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Abstract

Dental caries is one of the most chronic diseases that involves the majority of people at

least once during their lifetime. This expensive disease accounts for 5− 10% of the health-

care budget in developing countries. Caries lesions appear as the result of dental biofilm

metabolic activity, caused by bacteria (most prominently Streptococcus mutans) feeding on

uncleaned sugars and starches in oral cavity. Also known as tooth decay, they are primarily

diagnosed by general dentists solely based on clinical assessments. Since in many cases dental

problems cannot be detected with simple observations, dental x-ray imaging is introduced

as a standard tool for domain experts, i.e. dentists and radiologists, to distinguish dental

diseases, such as proximal caries. Among different dental radiography methods, Panoramic

or Orthopantomogram (OPG) images are commonly performed as the initial step toward as-

sessment. OPG images are captured with a small dose of radiation and can depict the entire

patient dentition in a single image. Dental caries can sometimes be hard to identify by gen-

eral dentists relying only on their visual inspection using dental radiography. Tooth decays

can easily be misinterpreted as shadows due to various reasons, such as low image quality.

Besides, OPG images have poor quality and structures are not presented with strong edges

due to low contrast, uneven exposure, etc. Thus, disease detection is a very challenging task

using Panoramic radiography. With the recent development of Artificial Intelligence (AI)

in dentistry, and with the introduction of Convolutional Neural Network (CNN) for image

classification, developing medical decision support systems is becoming a topic of interest in

both academia and industry. Providing more accurate decision support systems using CNNs

to assist dentists can enhance their diagnosis performance, resulting in providing improved

dental care assistance for patients.

In the following thesis, the first automated teeth extraction system for Panoramic images,

using evolutionary algorithms, is proposed. In contrast to other intraoral radiography meth-

ods, Panoramic is captured with x-ray film outside the patient mouth. Therefore, Panoramic

x-rays contain regions outside of the jaw, which make teeth segmentation extremely diffi-

cult. Considering that we solely need an image of each tooth separately to build a caries

detection model, segmentation of teeth from the OPG image is essential. Due to the ab-
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sence of significant pixel intensity difference between different regions in OPG radiography,

teeth segmentation becomes very hard to implement. Consequently, an automated system

is introduced to get an OPG as input and gives images of single teeth as the output. Since

only a few research studies are utilizing similar task for Panoramic radiography, there is

room for improvement. A genetic algorithm is applied along with different image processing

methods to perform teeth extraction by jaw extraction, jaw separation, and teeth-gap valley

detection, respectively. The proposed system is compared to the state-of-the-art in teeth

extraction on other image types.

After teeth are segmented from each image, a model based on various untrained and

pretrained CNN-based architectures is proposed to detect dental caries for each tooth.

Autoencoder-based model along with famous CNN architectures are used for feature ex-

traction, followed by capsule networks to perform classification. The dataset of Panoramic

x-rays is prepared by the authors, with help from an expert radiologist to provide labels.

The proposed model has demonstrated an acceptable detection rate of 86.05%, and an in-

crease in caries detection speed. Considering the challenges of performing such task on low

quality OPG images, this work is a step towards developing a fully automated efficient caries

detection model to assist domain experts.
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1. Introduction

Dental Caries is a chronic dental disease that can be efficiently diagnosed using dental

radiography. Artificial Intelligence (AI)-based Computer-Aided Diagnosis (CAD) systems

have recently shown to be helpful in the detection of dental diseases. In the following

thesis, a novel approach is proposed to detect caries from dental Panoramic radiography.

Research problem, including definition of dental caries, the importance of detecting it and

the challenges of detection using radiography, is presented in this chapter. After discussing

the problem, motivations for conducting the following research work are mentioned, followed

by a summary of contributions of this thesis and the publications and submissions during

M.Sc. studies.

1.1 Research problem and objectives

Dental caries is the most epidemic non-contagious disease worldwide. It affects all age

groups and segments of the population [5]. Dental caries, which often leads to tooth decay,

and causes the tooth to collapse, is also considered as an infectious disease that is quite

common in a way that each person will suffer from it at least once [6]. While caries has

become more prevalent among human being since the increase of fermentable sugars in daily

diet in recent decades, it has a long story. Early hominids had suffered from cavities over

a million years ago. Skulls dating back from the Paleolithic to Neolithic eras indicate signs

of tooth decay and alveolar bone loss present in the jaws [7]. The increase of cavitation

during the Neolithic era might be attributed to the increase of plant foods in human dietary,

containing carbohydrates [8].

Dental caries results from interaction between three main factors, including tooth, mi-
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crobes on its surface, and the diet. Bacteria gradually accumulate in a specific spot on

the teeth to form a bacterial plaque. Fermentable carbohydrates, obtained through a diet

pattern including sugars, help the bacterial plaque with creating lactic acid from fermenta-

tion. The produced acid results in dissolution of dental hard tissues. Dissolution gradually

becomes intense forming dental cavity, where bacteria penetrate into the hard tissues to

result in creating a lesion of caries. In fact, caries represents a previous or ongoing microbial

activity in the biofilm [9].

A dental biofilm first appears on the enamel of a tooth. It slowly penetrates the tissue

with the presence of fermentable carbohydrates. Through continuous dissolution, the lesion

reaches the inner parts of a tooth, including dentin (yellowish tissue around the roots and

pulp) and pulp (central part of the tooth). With caries penetrating to the internal parts,

severe pain will be suffered by the patient. When caries involves dental pulp, the tooth is

collapsed and needs to be extracted. Dental caries stages are depicted by Fig. 1.1.

(a) (b) (c) (d)

Figure 1.1: Different stages of dental caries. Decay grows stage by stage from left to right:
a) decay in enamel, b) advanced enamel caries (known as DEJ decay), c) decay in dentin,
and d) decay in dental pulp. Third and last stages are painful, requiring extensive treatment
plans, such as tooth extraction.

As seen above, dental caries in the first and second stages is not associated with extreme

pain, which is called a caries in mild stages. If caries progresses to the severe stages, it is

likely that the tooth must be removed from the mouth.
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Dental radiography is a standard tool used in dentistry to diagnose several dental prob-

lems, such as caries, infections and bone abnormalities. It can be used to detect dental

caries in initial, moderate, and extensive stages as shown in Fig. 1.1 [10]. Considered

as an important supplementary diagnosis solution, x-ray imaging helps dentists to identify

problems that are hard or impossible to detect using visual inspection during clinical as-

sessments [11]. Among dental x-ray image types, Panoramic or Orthopantomogram (OPG)

images are widely utilized. Panoramic images are taken using a very small dose of ionizing

radiation to capture the entire mouth in one image [12]. They have simplicity of application,

less time requirement, and also great patient comfort. Thus, pediatric, people with disabili-

ties, and senior patients would benefit greatly from a Panoramic imaging system compared

to intraoral systems [13]. This imaging method is mainly used for automating the diagnosis

of dental diseases, such as dental caries diagnosis [14] [15], human identification [16] [17],

and lesion detection [18].

However, there are several challenges in using this method for automated disease de-

tection. One important obstacle is the need to separate each tooth, which is called teeth

extraction, before applying any decision-making algorithm to the data. While separation

and segmentation are often both the most difficult and the most important tasks of a ma-

chine vision system [19], implementing them on panoramic images is significantly harder

than other types of x-ray images, like Bitewing or Periapical [20]. The reason behind this

problem is that Panoramic is an extra-oral imaging method, where both the image detector

and the x-ray machine are placed outside the patient’s mouth [21]. Thus, the captured image

contains other information, like jaw-skull joints, jawbones, etc., which make it difficult to be

analyzed [22].

Another challenge is the lack of rich information in Panoramic radiography. Structures in

OPG images do not have strong boundaries by which they can be segmented [23]. Since the

quality of the information in Panoramic images is extremely poor, image preprocessing steps

are needed to elevate visual interpretations [20]. Consequently, image analysis is significantly

harder on Panoramic images in comparison with Bitewing or Periapical, which have drawn

more research attention up until now.
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So far, a limited number of research studies have been conducted to develop a Deep

Learning (DL)-based decision support system for dental diseases. The main reason, which

is also a major challenge in using Artificial Intelligence (AI) for medical applications, is the

lack of open datasets with sufficient and confidently-labeled images. There are currently a

few public datasets with images of dental radiography, i.e. A dataset of 120 Periapical dental

x-rays with ground truth provided by Rad et al.1 for caries screening, and a dataset of 120

Bitewing dental x-rays provided in the ISBI 2015 Challenge2. To date, there are currently

no public datasets available for Panoramic dental radiography or other types of radiography.

To alleviate the shortage of labeled data, more datasets are needed to be publicly available,

specifically from unavailable types of x-ray.

1.2 Motivations

As mentioned previously, dental caries is the most common non-communicable disease

in the world. It is also considered to be an expensive disease to treat due to the fact that it

is responsible for 5 − 10% of healthcare budget in developing countries [24]. On the other

hand, efficient and early detection of dental caries is known to be the key to having an

effective therapeutic method as well as a key metric of preventive approach in dentistry [25].

Therefore, increasing the accuracy of caries detection, and specifically when caries is in early

stages, lead to providing better treatment decisions that can help the patient both in terms

of healthiness and financially.

There have been some research studies to utilize computational models to provide au-

tomated diagnosis and prognosis tools for dental diseases. However, the low quality of

information in dental radiography has made it a very challenging task to extract patterns

with traditional techniques. With the advancement of DL and evolutionary algorithms and

their usability in biomedical domain, they can be used to efficiently process dental radiogra-

phy and provide diagnosis results for supporting, and in the future, substituting the domain

experts. Promising results of recent DL architectures and the possibility of transfer learning

1http://dx.doi.org/10.6070/H47H1GJ4

2http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge2/
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of pretrained DL models motivated us to employ these techniques alongside image processing

methods and evolutionary algorithms to develop an end-to-end detection model to propose

a tooth segmentation and dental caries detection system for the challenging task of caries

detection in Panoramic radiography.

In this thesis, we have proposed a novel genetic-based approach for tooth segmentation

in Panoramic dental images. Based on a dataset of Panoramic x-rays, our tooth segmenter

could isolate teeth with accuracy scores in line with previous academic works utilizing either

Bitewing or Periapical radiography. Various methods were introduced for jaw separation,

tooth isolation, and accuracy improvement of the system. Considering the aforementioned

tooth segmentation system as the preliminary step to prepare single tooth images for the

disease classification model, next chapters of the thesis aim to extend the previous system

to build an end-to-end caries detection system where a digital OPG image is the input and

teeth suspicious of having caries are the final output.

1.3 Contributions of the Thesis

Since there have been limited attempts to develop automatic DL-based dental disease

diagnosis systems, there is a need to perform further research in this area. The objective of

this study is to develop a specialized model architecture based on pretrained models and the

capsule network to detect tooth decay on Panoramic x-rays efficiently. Contributions of this

thesis are summarized as follows:

• This research is the first to perform tooth segmentation as well as dental caries detection

on Panoramic images, using a relatively large dataset. Most previous works addressed

other types of dental x-rays with higher quality in terms of noise level and resolution.

• To compensate the problem of data shortage in this field, we have introduced our

dataset of Panoramic x-rays, consisting of 470 images. Out of the dataset, 120 x-rays

are collected from a local dentistry clinic; anonymized and preprocessed under the

supervision of an expert radiologist.

• Genetic algorithm is applied for the first time to isolate teeth in Panoramic images.
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Previous studies rely mainly on manually defined methods. This evolutionary algo-

rithm demonstrates robust performance even on challenging jaws with several missing

teeth.

• Capsule network is used for the first time as the classifier for dental caries diagnosis.

Experimental results demonstrate its superiority over Convolutional Neural Networks

(CNNs) because of the fact that the Capsule network is capable of learning the geo-

metrical relationships between features.

• Feature extraction module is constructed by a voting system from different pretrained

architectures. CheXNet [26] is applied for the first time in dental disease detection.

1.4 Publications and Submissions During M.Sc. Study

1.4.1 Published Conference

1. Molahasani Majdabadi, Mahdiyar, Haghanifar, Arman, and Seok-Bum Ko. ”Msg-

capsgan: Multi-scale Gradient Capsule GAN for Face Super Resolution.” In 2020 In-

ternational Conference on Electronics, Information, and Communication (ICEIC), pp.

1-3. IEEE, 2020. DOI: 10.1109/ICEIC49074.2020.9051244

A minor portion of this paper is included in Chapter 4

2. Haghanifar, Arman, Mahdiyar Molahasani Majdabadi, and Seok-Bum Ko. ”Auto-

mated Teeth Extraction from Dental Panoramic X-Ray Images using Genetic Algo-

rithm.” In 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp.

1-5. IEEE, 2020. DOI: 10.1109/ISCAS45731.2020.9180937

A major portion of this paper is included in chapters 3

1.4.2 Preprints

1. Haghanifar, Arman, Mahdiyar Molahasani Majdabadi, and Seokbum Ko. ”Covid-

cxnet: Detecting Covid-19 in Frontal Chest X-ray Images using Deep Learning.” arXiv

preprint arXiv:2006.13807 (2020).
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2. Haghanifar, Arman, Mahdiyar Molahasani Majdabadi, and Seok-Bum Ko. ”PaXNet:

Dental Caries Detection in Panoramic X-ray using Ensemble Transfer Learning and

Capsule Classifier.” arXiv preprint arXiv:2012.13666 (2020).

A major portion of this paper is included in Chapter 4

1.5 Organization of the Thesis

The thesis is organized as follows:

• Chapter 1: Introduction gave a clear view of the problem and encountered chal-

lenges. In this chapter, we also explained the motivations behind this research, followed

by a description of teeth extraction and dental caries with deep learning. Then, the

contributions of this thesis are presented, and finally, publications and submissions

during the M.Sc. program are listed.

• Chapter 2: Literature Review provides a review of previous works regarding teeth

extraction/segmentation and dental caries classification using image processing tech-

niques as well as deep learning. The latest advancements in the application of deep

learning and transfer learning in dentistry are also addressed.

• Chapter 3: Teeth Extraction using Genetic Algorithm and Image Process-

ing proposes a framework based on different methods, including a genetic algorithm

to convert an OPG radiography into images, each including a single tooth. Then, dif-

ferent approaches are employed to enhance model performance on mandibular teeth.

The performance of the final model is evaluated and compared with the state-of-the-art

works.

• Chapter 4: Ensemble Transfer Learning for Dental Caries Detection explains

the steps for expanding the model proposed in Chapter 3 to include dental caries

detection. The architecture of the proposed model, named PaXNet, is reviewed. Both

this and previous chapters also come as sections dedicated to explaining the dataset

and the preprocessing pipeline, followed by the experimental results and comparison

with related works.

7



• Chapter 5: Conclusions and Future work summarizes this thesis, remaining

challenges, and discusses potential future works.
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2. Literature Review

In this chapter, a review of prominent machine learning-based and image processing-

based research works in dentistry is presented at first. Then, previous studies in both teeth

extraction and dental caries classification are discussed and performance metrics of the most

recent proposed models are compared. Next, we probe into the newest works in the same

field utilizing deep learning and transfer learning as their primary tool.

2.1 Artificial Intelligence in Dentistry

For decades, computational models have been used in the field of medical and dental

image processing for producing highly accurate results. The primary motivation of devel-

oping these models is to develop decision support systems to help domain experts produce

more accurate diagnosis decisions. Since the introduction of neural networks and traditional

machine learning algorithms, artificial intelligence has played a significant role in publishing

high-quality academic works involving computational models in medical and dental fields.

The growing role of computational models, and artificial intelligence at the heart of it, which

has happened since the 1980s, stems from a couple of reasons.

First, diagnostic information in medicine is mainly derived from medical imaging from

different sources, such as computed tomography or radiography. With the introduction of

CNNs for image processing, artificial intelligence models could also be developed to handle

the images. Since differential diagnosis of medical images could even be impossible for human

specialists, artificial intelligence-based image processing systems have proven to perform on

par or even superior to the human-level performance benchmark.

Secondly, after the advancements in computer hardware design and with the introduction
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of more efficient computers equipped with faster processing power, deeper neural networks

could be run on usual systems, and much larger datasets could also be handled. As mentioned

previously, most medicine-related tasks do require images, and medical images are relatively

larger than typical structured data. Thus, the ability to handle large imaging sets together

with extracting more complicated features out of them (which directly correlates with more

layers in the feature extraction part of a neural network) participated in a breakthrough in

how computational models are used in medical image processing, as well as generally every

domain. To be more specific, traditional rule-based expert systems, which were based on a

rigid framework of rules and had hardly achieved optimal discriminative performance, were

outdated to bring data-driven models into practice. Data-driven models, which emphasize on

data-centric model design in comparison with the rule-centric design of expert systems, are

capable of achieving superhuman performance and are generally known as machine learning

[1].

Machine learning is a term used to represent a set of more recent statistical techniques

and computational methods which output a specific model based on their input, which is

supposed to be a set of data records with labels. The constructed model usually is trained on

a large dataset and optimized through feedback to classify input data into certain categories

(classification) or predict continuous values (regression). The term machine learning is used

for a set of numerous methods, among which the most popular one is known to be neural

networks. Neural network, also known as artificial neural network, is a network of neurons

shaped as layers placed one after another. Similar to other machine learning algorithms,

neural net has connected layers, with weights and biases as parameters, which are tuned

by incremental trial and error to explore the parameter space to minimize a predefined loss

function. Loss functions are usually derived from a formula containing the difference between

predicted values and actual values as the main term. To have a more clarified view, neural

networks often have activation functions and operate similar to regressions, where intercept

is referred as bias, and coefficient is named as weights. Each layer has its own set of weights

and biases. After passing through all the layers, the final predicted value is compared to the

expected value, and the difference is used to update the parameters by back-propagation.
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This procedure happens iteratively for many epochs so that finally, the model converges to

a steady-state. An example of a neural network is shown in Fig. 2.1.

Figure 2.1: A typical three-layered neural network.

As seen above, input features are fed through the input layer, and the output layer generates

a prediction value. Hidden layers increase complexity through which a model can handle

more complicated patterns. w1, w2, and w3 are weights which are combined with the bias

b1 and then an activation function f1 is applied on them to generate the weight w4 for the

next layer.

As problems become more complicated and datasets are becoming larger, to handle the

complexity, we need to add more hidden layers to a neural network. A multi-layer neural

network is often called a deep neural network, which is the main technique used in deep learn-

ing. Deep learning is considered as an evolution to traditional machine learning that aims to

automate data preprocessing and create an end-to-end learning model. Deep neural networks

partially resemble the structure of neurons in the human brain. Deep learning became widely

utilized with the introduction of convolutional layers as feature extractors. Convolutional

layers, which together with neural networks form CNNs, are designed to sweep over images

and extract the information layer by layer. Convolutional blocks in CNNs mainly consist of

convolutional layers, pooling layers, and normalization layers. Convolutional blocks turn the

input image into a rich set of numerical values representing important features in them. As-

sembling more convolutional blocks as a hierarchical structure will lead to extraction of more

complex patterns, with the size of the dataset as the limitation for overfitting phenomenon.
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An example of a CNN is depicted in Fig. 2.2.

Convolutional Blocks Fully Connected Layers

Figure 2.2: A CNN with three convolutional blocks.

Fig. 2.2 illustrates how kernels sweep over inputs to extract higher-level features and to

finally pass the most high-level elements to classification block, consisting of a multilayer

perceptron neural network. Final nodes of the classification block are decision-makers, each

responsible for a class. Classes usually stand for generalized concepts, such as common ob-

jects, or, in case of dental imaging, a radiograph that positively shows a certain pathological

condition.

In deep learning, there are many task-oriented CNN architectures developed with higher

efficiency on specific tasks. Main applications of CNN are object detection and segmentation.

Image segmentation is a further variation of object detection that uses a similar approach to

extract the target object from its background. Image segmentation includes semantic and

instance segmentation. In semantic segmentation, multiple objects belonging to the same

class are considered as one target, whereas in instance segmentation, each object is assigned

with a specific label. As an example, in dental x-rays, semantic segmentation is to segment

the teeth from the background, while instance segmentation is to segment each tooth with

a different label. The difference is more intuitively represented in Fig. 2.3.

In semantic segmentation, all extracted tooth regions are labeled the same, while in instance

segmentation, each tooth is separated. Popular image segmentation CNN-based architectures

include fully convolutional networks (FCNs) [27] and U-Net [28]. These networks usually

consist of a down-sampling block, another name for a typical set of convolutional blocks, and

an up-sampling block to reconstruct the image from the feature vector.
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Figure 2.3: Image semantic and instance segmentation on dental radiography using fully
convolutional neural network architecture [1].

Most DL-based studies in the field of dentistry have applied CNN-based architectures to

analyze radiographic images, from x-rays to Computer Tomography (CT) images. The main

goal of developing such models to build a decision support system that helps the dentist

or radiologist detect abnormalities, rather than substituting them with the artificial model.

Thus, computational models are mostly constructed to operate as a diagnostic aiding tool.

In the field of dentistry, photographic and radiographic imaging is widely used as the first

step in clinical assessment and diagnosis process. Hence, research studies so far have tried to

develop CNNs to recognize, classify, and segment certain anatomic structures or pathological

issues from dental images.

In general, DL-based models have been used for many applications in dentistry. CNNs

have proven to be able to segment and classify teeth in both 2D radiographs, such as

Panoramic [29] or Periapical [30], and 3D images, such as CBCT [31]. As an instance of a

specific application, CNN has been used to detect the anatomy of first molar roots and also

investigate it in terms of having any abnormalities [32], which is in the field of endodontics.

Another example includes developing a CNN to identify the course of the inferior alveolar

nerve and initiate its spatial relationship with the roots of third molars [33]. Understand-

ing such relationship is essential in order to preplan the process of surgical extraction of
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third molars. This is an application of CNN in dentistry improving surgical preplanning

procedures.

An important application of AI in dentistry is to detect dental caries, which is a prevalent

chronic dental disease in humans, affecting most individuals at least once during their lifetime

[34]. In clinical practice, dental caries is diagnosed by a dentist or radiologist using visual

observation and also capturing dental radiographs as a complementary diagnosis material.

When the loss of enamel, dentin, and/or pulpitis occurs, damaged tooth could be indicated

by analyzing alterations in its appearance in the radiography. Several studies employing

CNN-based models have been developed to help clinicians detect caries from different dental

images, from near-infrared transillumination [35] to Periapical radiography [36]. Research has

identified Periapical x-rays as the most effective method for caries detection in experimental

settings. However, Panoramic radiography is widely used as the first step for monitoring

dental caries. To the best of our knowledge, there are very few research studies conducted to

detect caries in Panoramic images, and none of them have utilized CNNs for such a purpose.

Further applications of CNN in dental image processing include, but are not limited

to, detecting apical lesions in Panoramic images [37], detecting periodontal bone loss in

Panoramic x-rays [38], detection of maxillary sinusitis in Panoramic radiography [39], and

survival prediction of patients involved in oral cancer by analyzing Periapical radiographs

[40]. In conclusion, while existing research studies are sparse and there are several issues

hindering the wide usage of DL and CNNs as the decision support system for dental disease

diagnosis, results are encouraging and academic interest is growing year by year.

2.2 Teeth Extraction/Segmentation Literature

While OPG radiography has certain limitations in image quality and lower diagnostic

accuracy, it has been widely used in common practice to diagnose different diseases, such as

dental caries and periodontal diseases [41]. Several research studies have utilized OPG for

automating different procedures involving dental radiography, e.g. dental caries diagnosis

[14], human identification [42], lesion detection [18], etc. Teeth extraction is an essential part

for most of the mentioned tasks, which is either mandatory to implement or is beneficial to
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implement in terms of result improvement [43].

While separation and segmentation are often both the most difficult and the most im-

portant tasks of a machine vision system [19], implementing them on Panoramic dental

radiography is significantly more challenging than other types of dental x-rays, like Bitewing

or Periapical [20]. Image texture in OPG radiography tends not to have strong edges by

which the structures can be segmented [23]. Moreover, Panoramic images contain other infor-

mation, like jaw-skull joints, bones, etc., which make the image difficult to be analyzed [22].

Besides, the quality of the information in Panoramic images is extremely low, therefore,

image preprocessing steps are needed to elevate visual interpretations [20]. Consequently,

image analysis is significantly harder on Panoramic images in comparison with Bitewing or

Periapical images, which have drawn more research attentions so far.

Teeth separation or isolation is the process of extracting images, each containing the

boundaries of one tooth, from a dental x-ray image, which also contains some other unwanted

parts of the mouth, like gingivae or jawbones [44]. While there are recent research studies

conducted on teeth segmentation [22], [45], [46], there are few works done on teeth separation.

Olberg and Goodwin [2] introduced a lowest-cost path-based method for jaw and teeth

separation as part of their system for automated human identification from Bitewing dental

x-rays. Ehsani Rad et al. [15] used the integral intensity value method for tooth isolation,

which was initially suggested by Jain and Chen [17]. Many other research studies have

also applied the same method for tooth extraction; Abdel-Mottaleb and his colleagues [47]

have applied horizontal and vertical integral projection for separating jaws and teeth, re-

spectively. Vertical integral projection followed by spline method was utilized by [48] for

teeth separation. Morphological and image cropping operations were also utilized for the

same operation [49]. The idea of finding the lowest-cost path for separating teeth based on

their brighter appearance in comparison with the darker gap valleys is quite the same as

the integral intensity projection method and has been used as the baseline for almost every

research study proposing teeth extraction methods. A simple illustration of this method is

depicted in Fig. 2.4 originally by the authors of [2].
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(a) (b)

Figure 2.4: Examples of path costs used to separate teeth using minima of the intensity
sums graph, proposed by [2]. a) horizontal integral intensity to separate upper and lower
jaws, and b) vertical integral intensity to separate teeth.

Although there have been a handful of studies performing teeth extraction, most of

them have applied their algorithms on either Bitewing or Periapical images. Few studies

have applied methods on Panoramic dental x-rays. Authors of [18] did the teeth isolation

process on a very small dataset of Panoramic images using discrete wavelet transformation

along with polynomial regression for jaw separation and angular radial scanning method for

tooth segmentation, but no precise results were reported for their teeth isolation method.

Furthermore, their method is not generalized, which means that parameter values may differ

for each input image. Their method is relatively dependent on the number of sample points,

which leads to slow software runtime.

The aforementioned reasons are also applicable to [50], where the authors have proposed

an automatic segmentation method that jaws are separated with a shape-free model and

teeth are segmented with projecting lines. Issues with the mentioned model include jaw

segmentation using a 9-degree polynomial curve that will not work with closely-stacked-

together jaws, no provided results in terms of accuracy or other evaluation metrics, etc.

2.3 Dental Caries Classification Literature

Dental caries, also known as tooth decay, is considered as one of the most prevalent

infectious chronic dental diseases in human beings, which affects almost every individual

during their lifetime for at least once [34]. A preliminary step to detect dental caries is

the visual inspection of a domain expert, i.e., radiologist or dentist. Since a number of

critical dental abnormalities, proximal dental caries as mentioned above, are hard to detect
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with visual inspection only, dental radiography has been utilized in most cases [51]. Dental

radiography is a standard tool to distinguish dental issues, which helps the experts with

better oral health assessment and decreases the clinical observation error to a certain extent

[52].

With the introduction of deep learning and its applications in medicine and dentistry,

it quickly became a topic of interest for researchers to build disease detection models using

medical images as input. Recently, several research studies have proposed deep learning-

based Computer-Aided Diagnosis (CAD) systems to detect and screen dental caries based

on various types of data, including clinical assessments [53], in-vivo dental images [54], or

near-infrared transillumination imaging [35]. Since radiography is the most common imaging

modality in dental clinical practice, the majority of studies have utilized x-rays to develop

decision support systems for tooth decay diagnosis.

Srivastava et al. [55] developed a deep fully Convolutional Neural Network (FCNN)-based

CAD system and applied their model on a large dataset of 3000 Bitewing x-rays to mark

dental caries. Their proposed model outperformed the average performance of three certified

dentists in terms of overall f1-score on a test set of 500 images. The aforementioned research

study is one of the few works in this field to perform segmentation and validate the results

using segmentation metrics, i.e., intersection over union (IoU). The proposed FCNN model

consisting of more than 100 layers achieved an f1-score of 0.7, while the average score of

dentists was 0.53.

Regarding Periapical x-rays, there have been some research works in recent years. In

2016, Choi et al. [3] trained a model based on simple CNN architecture along with a crown

extraction algorithm using 475 Periapical images to boost the detection rate of proximal

dental caries. As authors have claimed, their work was the first research study to propose an

automatic detection system for dental Periapical images. Another worth-mentioning point

is that the above-mentioned study is one of the few studies in this field to demonstrate the

results as probability maps. Examples of their maps are depicted in Fig. 2.5.

Later in 2018, Lee et al. [36] used a pretrained Inception V3 for transfer learning on a set
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Figure 2.5: Proximal dental caries detection results. a) Ground truth regions (in blue), b)
Detected proximal dental caries regions (in red), and c) Caries probability maps [3]

of 3000 Periapical images to diagnose dental caries. This study is marked as one of the first

studies that have employed pretrained models to overcome the classification of dental caries

using digital radiographs, which was able to achieve promising results. The final accuracy

scores were 89.0% and 88.0% for premolar and molar teeth, respectively.

In the most recent research study, Khan et al. [56] benefited from a specialist-labeled

dataset of 206 Periapical radiographs and trained a U-Net to segment three different dental

abnormalities, including caries. They have compared the results of their U-Net with those of

SegNet and Xnet (well-known neural network architectures used for segmentation), and have

demonstrated its supremacy. While there were no false caries predictions, the reported dice

coefficient on the test set was 0.239, which confirms the rigorousness of caries segmentation

even on Periapical dental radiographs. The authors have indicated that caries segmentation

is a challenging problem with significant room for improvement.

While there have been some works utilizing OPG images, such as classification of tooth

types with a Faster-Regional Convolutional Neural Network (Faster-RCNN) [57], there are

no studies applying deep neural networks on Panoramic images to detect dental caries. To
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be more specific, only one study has aimed to perform tooth segmentation and dental caries

detection on Panoramic radiography so far [58]. The authors of the mentioned research

work have used simple image processing techniques for tooth segmentation and applied

traditional machine learning algorithms for caries detection. They have introduced a dataset

of 1392 dental Panoramic x-rays, however, they have used a subset of 700 images only for

tooth segmentation which led to producing 1098 cropped images of single tooth for caries

classification. While they have reported tooth segmentation accuracy of 71.91% and caries

detection accuracy of 98.70%, they indicate their work as a case study concentrating on

introducing a new dataset. The mentioned research lacks sufficient explanation of results

and no prediction examples of dental x-rays are shown in the discussion. Therefore, it is hard

to measure their result transparency and model’s generalization, specifically when achieving

high accuracy in a very challenging task using simple algorithms.
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3. Automated Teeth Extraction from Dental

Panoramic X-Ray Images using Genetic

Algorithm & Image Processing Techniques

Dental x-ray imaging helps dentists and radiologists to diagnose dental diseases and

to provide patients with appropriate treatment planning schedules. In many cases, dental

diseases are hard or even impossible to be detected by relying only on visual inspection in

clinical assessments. Therefore, automating the diagnosis process has been a topic of interest

for dental problems. Teeth extraction is the basic task needed for almost all dentistry decision

support systems relying on radiographic images as the inputs. The most challenging type of

image to perform extraction on is the Panoramic x-ray, since it includes other parts of the

patient’s mouth and its structures lack explicit boundaries. The proposed method is the first

automated teeth extraction system based on dental Panoramic images using evolutionary

algorithms. First, the jaw is extracted from the main image. Then, upper and lower jaws

are separated, followed by a genetic algorithm to detect teeth gap valleys. The method is

assessed applying to 42 images, where the results are comparable with previous methods

developed based on more straightforward dental x-ray types.

Most of the context in this chapter have been published in Haghanifar A, Majdabadi MM, and Ko
SB. ”Automated teeth extraction from dental panoramic x-ray images using genetic algorithm.” 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. and Haghanifar A, Majdabadi
MM, and Ko SB. ”Paxnet: Dental caries detection in panoramic x-ray using ensemble transfer learning and
capsule classifier.” arXiv preprint arXiv:2012.13666 (2020).
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3.1 Background

In this section, a brief review of genetic algorithm (GA) is presented. Afterwards, the

Sauvola image enhancement algorithm and its applications are briefly discussed.

3.1.1 Genetic Algorithm

Genetic algorithms are adaptive search methods which were firstly introduced by Hol-

land [59] and then extensively studied by others to solve a wide variety of difficult numerical

optimization problems. A genetic algorithm is considered a blind optimization technique

that mimics natural evolution’s learning procedure using selection, crossover, and mutation.

These three procedures are transformed into numerical functions to help solve complex opti-

mization problems without calculating derivatives. Using a random exploration of the search

space, GA is more robust in terms of getting trapped in the local extrema [60] as well as being

insensitive to the noise due to its random initialization approach [61]. In image processing,

GA is proven as a powerful search method that converts an image segmentation problem

into an optimization problem [62]. While there have been different genetic algorithms being

proposed in research studies, the main phases are considered as follows:

• 1. Initial population: In GA, each possible solution to the predefined problem is coded

into a chromosome. A set of chromosomes are called a population, which are actually a

group of potential solutions. Each chromosome is represented as a string of characters

which can be binary digits or real numbers. At first, the initial population is generally

produced with a random function.

• 2. Fitness function: Fitness or cost function is a mathematical representation of the

goal problem that the optimization algorithm is trying to find its best possible solution

(finding the global exterma on multimodal surface). Every chromosome is assigned a

fitness score based on how it fits as the best solution to the problem.

• 3. Selection: The best solutions are selected based on their fitness score. Practically,

ranking method is used to rank the solutions and certain number of them are selected

to be included in the next iteration.
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• 4. Crossover: At each generation, each individual is evaluated and recombined with

others to produce new chromosomes, only if its fitness score is higher than the selection

threshold. Crossover is performed by randomly selecting a location in the genetic

string of the parent chromosomes (current population) and concatenating the selected

segment with the final segment of another parent, and the created string is called as

a child (next population). The remaining segments of the parents are also merged to

create the second child.

• 5. Mutation: Based on the mutation in biological evolution, in rare situations, a small

segment of any of the individuals can be randomly changed to a new value, regardless

of its helpfulness toward finding the best population. It provides occasional change

after crossover operation by altering one or more genes in each child chromosome.

GA is an iterative procedure that tries to find the optimal solution to a complex prob-

lem by randomly accessing the multimodal surface. An abstract-level demonstration of the

process is shown in the pseudo-code shown in Algorithm 1.

Algorithm 1 Genetic algorithm procedure

i← 0 ; // assign init value to the number of iterations

fitness func() ; // determine the fitness function

P (i) ; // create initial population randomly

criterion ; // determine the criterion for termination

fitness func()← P (i) ; // evaluate init population using fitness function

while !(criterion) do
i← i+ 1 ; // increment the counter

select individuals of P(i) from P(i-1) ; // selection

change individuals of P(i) to generate new children ; // crossover

randomly change some of the digits of P(i) ; // mutation

fitness func()← P (i) ; // ranking current population

return min(P (i)) ; // return best individual from final population

The iterative process of population generation and ranking based on the fitness function

continues until the chromosomes converge to the minima of the solution space, which is

considered to be the global exterma. Another point to mention here is the termination

criteria. While the process is expected to converge, in some situations the multimodal space
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has multiple exterma or it simply takes too long to be found by random search. Termination

criteria must be assigned in these cases in order to restrict the procedure from exhaustion.

3.1.2 Sauvola

Sauvola binarization algorithm is one of the thresholding methods used for image segmen-

tation, originally proposed by Sauvola and Pietikäinen [63]. The original Sauvola method

has been presented as a document image binarization algorithm, which divides the page

into several sub-components like text, background and picture. The main advantage of the

aforementioned algorithm is for text extraction from degraded documents, such as scanned

documents. Most conventional binarization algorithms use thresholding only, either global

or local, to segment the image into certain clusters. By contrast, Sauvola method firstly

performs rapid classification on the image content to categorize into different classes, such

as background and text in documents. Then, two different techniques are used to define a

threshold for each pixel. First thresholding technique is Soft Decision Method (SDM) which

has noise filtering and signal tracking capabilities and is used for background and pictures.

Second technique is a specialized Text Binarization Method (TBM) that is utilized for tex-

tual and line-drawing areas. TBM is capable of handling text component separation from

background in case of the presence of noise or uneven lumination. The results of these two

techniques are then combined to produce the algorithm’s output image [63]. An example for

document binarization is shown in Fig. 3.1, illustrating the superiority of Sauvola algorithm

over other well-known methods1.

(a) (b) (c) (d)

Figure 3.1: Document thresholding example, demonstrating better performance of the
Sauvola method. a) original image, b) global thresholding, c) Niblack thresholding, and
d) Sauvola thresholding.

1https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_niblack_sauvola.

html
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As seen above, Sauvola algorithm results in a cleaner image than the output of the Niblack

method. Sauvola is actually inherited from Niblack method, which could also successfully

resolve the black noise issue. Sauvola thresholding value for each window is calculated as

shown in the following:

T = m× (1− k × (1− δ

R
)) (3.1)

where m and δ are mean and standard deviation of the pixel values in each specific window,

respectively. k is a control factor restricted to be in the range of [0.2, 0.5], and R is a

predetermined image grey-level value. The result T is the threshold value to be applied on

each specific window [64].

Despite being initially proposed for document thresholding, Sauvola thresholding has

been employed for a variety of segmentation tasks, including biomedical applications. For in-

stance, Mustafa et al. [65] have proposed a new segmentation method for automated malaria

detection inspired by Sauvola’s primary segmentation method. Moreover, Sauvola algorithm

has also been mentioned in literature as a benchmark for comparing custom segmentation

algorithms, together with other common algorithms like Niblack, Nick, etc.

3.2 Material

The dataset for teeth extraction consists of 42 dental Panoramic x-rays randomly collected

from a radiology clinic. With respect to the privacy of the patients, the name and the age

of each person are anonymized. Each radiograph is a grey-scale image formatted as Bitmap

(BMP) file. Initial resolution for each image is 3292× 1536 pixels with a bit-depth of 8. All

images are taken by SOREDEX’s CRANEX ®3D system. A sample image is shown in Fig.

3.2.

The employed data is a subset of the main dataset proposed for dental caries detection

model, and a more detailed investigation though the dataset features is provided in the next

section.
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Figure 3.2: A raw Panoramic x-ray from the proposed dataset

3.3 Method

Panoramic images contain unwanted regions around the jaw, which should be eliminated

before jaw separation. Unlike Periapical images, in Panoramic images, upper jaws (maxilla)

and lower jaws (mandible) need to be separated before tooth isolation. Each step also

requires its own preprocessing method to increase the performance efficiency. A high-level

illustration of the proposed pipeline is depicted in Fig. 3.3.

Figure 3.3: General diagram of the teeth extraction model.

As shown in Fig. 3.3, raw Panoramic images are the input of the system. Preprocessing,

Region of Interest (ROI) extraction, and jaw separation are done, one after another, to make

the image ready for the genetic algorithm to generate vertical lines for tooth separation. Line

removal is then applied to output images, each including one tooth. The generated images
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are then fed to the caries detection model to detect dental caries and their severity, which

will be discussed in the next section.

In this section, we investigate the procedure of teeth extraction step-by-step. Firstly,

raw images are enhanced using various preprocessing steps. Then, extraction of the ROI is

discussed. On the next step, jaw separation using the proposed snake-inspired image crawler

is introduced and the details are mentioned. Finally, a custom redefined GA method is

discussed and the process of teeth extraction is investigated.

3.3.1 Preprocessing

In order to enhance the image and highlight the useful details, few preprocessing steps

have been taken. For extracting the jaw as the region of interest (ROI) within the main

image, two steps are considered. Fig. 3.4 illustrates the preprocessings performed for ROI

extraction.

1) Preprocessing for Initial ROI Detection: First, a vertical-edge detection filter is applied

to highlight the vertical edges. Then, a bilateral filter is used for sharpening the edges.

2) Preprocessing for Final ROI Extraction: After cropping the initial ROI through the

main image, Sauvola segmentation algorithm is applied to binarize the image in order to

blacken the two ends of the gap between maxilla and mandible. On next, a Gaussian filter

is used to reduce the noise.

Fig. 3.4 demonstrates how vertical edges are whitened in the main image to find both angles

of jaw. In the last image, external oblique ridges are recognizable as bigger black spots on

both sides of the jaw.

3.3.2 ROI Extraction

To reach the jaw from the main image, unwanted surroundings need to be discarded.

ROI extraction is performed in two steps, as illustrated in Fig. 3.5.

1) Initial ROI Detection: After the preprocessing, horizontal integral intensity projection

is applied on the image, where the first significant positive slope represents the edge of the
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(a) (b)

(c) (d)

Figure 3.4: Preprocessing for ROI extraction. a) main image, b) initial ROI detected, c)
vertical edges extracted, and c) Sauvola binarization applied on the cropped image.

Figure 3.5: Initial ROI detection and final ROI extraction displayed as white rectangular
boxes on the main image.
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left angle of jaw.

2) Final ROI Extraction: Horizontal integral intensity projection is performed on the

cropped image to distinguish the external oblique ridge, starting point for the gap between

maxilla and mandible, which appears to be the first significant negative slope in the intensity

graph.

3.3.3 Jaw Separation

As the jaw is extracted out of the main image, maxilla and mandible are expected to

become separate using a line which passes through the gap while maintaining largest possible

distance with tooth crowns from both jaws. In order to create the separating line, two

procedures are proposed to be evaluated: middle points and snake methods. Middle points

method divides the image into several parts. Then, vertical integral intensity is computed

and the minimum value is considered to be the point representing the gap. Final line is

formed by connecting these points to each other. Middle points solution is a relatively

simple approach and at the same time, is computationally fast. On the other hand, it is

prone to the darker background around the tooth roots. Another problem with the middle

points method is its inflexibility with missing teeth. An intuitive example with different

values for the hyperparameter is demonstrated in Fig. 3.6.

As seen in Fig. 3.6, small values for the number of points hyperparameter may result in

missing multiple tooth crowns. With increasing the number of points, separating line get

better form, while the model needs more computations. Even with high number of points,

like 20, missing teeth lead to the separating line cutting part of the neighboring teeth due

to the straightness of the connecting lines.

Another method is the snake algorithm. First, a starting point is determined, due to the

fact that snakes are sensitive to local exterma and get stuck often [23]. Afterwards, it crawls

through both left and right directions; looking for paths with minimum integral intensity.

The length of each path-step is a controlling parameter to restrict the crawling snake from

getting trapped in teeth-gap valleys. A similar concept of snake method has been utilized

in [16]. Fig. 3.7 depicts the concept of snake method for jaw separation.
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(a)

(b)

(c)

(d)

(e)

Figure 3.6: Illustration of middle points method implementation results on a sample prepro-
cessed image. a) original image, b) middle points method with number of points set to 5, c)
number of points set to 10, d) number of points set to 15, and e) number of points set to 20.
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Figure 3.7: Concept of the snake method on jaw separation in a sample preprocessed OPG
image. Starting point is shown in red, while path-steps are in white.

While less computationally efficient than the middle points method, it has drawn a better

separation line between the jaws. To have a better comparison with the former method, snake

method with different hyperparameter values are implemented on the same image for the

sake of comparability. Fig. 3.8 shows the results.

As seen in Fig. 3.8, unlike the middle points method, snake provides acceptable results even

with small step length values. Besides, the missing teeth problem is also resolved, since

snake crawls through the gap between the jaws, and never falls inside a teeth-gap valley.

Another advantage of the snake method is that it also works flawlessly when applied on

closely-stacked-together mandible and maxilla. In these images, the patient has firmly bitten

the bite block of the extra-oral imaging unit, which is a common phenomenon. Examples of

snake method on these images are shown by the Fig. 3.9.

3.3.4 Tooth Isolation

The last step is separating maxilla and mandible into a batch of isolated teeth. The

process is similar to the jaw separation, whereas in here, we have multiple lines. To find

all the lines simultaneously and without any predefined parameters, a GA-based method is

employed. Tooth morphology varies among the dentition, and the genetic algorithm can

detect the best fitting lines due to its randomness. At first, 30 vertical lines are randomly

generated over each jaw’s image as the chromosomes of the initial population. On one hand,

the number of chromosomes here is more than the average number of teeth in each jaw, to
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(a)

(b)

(c)

(d)

(e)

Figure 3.8: Illustration of snake method implementation results on the sample image. a)
original image, b) snake method with step length set to 5, c) step length set to 10, d) step
length set to 15, and e) step length set to 20.
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(a)

(b)

Figure 3.9: Examples of snake method applied on closely-stacked-together jaws, which shows
its good performance.

make sure that most of the gaps between teeth are included. On the other hand, taking

into consideration the width of a typical tooth body and the line removal techniques being

discussed further, assigning any number higher than 30 will lead to the same result. These

paths are considered as including gaps between proximal teeth. The GA can dynamically

change the image segmentation task controlling parameters to reach the best performance.

The GA-based tooth segmentation process is summarized as follows:

• Initial population: A number of random lines with a limited degree of freedom are

considered with a certain distance from each other

• Cost function: The integral intensity projection of all the pixels in each line is con-

sidered as the cost function which needs to be minimized; meaning that the lines pass

through the darkest available path in the area of proximal surfaces of two neighbor

teeth. Cost function is formulated as follows:
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C(x) =
n∑

i=1

I(xi) (3.2)

where x is the position of each line, n is the number of lines, and I(xi) is the average

of the intensity of the pixels on the line xi. It is worth mentioning that the padded

pixels after the cropping process are not considered in this function.

• Genetic cycle: Produced lines are changed during iterations and are ranked based on

the above-mentioned cost function. Crossover and mutation functions are specified

as Scattered and Gaussian, respectively. This cycle is performed iteratively until the

maximum fitness or one of the termination criteria is reached. The genetic cycle is

shown in Fig. 3.10.

final_pop: 
Best detected isolating 

lines

selection_fn: 
Sort by cost function 

outputs and select half 
tops (ranking)

cross_over: 
Replace half bottom by 
manipulating selected 

ones (scattering)

mutation: 
Randomly manipulate 
existing pop (gaussian)

cost_fn:
Integral intensity 

projection

stop_criteria:
Max iterations 
or negligible 

changes

init_pop: 
Batch of random 

isolating lines

No

Yes

Figure 3.10: Flow chart of the proposed GA-based tooth isolation method

The genetic cycle mentioned above is finally performed to find the best population indi-

cating lines fitting inside gaps between teeth. Since generated lines are more than available

gaps, various line removal methods are implemented afterwards to reach the number of lines

precisely equal to the number of gaps in each jaw. Initial line removal technique is to look
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forward lines which are closer than a certain distance; keeping the best line and eliminating

others. Supplementary line removal method is to select a certain number of remaining lines,

which have the lowest cost function values.

3.4 Results and Discussion

In this section, the results of the proposed approach and intermediate outputs are pre-

sented followed by discussions. The algorithm is applied on 42 images, where the total

number of teeth is 1229; 616 maxillary and 613 mandibular. At first, the jaw extraction and

separation are tested. Subsequently, the efficiency of teeth extraction is investigated. As

far as the accuracy is concerned, the ratio of correctly separated segments to total number

of parts is considered as the accuracy reported for separation. Note that this is a common

accuracy definition in separation approaches, while in segmentation approaches the accuracy

is calculated pixel-wise [22].

3.4.1 Jaw Separation

The process of separating jaw region from the surrounding unwanted area is performed

on the dataset, and the success rate of 40 out of 42 images is acquired. Thus, the accuracy

of jaw extraction is calculated as 95.23%. It also failed to correctly identify some of the

wisdom teeth. As the result, 4 maxillary and 2 mandibular wisdom teeth were also missed.

Final number of remaining teeth is 582 in maxilla and 581 in mandible.

Next, jaw separation is applied on 40 images comparing middle points and snake method

explained in previous section. While middle points approach failed to correctly separate

the jaws, and the crowns of one or more teeth are misclassified many times, snake approach

demonstrates better performance and consistency. It also proves to work well even on closely-

stacked-together jaws, as mentioned earlier in the previous section. Sample results of middle

points and snake method are illustrated in Fig. 3.6 and Fig. 3.8 in section 3.3.3, respectively.
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3.4.2 Tooth Isolation

Genetic algorithm is applied on extracted jaws, followed by line removal techniques to

reduce the number of wrong lines, which are mostly the ones passing through the teeth

instead of teeth-gap valleys. Results on maxillary and mandibular teeth are presented in

Table 3.1. Concept of the procedure and the output of tooth isolation for sample jaws are

depicted in Fig. 3.11. and Fig. 3.12, respectively.

Table 3.1: Accuracy of the proposed tooth extraction method in Maxilla and Mandible

Jaw Type Total Teeth Separated Teeth Accuracy
Maxilla 582 474 81.44%
Mandible 581 332 57.14%

(a)

(b)

(c)

Figure 3.11: Results of the proposed GA-based line fitting method for a random mandible
image. a) raw output of the genetic algorithm, b) initial line removal applied, and c) final
line removal applied.

In the maxilla, the proposed algorithm performs well for isolating incisor teeth. However,

the performance on molar and premolar teeth is mediocre. Most of the times two central

incisors are missed, due to the lack of clarity in boundaries. This lack of clarity, like dark
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(a) (b)

(c) (d)

Figure 3.12: Tooth separation sample results on a sample OPG image. a) wrong maxillary
separation, b) correct maxillary separation, c) correct mandibular separation, and d) wrong
mandibular separation.

shadows, is common for central incisors in Panoramic images, which is caused by the imaging

method. Although the applied approach has shown good capability in terms of isolating in-

cisor teeth, the accuracy of molar and premolar separation is quite low. Mandibular Wisdom

teeth are also not correctly isolated. Since molar and premolar teeth are more skewed, gener-

ated lines need to have more freedom during population generation. Enhancement strategies

for mandibular teeth isolation are investigated next.

To improve the accuracy, the cost function is intentionally changed so that it tries to

highlight the intensity of lines where the generated teeth separation lines are close. In order

to implement this idea, a compression coefficient is multiplied to each average intensity. This

coefficient is ranged between 1.0 and 2.0. New cost function is formulated in the equation

3.3.

C(x) =
i=1∑
n

I(xi) ∗ (0.5× tanh(3.5−D) + 1.5) (3.3)

where D is the average distance of the line xi with its neighbors. Other definitions are the

same as those in the equation 3.2 in the previous section.

Moreover, line removal is also changed. Previously, teeth separation lines which were

closer than a minimum distance were being grouped together, and the best ranked line

remained and others were eliminated. New line removal method features a position-variant
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minimum distance definition. As the molar and premolar teeth are larger than the middle

teeth, minimum distance gradually increases for corner lines. Comparison of accuracy values

for three above-mentioned teeth separation methods is illustrated in Table 3.2.

Table 3.2: Comparison between different combinations of cost function and line removal
methods

Cost Function Line Removal Technique Total Accuracy
Mean Intensity Minimum Distance 57.14%

Mean Intensity ×
Compression Coefficient

Minimum Distance 63.16%

Mean Intensity ×
Compression Coefficient

Position-Variant
Minimum Distance

73.67%

Table 3.2 demonstrates how improving the cost function followed by line removal function

has led to accuracy enhancement of approximately 16.5%.

To resolve any ambiguity related to the metric for tooth isolation evaluation, the definition

of the confusion matrix elements are elaborated as well. True Positive (TP) happens when

the extracted image is actually a tooth along with its crown and roots. A false positive

(FP) output is when the extracted image shows a tooth, but also contains a portion of the

neighboring tooth. A false negative (FN) occurs when the extracted image does not even

cover a complete tooth area. An intuitive example is depicted in Fig. 3.13.

Figure 3.13: Example of the extracted images from an OPG radiography with the wrong
classifications labeled in red.

To compare our proposed model with the literature mentioned in section 2.2, accuracy

for both upper jaw and lower jaw are investigated. Table 3.3 briefly explains the comparison

between our proposed method and other research studies.
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Table 3.3: Comparison between proposed method and other teeth extraction research works.

Image Type Algorithm Correct Upper Correct Lower
Abdel-Mottaleb et al. [47] Bitewing Integral Intensity Method 169/195− 85% 149/181− 81%
Olberg and Goodwin [2] Bitewing Path-based Method 300/336− 89.3% 270/306− 88.2%

Nomir et al. [66] Bitewing Integral Intensity Method 329/391− 84% 293/361− 81%
Al-Sherif et al. [43] Bitewing Energy-based Method 1604/1833− 87.5% 1422/1692− 84%

Ehsani Rad et al. [15] Periapical Integral Intensity Method Overall: 90.83%
Proposed Study Panoramic Genetic-based Method 474/582− 81.44% 428/581− 73.67%

Although we are applying teeth extraction on Panoramic images which are noisy, include

unwanted parts, and the structure boundaries of segments are ambiguous, the resulting

accuracy is in the line of previous works. The segmented teeth from this model will be

used as the input for the dental caries detection model, which will be explained in the next

section.

3.5 Summary

Dental x-ray imaging helps dentists and radiologists to diagnose dental diseases and

to provide patients with treatment plannings. In many cases, dental diseases are hard to

detect by relying only on visual inspection in clinical assessments. Therefore, automating

the diagnosis process has been a topic of interest for dental problems. These automated

models are considered as dentistry decision support systems or dentistry computer-aided

diagnosis models, as a subcategory of medical systems in general. While there have been

some research studies and even some commercialized systems operating in some healthcare

institutions, developing a robust dentistry CAD system is a long way.

Teeth extraction is the basic task needed for nearly all dentistry decision support systems

relying on radiographic images as the inputs. The most challenging type of image to perform

extraction on is the Panoramic image since it includes other parts of the patient’s mouth,

and structures lack explicit boundaries. Unlike intra-oral imaging techniques, i.e., Bitewing

and Periapical, in extra-oral imaging the raw image needs further preprocessing and ROI

detection steps. In Panoramic x-ray, a considerable part of the image is filled by background

and jaw-bones, which could be helpful in detecting bone-related problems, but not needed

in our case. To provide a dental caries detection system, the only essential part of the OPG
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image is the tooth crown and body, and more preferably, the roots with complete boundaries.

The proposed method in this section is the first automated teeth extraction system from

dental panoramic images using evolutionary algorithms. First, the jaw is extracted from the

main image. Then, upper and lower jaws are separated, followed by a genetic algorithm to

detect teeth gap valleys. A more detailed diagram is presented by Fig. 3.14.

Figure 3.14: Detailed diagram of the proposed teeth extraction system

As shown in Fig. 3.14, unpreprocessed Panoramic images are the input of the system.

Preprocessing, ROI extraction, and jaw separation are done, one after another, to make the

image ready for the genetic algorithm to generate vertical lines for tooth separation. Line

removal is then applied to output images, each including one tooth. These generated images

are then fed to the dental caries detection model to detect dental caries and their severity,

which will be addressed in the upcoming section.

Aforementioned earlier in this section, teeth isolation is a mandatory preliminary part

needed for developing an automatic dental decision support system. Most previous research

works utilized their teeth extraction algorithms on Bitewing or Periapical images. In this

study, we presented a genetic-based approach for teeth extraction in Panoramic images. By

using compression coefficient along with average intensity as the improved cost function

and position variant minimum-distance approach for enhanced line removal, the accuracy

is notably increased. On a dataset of 42 images, it has achieved the overall accuracy of
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77.56%; where the accuracy values are 81.44% and 73.67% for maxillary and mandibular

teeth, respectively. The acquired scores are comparable with other studies as compared in

Table 3.3. Although the accuracy score could be improved with more complex models and

a larger dataset, this system is a step towards a fully automated dental disease diagnosis

and treatment suggestion system. The results demonstrate the efficiency of our method on

a small portion of input data.
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4. Dental Caries Detection in Panoramic X-ray

using Ensemble Transfer Learning & Capsule

Classifier

Dental caries is one of the most chronic diseases involving the majority of the population

during their lifetime. Caries lesions are typically diagnosed by general dentists relying only

on their visual inspection using dental x-rays. In many cases, dental caries is hard to identify

in x-rays and can be misinterpreted as shadows due to different reasons, such as low image

quality. Hence, developing a decision support system for caries detection has been a topic

of interest in recent years. Here, we propose an automatic diagnosis system to detect dental

caries in Panoramic images, which benefits from various deep pretrained models through

transfer learning to extract relevant features and uses a capsule network to draw prediction

results. On a dataset of 470 Panoramic images used for features extraction, including 240

labeled images for classification, our model achieved an accuracy score of 86.05% on the test

set. The obtained score demonstrates acceptable detection performance and an increase in

caries detection speed, as long as the challenges of using Panoramic x-rays of real patients

are taken into account. Among images with caries lesions in the test set, our model acquired

recall scores of 69.44% and 90.52% for mild and severe ones, confirming the fact that severe

caries lesions are more straightforward to detect and efficient mild caries detection needs a

more robust and larger dataset. Considering the novelty of current study as using Panoramic

images, this work is a step towards developing a fully automated efficient decision support

Most of the context in this chapter have been published in Haghanifar A, Majdabadi MM, and Ko SB.
”Paxnet: Dental caries detection in panoramic x-ray using ensemble transfer learning and capsule classifier.”
arXiv preprint arXiv:2012.13666 (2020).
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system to assist domain experts with clinical observations.

4.1 Background

In this section, capsule network and its general architecture are reviewed. Then, pre-

trained models used in this study are investigated. Firstly, InceptionNet and the ImageNet

dataset are explained. Secondly, the CheXNet model and its performance on other types of

x-ray images are reviewed.

4.1.1 Capsule Network

Since the introduction of capsule network [67], many studies have benefited from its

advantages in various applied deep learning tasks [68–71]. Capsule network consists of com-

putational units called capsules. Each capsule is a group of neurons, nested together to

represent the substantiation parameters of a particular feature by using a vector. Unlike

convolutional networks, capsule layers represent each feature using a vector in the way that

the length of the vector corresponds to the probability of the presence of a certain feature

or class. A weight matrix is multiplied by each vector to predict the probability and the

corresponding pose of the next level feature in the form of a multidimensional vector. Then,

an algorithm called dynamic routing is applied to all the predictions of one class to determine

the coherency of the predictions. This algorithm calculates a weighted average of predictions

and reduces the impact of those vectors incoherent with others, iteratively. Since the average

vector’s length represents the probability of the class, it should be ranged between 0 and 1.

In order to make sure of that, the Squash function is applied to the prediction vector after

each iteration of dynamic routing. Squash function is one of the relatively recent activation

functions being introduced and widely used in the literature, and is formulated as follows:

Vj =
‖Sj‖2

1 + ‖Sj‖2
Sj

‖Sj‖
(4.1)

where, Sj is the vector after applying dynamic routing.

As mentioned earlier, the length of the vector corresponds to the probability of the
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presence of that particular feature. Each vector is multiplied by a weight matrix to predict

vectors that each corresponds to the higher-level feature. Then, dynamic routing examines

the agreement between predictions, and outputs the final vector for each capsule in the

second layer. Fig. 4.1 indicates the structure of a typical two-layer Capsule network utilized

for caries detection.

Capsule layer

Weights
Predictions

Classes

𝑚 × (𝑑ଵ × 𝑑ଶ × 𝑛) 𝑛 × (𝑚 × 1 × 𝑑ଶ )
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Figure 4.1: The architecture of the CapsNet for binary classification of dental caries from
the extracted features.

Where m is the number of capsules in the first layer, d1 is the size of each capsule in the

first layer, n is the number of capsules in the number of classes (2 in this case), and d2 is

the size of each capsule in the second layer. The feature vector is the input of the CapsNet.

This feature vector is extracted from feature extraction unit, which will be reviewed in detail

further in this section. The outputs of the CapsNet are two vectors representing two classes,

healthy and caries. The length of these two vectors corresponds to the probability of each

class.

Besides, this network is capable of learning geometrical relationship between features as

well. Hence, it can offer unprecedented robustness in a variety of tasks [72–74]. The main

challenge in dental caries detection in Panoramic images is accurately distinguishing between

dark regions caused by shadows and the actual caries spots. Geometrical features such as

edges, textures and location of these darker regions are essential for correct classification.

This is the reason for why it is believed that capsule network is the perfect choice for this

task.
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4.1.2 InceptionNet

Inception networks are a group of neural network architectures consisting of a similar

Inception block. Originally known as GoogLeNet, Inception has been able to set a new

state-of-the-art (SoTA) top-5 and top-1 accuracy score on the well-known ImageNet dataset.

InceptionNet has not only outperformed the previous best architecture’s top-5 accuracy

(VGG with 7.32% while GoogLeNet reached 6.67%), it is also more computationally efficient.

The basic idea of the original authors was to introduce wider networks instead of going deeper

and deeper by concatenating more convolutional layers [75].

The motivation behind approaching wider networks was the large size variations between

salient parts in a sample image. While the final goal is to detect particular objects in

images, the objects might appear with different sizes in each image. Thus, choosing the

right kernel size for convolution operation becomes troublesome. Larger kernels are preferred

for globally-distributed information, and smaller kernels are more favorable for information

that is distributed more locally. Introducing a very deep network requires large data and

is highly prone to overfitting, as well as being computationally expensive. The authors of

GoogLeNet came with the idea of choosing filters with multiple sizes in each level to overcome

the aforementioned problems with deep networks. The initially proposed Inception block,

depicted in Fig. 4.2, utilized kernels with three different sizes on the same level.

Figure 4.2: The architecture of the Inception module with dimension reductions.
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There are 1× 1, 3× 3, and 5× 5 kernel sizes in a typical Inception block. The 1× 1 kernel

performs as a dimension reduction layer, which is used to merge different dimensions of the

input tensor to decrease the computational load of the network. Max pooling layer has also

been used in its own path along with a dimension reduction kernel. Finally, the convolution

results of all paths are concatenated to be passed into the next layer.

Despite being wider and employing different kernel sizes, the InceptionNet model has

only 9 Inception modules stacked one over the other. Hence, it only has 22 layers (or 27

layers including pooling layers). At the end of the last Inception block, a global average

pooling layer is used, followed by a linear layer with SoftMax loss as the activation function.

A schematic view of the network is depicted in Fig. 4.3.

Figure 4.3: The architecture of the InceptionNet model. The black box is the stem, and
purple boxes are auxiliary classifiers.

The black box in Fig. 4.3 is the stem, which includes some preliminary convolution layers.

Purple boxes are the auxiliary classifiers. Since the model is a deep classifier, the vanishing

gradient problem still is an important issue. To prevent the middle layers from dying out,

the authors have devised auxiliary classifiers as the SoftMax layers being applied on top

of some Inception blocks in the middle of the network to compute the auxiliary loss. The

final loss function is a weighted summation of the main loss (related to the last layer) and

auxiliary loss values.

The above-mentioned network architecture is the original version of the Inception net-

works. In the next versions, the authors proposed a number of upgrades to increase the

accuracy score, and at the same time, reduce the computational complexity. The upgrades
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include converting convolutions with larger kernel sizes into smaller ones by utilizing smart

factorization, including a factorized 7×7 convolution, label smoothing as a routine regulariz-

ing component to hinder the overfitting, etc. While there exist models with higher accuracy

scores on ImageNet, such as ResNet and EfficientNet, InceptionNet is relatively small and

consists of a few layers. This key advantage makes it a perfect choice when dealing with

small datasets, like the case of the current research study.

4.1.3 CheXNet

Transfer learning is an emerging solution to deal with problems with a lack of sufficient

data to train a neural network from scratch. It simply means to benefit from a pretrained

model in a new classification task, where the target patterns are expected to overlap with

the original dataset that the pretrained model is previously trained on. Most pretrained

models are the ones trained on ImageNet dataset, since ImageNet has more than a million

images from 1000 different classes. Classes in ImageNet are common objects, where the

higher level features are different from objects that usually appear in a radiography image.

Therefore, using a pretrained model from a similar type of image might usually result in a

better accuracy score. As mentioned in previous sections, there are few available datasets

related to dental radiography. Hence, no pretrained models are available being trained with

dental radiography. In spite of having a lack of models in this area, there are a few models

with different types of x-ray images. CheXNet is considered as the most robust pretrained

model publicly available for academic use.

CheXNet is a robust model for lung disease detection based on chest x-ray images [26].

It has been trained on CXR-14, one of the largest publicly available datasets of chest x-rays

from adult cases with 14 different disease labels, including pneumothorax, pneumonia, etc.

CheXNet is a 121-layer convolutional neural network trained on the dataset mentioned above

with over 100, 000 frontal view x-ray images. The architecture of CheXNet is the same as

a 121-layered DenseNet model, one of the well-known CNNs that has previously achieved

SoTA on ImageNet dataset. The architecture of CheXNet is presented in Fig. 4.4.
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Figure 4.4: The architecture of CheXNet.

The input is passed to a DenseNet-121 backbone, followed by a global average pooling, and a

Fully Connected (FC) layer to generate the output. The architecture of the DenseNet itself

is shown in Fig. 4.5.
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Figure 4.5: The architecture of a 121-layered version of DenseNet model.

As seen above, DenseNet consists of multiple dense blocks. Each dense block has four layers,

and the output of each layer is connected to all the subsequent layers.

CheXNet is trained on many images for many epochs, and the authors have claimed that

it outperforms general radiologists in terms of disease detection f1-score. The frontal chest

x-ray is indeed different from dental Panoramic x-ray, however, the basic image features

extracted by the very first layers could be very informative. Thus, it is considered to be

helpful to include the pretrained CheXNet in our proposed model as well.

4.2 Material

Most related studies in the field of dental problem detection using x-rays lack a sufficient

number of images in their datasets. Large datasets let the models have more sophisticated

architectures (either deeper or wider), including more parameters. Hence, developed models

can handle more complicated features and detect subtle abnormalities that appeared in the
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tooth texture, such as dental caries in the early stages. Annotation is an essential and

time-consuming part that needs to be performed by the field specialists, e.g. dentists or

radiologists.

4.2.1 Dataset Collection

Our dataset of 470 Panoramic x-rays is collected from two main sources along with a

few number of images from publicly available repositories. 280 images are obtained from the

Diagnostic Imaging Center of the Southwest State University of Bahia (UESB) [4]. Images

are acquired from the x-ray camera model ORTHOPHOS XG 5 DS/Ceph from Sirona Dental

Systems GmbH. Images are randomly selected from different categories with an initial size

of 1991 × 1127. All images are in ”JPG” format. Annotation masks related to the images

are available in the UESB dataset. An example OPG image from the dataset is shown in

Fig. 4.6.

(a) (b)

Figure 4.6: a) An example image from the UESB dataset with b) the related tooth annotation
mask [4]

Besides, we also collected 120 images from a local dentistry clinic taken with x-ray camera

model Cranex 3D from Soredex. The radiographs are anonymized and contrast enhancement

is applied on them by the source practices before they are shared with the research team.

All images are in ”BMP” format with an initial size of 3292 × 1536 with the bit-depth

of 8. 42 images from our dataset are randomly selected to validate the performance of the

tooth segmentation system. 70 images are downloaded from publicly available medical image
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sources, such as Radiopaedia1. Public images are taken with unknown camera models and

are available in different sizes and formats. Some of the collected images are associated with

a radiologist report indicating locations of tooth decays. The dataset includes 11769 images

from single tooth, which is used for training the encoder model. Among the dataset, 240

images have labeled teeth, including 742 carious and 5206 healthy.

4.2.2 Labeling Process

UESB images have tooth masks manually prepared along with the dataset, which is

used to segment each tooth from Panoramic images. For our collected dataset, a genetic-

based method is applied to isolate the teeth by finding the optimum lines which fall inside

gaps between teeth in both maxillary, and mandibular jaws, as explained with details in

previous chapter. To perform labeling, an oral and maxillofacial radiologist commented on

Panoramic images one by one. Segmented teeth are categorized into two groups; healthy and

carious. Carious teeth are also classified into mild and severe caries. Mild ones are caries

lesions in their early stages, mostly located in enamel or Dentine-Enamel Junction (DEJ). In

contrast, severe decays are developed dental plaques that have been spread to the internal

dentine or have involved the pulp. Pulpitis caries lesions result in a collapsed tooth. It is

worth mentioning that we have benefited from an expert oral radiologist with +20 years of

experience as the label provider. However, there is a lack of external ground truth, which

requires each patient to have multiple Panoramic and Intra-oral radiography in different time

intervals. Therefore, our performance is limited to the radiologist’s annotations.

The labeling process is a time-consuming and challenging task that requires huge amount

of time. Since Panoramic images include all teeth in one image, it helps radiologists meticu-

lously detect caries by not only inspecting opaque areas on the tooth but also considering the

type of the tooth and its location in the jaw. On the other hand, higher levels of noise and

shadows make the visual diagnosis more challenging. Caries, especially mild ones, can easily

be misinterpreted as shadows and vice versa. Another problem is the Mach effect. Mach

effect or Mach bands is an optical phenomenon that makes the edges of darker objects next

1https://radiopaedia.org
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to lighter ones appear lighter and vice versa. Mach effect results in a false shadow that may

bring diagnostic misinterpretation with dental caries present very close to dental restoration

regions that are appeared to be whiter in dental x-rays [76].

4.3 Model Architecture

In this section, the proposed model and its components are investigated. Details of

the composing parts, such as Capsule Network and CheXNet, are already explained in the

previous section.

4.3.1 Proposed Network: PaXNet

The proposed network for caries detection in Panoramic dental x-rays (PaXNet) consists

of two main modules; feature extraction and classification. The aforementioned modules are

explained in detail in the following subsections.

1) Feature Extraction

As far as feature extraction is concerned, to overcome the problem of the small number

of samples in the dataset, transfer learning paradigm is used in the proposed architecture.

Three pretrained models are utilized in the feature extraction block: Encoder, CheXNet,

and InceptionNet. All of these three models are set as non-trainable, and their top dense

layers are removed. InceptionNet, as mentioned in the previous section, is a powerful model

trained on the ImageNet dataset [75]. Since caries appears in different sizes, this model’s

ability to learn features with multiple sizes, thanks to its multiple-sized convolution kernels,

is beneficial for caries detection. However, the model is trained on RGB images of common

objects that share no high-level similarities with Panoramic dental x-rays. This is why

CheXNet is included in feature extraction block as well. CheXNet is a robust model for

thoracic disease detection based on chest x-ray images [26]. Although Panoramic dental

x-rays are different from chest x-rays, since they are both x-rays, they share many similar

features of a 2D grey-colored radiography. There might be some features specific to a tooth

that is not covered by the two models mentioned above. To solve this potential problem, a
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pretrained encoder is used to benefit from these types of image features.

The number of labeled tooth images is limited and expanding the dataset requires huge

amount of time and effort for annotating specialists. By contrast, there is a considerable

number of unlabeled images available both on the web and in our own dataset. To benefit

from this vast dataset, a new approach is advised. An unsupervised side-task is designed,

and a model is trained using a large unlabeled dataset. Then, trained weights are used in the

main model for the caries detection task. Through this approach, transfer learning enables

us to take advantage of the unlabeled data as well. An auto-encoder is developed and trained

to encode the image and reconstruct it from the coded version in this work.

The auto-encoder consists of two networks, Encoder and Decoder. Both of these models

are used in PaXNet through transfer learning. Since all the image information should be

preserved through the encoding process, an encoder can learn the most informative tooth

images’ features. Later, this model is used as a pretrained network for feature extraction in

PaXNet. The model is benefiting from the decoder as well as the encoder, as it is explained

in the next subsection.

Finally, since all these three models are non-trainable, a trainable convolutional feature

extractor is also embedded in PaXNet so that the model could be able to learn task-related

specific features as well. Table 4.1 presents a comparison between these four feature extrac-

tion networks.

Table 4.1: Comparison between feature extractor networks

Model Num. Layers Num. Params Trainable Dataset Dataset Size
InceptionNet 42 451,160 False ImageNet 1,281,167

CheXNet 140 1,444,928 False CXR-14 112,000
Encoder 4 14,085 False Unlabeled teeth 11,769

CNN 8 35,808 True - -

As the similarity of the training dataset to the caries detection dataset increases, the number

of available samples is reduced, to almost one tenth. However, more informative features

can be obtained from these networks trained with more similar samples.

As far as the activation function is concerned, all convolutional layers benefit from the
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Swish activation function. This function is a continuous replacement of leaky-ReLU, which

improves the performance of the network [77]. The swish activation function is formulated

as follows:

f(x) =
x

1 + e−x
(4.2)

This activation function is basically the multiplication of the Sigmoid function with the input

value. The behaviour of this activation function is similar to the ReLU and leaky-ReLU in

positive values. However, in large negative values, its output is converging to zero, unlike

the Leaky-ReLU.

2) Classification

In PaXNet, all extracted features are concatenated, and higher-level features are created

based on them using a CNN. Then, the last convolution layer is flattened, followed by a

fully-connected layer with 180 neurons. These 180 neurons are reshaped to 10 capsules with

eight dimensions called the primary capsule layer. There are two 32 dimensional capsules

in the second capsule layer representing two classes, caries and healthy. Each capsule in

the primary capsule layer makes a prediction for each capsule in the second layer. Routing

by agreement is performed on these predictions for three iterations. Each vector’s length is

then computed, and a SoftMax function is applied to these two values. The output of the

SoftMax layer is the probability of each class.

SoftMax, or normalized exponential function, is a generalized logistic function applicable

to multiple dimensions. It can be considered the same as Sigmoid function, being used

when there are multiple classes to be predicted. SoftMax ensures that sum of the values

for all classes are always set to 1. The standard SoftMax function is defined by the formula

4.3 below. While this case is a binary classification, we detached the two classes into two

different neuron. Thus, Sigmoid is no longer applicable as the last layer here.
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σ(~z)i =
ezi∑K
j=1 e

zj
(4.3)

where ~Z is the input vector, K is the number of classes set to 2 in this case, ezi is the standard

exponential function for input vector, and ezj is the same as the latter one for output vector.

Furthermore, the capsule corresponds to the class with a higher probability extracted

using a mask. This 32D value is passed to a CNN followed by the decoder. The decoder

is extracted from the auto-encoder explained before. It is suggested by [67] that image

reconstruction can improve the capsule network’s performance. Since the dataset is relatively

small, the network is not able to learn the proper image reconstruction. So the decoder is

utilized, and CNN is responsible for mapping the latent space of the capsule network to the

decoder’s latent space.

The aforementioned feature extractor and classifier modules are assembled together to

form the proposed PaXNet model. The high-level architecture of the proposed model is

illustrated in Fig. 4.7.

In
pu

t 
Im

ag
e

CNN

Inception 
Net

C
N

V
Encoder

CNN

CheXNet

C
N

V
C

N
V

C
N

V

32D
32D

D
yn

am
ic

 R
ou

tin
g8D

8D

8D

Softmax
Vector
length

Mask

32D Decoder

R
ec

on
st

ru
ct

ed
Im

ag
e

P
ro

ba
bi

lit
y

CNN

First
Capsule layer

Feature Extraction Capsule Network Image Reconstruction

Concatenate Second
Capsule layer

Figure 4.7: Architecture of the proposed PaXNet, consisting of four networks in feature
extraction module and a 2-layered capsule network to generate probabilities, connected with
a CNN.

First, informative and valuable features of the input image are located using the feature

extraction unit. Then, all these features are combined to form higher level and more complex

features by a CNN. Finally, CapsNet classifies the input into healthy or caries classes based

on the extracted features. The Image reconstruction module is implemented for the training
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purpose. The difference between the reconstructed image and the input is used as a loss

function in order to force the model to learn better features [67].

4.4 Results and Discussions

In this section, the results of caries detection with PaXNet is presented. Then, perfor-

mance of the model on detecting caries in different stages is investigated. The contribution

of each feature extractor network is also addressed by visual illustration of the proposed

model’s robustness.

4.4.1 Experimental Results

PaXNet is trained using 319 samples with caries and 1519 healthy samples. In order to

deal with the class imbalance problem, the smaller class is re-sampled. It is worth mentioning

that datasets of OPG images will always have class imbalance regarding dental caries. The

reason is that tooth cavitation is more likely to be detected on molars and pre-molars with a

higher probability than the anterior teeth [5]. Thus, even in worst cases, tooth decay could

be seen in less than half of the teeth in a full mouth, including in our introduced dataset.

While there are several methods to alleviate imbalance, re-sampling is employed in this case

in order to increase the overall data size.

After performing re-sampling, 80% of data is used for training and 20% is excluded as

for the test set. Moreover, data augmentation is also applied to the samples in the training

process. Since the dataset is relatively small, data augmentation with different approaches

becomes essential. Each sample in the dataset is rotated randomly and a random zoom and

shift are applied as well, as listed in Table 4.2.
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Table 4.2: Image augmentation functions

Attribute Parameter Value
Rotation Angle 0◦ to 90◦

Flip Axis Vertical and Horizontal
Brightness Scale 70% to 130%

Zoom Scale 90% to 150%
Width Shift Scale -20% to 20%
Height shift Scale -20% to 20%

A rotation range of 90◦ covers the total possible rotation range with the help of horizontal and

vertical flip. Darkening or brightening an image with a large scale will result in information

loss, hence we adjust the brightness to mostly 30% higher or lower than the raw input image.

Zooming out of the image will help the model to see caries lesions with different scales, while

zooming in can result in missing the caries of the image. Thus, we selected a zoom-in range

of 10% and a zoom-out range of 50%. The same rule of preventing the caries miss for images

with positive label applies to the width/shift range. Since caries mostly happen in the edges

of a tooth, shifting must be set to a small value, which is set to 20% in this case. Worth

mentioning that applying other augmentation methods, such as adding noise or shearing

the image, whether resulted in worsening the accuracy or a negligible change in the model

performance. Hence, these methods are excluded from the augmentation procedure.

Since CapsNet is very sensitive to learning rate, the optimal learning rate is calculated

using the approach introduced in [78]. Fig. 4.8 illustrates the loss versus learning rate during

10 epochs of training while the learning rate is changing exponentially. The best learning rate

is where the graph has suddenly decreased, or scientifically-speaking, the largest negative

skew value in the chart during changes of the learning rate.
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Figure 4.8: loss versus learning rate, and the optimal loss value highlighted in red.

According to Fig. 4.8 the learning rate is adjusted to 10−4. The model is trained for 850

epochs with a batch size of 32. After the training process, performance of the network is

evaluated. Tables 4.3 and 4.4 respectively present the statistical results and the confusion

matrix of the PaXNet over a dataset of 5948 segmented tooth images

Table 4.3: Statistical performance of the proposed PaXNet

Dataset Accuracy Loss Precision Recall F0.5-score
Training 91.23% 0.13 - - -

Test 86.05% 0.15 89.35% 50.73% 0.78

Table 4.4: Confusion matrix of the proposed PaXNet on a test set of 1786 images

n=1786
Predicted
Negative

Predicted
Positive

Actually
Negative

839 54

Actually
Positive

440 453

While the accuracy score is high, considering the relatively small number of positive samples,

the effect of outnumbering negative images must be decreased. Hence, f0.5-score is reported

as the model result. Since carious teeth misclassified as healthy are more important than the

false-positive cases, we should put more attention on minimizing false-positive ones. Thus, to

increase the weight on precision and decrease the importance of recall, we selected f0.5-score

as the best metric to measure the model performance.
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To have a further look at how PaXNet is diagnosing caries based on the teeth location

inside the jaw, a location-based accuracy map is drawn according to the accuracy of the

model in the correct classification of each tooth category. To define a criterion, teeth are

categorized into two classes that appear both in mandible and maxilla: molars-premolars and

canines-incisors. As such, jaw is divided into 6 regions. Fig. 4.9 shows the above-mentioned

map.

Figure 4.9: Location-based accuracy map of PaXNet. The average accuracy of the model in
different parts of the jaw is plotted. Purple is interpreted as having the highest score, while
blue is considered the lowest.

Maxillary molars-premolars achieve the highest detection rate, while mandibular molars-

premolars have a lower rate. Canines-incisors in both jaws have lower accuracy scores,

resulting from a lack of sufficient carious teeth in the dataset. Worth mentioning that caries

occurs in molars-premolars more than canines-incisors because of certain factors such as the

salivary flow.

4.4.2 Discussions

Different stages for caries in the infected tooth can be considered. At first, the infected

part is small. Then, the caries lesion grows, and a larger area is affected. The detection

of severe cases has higher priority since they more likely need immediate treatment. To

evaluate PaXNet performance in different tooth infection levels, samples with caries in the

test set are divided into two categories, mild and severe. Then, the accuracy is computed

for each group, as shown in Table 4.5.
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Table 4.5: The accuracy of PaXNet for different infection stages

Category Recall
Mild 69.44%

Severe 90.52%
Total 86.05%

Severe decays usually appear as a larger demineralized area in tooth penetrating through

enamel and dentine. In severe cases, it results in a total tooth collapse by destroying the

pulpitis. Hence, As expected, the accuracy of the proposed model is notably higher in severe

cases.

The ”right decision with wrong reason” phenomenon can make the accuracy metrics

distracting, especially when the dataset is relatively small. The computed accuracy can be

a result of overfitting on this small dataset. Hence, the model might not perform as well

on other samples. Such phenomenon, also known as ”shortcut learning”, happens when the

network finds shortcuts as decision rules to classify input data, and while it performs well on

standard benchmarks, it fails to generalize over external testing data [79]. To make sure that

the evaluated accuracy is a good reflection of the model’s performance in facing new samples,

the features contributing to the network’s decision should be investigated. One of the most

popular and effective approaches for feature visualization in CNN is Gradient-weighted Class

Activation Mapping (Grad-CAM) [80]. This method computed the heatmap regarding the

location of the features most contributing to the final output using the gradient. The Grad-

CAM of the last convolutional layer before the capsule network is plotted. Moreover, since

these high-level features are the combination of the extracted features from four different

models, the Grad-CAM of the convolutional layer before the concatenation is visualized as

well. Fig. 4.10 exhibits Grad-CAMs of five samples with caries.
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Figure 4.10: Some examples of Grad-CAM after each feature extraction network and before
the capsule classifier.

The network is classifying these samples based on the true infected area in the tooth. More-

over, the larger the infected area is, the more confident the network becomes in caries detec-

tion. As far as feature extractors are concerned, each network is sensitive to a different type

of feature. Table 4.6 presents the test accuracy of PaXNet with different feature extraction

units.
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Table 4.6: The accuracy of PaXNet with different feature extractors

Feature Extractor Test Accuracy
CNN 80.13%

CNN-InceptionNet 82.32%
CNN-InceptionNet-CheXNet 84.67%

CNN-InceptionNet-CheXNet-Autoencoder 86.05%

By combining these features, PaXNet detects caries based on the true infected area in the

tooth. As a result, this model is capable of detecting caries correctly, and the reported

accuracy is not the result of overfitting. Most importantly, in the face of new samples, a

similar robust behaviour from the network is expected.

The pose of a single tooth in x-ray images is typically vertical. However, there are some

unusually posed teeth in some jaws. These problematic teeth are at higher risk of infection

despite the smaller number of them in the dataset. In order to address this issue, data

augmentation is performed in the training process. Fig. 4.11 depicts the Grad-CAM of a

sample with caries in various transformation.

Zoom out Zoom in

Lighten Darken

(a)

Zoom out Zoom in

Lighten Darken

(b)Zoom out Zoom in

Lighten Darken

(c)

Figure 4.11: The Grad-CAM visualization of an infected sample after transformation with
a) rotation, b) zoom, and c) brightness
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The image is rotated from 0 to 180 degrees in 9 steps. Then, the image is scaled from

40% to 160%. Finally, the mid-level brightness is altered ±30% using a quadratic function.

Fig. 4.11 illustrates that by applying various transformations, the proposed network is still

classifying the sample accurately using correctly distinguished image features.

4.5 Summary

Dental decision support systems can help dentists by providing high-throughput diag-

nostic assistance to better detect dental diseases, such as caries. While capturing Panoramic

radiography could be very helpful to see full patient dentition in a single image, detection of

dental caries using Panoramic radiography is a very challenging task due to the low image

quality. There have been a number of studies to detect dental diseases using radiography,

but no comprehensive approach has been introduced to implement an end-to-end system to

detect dental caries from dental Panoramic x-ray.

To help radiologists with dental caries diagnosis, we propose an automatic caries detection

model using several feature extractors and capsule network for feature selection. The feature

extraction part is an ensemble of four models, each of which has been built with a different

purpose in mind. There are three pretrained models to utilize transfer learning advantages:

InceptionNet to bring basic object detection features learned from a very large dataset,

CheXNet to bring common patterns mutual between x-ray images, encoder to bring higher-

level tooth appearance features learned from unlabeled portion of our dataset. A two-layered

capsule network comes after the features are extracted, to select the best combinations based

on the input feature vector, with respect to the order of changes in the vector. This order

of numbers essentially represents the geometrical relationship between lower-level features.

This unique ability of capsule networks helps offering a more robust performance towards

dental caries detection.

To improve the explainability of our approach, Grad-CAM visualization is used to val-

idate our extracted features in terms of correct localization. Developed model could suc-

cessfully reach an accuracy score of 86.05% and an f0.5-score of 0.78 on the test set. The

achieved scores demonstrate model efficiency in concentrating on not missing carious teeth.
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Experimental results illustrate that the proposed combination of feature extraction modules

achieves higher performance compared to a näıve CNN. Besides, PaXNet is also capable of

categorizing caries into two groups of mild ones with a recall of 69.44% and severe ones with

a recall score equal to 90.52%. Considering PaXNet as the first deep learning-based model to

detect dental caries in Panoramic radiography, the achieved results are acceptable, although

not outstanding in comparison with previous works on Bitewing/Periapical.
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5. Conclusion and Future Works

5.1 Conclusion

With the recent advancements in artificial intelligence, it has dominated the development

of computer-aided diagnosis systems for decision support tasks. One of the most applicable

fields to develop decision support systems is the field of radiology. Machine learning algo-

rithms, and more specifically deep learning models, have demonstrated remarkable progress

in image processing tasks. These models have excelled at automatic detection of diseases

in biomedical images. They have even outperformed the domain experts, i.e., radiologists,

in certain tasks. Recently, researchers have noticed the capability of machine learning in

healthcare, and interests have grown towards developing these techniques specifically for

biomedical image processing tasks. Despite their constantly growing interests, there are

quite a few number of studies using artificial intelligence techniques for disease classification

in dental x-ray images. Due to the sparsity of research studies in the field of dentistry, there

is room for improvement.

In this study, we introduced a dataset of dental Panoramic radiography for academic use.

Moreover, an end-to-end dental disease diagnosis system is developed based on using genetic

algorithm and pure image processing techniques to extract teeth from the raw Panoramic

image, as discussed in Chapter 3. Then in Chapter 4, the extracted teeth are fed to an

ensemble model utilizing different pretrained models and capsule network to find patterns

and give decision on whether each tooth has caries lesion or not. The feature extraction

part of the model consists of InceptionNet, CheXNet, a pretrained Encoder on the unlabeled

images of teeth in the aforementioned dataset, and a trainable basic convolutional neural

network to learn the features from the input dataset. In the feature selection part, a two-
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layered capsule network is employed to decide on the presence of caries lesion in each tooth

image.

To better evaluate the performance of our proposed model, not only a comparison with

previous studies is discussed, but also some robustness tests have been devised to visualize

the output of the model and its performance on different subsets of the dataset. Teeth

extraction result comparison demonstrates that the achieved accuracy score is comparable

with other studies, while they have benefited from higher quality dental radiography, i.e.,

Bitewing and Periapical x-rays. There have been no previous studies to perform teeth

segmentation and caries detection on Panoramic radiography using evolutionary algorithms

and deep learning. Regarding the performance of the proposed caries detection model, metric

scores are showing a good performance. Location-based accuracy map confirms the model

is looking through relevant regions of the Panoramic image. Gradient class activation maps

also validate the correctness of the extracted features by visualizing convolution outputs from

each network. Finally, dividing the dataset into two parts of those with mild caries and those

with severe caries, show that the model performs better on detecting severe caries lesions

with a relatively notable margin (≈ 21%). While the results can be enhanced using more

data and more complex models, the obtained results demonstrate the applicability of the

proposed method. This marks as a step towards the development of an end-to-end decision

support system for dental disease detection to perform comparable to a domain expert that

can be clinically used in health centers in the future.

5.2 Future works

5.2.1 Dataset

Since a limited number of research studies have been conducted to develop deep learning-

based models for dental disease detection, there is a good opportunity to improve the models

for better results in the future. The main reason behind the lack of sufficient research, which

is also applicable to many other similar approaches in biomedical data processing, is the

lack of curated datasets with confident labeling. There are only two public datasets with

dental radiography. First one with 120 Periapical x-rays introduced by the authors of [15],
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and second one with 120 Bitewing x-rays provided by the organizers of ISBI2015 challenges1.

Both datasets are for 2015 and very small for being used to train deep neural network.

In this research, efforts have been made to provide the first public dataset of dental

Panoramic x-ray images with caries labels. More images with better quality, and from

different institutions will provide a better possibility of developing a more sophisticated

neural network. With larger datasets, latest architectures, such as EfficientNet-based ones,

can also be trained to increase the performance metrics as well as the robustness.

5.2.2 Segmentation

Another critical improvement is to provide images with annotations by radiologists for

caries lesions. While there are some other studies with annotation for dental pathologies, no

studies have provided caries annotations for Panoramic images so far. Due to the toughness

of annotating procedure for dental caries in Panoramics, it needs multiple expert radiologists

put a considerable amount of time into meticulously creating masks. By having annotation

masks, segmentation models based on U-Net architectures can be applied to segment caries

lesions. Segmentation will result in a more explainable model that can be used as an actual

clinical decision support system that can outperform radiologists in the future.

5.2.3 Prognosis

Another worth-mentioning point is the fact that tooth decay is a dynamic disease. It

starts with a small lesion on the tooth surface and develops dental caries after some time.

Caries prognosis requires detection of initial caries lesions before they go through advanced

stages. A degree of uncertainty exists when diagnosing initial lesions that have not cavitated

dental hard tissues. This is because early lesions may be active (progressing), inactive

(arrested), or regressing (remineralizing) [10]. To overcome such a challenge, a patient must

go under clinical assessment in specific time intervals. With a database of several x-rays per

patient in different time points, it is possible to develop a prognosis model that can identify

patients at risk of caries development before the disease process progresses to the point of

1http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge2/
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clinical expression. To do so, a segmentation model can segment lesions in each image and

compare the area to classify a lesion into three categories of active, inactive, or regressing.

And finally, assign a progression rate for active lesions to anticipate emerging dental caries

in the future.
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