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Abstract—The digitization of graph-based engineering dia-
grams like P&IDs or circuit drawings from optical sources as well
as their subsequent processing involves both image understanding
and semantic technologies. More precisely, after a raw graph has
been obtained by an object detection and line extraction pipeline,
semantic gaps (like resolving material flow directions) need to
be overcome to retain a comprehensive, semantically correct
graph. Likewise, the graph representation often needs to be
altered to achieve interoperability with established CAE systems
and to accommodate customer-specific requirements. Semantic
technologies provide powerful tools to manipulate such data but
usually require rather complicated implementation. Graphically
presentable graph based rules provide a code-free mean to ease
the interaction with domain experts. In order to be applicable
in real-world applications, both geometric and computational
aspects need to be considered. This paper explores these aspects
and demonstrates use cases of such rule graphs.

Index Terms—Piping and Instrumentation Diagram, P&ID,
Rule Graph

I. INTRODUCTION

The comprehensive digitization of interconnected engineer-
ing constructs like chemical plants [8] [9] [10] or elec-
trical devices [11] [12] [13] requires a homogeneous data
representation of all relevant describing documents. Piping
and instrumentation diagrams (P&IDs) and circuit diagrams
are such types of graph-based, symbolic documents. Often,
optical media like plain paper or crude vector graphics are
the only basis for the digitization. In order to be usable with
like computer-aided engineering (CAE) or asset management
software systems, information extraction is required.

This can be accomplished by a image processing, i.e. a
graph extraction based on existing object and line detection
algorithms, where electric and instrumentation symbols be-
come nodes while their interconnecting lines become edges.
However, the geometry of a layout does not necessarily denote
the complete graph structure in a unique way. Likewise,
structurally varying graph representations may be required by
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different target systems. So in order to obtain a homogeneous,
semantic graph that fully represents the components and
interconnections of the plant, subsequent graph processing is
required.

II. INDUSTRIAL MOTIVATION

Readers of Piping and Instrumentation Diagrams use the
whole information displayed on the P&ID to understand a
specific area on the P&ID. An engineer is also capable of
understanding the meaning of an area on a P&ID even if
the specific information he is looking for is not displayed
on the P&ID. The way he does that is by understanding the
surroundings of the area of interest and deriving the context
from this area.

The system a P&ID was initially created in might also have
a different data model compared to the system is is being
maintained in (typically a CAE system). Since both systems
display the same visual information the need arises to shift
the representation of the P&ID Graph from one system so that
it gets accepted by another system from the data-perspective.
This requires a manipulation of the underlying graph structure
so that both systems are able to work with the data from the
P&ID. For example, a valve in a CAE is a standalone entity
whereas a valve often times must be part of a pipe section
of today’s CAE systems. Visually they look the same, but the
way the graph must provide the data is different. This brings
need to graph manipulation so both systems can work with the
same meaning of data but represented in a different format.

The initial graph after the recognition in fig. 1 displays three
scattered lines (yellow) but the final outcome must be one
pipeline as this is what the graph is required to look like. This
additional postprocessing need is what is required to fulfill the
business case for PIDGraphs. For this purpose the rule graph
applicator (RGA) was developed.



Fig. 1: Sample Application of the Proposed Graph Manipula-
tion. Scattered line segment edges (yellow) as well as edges
disrupted by dedicated break symbols (red) are joined (green)
to obtain a semantically correct graph representation.

III. RELATED WORK

Graph-based manipulation rules have been proposed for
graph representations of algebraic systems [4]. Likewise,
graph-based graphical user interfaces exist for code-free soft-
ware development [7].

Rule-based modifications for engineering graphs like P&IDs
have already been investigated [2]. However, based on the
dedicated query language of a graph database, this approach
required the users (process engineers) to write queries in a
rather abstract manner.

IV. SUBGRAPH ISOMORPHISM

Fig. 2: Two Isomorphic Graphs.

Both P&IDs as well as the rules for introducing local
alterations within them can be described as graph structures.
Therefore, the task of finding appropriate locations for such
rule applications equals the subgraph isomorphism problem
[14]. More precisely, for graph structures G1 = (N1, E1) and
G2 = (N2, E2), a subgraph isomorphism fI : N1 → N2

injectively maps all nodes of the first graph to the nodes
of the second graph while requiring the presence of all
interconnections between the nodes of the first graph to also
exist within the second graph (see fig. 2):

(n1, n2) ∈ E1 =⇒ (fI(n1), fI(n2)) ∈ E2 (1)

V. RULE GRAPHS

Fig. 3: A rule graph transforms an original graph into a result-
ing graph. Insertions are marked green, (label) substitutions
are marked grey and deletions are marked red. The dashed
grey lines indicate transition edges from isomorphic nodes to
their manipulative counterparts. Unlabeled substitution nodes
are auxiliary structures only. Within the engineering domain,
the label of a node or edge may equal to a type or property
of the respective component.

Rule Graphs [1] have been proposed as an intuitive concept
for engineering graph manipulation (see fig. 3). They are a
variety of triple graph grammars [3].

This paper outlines implementation issues during the appli-
cation of Rule Graphs [1] to real-world P&IDs. Since rule
graphs attempt to provide an approachable way to model
modifications, both graph and geometric aspects need to be
handled.

VI. RULE DESIGN CONSIDERATIONS

In order to describe symbolic engineering drawings in a
strict graph-based manner, all contained information need to
be modeled either as node, edge or graph labels.

As nodes and edges of the application graphs bear complex
data structures as labels (e.g. domain-specific properties, po-
sitioning, symbol type, connectors), some of these properties
directly determine the graphical appearance of the application
graph. Rule graphs need to be designed to resemble these
aspects for matching and manipulation purposes. In fact, the
only difference between rule and application graph design is
the need for encoding the role of a node inside the rule. Two
basic approaches to model the role of node inside a rule are
considered:

• Role as additional Node property. Allows reusing the rest
of the graph implementation. Not suitable for all roles
(e.g. deletion nodes).

• Role as dedicated node types. Requires key aspects like
symbol types to be modeled differently from application
graphs. Dedicated design allows for avoiding ambiguities.

As avoiding ambiguities was a primary objective to ensure
well-defined rule application semantics, the second scheme is
considered in this paper. Dedicated nodes could be introduced
to the rule graphs to model symbol connectors. But as they



increases the rule graph complexity and to achieve a ”one-to-
one mapping” regime, they were also discarded in the descried
implementation.

VII. METHODOLOGY

In order to narrow down the amount of allowed subgraph
isomorphisms and to specify graph manipulations, node and
edge labels are introduced into the rule graph along with
execution mechanics.

A. Rule Graph Structure Constraints

Apart from the constraints for rule graph construction
defined in [1], other restrictions need to be met in order for
the execution to be sound:

• Every substitution node must be connected to at most one
original node

• Every deletion node must be connected to at most one
original node

• Insertion edges must only connect insertion nodes and
original nodes

• Insertion nodes must only be connected via insertion
edges

• Deletion edges must only connect original nodes and
substitution nodes

B. Value Handling

Node and edge labels of rule graphs can have static and
variable values. Variables can be defined in the isomorphic
part of the rule graph and recalled during manipulations. For
the matching of node and edge types as well as connectors,
regular expressions [15] are used.

C. Single Rule Application

Given a subgraph isomorphism between original graph
and the isomorphisc part of the rule graph (a subgraph of
the rule graph consisting of its original nodes and original
edges), a single rule application is performed as a sequence
of modifications. Each modification is based on a rule graph
item and done in the following order:

1) Insert Nodes
2) Insert Edges
3) Substitute Nodes
4) Substitute Edges
5) Delete Edges
6) Delete Nodes
Alternatively, walking through the rule graph for its appli-

cation could help to reduce computational overhead. However,
this approach is considered to be more error-prone.

D. Multiple Rule Application

Generally, a rule can be applied in different ways to an
original graph. Usually, the same rule should be applied to
distinct graph parts. Therefore, strategies are needed for a
favorable outcome:

1) Single Isomorphism: Given the list of subgraph iso-
morphisms between the isomorphic rule part and the original
graph, one of them is used. Since the subgraph isomorphism
calculation is deterministic, a (user-) predictable and under-
standable behavior can be achieved.

2) Disjoint Isomorphisms: Given the list of all subgraph
isomorphisms, a subset of isomorphisms is chosen so that
their sets of departure are pairwise disjoint. If this subset
equals the overall set of isomorphisms, the result there is one
one possible resulting graph. The (very costly) calculation of
subgraph isomorphisms only needs to be done once. Since the
list is finite, the algorithm terminates in finite time. In many
situations, this is preferred option.

3) Iterative Isomorphisms: Apply a rule until there the
list of subgraph isomorphisms is empty. Very costly due to
multiple isomorphism calculations, not guaranteed to finish (a
rule that adds a single node may be considered) and the result
is not guaranteed to be unique.

E. Connector Handling

Connectors are considered part of node labeling that can
be referenced in the edges. When inserting edges between
new nodes or when matching edges between nodes from
the original graph, node connectors can be conveniently and
explicitly specified by referring to a fixed connector id. For
edges between nodes of the existing graph and newly added
nodes, other techniques are required.

Connectors could be encoded in rules by dedicated connec-
tor nodes. However, this would make the rule design more
complex and would require to transform the graph structure
to match the original one.

As a compromise, variables are introduced, that are read
during the matching process with the original graph and are
used for the generation of inserted and altered edges (see
fig. 4).

F. Geometric Constraining

So far, only subgraph isomorphisms based on the original
graph structure have been considered as a basis for the rule
application. In many situations however, geometric aspects
need to be regarded. For example, symbols also needs to be
matched based on their local proximity. Geometric constraints
for edge line length and angles are introduced in order to
narrow down the set of subgraph isomorphisms between rule
graph and original graph (see fig. 5). In order to support
constraining the geometry between arbitrary (unconnected)
nodes, dedicated edges are introduced in the rule graphs
(dashed lines).

G. Inserted Node Positioning

In order to keep the rule graph design approachable, the
geometry of insertion subgraphs needs to be preserved when
calculating the positions of inserted nodes.



(a) Rule Graph

(b) Original Graph

(c) Resulting Graph

Fig. 4: Sample Application of a Rule for simplifying a parallel
structure. Node and edge Type indicators placed below each
item when possible. Connector variables are prefixed “VAR_”.

H. Node Substitution

Details about how to define a Node Substitution Rule (NSR)
could be seen from [1]. Nodes in the application graphs could
contain different connectors and properties (described more
detailed below) and they need to be handled carefully while
applying the NSR. For example, the NSR defined in figure
6a could substitute parallel nodes of type ISO/Valves/Ball to
type ISO/Misc/OPC. This NSR could be defined to properly
produce the visual effect shown in figure 6d after applying to
original graph in figure 6b.

1) Node Type Substitution Only: It is feasible to only
substitute the value of nodeType attribute of original node in
application graph from ISO/Valves/Ball to ISO/Misc/OPC in
the given example and one result is shown in figure 6c. The red
dots shown in the figure are the untouched connectors defined
in the original node. The connectors defined the connection
points of the node where the connected edges should connect
to.

2) Connectors Mapping: It could be seen from section
VII-H1 that substituting connectors is also necessary to pro-

(a) Rule Graph

(b) Original Graph

(c) Resulting Graph

Fig. 5: Geometric constraining narrows down the set of
subgraph isomorphisms before application. This rule utilizes
the triangle inequality to delete the branching edge and to keep
the edges that form a continuous line.

duce visually pleasing and correct result. Therefore, there
is feasibility provided to define attributes in the substitution
node (e.g., grey colored nodes in figure 6a) in the rule graph
to map connectors specifically. For example, it is feasible
to define {connector 1: 0} in the substitution node to map
the connector with id 1 of node in original graph to a new
connector id 0 which exists in nodes of type ISO/Misc/OPC.

It is time consuming if there are many connectors to map in
substitution nodes of the rule graph. Therefore, an automatic
mapping method has been proposed to map the connectors
in the original node (orgConns) to the connectors of new
node type (newConns) as shown in algorithm 1. After getting
the result mapping, the old connector id is updated in the
connected edges with the new one and -1 indicates a fallback
connecting to the center of node.

Additionally, after adapting the width and height of the
original node based on the new type, then the expected visual



(a) Node Substitution Rule

(b) Original Graph

(c) Node Type Substitution Only

(d) After Proper Node Substitution

Fig. 6: Node substitution example.

result shown in figure 6d could be achieved.
3) Properties Substitution: Even though the expected visual

result could be achieved by following the above steps for node
substitution, the nodes of type ISO/Valves/Ball contain prop-
erties lists different from nodes of type ISO/Misc/OPC. The
properties list contains defined Property and each Property in
the list has different value. Therefore, properties adaption is
also necessary to keep the semantic meaning of the node and
furthermore the credibility of the application graph.

The following three options are provided to allow user
chooses how they would like to handle properties substitution
for node in NSR.

• The first option is to completely replace all existing
properties by the properties of the new node type.

• The second option allows user to keep all existing prop-

Algorithm 1 Connectors Mapping
Input: orgConns, newConns
Output: mappedConns

1: mappedConns = {}
2: for orgConn in orgConns do
3: mappedConns[orgConn.id] = -1
4: closestNewConn = minDist(orgConn, newConns)
5: if signEqual(orgConn, closestNewConn) then
6: mappedConns[orgConn.id] = closestNewConn.id
7: end if
8: end for

erties and add Property from new node type if it is not
already in existing properties.

• The third option allows user to keep existing Property
if they are not in the properties list of new node type,
otherwise it will be overwritten.

Since a Property may contain properties as well, the prop-
erties substitution is performed recursively. The substitution
method is summarized as pseudo code in 2 and 3 (the
properties attribute is props).

Algorithm 2 Properties Mapping Main
Input: oldProps, newProps, mgOption
Output: mergedProps

1: mergedProps = []
2: if mgOption == ”option1” then
3: mergedProps = newProps
4: else
5: mergedProps = Alg3(oldProps, newProps, mgOption)
6: end if
7: return mergedProperties

I. Rule Programs

While individual rules can be considered functions which
map graphs to graphs, multiple different rules could be used
in an orchestrated manner as rule programs.

1) Implementation Architecture: As the termination of the
RGA cannot be guaranteed in general [4], rules need to
be designed for a limited application count. Individual rules
within a rule program are expected to be designed to introduce
limited, local changes only, which should be usable by other
rules.

Program nodes and program edges are introduced as struc-
tural elements to be used inside rule program. They define
the states and transitions of an automaton and hence the
execution flow. Figure 7 contains one example, where the
edges and nodes in cyan color are program edges and nodes.
The rule program starts to be executed from the Begin
program node, which has connected program edge with 0
indicating that no execution required from the previous step.
Afterwards, the state Substitute become active, where
the upper rule will substitute any node which has name
To_Be_Substituted and the lower rule will assign name



Algorithm 3 Properties Mapping Iterative
Input: oldProps, newProps, option
Output: mgProps

1: mgProps = deepcopy(oldProps)
2: for prop in newProps do
3: if prop not in mgProps then
4: {if the new prop not exist in old props}
5: mgProps.append(prop)
6: else if prop.props and oldProps[prop].props then
7: {if the new prop and corresponding old prop (obtained

by oldProps[prop]) both contain props}
8: mgProps[prop].props = Alg3(oldProps[prop].props,

prop.props, option)
9: else if option == ”option3” and notEqual(prop, old-

Props[prop]) then
10: {if overwrite when new and old prop are not equal}
11: mgProps[prop] = prop
12: end if
13: end for
14: return mgProps

To_Be_Substituted to any node which is isolated. Both
rules will be executed 5 times maximum. The two rules
connected to the Substitute node could be executed in
any order, and if any of them is executed at least once, then
they will both be attempted to be executed at least once
again. This feature makes sure that the rules connected through
the same program node will be executed exhaustively locally
first. After the Substitute step is done, the Connect
step is performed if the rules connected to Substitute
are executed at least 5 steps in total. The Connect program
node also forms a loop with the Substitute program node,
which indicates that it will loop back to Substitute if
the rule connected are executed at least once (program edge
between Connect and Loop, marked 1).

With this control of the rules attached to the program
nodes and edges, flexibility to execute the modification of
the original graph in intended order is achieved. Figure 9
is another example which correct the direction of edges in
the graph based on the Arrow Symbol neighborhood. If the
direction of the edge does not align with the direction of the
Arrow Symbol, the existing edge will be deleted and a new
edge will be inserted with the correct direction. In the end, the
Arrow Symbol will be removed. One example could be found
in figure 8 which shows before and after the edge direction
correction rule applied to the example graph.

VIII. EXPERIMENT

A. Off-Page Connector Refinement

During todays P&ID engineering processes, P&ID are gen-
erally created within CAE systems. These take the context of a
node into account when being created. P&IDs house different
types of node symbols. One of these are the so called off-page
connectors (OPCs). These are displayed as arrow symbols and

Fig. 7: Rule Program Example

(a) Before Edge Direction Correction

(b) After Edge Direction Correction

Fig. 8: Edge Direction Correction Example.

indicate a connection to another P&ID. During the placement
process of such OPCs, the CAE distinguishes them based on if
they connect two pipes of P&IDs or whether the OPCs connect
wires (signal lines) of P&IDs. Since OPC symbols share the
same visual appearance the properties of whether they are a
piping component or an instrumentation component can only
be deduced by the type of edge connecting to it. In order to



Fig. 9: Rule Program - Edge Direction Correction

fully enrich the OPC node with its intrinsic meaning in CAE
applications a property addition should be done, depending on
the connecting edgeType.

The second application for properties in the scope of the
RGA are common equipments such as valves on P&IDs.
Valves can either be ordinary physical valves in the process
plant or the valves serve as a controlling function the process-
plant. The property of whether a valve has a control function
can however not be deduced from the valve node but rather
for a different part of the application graph. In order to
predict the property controlling function:true/false for a node
(valve) a local subgraph has to be taken into account. The
determination if a valve has a cooling function is derived from
its graph neighborhood. The prediction node in this context it
the first degree neighbor node with the nodeType actuator. The
Actuator is connected via a certain edge. This existence of a
subgraph of node (valve) edge (edgeName) node (actuator)
is the subgraph which serves as a property predictor of the
initial Valve node.

B. Decomposition of Symbols

During creation of P&IDs with legacy Software such a
Bentley Microstations engineers typically are tasked with
delivering a proper P&ID on a graphical basis. This allows
for customization of Symbols on a P&ID for practical reasons
to speed up the creation of P&IDs. A typical example are
flanged valves. Flanged valves are two elements which do not
have the same meaning and can exist without the other. A
process plant can have individual flanges and individual valves.
A combination of these two is also possible. In order to derive
the smallest possible elements of an application graph node-
substitution can be applied. This is relevant due to state of
the art CAE systems considering flanged valves not as one
node but rather as two separate nodes. To achieve this split
of semantic meaning a node has the original flanged valve
node needs to be split in its two base objects. Namely a valve

and a flange. Similarly, a motorized valve can be split into
a motor and a valve. However in order to retain the P&IDs
graph structure edges need to be incorporated into the symbol
split workflow. This scenario is being handles by the RGA via
node substitution and ensures P&IDs can be rebuilt from the
data natively stored in the application graph without additional
data manipulation on the CAE application side.

C. Recognition Based on Context

Two identical looking symbols are differentiated by their
context, resulting in graph-based recognition.

Connector occupancy as a properties/predictor service:
When dealing with OPCs it is important to regard whether
an OPC serves as a inflow indicator to the process or as
a outflow indicator of a process. This distinction cannot be
made based on node appearance as both node types share
the same visual features. It can also not be derived based on
rotation of the node, as inflow and outflow can happened on
either ends of the P&ID document. Thus the RGA can act as
a additional predictor service such as prediction if an arrow
serves as inflow or outflow, based on the connector occupancy
status. If an OPC has connector (id=0) occupied this means
its main property Flow-direction can be considered inflow.
This connector occupancy is the sole possible predictor hint
to deliver successful properties.

IX. FUTURE WORK

A. RDF-Based Implementation

So far, the described RGA has been implemented in a
proprietary environment. Reimplementing the mechanisms in
open frameworks like Apache Jena [5] or rdflib [6] would
allow for simplified integration with other RDF-based sources.

B. Testing Non-Existence

Often, a rule should only apply if a graph is not embedded
in certain other structures. A dedicated node type for non-



existence in the original graph could be introduced to address
this issue.
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