lattice
points with different coordination numbers form different sectors.

represented by colors. Similarly to Penrose QC, points with the same coordination number

form sectors in the perpendicular space and thus, the perpendicular-space representation is

useful also in AB QC.

Self-similarity of AB QC is illustrated in Fig. 4.19. Figure 4.19 (a) is the perpendicular-

space representation of AB QC shown in Fig. 4.18 with added thick black lines outlining the

octagonal sector at the center. The lattice points located inside (outside) the octagonal sector

are shown in Fig. 4.19 (b) by red (gray) in the physical-space representation. By connecting

the red points in Fig. 4.19 (b), another AB QC with a larger lattice constant can be generated.

Although it is difficult to find the set of lattice points which generates this larger AB QC

in the physical space, those lattice points can be seen clearly in the perpendicular space as
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Figure 4.19: (a) The perpendicular-space representation of AB QC shown in Fig. 4.18
with added thick black lines outlining the octagonal sector at the center. (b) The lattice
points located inside (outside) the octagonal sector are colored by red (gray) in the
physical space.

they gather inside the thick-lined octagon in Fig. 4.19 (a). It follows that, for example, if

the distribution of the magnitude of a superconducting order parameter which is rescaled so

that the minimum value is zero and the maximum value is one in the entire perpendicular

space is the same as that of the distribution of the magnitude of the superconducting order

parameter rescaled inside the thick-lined octagon in Figs. 4.19 (a), then the distribution of

the superconducting order parameter also shows the same self-similarity as that of AB QC.

4.6 Conventional s-wave Superconductivity in Ammann-

Beenker QC

Experimentally, SC was found in QC approximants before that of QCs. In 1987, SC in

icosahedral approximants was examined with Mg3Zn3Al2 [63]. Also, in 2015, Au-Ge-Yb

approximants with Tsai-type clusters were found to show SC [102]. Following this observation

of SC in approximants, SC in a QC was confirmed with Al-Zn-Mg QC in 2018 [49]. The
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BCS theory can explain the observed thermodynamic properties of SC in Al-Zn-Mg QC,

indicating that it is weak-coupling s-wave SC. Among the few theoretical studies of SC in

QCs [64, 65, 66], the BdG equations were solved self-consistently for conventional s-wave SC

in AB QCs in Ref. [66], with results compatible with the experimental findings of Ref. [49].

In this section, a preliminary study of conventional s-wave SC in AB QCs, reproducing some

results of Ref. [66], is briefly summarized.

Fixing the electronic filling n =
1

N

∑

i

(〈
c†i↑ci↑

〉
+
〈
c†i↓ci↓

〉)
, the mean-field attractive

Hubbard Hamiltonian in Eq. (2.24) on a finite AB QC has been solved self-consistently to

obtain the mean fields V (H)
ii and ∆↓↑

ii . Here, the chemical potential µ is adjusted so that

the desired filling factor n is realized. For n = 0.25 and U = 1.5t at zero temperature,

the mean value and standard deviation of the magnitude of the self-consistently obtained

superconducting order parameter whose coordination number is z, |∆z/t|, are plotted in

Fig. 4.20. The average value of |∆z/t| depends on the coordination number, and the larger

the coordination number, the larger the mean value, except for z = 8. The standard deviation

for each coordination number is small, and thus the magnitude of the superconducting order

parameter is mainly determined by local environment. The average and standard deviation

of |∆z/t| for half filling, n = 1.00, are plotted in Fig. 4.21. In this case, the larger the

coordination number, the smaller the average |∆z/t|.

In Ref. [66], the temperature dependence of the superconducting order parameter was cal-

culated and compared with the prediction of the BCS theory. The temperature dependence

of the superconducting order parameter for n = 0.25 is consistent with the BCS theory; how-

ever, the results for n = 1.00 are different from what the BCS theory predicts. This implies

that superconductivity in AB QC at half filling is fundamentally different from conventional

SC in periodic systems, possibly due to the presence of localized states.
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Figure 4.20: The mean and standard deviation of the magnitude of the self-
consistently obtained superconducting order parameter in units of the hopping am-
plitude t whose coordination number is z for n = 0.25.

Figure 4.21: The mean and standard deviation of the magnitude of the self-
consistently obtained superconducting order parameter in units of the hopping am-
plitude t whose coordination number is z at half filling, for n = 1.00.

72



5 Topological Superconductivity in Penrose

and Ammann-Beenker Quasicrystals

In this chapter, the model Hamiltonian for TSC in two-dimensional systems is introduced

and solved numerically. Due to the inhomogeneity of quasicrystals, momentum-space analysis

is not applicable, and the BdG equations are solved self-consistently for the mean fields. Two

parameter sets are selected for the calculation, corresponding to the nontrivial topological

phase and trivial phase.

5.1 Topological Superconductivity Model for Periodic

Systems

In this section, the tight-binding model for s-wave TSC with broken time-reversal symmetry

in a two-dimensional system is introduced. The model is described for a square lattice as

proposed originally [72], which has translational symmetry and enables analytical formula-

tion. The model can be generalized to aperiodic systems such as Penrose and AB QCs, as

shown in the next section.
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5.1.1 Model Hamiltonian and Topological Phase Boundaries for

Square Lattice

The model Hamiltonian for TSC in a square lattice with the lattice constant set to unity can

be expressed in momentum space as

H =
∑

k,σ

ε(k)c†kσ
ckσ − µBHz

∑

k,σ,σ′

(σz)σ,σ′c†kσ
ckσ′

+ α
∑

k,σ,σ′

L0(k) · σσσ′c†kσ
ckσ′ +

1

2

∑

k,σ,σ′

∆σσ′(k)c†kσ
c†
−kσ′ +

1

2

∑

k,σ,σ′

∆∗
σ′σ(k)c−kσckσ′ ,

(5.1)

where c†kσ
(ckσ) is a creation (an annihilation) operator for an electron with momentum k =

(kx, ky) and spin σ. The Pauli matrices are expressed as σi for i = x, y, z, whose components

are written as (σi)σσ′ . For example, σz =



1 0

0 −1



 is the z component of the Pauli matrices,

and (σz)↑↑ = 1, (σz)↓↓ = −1, (σz)↑↓ = (σz)↓↑ = 0. The first term in the model Hamiltonian

is a kinetic term with the energy-band dispersion ε(k) = −2t(cos(kx) + cos(ky)) − µ, where

t is the uniform hopping amplitude between nearest-neighbor sites and µ is the chemical

potential. The second term is the Zeeman coupling which separates up spin and down spin,

with the strength µBHz. The Rashba spin-orbit coupling is introduced in the third term with

αL0(k) = α(sin(ky),− sin(kx)), where α > 0 is the coupling strength. The fourth term and

its Hermitian conjugate, the fifth term, are for spin-singlet SC, where the order parameter

components are

∆σσ′(k) = ı∆(k)(σy)σσ′ . (5.2)

Especially, for isotropic s-wave pairing, ∆(k) = ∆s (constant). The Hamiltonian in coordi-

nate space can be obtained by Fourier transform,

c†iσ =
1√
N

∑

k

eık·ic†kσ
, (5.3)

for a square lattice of N sites. The lattice version of Eq. (5.1) is then given by

H = Hkin +HSO +Hs, (5.4)

74



Hkin = −t
∑

〈i, j〉,σ
c†iσcjσ − µ

∑

i,σ

c†iσciσ − µBHz

∑

i,σ,σ′

(σz)σσ′c†iσciσ′ , (5.5)

HSO = −λ
∑

i

[(
c†i−x̂↓

ci↑ − c†i+x̂↓
ci↑

)
+ ı
(
c†i−ŷ↓

ci↑ − c†i+ŷ↓
ci↑

)
+H.c.

]
, (5.6)

Hs = ∆s

(
c†i↑c

†
i↓ +H.c.

)
, (5.7)

where i = (ix, iy) is a set of x and y coordinates of a site on the square lattice, λ =
α

2
, and

c†iσ and ciσ are creation and annihilation operators for an electron at site i with spin σ. The

notation 〈i, j〉 means that the sum is over all lattice sites {i} and only nearest-neighbor sites

{j} for each i. We will generalize this real-space Hamiltonian for quasicrystalline systems in

the next section.

In Ref. [72], the order parameter ∆s was assumed to be a constant and was not solved

for self-consistently. This assumption is reasonable for square lattice systems because of the

translational symmetry of the system. Moreover, α|L0(k)|: µBHz was assumed in Ref. [72].

This is because the supercoducting state would be unstable and TSC would not be realized

in the limit of large Zeeman coupling. The momentum-space Hamiltonian in Eq. (5.1) can

be rewritten in the ‘BdG form’ as

H =
1

2

∑

k,σ,σ′

(
c†kσ

c−kσ

)
H(k)



 ckσ′

c†
−kσ′



 , (5.8)

where the corresponding BdG Hamiltonian H(k) is

H(k) =



ε(k)− µBHzσz + αL0(k) · σ ı∆(k)σy

−ı∆(k)∗σy −ε(k) + µBHzσz + αL0(k) · σ∗



 . (5.9)

Thus, by diagonalizing the BdG Hamiltonian, the energy at the momentum k can be obtained

analytically as

E(k) =

√
ε(k)2 + α2L0(k)2 + µ2

BH
2
z + |∆(k)|2±2

√
ε(k)2α2L0(k)2 + [ε(k)2 + |∆(k)|2]µ2

BH
2
z .

(5.10)
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One can solve E(k) = 0 to find the condition for vanishing energy gap as

ε(k)2 + |∆(k)|2= µ2
BH

2
z + α2L0(k)

2, |∆(k)|αL0(k) = 0. (5.11)

A topological phase transition can occur only when the energy gap vanishes, and the above

condition yields the phase boundaries in the topological phase diagram. For s-wave pairing,

|∆(k)|α = ∆sα (= 0. Thus the second condition of 5.11 is reduced to L0(k) = 0, and this is

satisfied at the high-symmetry points of the first Brillouin zone, k = (0, 0), (0, π), (π, 0), (π, π).

Accordingly, three phase boundaries for the s-wave pairing are

(4t+ µ)2 +∆2
s = (µBHz)

2, µ2 +∆2
s = (µBHz)

2, (4t− µ)2 +∆2
s = (µBHz)

2, (5.12)

or equivalently,

(
µBHz

t

)2

−
(
∆s

t

)2

=






(µ
t
+ 4
)2

,
(µ
t

)2
,

(µ
t
− 4
)2

.

(5.13)

These phase boundaries are illustrated in Fig. 5.1. By drawing three phase boundaries, the

whole region is devided into seven areas, which are topologically distinct from each other.

5.1.2 Topological Invariant, Abelian and Non-Abelian Phase

The topological nature of the system can be characterized by the TKNN number or the first

Chern number. The BdG equations in momentum space can be written as

H(k) |φn(k)〉 = En(k) |φn(k)〉 (5.14)

for a given k. Among these normalized eigenstates {|φn(k)〉}, those with negative eigenen-

ergies are occupied single-particle states. Using the occupied states, the Berry connection

A(−)
i (k) is defined as

A(−)
i (k) = ı

∑

En<0

〈φn(k) | ∂kiφn(k)〉 , (5.15)

where the subscript i indicates kx, ky, and kz directions for i = 1, 2, and 3, respectively. The

corresponding Berry curvature F (−)(k) in a two-dimensional system is a scalar,

F (−)(k) = εij∂kiA
(−)
j (k), (5.16)
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Figure 5.1: Three phase boundaries in the topological phase diagram.
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for i, j = 1, 2. Here, εij is the Levi-Civita symbol in two dimensions,

εij =






+1 if (i, j) = (1, 2),

−1 if (i, j) = (2, 1),

0 if i = j.

(5.17)

Explicitly written,

F (−)(k) = ∂k1A
(−)
2 (k)− ∂k2A

(−)
1 (k). (5.18)

The corresponding TKNN number ITKNN in this case is defined by integrating the Berry

curvature F (−)(k) over the first Brillouin zone T 2,

ITKNN =
1

2π

∫

T 2

dkxdkyF (−)(k). (5.19)

The TKNN number can also be expressed in terms of another topological invariant, the

winding number I(ky), used in the literature [103]. The particle-hole symmetry of the BdG

Hamiltonian can be expressed as

ΓH(k)Γ† = −H∗(−k), (5.20)

with

Γ =



 0 12×2

12×2 0



 , (5.21)

where 12×2 is the 2×2 identity matrix. There are two special values of ky that have H(k) =

H∗(−k). One of them is ky = 0, for which

ε(kx, 0) = −2t(cos kx + 1)− µ, (5.22)

ε(−kx, 0)
∗ = −2t(cos (−kx) + 1)− µ = −2t(cos kx + 1)− µ, (5.23)

αL0(kx, 0) · σ = α
(
0 − sin kx

)


σx
σy



 = −ασy sin kx, (5.24)

αL0(−kx, 0)
∗ · σ∗ = α

(
0 − sin (−kx)

)


 σx

−σy



 = −ασy sin kx. (5.25)
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Therefore, every element in H∗(−k) coinsides with that of H(k). Similarly, for ky = π,

H(k) = H∗(−k). Combining with the particle-hole symmetry, for ky = 0, π,

ΓH(k)Γ† = −H(k). (5.26)

Note that Γ†Γ is an identity matrix. Thus, by multiplying the above equation by Γ from the

right,

ΓH(k) +H(k)Γ = [Γ,H(k)]+ = 0. (5.27)

Changing the basis so that Γ has the diagonal form,

Γ =



12×2 0

0 −12×2



 , (5.28)

for ky = 0, π,

H(k) =



 0 q(k)

q†(k) 0



 . (5.29)

In this basis, the anticommutation relation can be shown as

(5.30)

[Γ,H(k)]+ =



12×2 0

0 −12×2







 0 q(k)

q†(k) 0



+



 0 q(k)

q†(k) 0







12×2 0

0 −12×2





=



 0 q(k)

−q†(k) 0



+



 0 −q(k)

q†(k) 0





= 0.

The winding number for a given ky is defined by

I(ky) =
1

4πı

∫ π

−π

dkx Tr
[
q−1(k)∂kxq(k)− q†−1(k)∂kxq

†(k)
]
, (5.31)

or equivalently,

(5.32)
I(ky) = − 1

2πı

∫ π

−π

dkx Tr
[
q(k)∂kiq

−1(k)
]

=
1

2πı

∫ π

−π

dkx ∂ki ln [detq(k)] .

This winding number is related with the TKNN number by [72]

(−1)ITKNN = (−1)I(0)−I(π). (5.33)
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This relation assures that (−1)ITKNN can be obtained by calculating the winding number at

two specific wave numbers ky = 0, π. The value of (−1)ITKNN determines whether the system

is in the trivial, Abelian topological, or non-Abelian topological phase. When at least one of

them is nonzero, we have either Abelian or non-Abelian topological phase:

(−1)ITKNN =






+1,Abelian,

−1, non-Abelian.
(5.34)

In this TSC model, I(0) and I(π) can be −1, 0, or +1. When both I(0) and I(π) are zero, the

system is in the topologically trivial phase. When I(0)− I(π) = ±1, (−1)ITKNN = −1, there

is a single Majorana fermion on a surface boundary or in a vortex [72, 104, 73]. This topolog-

ical phase is said to be non-Abelian, as Majorana fermions obey the non-Abelian exchange

statistics. Unlike its continuum-model counterpart [104], this tight-binding TSC model also

has the possibility of I(0) = −1 and I(π) = 1, so that ITKNN = −2 and (−1)ITKNN = +1,

which is topologically non-trivial and called the Abelian phase. According to the bulk-edge

correspondence [13, 14], the magnitude of ITKNN equals the number of zero-energy modes

per surface boundary. So in the Abelian phase, there are two Majorana fermions per surface

[74]. The index theorem [104] for a vortex in the Abelian phase has recently been derived,

showing the possible existence of two Majorana fermions per vortex, although numerically

it has been found that those two Majorana fermions annihilate each other due to overlap of

their wave functions in a vortex [105]. In summary, Table 5.1 shows the value of (−1)ITKNN

as an indicator of Abelian or non-Abelian topological phase and the winding numbers at two

specific wave numbers ky = 0, π, for various regions of the chemical potential and Zeeman

coupling.
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Table 5.1: List of the values of (−1)ITKNN and the winding numbers as an indicator

of trivial, Abelian or non-Abelian topological phase for various regions of the chemical

potential and Zeeman coupling.

(a) µ ≤ −2t

(µBHz)2 (−1)ITKNN I(0) I(π)

0 < (µBHz)2 < (4t+ µ)2 +∆2
s 1 0 0

(4t+ µ)2 +∆2
s < (µBHz)2 < µ2 +∆2

s -1 1 0

µ2 +∆2
s < (µBHz)2 < (4t− µ)2 +∆2

s -1 0 1

(4t− µ)2 +∆2
s < (µBHz)2 1 0 0

(b) −2t < µ ≤ 0

(µBHz)2 (−1)ITKNN I(0) I(π)

0 < (µBHz)2 < µ2 +∆2
s 1 0 0

µ2 +∆2
s < (µBHz)2 < (4t+ µ)2 +∆2

s 1 -1 1

(4t+ µ)2 +∆2
s < (µBHz)2 < (4t− µ)2 +∆2

s -1 0 1

(4t− µ)2 +∆2
s < (µBHz)2 1 0 0

(c) 0 < µ ≤ 2t

(µBHz)2 (−1)ITKNN I(0) I(π)

0 < (µBHz)2 < µ2 +∆2
s 1 0 0

µ2 +∆2
s < (µBHz)2 < (4t− µ)2 +∆2

s 1 -1 1

(4t− µ)2 +∆2
s < (µBHz)2 < (4t+ µ)2 +∆2

s -1 -1 0

(4t+ µ)2 +∆2
s < (µBHz)2 1 0 0

(d) 2t < µ

(µBHz)2 (−1)ITKNN I(0) I(π)

0 < (µBHz)2 < (4t− µ)2 +∆2
s 1 0 0

(4t− µ)2 +∆2
s < (µBHz)2 < µ2 +∆2

s -1 0 -1

µ2 +∆2
s < (µBHz)2 < (4t+ µ)2 +∆2

s -1 -1 0

(4t+ µ)2 +∆2
s < (µBHz)2 1 0 0
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5.1.3 Majorana Chiral Edge State with the Ribbon Boundary Con-

dition

When a system with a surface or edge boundary is in topological phase with a nonzero topo-

logical invariant, the existence of zero-energy edge mode(s) along the boundary is guaranteed

by the bulk-edge correspondence [13, 14]. The Hamiltonian described in the momentum space

in Eq. (5.1) is applicable only for a square lattice with PBC, and accordingly, never yields

edge modes. For a square lattice of N sites, the lattice version of Eq. (5.1) is given by

Eq. (5.4). The model in Eq. (5.4) presents the Majorana chiral edge mode(s) with the ribbon

boundary condition [72]. For example, with the ribbon boundary condition, a square-lattice

system can have PBC in the y direction and two edges at x = 0 and x = Nx − 1, where Nx

is the number of lattice sites in the x direction.

The energy spectrum of Eq. (5.4) with the ribbon boundary condition for Nx = 15 is

shown in Fig. 5.2. The horizontal axis represents the wave number in the y direction which

ranges between −π and π, and the vertical axis represents the energy in units of t ≡ 1. The

parameters used are µ = −2.5,α = 1.0(λ = 0.5),∆s = 1.0 and each panel corresponds to

different values of µBHz: (a) µBHz = 0.0 ((µBHz)2 = 0.0), (b) µBHz = 2.0 ((µBHz)2 = 4.0),

(c) µBHz = 3.0 ((µBHz)2 = 9.0), and (d) µBHz = 7.0 ((µBHz)2 = 49.0).

The region in Table 5.1 (a) for µ ≤ −2.0t along with the used set of parameters is shown

in Table 5.2. According to Table 5.2, the topological phases of the four panels in Fig. 5.2

are (a) Abelian, (b) non-Abelian, (c) non-Abelian, and (d) Abelian. When the system is

in the non-Abelian topological phase, the energy spectrum has a zero-energy band crossing

in the first Brillouin zone, which corresponds to two Majorana chiral edge modes. To show

these band crossings clearer, the low-energy region of the energy spectra of the non-Abelian

topological phase in Fig. 5.2 (b) and (c) is magnified in Fig. 5.3. Two energy bands cross

zero energy at ky = 0 for µBHz = 2.0 in Fig. 5.3 (b) and at the Brillouin zone boundary,

ky = ±π, for µBHz = 3.0 in Fig. 5.3 (c). At these values of ky, I(ky) (= 0. The winding

numbers at these band-crossing wave numbers are (b) I(0) = 1 and (c) I(π) = 1. In each

case, one Majorana zero mode appears along each of the two surfaces.

82



Figure 5.2: The eigenspectrum of Eq. (5.4) in units of t as a function of ky in the first
Brillouin zone with the ribbon boundary condition for Nx = 15. The parameters used
are µ = −2.5,α = 1.0,∆s = 1.0, and (a) µBHz = 0.0, (b) µBHz = 2.0, (c) µBHz = 3.0,
and (d) µBHz = 7.0. The topological phases are (a) Abelian, (b) non-Abelian, (c)
non-Abelian, and (d) Abelian.
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Figure 5.3: Low-energy region of the eigenspectrum of the non-Abelian topological
phase in Fig. 5.2 (b) and (c), showing two Majorana fermions at ky = 0 and ky = π,
respectively.

Table 5.2: Table 5.1 (a) for µ ≤ −2.0t, with µ = −2.5,α = 1.0, and ∆s = 1.0.

(µBHz)
2 (−1)ITKNN I(0) I(π)

0 < (µBHz)
2 < 3.25 1 0 0

3.25 < (µBHz)
2 < 7.25 −1 1 0

7.25 < (µBHz)
2 < 43.25 −1 0 1

43.25 < (µBHz)
2 1 0 0

In contrast, two Majorana chiral edge states appear per surface boundary when the system

is in the Abelian topological phase. The low-energy region of the energy spectrum of Eq. (5.4)

with the ribbon boundary condition for Nx = 15, in the case of µ = −1.0,α = 1.0(λ = 0.5),

and ∆s = 1.0 is shown in Fig. 5.4. The system is in the Abelian topological phase with this

parameter set, according to Table 5.1. There are two band crossings at ky = 0 and π at zero

energy, each of which corresponds to two Majorana zero modes per surface, and both of the

winding numbers at these wave numbers are nonzero: I(0) = −1, I(π) = 1.

In this subsection, it has been demonstrated that zero-energy Majorana modes appear

along surface boundaries and the number of Majorana zero modes per surface is given by

|ITKNN |= 1 and 2, respectively, in the non-Abelian and Abelian phase.
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Figure 5.4: Low-energy region of the energy spectrum of Eq. (5.4) with the ribbon
boundary condition for Nx = 15, µ = −1.0,α = 1.0(λ = 0.5), and ∆s = 1.0

5.2 Topological Superconductivity Model for Two-Dimensional

Quasicrystals

5.2.1 Topological Invariant for Quasicrystals: Bott Index

The Bott index is one of the topological invariants which can be used also for a system without

periodicity and is equivalent to the first Chern number in a periodic system [106, 107]. The

first Chern number is defined in momentum space and not applicable to systems that lack

periodicity. In this subsection, the definition of the Bott index is provided [69, 68]. First, let

P be the projector onto the states below the Fermi energy,

P =
∑

En<0

|φn〉 〈φn| . (5.35)

Then the projection operator onto its complementary space is

Q = I − P, (5.36)

where I is the identity operator. The projected position operator for coordinate x is difined

as

UX = Peı2πXP +Q. (5.37)
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Here, X is a diagonal matrix defined as

X = Diag (x1, x1, . . . , xN , xN , x1, x1, . . . , xN , xN) , (5.38)

where xi is the x coordinate of the ith vertex rescaled to [0, 1). Similarly, the projected

position operator for coordinate y is difined as

UY = Peı2πY P +Q, (5.39)

where Y is a diagonal matrix defined as

Y = Diag (y1, y1, . . . , yN , yN , y1, y1, . . . , yN , yN) , (5.40)

and yi is the y coordinate of the ith vertex rescaled to [0, 1). The Bott index in a two-

dimensional system is defined as

B =
1

2π
ImTr log

(
UY UXU

†
Y U

†
X

)
. (5.41)

The matrices UX and UY are known to be almost unitary and commute with each other,

and they can be approximated by exactly commuting matrices through the techniques of

C∗-algebras [69]. The Bott index satisfies

Tr log
(
UY UXU

†
Y U

†
X

)
= 2πıB + r, (5.42)

namely,

det
(
UY UXU

†
Y U

†
X

)
= exp (2πıB + r) , (5.43)

where r is a real number. Since det (UX) =
(
det
(
U †
X

))∗
and det

(
UY UXU

†
Y U

†
X

)
> 0, the

Bott index is quantized to be an integer.

When UX and UY are unitary and mutually commute, det
(
UY UXU

†
Y U

†
X

)
= 1 = exp(0),

and thus B = r = 0. It is known that if and only if B = 0, UX and UY exactly commute

with each other [108]. The Bott index is an integer quantity which is nonzero (zero) in a

topologically nontrivial (trivial) phase [68].

The chemical potential and Zeeman coupling dependence of the Bott index, calculated

for the BdG Hamiltonian given by Eq. (5.9) for a 20 × 20 square lattice system with PBC,

α = 1.0t and ∆s = 0.34t, is shown in Fig. 5.5. The three parabolic curves in Fig. 5.5 are
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Figure 5.5: The chemical potential and Zeeman coupling dependence of the Bott
index for a 20× 20 square lattice system with PBC, α = 1.0t, and ∆s = 0.34t.

the topological phase boundaries in Eq. (5.13). Comparing the numerically calculated Bott

index in Fig. 5.5 with the analytically derived winding numbers shown in Table 5.1, we find

B = I(0)−I(π) for translation-invariant systems. Therefore, the Bott index is an alternative

topological invariant, which does not require translational symmetry, and B is zero (nonzero)

for topologically trivial (nontrivial) phase.

5.2.2 Model Hamiltonian for Two-Dimensional Quasicrystals

Translational symmetry can be utilized in the case of square lattice systems; however, for

QCs, due to the lack of translational symmetry Bloch’s theorem does not hold. Accordingly,

the Hamiltonian of the TSC model should be generalized in coordinate space [68]:

H =
1

2

∑

ij

(
c†i ci

)
H



cj

c†j



 , (5.44)

87



H =



 h ∆

∆† −h∗



 , (5.45)

where ci = (c1↑c1↓ . . .) is the spinor annihilation operator for electrons. The components of

H are

[h]iα,jβ =
[
(tij − µδij)σ0 + hzδijσ3 + ıVij -ez · -σ × -̂Rij

]

αβ
, (5.46)

[∆]iα,jβ = [δij∆ıσ2]αβ . (5.47)

The Pauli matrices are -σ =
(
σ1 σ2 σ3

)
which act in spin space, and σ0 is the 2 × 2

identity matrix. The unit vector connecting sites i and j is -̂Rij. The hopping and the

Rashba spin-orbit coupling are considered only for nearest-neighbors with tij = t〈ij〉 = −t

and Vij = V〈ij〉 = V , respectively. The Rashba spin-orbit coupling term is

(5.48)

ıVij -ez · -σ × -̂Rij = ıV





0

0

1




·
(
σ1 σ2 σ3

)
×





xij

yij

zij





= ıVij (yijσ1 − xijσ2)

= ıVij



 0 ıxij + yij

−ıxij + yij 0



 .

It can be confirmed readily that Eq. (5.44) coinsides with Eq. (5.4) in the case of square

lattice systems, considering that the four displacement vectors for every lattice point in a

square lattice in units of the lattice constant are

-Rij =
(
1, 0
)
,
(
0, 1
)
,
(
−1, 0

)
,
(
0,−1

)
. (5.49)

Also for Penrose or AB QC, the lengths of the displacement vectors are uniform. Let the

common length of the displacement vectors be |-Rij|= |-R|, which is analogous to the lattice

constant in a square lattice. In the case of Penrose QC, displacement vectors of a given site

are some of

(5.50)
-Rij = |-R|

(
cos 0°, sin 0°

)
, |-R|

(
cos 72°, sin 72°

)
, |-R|

(
cos 144°, sin 144°

)
,

|-R|
(
cos 216°, sin 216°

)
, |-R|

(
cos 288°, sin 288°

)
.
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In the case of AB QC, displacement vectors of a certain site are some of

(5.51)

-Rij = |-R|
(
cos 0°, sin 0°

)
, |-R|

(
cos 45°, sin 45°

)
, |-R|

(
cos 90°, sin 90°

)
,

|-R|
(
cos 135°, sin 135°

)
, |-R|

(
cos 180°, sin 180°

)
, |-R|

(
cos 225°, sin 225°

)
,

|-R|
(
cos 270°, sin 270°

)
, |-R|

(
cos 315°, sin 315°

)
.

In both Penrose and AB QC, the unit vector is given by -̂Rij =
-Rij

|-R|
. The number of displace-

ment vectors for a given site is equal to its coordination number, which depends on the local

geometry of the site. In the case of AB QC, there are six possible values for the coordination

number Zi which ranges from Zi = 3 to Zi = 8, as illustrated in Fig. 5.6. For instance, the

lattice point whose coordination number is Zi = 8 is connected with eight neighboring lattice

points, and its corresponding displacement vectors are all of Eq. (5.51).

5.3 Self-consistent Study of Topological Superconduc-

tivity in Quasicrystals

In this section, the results of self-consistent calculations for the TSC Hamiltonian in Penrose

and AB QCs are shown. For both systems, not only the superconducting order parameter,

but also the spin-dependent Hartree potential are obtained self-consistently.

5.3.1 Topological Superconductivity in Penrose Quasicrystals

We have solved the BdG equations self-consistently for the superconducting order parameter

and Hartree potential in Penrose QCs with PBC. In converged solutions, both mean fields

are found to be spatially non-uniform and vary from site to site; however, they are nonzero

at all sites. To characterize the topological nature of the system, we have calculated the Bott

index in Eq. (5.41). The magnitude of the self-consistently obtained order parameter ∆i/t

is presented in Fig. 5.7 for the trivial (B = 0) and topological (B = 1) phase for part of the

QC around a high-symmetry point in real space (upper panel) and the perpendicular space

(lower panel). The high symmetry point in the upper panel is represented by a black dot.
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Figure 5.6: Coordination number of a certain site and its nearest-neighbor sites in
AB QC.
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Among the four planes in the perpendicular space of a Penrose QC shown in Fig. 4.8, the

plane at z̃ = −1.34164 in Fig. 4.8 (c) is selected for illustration. In the perpendicular space

(lower panel), each sector separated by the black solid lines is formed by points with the

same coordination number. The parameters used are h/t = 1.0,α/t = 1.0, U/t = −5.2, and

µ̃/t = 3.7(3.8) for the Bott index B = 0(1). The number of lattice points in the used Penrose

QC is 3571, and Eq. (2.28) is used for the convergence criteria. The zero (nonzero) Bott index

indicates that the system is in a trivial (topological) phase. Figure 5.7 demonstrates that

despite the spatial variation of the order parameter, TSC can exist stably in Penrose QC.

It can be seen clearly that |∆i/t| has fivefold rotational symmetry whose center of rotation

is the black point in Fig. 5.7 and mirror symmetry whose axes of reflection are the black

dashed lines in Fig. 5.7 in both real space and the perpendicular space. While it is difficult

to see this in real space, the plot in the perpendicular space in Fig. 5.7 illustrates that the

magnitude of the order parameter at a given site is mostly determined by its coordination

number, i.e., the number of nearest-neighbor sites. And the higher the coordination number,

the larger the |∆i|/t.

Arg (∆i/t) is presented in Fig. 5.8 for the trivial (B = 0) and topological (B = 1) phase

for part of the QC around the high-symmetry point (black dot) in real space (upper panel)

and the perpendicular space (lower panel). Even though we start from a real initial guess for

the order parameter, the converged order parameter in a QC is always complex. It can be

seen that Arg (∆i/t) has fivefold rotational symmetry whose center of rotation is the black

point in Fig. 5.8; however, the mirror symmetry whose axes of reflection are the black dashed

lines in Fig. 5.8 is broken in both real space and the perpendicular space. To be accurate,

fivefold rotational symmetry is broken near the system boundaries (not shown). Except this

effect of finite system size, Arg (∆i/t) at a given site and its reflection through any one of the

black dashed lines are equal in magnitude and have opposite signs, which we call “anti-mirror

symmetry”. This “anti-mirror symmetry” also guarantees that Arg (∆i/t) = 0 for any lattice

site i on the black dashed lines. The spatially varying imaginary part of the superconducting

order parameter implies the occurrence of supercurrents.

In Fig. 5.7, |∆i/t| is uniformly distributed in the given scale in each sector for a given

coordination number, while Arg (∆i/t) is not correlated with the coordination number as can
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Figure 5.7: The magnitude of ∆i/t for the trivial (B = 0) and topological (B = 1)
phase in Penrose QC in real space (upper panel) and the perpendicular space (lower
panel). The parameters used are h/t = 1.0,α/t = 1.0, U/t = −5.2, and µ̃/t = 3.7(3.8)
for the Bott index B = 0(1), N = 3571.
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Figure 5.8: Arg (∆i/t) for the trivial (B = 0) and topological (B = 1) phase in real
space (upper panel) and the perpendicular space (lower panel) for the same systems as
shown in Fig. 5.7.

93



be seen in Fig. 5.8. To examine the dependence of |∆i/t| and Arg (∆i/t) on coordination

numbers in more detail, |∆i/t| (upper panel) and Arg (∆i/t) (lower panel) are plotted as

a function of coordination number for the trivial (B = 0) and topological (B = 1) phase

in Fig.5.9. The red dots and the error bars in the dependence of |∆i/t| on coordination

numbers represent the mean value and standard deviation for each coordination number,

respectively. The black dashed line in the upper (lower) panel represents the mean value of

|∆i/t| (Arg (∆i/t)) for the entire lattice. Because the standard deviation of |∆i/t| is small,

the most dominant factor affecting the value of |∆i/t| is the coordination number. Within

the mean-field approximation, it makes sense that the coordination number, i.e., the number

of adjacent lattice points governs the strength of the mean fields for a given lattice point.

Meanwhile, the standard deviation of |∆i/t| is not exactly zero. This means that not only

the local environment but also the global environment may affect |∆i/t|. The mean value of

Arg (∆i/t) for the entire lattice is found to be almost zero, 9.8861×10−7 and −2.3989×10−6,

in the trivial (B = 0) and topological (B = 1) phase, respectively. Figure 5.9 clearly shows

that Arg (∆i/t) does not depend on the coordination number. The strength of the Hartree

potential for each spin, which is proportional to the electron density and hence always real,

is also governed by the coordination number for each lattice site (not shown).

Comparing the cases of the trivial (B = 0) and topological (B = 1) phase in Figs. 5.7-5.9,

it can be seen that with PBC, the topology of the system does not affect the distribution of

the superconducting order parameter. The major difference between trivial and topological

phases manifests itself in the presence of an edge (open boundary), as shown below.

The system size dependence of the lowest absolute value of the eigenenergies is shown in

Fig. 5.10 for the two parameter sets for B = 0 and 1 with the ribbon boundary condition.

The numbers of lattice points N of the used Penrose QCs are N = 199, 1364, and 3571. The

horizontal axis of Fig. 5.10 is the inverse of the square root of the number of lattice points.

The blue circles (red squares) represent the results for B = 0 (B = 1). By linearly fitting

these data points for different system sizes, the lowest eigenvalue is found to approach zero

in the limit N → ∞ for B = 1, while it apparently approaches a finite (nonzero) value for

B = 0.

In Fig. 5.11, the first (red circle), second (green circle), third (blue circle), and fourth
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Figure 5.9: |∆i/t| (upper panel) and Arg (∆i/t) (lower panel) as a function of coor-
dination number for the trivial (B = 0) and topological (B = 1) phase for the systems
shown in Figs.5.7 and 5.8.

Figure 5.10: The system size dependence of the lowest absolute value of the eigenen-
ergies in Penrose QC for the two parameter sets for B = 0 and 1 with the ribbon
boundary condition, for N = 199, 1364, and 3571.
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Figure 5.11: The first (red circle), second (green circle), third (blue circle), and fourth
(black circle) lowest absolute value of the eigenenergies in Penrose QC as a function of
1/
√
N for N = 199, 1364, and 3571, for B = 1 with the ribbon boundary condition.

(black circle) lowest absolute value of the eigenenergies are plotted as a function of 1/
√
N

for the number of lattice sites N = 199, 1364, and 3571, for B = 1 with the ribbon boundary

condition. By linearly fitting these data points for different system sizes, the second, third,

and fourth lowest eigenvalues are found to approach a finite (nonzero) value in the limit

N → ∞. It is clear from Fig. 5.11 that there is one zero-energy mode, whose energy ε

approaches zero from the positive side in the thermodynamic limit. Consistently with the

particle-hole symmetry of the BdG equations, there is another state with energy −ε, which

approaches zero from the negative side in the limit N → ∞.

The (a) electron and (b) hole amplitudes (probability amplitude magnitude squared)

of this zero-energy mode are shown in Fig. 5.12 for N = 3571 with the ribbon boundary

condition and B = 1. Both electron and hole amplitudes are large along and near the edges

and so this is clearly an edge mode. The electron and hole amplitudes are almost the same

for each lattice site. They are not exactly the same due to the relatively small system size,

which allows slight overlap of the wave functions of the two edge modes in the middle of

the system. However, the difference between them is a decreasing function of the number

of lattice sites N . This implies that the electron and hole amplitudes are the same in the
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limit that N → ∞, where the two edge modes do not overlap. This confirms that the two

zero-energy edge modes are Majorana zero modes, one per surface, consistently with the

bulk-edge correspondence and B = 1 as the topological invariant of the system.

5.3.2 Topological Superconductivity in Ammann-Beenker Quasicrys-

tal

We have also solved the BdG equations self-consistently for the superconducting order pa-

rameter and Hartree potential in AB QCs with PBC. As in Penrose QC, the converged mean

fields are nonzero at all sites, but vary from site to site. The magnitude of the converged

order parameter ∆i/t is presented in Fig. 5.13 for the trivial (B = 0) and topological (B = 1)

phase for part of the QC around a high-symmetry point in real space (upper panel) and the

perpendicular space (lower panel). The high symmetry point in the upper panel is repre-

sented by a black dot. The parameters used are h/t = 1.0,α/t = 1.0, U/t = −5.2, and

µ̃/t = 3.7(3.8) for the Bott index B = 0(1). The number of lattice points of the used AB

QC is 1393, and Eq. (2.28) is used for the convergence criteria. Figure 5.13 demonstrates

that despite the spatial variation of the order parameter, TSC can exist stably in AB QC as

well. Clearly, |∆i/t| has eightfold rotational symmetry whose center of rotation is the black

point in Fig. 5.13 and mirror symmetry whose axes of reflection are the black dashed lines

in Fig. 5.13 in both real space and the perpendicular space. The plot in the perpendicular

space in Fig. 5.13 shows that the magnitude of the order parameter at a given site is mostly

determined by its coordination number, i.e., the number of nearest-neighbor sites. And the

higher the coordination number, the larger the |∆i|/t.

Arg (∆i/t) is presented in Fig. 5.14 for the trivial (B = 0) and topological (B = 1) phase

for part of the QC around the high-symmetry point (black dot) in real space (upper panel)

and the perpendicular space (lower panel). Consistently with the case of Penrose QC, the

converged order parameter is always complex even for a real initial guess. It can be seen

that Arg (∆i/t) has eightfold rotational symmetry whose center of rotation is the black point

in Fig. 5.14 but the mirror symmetry whose axes of reflection are the black dashed lines in

Fig. 5.14 is broken in both real space and the perpendicular space.
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Figure 5.12: (a) Electron and (b) hole amplitudes of the lowest-energy quasiparticle
excitation in the 3571-site Penrose QC with the ribbon boundary condition and B = 1.
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Figure 5.13: The magnitude of ∆i/t for the trivial (B = 0) and topological (B = 1)
phase in real space (upper panel) and the perpendicular space (lower panel) in AB QC.
The parameters used are h/t = 1.0,α/t = 1.0, U/t = −5.2, and µ̃/t = 3.7(3.8) for the
Bott index B = 0(1), and N = 1393.
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Figure 5.14: Arg (∆i/t) for the trivial (B = 0) and topological (B = 1) phase in real
space (upper panel) and the perpendicular space (lower panel), for the same systems
as shown in Fig. 5.13.
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In Fig. 5.13, |∆i/t| is uniformly distributed in the given scale in each sector for a given

coordination number, while there is no correlation with the coordination number in Arg (∆i/t)

in Fig. 5.14. In Fig.5.15, |∆i/t| (upper panel) and Arg (∆i/t) (lower panel) are plotted as a

function of coordination number for the trivial (B = 0) and topological (B = 1) phase. The

red dots and the error bars represent, respectively, the mean value and standard deviation

of |∆i/t| for each coordination number. The black dashed line in the upper (lower) panel

represents the mean value of |∆i/t| (Arg (∆i/t)) for the entire lattice. The small standard

deviation of |∆i/t| indicates that the value of |∆i/t| at any given site is mostly determined by

its coordination number. The mean value of Arg (∆i/t) for the entire lattice is found to be

almost zero, 4.0766×10−16 and 1.6565×10−16, in the trivial (B = 0) and topological (B = 1)

phase, respectively. In contrast, to the magnitude, the phase Arg(∆i/t) is independent of

the coordination number, as can be seen in Fig.5.15. The strength of the Hartree potential

for each spin is also governed by the coordination number for each lattice site (not shown).

Figures 5.13-5.15 show that with PBC, the distribution of the superconducting order

parameter is not affected by the topological nature of the system, i.e., whether B = 0 or 1.

The lowest absolute value of the eigenenergies is plotted as a function of 1/
√
N in Fig. 5.16

for the two parameter sets for B = 0 and 1 with the ribbon boundary condition, for the

number of lattice points N = 41, 239, 1393, and 8119. The blue circles (red squares) represent

the results for B = 0 (B = 1). By linearly fitting these data points for different system

sizes, the lowest eigenvalue is found to approach zero and a nonzero value, respectively, for

B = 1 and 0, in the limit N → ∞. Consistently with the case of Penrose QC, this zero-

energy excitation when B = 1 is expected to be a Majorana zero mode per surface in the

thermodynamic limit, in accordance with the bulk-edge correspondence. The electron and

hole probability amplitudes (magnitude squared) of the zero-energy edge mode have indeed

been confirmed to be almost identical for N = 8119 (not shown).
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Figure 5.15: |∆i/t| (upper panel) and Arg (∆i/t) (lower panel) as a function of
coordination number for the trivial (B = 0) and topological (B = 1) phase for the
systems shown in Figs. 5.13 and 5.14.

Figure 5.16: The system size dependence of the lowest absolute value of the eigenen-
ergies in AB QC for the two parameter sets for B = 0 and 1 with the ribbon boundary
condition for N = 41, 239, 1393, and 8119.
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6 Conclusion

In this thesis, mean field theory has been applied to the model Hamiltonian for two-

dimensional TSC with broken time-reversal symmetry, and the superconducting order pa-

rameter and spin-dependent Hartree potential have been self-consistently obtained. The

TSC model [72], which was originally proposed for periodic square-lattice systems, has been

generalized for quasicrystalline systems. As prototype examples, two-dimensional Penrose

and AB QCs have been studied. Due to the aperiodicity of QCs, Bloch’s theorem is not

applicable, and the BdG equations formulated in coordinate space have been solved directly

and numerically.

The self-consistently obtained superconducting order parameter has been examined for

two parameter sets with different topological invariants. The used topological invariant is

the Bott index B, which corresponds to the first Chern number in periodic systems. When

B is zero (nonzero), the system is in a topologically trivial (nontrivial) phase. With PBC,

reflecting the geometry of the QC, the absolute value of the superconducting order parameter

in both real space and the perpendicular space presents fivefold and eightfold rotational

symmetry, respectively, in Penrose and AB QCs, along with their inherent mirror symmetries.

The distribution of the superconducting order parameter is found to be independent of the

value of B. The major effect of the topology of the system manifests itself in the presence

of a surface boundary. With the ribbon boundary condition, the lowest absolute value of

the eigenenergies in the thermodynamic limit is estimated to be zero, whereas it approaches

a finite nonzero value when B = 0. The zero-energy excitation in the topological phase

with B = 1 has been shown to be a Majorana zero mode per surface, consistently with the

bulk-edge correspondence.

Future work could introduce wave-vector or momentum space analysis. Due to aperiod-

icity, there is no Brillouin zone in momentum space. On the other hand, x-ray diffraction of
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QCs clearly shows Bragg peaks, which motivate a study of TSC in QCs in momentum space.

In a periodic system, a topological phase transition occurs when the energy gap vanishes at

one of the high-symmetry points in the first Brillouin zone. Thus, a topological phase tran-

sition in a QC is expected to be associated with a wave vector(s) related to self-similarity

of QCs. The self-similarity inherent in a QC is tied to an irrational number, which is the

golden ratio and the silver ratio, respectively, in Penrose and AB QCs. Therefore, the wave

vector(s) associated with a topological phase transition may be described in terms of the

irrational number. It is also interesting to examine possible fractal structure in topological

phase diagrams and investigate how self-similarity of a QC affects the topological nature of

TSC states. Finally, the existence of a Majorana fermion in a QC with B = 1 can also be

confirmed by introducing a vortex at the center of the system with OBC all around.
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[44] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys.,
52:555, 1929.

[45] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn. Metallic Phase with Long-Range
Orientational Order and No Translational Symmetry. Phys. Rev. Lett., 53:1951, 1984.

[46] D. Levine and P. J. Steinhardt. Quasicrystals: A New Class of Ordered Structures.
Phys. Rev. Lett., 53:2477, 1984.

[47] K. Nagao, T. Inuzuka, K. Nishimoto, and K. Edagawa. Experimental Observation of
Quasicrystal Growth. Phys. Rev. Lett., 115:075501, 2015.

[48] T. Dotera, S. Bekku, and P. Ziherl. Bronze-mean hexagonal quasicrystal. Nat. Mater.,
16:987, 2017.

107



[49] K. Kamiya, T. Takeuchi, N. Kabeya, N. Wada, T. Ishimasa, A. Ochiai, K. Deguchi,
K. Imura, and N. K. Sato. Discovery of superconductivity in quasicrystal. Nat. Com-
mun., 9:154, 2018.

[50] S. Yoshida, S. Suzuki, T. Yamada, T. Fujii, A. Ishikawa, and R. Tamura. Antiferro-
magnetic order survives in the higher-order quasicrystal approximant. Phys. Rev. B,
100:180409, 2019.

[51] R. Tamura, A. Ishikawa, S. Suzuki, T. Kotajima, Y. Tanaka, T. Seki, N. Shibata,
T. Yamada, T. Fujii, C.-W. Wang, M. Avdeev, K. Nawa, D. Okuyama, and T. J. Sato.
Experimental Observation of Long-Range Magnetic Order in Icosahedral Quasicrystals.
J. Am. Chem. Soc., 143:19938, 2021.

[52] L. Chang, F. Erina, K. Yukari, I. Yuki, I. Asuka, T. Ryuji, K. Kaoru, and Y. Ryo.
Machine Learning to Predict Quasicrystals from Chemical Compositions. Adv. Mater.,
33:2102507, 2021.

[53] J. N. Lalena. From Quartz to Quasicrystals: Probing Nature’s Geometric Patterns in
Crystalline Substances. Crystallogr. Rev., 12:125, 2006.

[54] A. Yamamoto. Crystallography of Quasiperiodic Crystals. Acta Crystallogr. A,
A52:509, 1996.

[55] W. Steurer. Quasicrystals: What do we know? What do we want to know? What can
we know? Acta Crystallogr. A, 74:1, 2018.

[56] THE NOBEL PRIZE. The Nobel Prize in Chemistry 2011. https://www.nobelprize.
org/prizes/chemistry/2011/summary/.

[57] C. Janot. The Properties and Applications of Quasicrystals. Europhys. News, 27:60,
1996.

[58] P. Archambault and C. Janot. Thermal Conductivity of Quasicrystals and Associated
Processes. MRS Bulletin, 22:48, 1997.

[59] T. P. Yadav and N. K. Mukhopadhyay. Quasicrystal: a low-frictional novel material.
Curr. Opin. Chem. Eng., 19:163, 2018.

[60] D. A. Rabson. Toward theories of friction and adhesion on quasicrystals. Prog. Surf.
Sci., 87:253, 2012.

[61] B. Persson. Contact Mechanics, Friction and Adhesion with Application to Quasicrys-
tals. In: E. Gnecco, E. Meyer Fundamentals of Friction and Wear on the Nanoscale.
Springer, 2015.

[62] Sputtering technique forms versatile quasicrystalline coatings. MRS Bulletin, 36:581,
2011.

[63] J. E. Graebner and H. S. Chen. Specific Heat of an Icosahedral Superconductor,
Mg3Zn3Al2. Phys. Rev. Lett., 58:1945, 1987.

108

https://www.nobelprize.org/prizes/chemistry/2011/summary/
https://www.nobelprize.org/prizes/chemistry/2011/summary/


[64] S. Sakai, N. Takemori, A. Koga, and R. Arita. Superconductivity on a quasiperiodic
lattice: Extended-to-localized crossover of Cooper pairs. Phys. Rev. B, 95:024509, 2017.

[65] S. Sakai and R. Arita. Exotic pairing state in quasicrystalline superconductors under
a magnetic field. Phys. Rev. Res., 1:022002, 2019.

[66] R. N. Araújo and E. C. Andrade. Conventional superconductivity in quasicrystals.
Phys. Rev. B, 100:014510, 2019.

[67] R. Ghadimi, T. Sugimoto, and T. Tohyama. Majorana Zero-Energy Mode and Fractal
Structure in Fibonacci-Kitaev Chain. J. Phys. Soc. Jpn., 86:114707, 2017.

[68] R. Ghadimi, T. Sugimoto, K. Tanaka, and T. Tohyama. Topological superconductivity
in quasicrystals. Phys. Rev. B, 104:144511, 2021.

[69] T. A. Loring and M. B. Hastings. Disordered topological insulators via C∗-algebras.
Europhys. Lett., 92:67004, 2010.

[70] T. A. Loring. Bulk spectrum and K-theory for infinite-area topological quasicrystals.
J. Math. Phys., 60:081903, 2019.

[71] P. G. de Gennes. Superconductivity of Metals and Alloys. W. A. Benjamin, 1966.

[72] M. Sato, Y. Takahashi, and S. Fujimoto. Non-Abelian topological orders and Majorana
fermions in spin-singlet superconductors. Phys. Rev. B, 82:134521, 2010.

[73] E. D. B. Smith, K. Tanaka, and Y. Nagai. Manifestation of chirality in the vortex lattice
in a two-dimensional topological superconductor. Phys. Rev. B, 94:064515, 2016.

[74] S. L. Goertzen, K. Tanaka, and Y. Nagai. Self-consistent study of Abelian and
non-Abelian order in a two-dimensional topological superconductor. Phys. Rev. B,
95:064509, 2017.

[75] THE NOBEL PRIZE. The Nobel Prize in Physics 1972. https://www.nobelprize.
org/prizes/physics/1972/summary/.

[76] L. D. Landau. Theory of a Fermi-Liquids. Sov. Phys. JETP, 3:920, 1956.

[77] L. D. Landau. Oscillations in a Fermi-Liquid. Sov. Phys. JETP, 5:101, 1957.

[78] J. R. Schrieffer. Theory of Superconductivity. Westview Press, 1999.

[79] R. Meservey and B. B. Schwartz. Equilibrium Properties: Comparison of Experimental
Results with Predictions of the BCS Theory, Chapter 3 in Superconductivity (edited by
R. D. Parks). CRC Press, 1969.

[80] National Astronomical Observatory of Japan. Chronological Scientific Tables.
MARUZEN-YUSHODO Co., Ltd., 2021.

[81] T. Ando, Y. Matsumoto, and Y. Uemura. Theory of Hall Effect in a Two-Dimensional
Electron System. J. Phys. Soc. Jpn., 39(2):279, 1975.

109

https://www.nobelprize.org/prizes/physics/1972/summary/
https://www.nobelprize.org/prizes/physics/1972/summary/
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