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Abstract:

Dealing with uncertainty is at the heart of financial risk management and asset pricing.

This cumulative dissertation consists of four independent research papers that study

various aspects of uncertainty, from estimation and model risk over the volatility risk

premium to the measurement of unobservable variables.

In the first paper, a non-parametric estimator of conditional quantiles is proposed

that builds on methods from the machine learning literature. The so-called leveraging

estimator is discussed in detail and analyzed in an extensive simulation study. Sub-

sequently, the estimator is used to quantify the estimation risk of Value-at-Risk and

Expected Shortfall models. The results suggest that there are significant differences in

the estimation risk of various GARCH-type models while in general estimation risk

for the Expected Shortfall is higher than for the Value-at-Risk.

In the second paper, the leveraging estimator is applied to realized and implied

volatility estimates of US stock options to empirically test if the volatility risk premium

is priced in the cross-section of option returns. A trading strategy that is long (short)

in a portfolio with low (high) implied volatility conditional on the realized volatility

yields average monthly returns that are economically and statistically significant.

The third paper investigates the model risk of multivariate Value-at-Risk and Ex-

pected Shortfall models in a comprehensive empirical study on copula GARCH mod-

els. The paper finds that model risk is economically significant, especially high during

periods of financial turmoil, and mainly due to the choice of the copula.

In the fourth paper, the relation between digitalization and the market value of US

insurers is analyzed. Therefore, a text-based measure of digitalization building on the

Latent Dirichlet Allocation is proposed. It is shown that a rise in digitalization efforts

is associated with an increase in market valuations.
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Chapter 1

Introduction

1.1 Motivation

Dealing with uncertainty is at the heart of risk management and asset pricing. This con-

cerns not only uncertainty with regard to future price movements but also with regard

to latent factors like financial risk (e.g., measured by the Value-at-Risk or the Expected

Shortfall) and volatility. As these latent factors are not directly observable they have

to be captured via statistical models. Estimates from different models, however, can

vary widely (Danielsson et al., 2016) as they are subject to two types of uncertainty.

First, most models require parameters that have to be estimated from data. This leads

to estimation risk. Secondly, the true data generating process is unknown and might

not be adequately reflected by a particular model, giving rise to model risk (Lönnbark,

2013).

Regarding the estimation risk of popular risk measures, surprisingly little is known

about the uncertainty of Value-at-Risk and Expected Shortfall predictors despite a lot

of research on various other modeling issues. Early work is due to Jorion (1996)

laying out a statistical methodology for analyzing the estimation error in Value-at-

Risk models. Further studies in this vein include, amongst others, Christoffersen and

Gonçalves (2005), Chan et al. (2007), Lan et al. (2010), and Kabaila and Mainzer

(2018). However, all these studies rely on either Monte Carlo simulations, distribu-
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tional assumptions on the Value-at-Risk or Expected Shortfall, or some other kind of

parametric method for measuring estimation risk. This dissertation proposes a differ-

ent non-parametric approach towards quantifying estimation risk that is based on the

cross-section of risk estimates at a given point in time.

The dissertation also investigates the related issue of model risk for Value-at-Risk

and Expected Shortfall models. Existing research focuses mainly on the factors that

control model risk within models. This includes misspecification of the underlying

theoretical models (Green and Figlewski, 1999) and assumptions made about dis-

tributions, parameters, or other model specifications (see, e.g., Hull and Suo, 2002,

Alexander and Sarabia, 2012, Glasserman and Xu, 2014, Boucher et al., 2014). This

dissertation studies a more general problem. Given a large variety of standard Value-

at-Risk and Expected Shortfall models within the financial industry, uncertainty about

the choice of a particular model creates model risk per se. This notion of model risk

as uncertainty on the model choice itself in the presence of a large set of valid can-

didate models is most closely related to Cont (2006) and Danielsson et al. (2016).

The theorem by Sklar (1959) enables the separate modeling of the marginals and the

dependence structure of multivariate return data by means of copula functions. The

dissertation focuses in particular on the contribution of each of these modeling steps to

the overall model risk of multivariate risk models.

While the Value-at-Risk and Expected Shortfall are commonly used throughout the

financial industry, the most basic measure of uncertainty is probably volatility. Given

the prices of equity options, there are two main ways for deriving volatility estimates:

via some model from the returns of the underlying stocks (realized volatility) or from

option prices (implied volatility). Deviations between realized and implied volatil-

ity are then commonly referred to as the volatility risk premium. However, although

volatility is an important driver of option prices and options themselves are ubiquitous

in financial risk management, there is yet no conclusive answer on the role volatility

and volatility risk play in the cross-section of option returns (see, e.g., Driessen et al.,

2009, Carr and Wu, 2009 and Bakshi and Kapadia, 2003, Goyal and Saretto, 2009, Cao
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and Han, 2013, Cao et al., 2019, Hu and Jacobs, 2020). This dissertation proposes a

new approach for building long-short portfolios to exploit the volatility risk premium

in the cross-section of option returns. Therefore, options with “extreme” deviations

between implied and realized volatility are identified non-parametrically.

A key not only for determining these long-short portfolios but also more generally

for dealing with uncertainty in the statistical relationship between a dependent and

explaining variables is modeling their joint probability distribution. In the empirical

literature, conditional means are predominantly used for capturing the dependence be-

tween a variable of interest and its covariates. This approach, however, neglects many

information about the underlying joint probability distribution as the conditional mean

only allows to assess the average relationship between the variables. There are many

problems where more information about the distribution of an independent variable

given that the covariates assume a particular value are needed. This is the application

domain of quantile regression. Conditional quantiles have many favorable properties.

For example, they can capture conditional asymmetry as well as heteroskedasticity and

are more robust to outliers and censored data. Beginning with the introduction of quan-

tile regression in the seminal paper by Koenker and Bassett (1978), there has been a lot

of research in this field of study. Several extensions to the simple linear quantile esti-

mator have been proposed (e.g., Koenker et al., 1994, Yu and Jones, 1998, Koenker and

Mizera, 2004, Koenker, 2011). Other approaches include, among others, semiparamet-

ric quantile regression, kernel estimators, and methods for time series (e.g., Heagerty

and Pepe, 1999, Li and Racine, 2008, Chen et al., 2009). Furthermore, machine learn-

ing based estimators (e.g., Bhattacharya and Gangopadhyay, 1990, Hwang and Shim,

2005, Meinshausen, 2006, Zheng, 2012, Charlier et al., 2015b, Rothfuss et al., 2019)

have shown promising results. This dissertation introduces a new non-parametric es-

timator of conditional quantiles that relies on two methods from the field of machine

learning: optimal quantization via the Competitive Learning Vector Quantization algo-

rithm by Kohonen (1982, 1989) for grouping similar observations and leveraging for

aggregating an ensemble of estimators to a stronger one.
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Machine learning techniques have proven useful in various other fields. Over the

last decades, advances in models and architectures, the increased availability of large

datasets, and most importantly the rise in computing power have led to the advent

of machine learning methods in countless areas of daily life and scientific research. In

particular, machine learning methods are nowadays frequently used in finance for tasks

such as portfolio construction and asset pricing (e.g., Moritz and Zimmermann, 2016,

López de Prado and Lewis, 2019, Kelly et al., 2019, Goyenko and Zhang, 2020, Gu

et al., 2020, Ivas, cu, 2021, Bali et al., 2021, Bianchi et al., 2021) and time series fore-

casting (e.g., Rapach et al., 2013, Vedavathi et al., 2014, Rossi, 2018, Sirignano and

Cont, 2019, Chen et al., 2020a, Freyberger et al., 2020, Bali et al., 2020, Kozak et al.,

2020). These studies rely on both supervised and unsupervised learning algorithms. In

supervised learning, algorithms are trained on data that are labeled while in unsuper-

vised learning the goal is to find patterns or draw inference from data that are not. This

dissertation relies on methods from the realm of unsupervised machine learning where

the above mentioned Competitive Learning Vector Quantization algorithm is used for

clustering and a probabilistic model from the field of textual analysis is employed for

making inference about unobserved factors.

While in many industries machine learning has gained popularity only in recent

years, digitalization in general has already radically transformed many economic sec-

tors. The insurance industry, however, has yet to realize the full potential of digitaliza-

tion over the whole insurance value chain (cf. Eling and Lehmann, 2018, Cappiello,

2020). This becomes all the more important considering the competitive pressure in

the insurance industry that is increased by the zero interest rate policy, the aftereffects

of the great financial crisis, and rising customer expectations. At the same time, there

is only little empirical evidence on the effect of digitalization on firm outcomes in

the insurance industry (see, e.g., Scott et al., 2017, Bohnert et al., 2019, Hanelt et al.,

2020). One reason for this is that digitalization is a rather general concept making

it difficult to quantify the degree to which insurers digitalize. A possible way of ap-

proaching this problem is to analyze the annual reports of insurance companies using
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algorithms from the field of textual analysis. Over the last years, there has emerged

a growing body of literature on textual analysis in finance (e.g., Hanley and Hoberg,

2010, Jegadeesh and Wu, 2013, Hoberg et al., 2014, Hoberg and Maksimovic, 2015,

Jegadeesh and Wu, 2017, Ke et al., 2019). Machine learning provides possibilities that

go far beyond mere word list approaches. Specifically, the Latent Dirichlet Allocation

by Blei et al. (2003) allows inference to be drawn on the thematic structure within a

collection of documents. This makes this probabilistic model a popular choice within

the literature on machine learning and textual analysis in finance (see, e.g., Goldsmith-

Pinkham et al., 2016, Ganglmair and Wardlaw, 2017, Hoberg and Lewis, 2017, Huang

et al., 2018, Lopez-Lira, 2019, Lowry et al., 2020, Bellstam et al., 2020). In this disser-

tation, the Latent Dirichlet Allocation is employed to obtain a vector of topic loadings

for each annual report that is subsequently used to construct a text-based measure of

digitalization.

The dissertation consists of four self-contained research papers (Chapters 2-5),

which can be read independently from each other. In Chapter 2, a new estimator of

conditional quantiles is introduced that is based on ideas from machine learning, non-

parametric, and can be applied to multivariate covariates. The estimator is then used

to derive a measure of estimation risk for Value-at-Risk and Expected Shortfall mod-

els. In Chapter 3, this new estimator is applied to equity option data to analyze if

the volatility risk premium is priced in the cross-section of option returns. Chapter

4 complements the empirical analysis from Chapter 2 by studying the model risk of

multivariate Value-at-Risk and Expected Shortfall models (without relying on machine

learning methods). Finally, in an additional paper (Chapter 5), a measure of digitaliza-

tion based on the annual reports of insurance companies is proposed and its relation

to firm outcomes is analyzed. In the following sections named after the corresponding

chapters, more detailed information on the papers along with their main findings are

provided.
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1.2 Conditional quantile estimation via leveraging op-

timal quantization

In Chapter 2, a new non-parametric estimator of conditional quantile curves called the

leveraging estimator is proposed. The estimator is based on two concepts from the

machine learning literature: optimal quantization via the Competitive Learning Vector

Quantization algorithm by Kohonen (1982, 1989) and leveraging.

The goal of optimal quantization is to replace a continuous random variable by an-

other random variable that assumes only finitely many values and minimizes some kind

of approximation error. A stochastic algorithm for performing optimal quantization on

a finite sample of data is the Competitive Learning Vector Quantization algorithm. For

the task of conditional quantile estimation, the algorithm is applied to the covariates

yielding groups of similar observations. In each of these groups, the empirical (un-

conditional) quantiles of the response variable are computed. This is essentially the

estimator introduced by Charlier et al. (2015b). Chapter 2 proposes the construction

of an ensemble of these estimators where the single ensemble members are iteratively

combined such that the performance of the aggregated estimator is improved stepwise.

This concept is known as leveraging. The proposed estimator involves several hyper-

parameters that govern the extent to which it adapts to the data. Therefore, the paper

also introduces a data-driven hyperparameter selection procedure. The theoretical de-

scription and discussion of the estimator is concluded by providing convergence results

as the number of observations and the number of clusters in the Competitive Learning

Vector Quantization algorithm go to infinity.

In an extensive simulation study, the performance of the leveraging estimator is

analyzed in detail and compared to competing algorithms. For univariate covariates,

the leveraging estimator produces conditional quantile curves that are both smooth and

adapt well to the true curves of the underlying data generating model, even in the edges

of the covariates’ support. Additionally, the integrated squared errors of the leveraging
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algorithm are very competitive among the considered estimators. The simulation study

is then extended to account for multivariate covariates of up to four dimensions. Again,

the estimator yields competitive integrated squared errors.

The analysis of the leveraging estimator is complemented by an empirical study

where the estimator is used to derive a measure of estimation risk for Value-at-Risk

and Expected Shortfall models in the US equity market. More , the estimator is applied

to one day ahead Value-at-Risk and Expected Shortfall forecasts for the constituents

of the S&P Composite 1500 Index derived from GARCH(1,1)-type models at a fixed

date. For a given model, the quantiles of these parametric risk estimates conditional

on their non-parametric counterparts obtained via historical simulation are then esti-

mated. Based on the conditional 25 % and 75 % quantile curves the interquartile range

averaged over all S&P Composite 1500 Index constituents is calculated and proposed

as a measure of estimation risk. This approach of determining estimation risk non-

parametrically from the cross-section of risk estimates without relying on Monte Carlo

methods is new to the literature.

The paper finds that estimation risk varies substantially over the sample period Jan-

uary 2000 until March 2021 and is especially pronounced in the aftermath of the dot-

com bubble, during the great financial crisis, and during the 2020 stock market crash

due to the COVID-19 pandemic. When comparing various GARCH-type models, the

EGARCH model by Nelson (1991) is associated with the highest estimation risk for

both the Value-at-Risk and the Expected Shortfall while the GARCH model by Boller-

slev (1986) emerges as the model with the lowest estimation risk. Overall, the results

suggest that the estimation risk for the Expected Shortfall is in general higher than

for the Value-at-Risk, regardless of the employed GARCH-type model. When condi-

tioning on the realized volatility instead of the risk measures obtained via historical

simulation, the results are similar for the Expected Shortfall but somewhat lower for

the Value-at-Risk. This highlights the main weakness of the employed approach for

measuring estimation risk, namely the reliance on a non-parametric benchmark.

Instead of computing a measure of estimation risk, the estimated conditional quan-
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tile curves can be used directly to derive confidence intervals for the risk forecasts of a

particular stock at a particular date. Aggregating these intervals over time yields con-

fidence bands. The paper illustrates and discusses both average confidence bands and

confidence bands for single stocks. As the interpretation of both the introduced mea-

sure of estimation risk and the confidence bands is somewhat delicate, the empirical

study should be primarily seen as an illustration of the applicability of the proposed

estimator in a risk management context. Furthermore, the non-parametric nature of the

leveraging estimator and its applicability to multiple dimensions make it an interesting

choice for many other applications. More generally, the paper argues that conditional

quantiles can provide valuable insights beyond the commonly used conditional average

and therefore should become a standard tool in empirical research.

1.3 Cross-section of option returns and the volatility

risk premium

Chapter 3 provides another application of the leveraging estimator from Chapter 2.

The estimator is applied to realized and implied volatility estimates of US stock op-

tions between January 1996 and June 2019 to empirically test if the volatility risk

premium is priced in the cross-section of option returns. Therefore, a long-short strat-

egy that is based on the conditional 10 % and 90 % quantile curves of implied volatility

conditional on realized volatility is implemented. Using conditional quantiles helps in

capturing the non-linear relationship between implied and realized volatilities thereby

avoiding biases stemming from systematic differences in realized volatility that are

known to affect the cross-section of option returns (cf. Cao and Han, 2013, Hu and Ja-

cobs, 2020). The obtained results provide strong and robust evidence for the existence

of such a premium in the cross-section of option returns.

A trading strategy that is long (short) in high (low) deviations between realized and

implied volatilities delivers positive returns that are both statistically and economically
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significant. This applies to call and put delta-hedged and raw option strategies for at

the money options. For example, average monthly delta-hedged returns of 1-month at

the money options are 2.0 % for call and 1.7 % for put options with monthly Sharpe

ratios of 0.842 and 0.796, respectively. When additionally conditioning on option mon-

eyness, the results can be extended to options of arbitrary moneyness. For example,

a long-short delta-hedged trading strategy for options of arbitrary moneyness yields

average monthly returns of 2.4 % for call and 2.5 % for put contracts with monthly

Sharpe ratios of 0.816 and 0.844, respectively. The results are robust to the inclusion

of dividend-paying stocks, alternative estimators of conditional quantiles, reasonable

transaction costs (delta-hedged returns), the expansion of the long-short portfolios to

less extreme options, different levels of trading volume, and controlling for skewness

and kurtosis of the underlyings’ return distribution.

The key to these findings, distinguishing the paper from previous work, is the use of

conditional quantiles instead of conditional portfolios sorts or regression techniques.

While conditional portfolio sorts are frequently used throughout the literature, they can

usually not control for more than two characteristics at the same time due to the curse

of dimensionality. The use of machine learning techniques by the leveraging estimator

allows for a more data-efficient modeling of the relevant characteristics and makes the

inclusion of more covariates feasible. At the same time, the approach can be seen as a

possible solution to the empty portfolio problem that arises in standard portfolio sorts

when sorting on too many variables (see, e.g., Goyal, 2012). Nevertheless, the number

of covariates one can control for with the leveraging estimator is still limited as the

curse of dimensionality, albeit later, comes into effect in higher dimensions.1 This is

typically the field of application of cross-sectional regressions. Unfortunately, such re-

gressions only provide information on long-short trading strategies that involve trading

in all securities with portfolio weights that may vary widely. However, in empirical as-

set pricing one is typically interested in trading strategies that only involve a relatively

small number of assets and are easy to interpret. While the proposed non-parametric

1In the corresponding paper, up to four covariates are included at the same time.
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approach cannot account for as many covariates as cross-sectional regressions, it yields

a trading strategy that is easy to implement and interpret and makes no assumption on

the functional form of the relationship between implied and realized volatility. Most

notably, the approach is not limited to the study of options but is sufficiently general to

be applied to other assets as well.

1.4 Marginals versus copulas: Which account for more

model risk in multivariate risk forecasting?

Chapter 4 complements the empirical analysis of estimation risk in Chapter 2 by an-

alyzing the model risk of multivariate Value-at-Risk and Expected Shortfall models.

The focus of the chapter is on copula GARCH models that provide a very flexible

way for modeling multivariate time series and risk forecasts (see, e.g., Jondeau and

Rockinger, 2006, Patton, 2006, Aas and Berg, 2009, Fischer et al., 2009, Brechmann

and Czado, 2013, Jiang et al., 2018, Chabi-Yo et al., 2018). This class of models is

based on the theorem by Sklar (1959) stating that the modeling of the marginals can

be separated from the modeling of the dependence structure of a multivariate probabil-

ity distribution. GARCH-type models are employed to filter the univariate time series

while copulas are subsequently used to model the dependence between the different

assets in a portfolio. Combining various copula functions and GARCH-type models

yields a large number of model specifications that produce differing forecasts for the

same risk measure. Model risk now arises from the uncertainty on the model choice in

the presence of many possible alternative models (cf. Danielsson et al., 2016).2

The paper proposes the usage of the mean absolute deviation of the various risk

forecasts (for a given risk measure at a given day) as a measure of model risk. As banks

are required by the Basel III regulation to backtest their (internal) market risk models,

for them uncertainty on the model choice is essentially uncertainty on the choice of

2Note that the goal of the paper is not to identify an optimal model or rank models by their forecasting
accuracy like, e.g., in Santos et al. (2013) but to quantify the extent of non-conformity of risk forecasts
for the same risk measure.
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models that have not been rejected in backtests. Therefore, at a given day only those

risk forecasts enter in the calculation of the model risk measure that were not rejected

by a standard backtest. Risk forecasts by copula GARCH models are produced in a

two step procedure by first modeling the marginals and subsequently the multivariate

dependence structure. Consequently, the question which of these two steps contributes

more to the overall model risk arises. To answer this question, different groups of

models are analyzed where either the marginals, the copula, or neither are fixed.

The empirical analysis is based on returns from a well diversified portfolio consist-

ing of equity, bond, commodity, and real estate indices of developed and emerging

markets from January 2001 until December 2018. Overall, 180 copula GARCH mod-

els are employed for producing one day ahead risk forecasts. The focus is on the 99 %

Value-at-Risk and the 97.5 % Expected Shortfall in line with the Basel II and Basel

III market risk regulations. Over the entire sample period, model risk is on average

0.165 % (of the portfolio value) for Value-at-Risk and 0.092 % for Expected Shortfall

forecasts, while daily model risk is quite volatile with a standard deviation of more

than half the average model risk. Model risk is especially high during times of finan-

cial turmoil. For example, during the years 2008 and 2009 the average model risk is

0.286 % and 0.145 % for the Value-at-Risk and the Expected Shortfall, respectively,

which is more than double as high as the average over the period before 2008. This

finding, though not surprising, can only partly be explained by an increase in volatility

as the average increase in model risk is higher than the average increase in the ab-

solute level of the risk forecasts. A possible explanation for this disproportionately

high increase of model risk in periods of financial crisis is that models treat history

and shocks quite differently such that a changing statistical regime can lead to higher

disagreements between risk forecasts (Danielsson et al., 2016).

Turning to the question concerning the contribution of the modeling of the marginals

and copulas to the overall model risk, the results suggest that model risk is mainly

driven by the modeling of the copulas. When fixing the marginal distribution, the

average model risk is 0.157 % for Value-at-Risk and 0.068 % for Expected Shortfall
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forecasts. Model risk is significantly lower when fixing the copula instead (0.052 %

for Value-at-Risk and 0.058 % for Expected Shortfall forecasts). This main finding is

robust to other choices of the model risk measure, different confidence levels for the

risk measures (except for the Expected Shortfall on the 95 % confidence level), and

randomly generated portfolio weights. While the results also hold when not consid-

ering any backtest before determining the model risk at a given day, in case of the

Value-at-Risk the results are not robust to considering an alternative backtest (the dy-

namic quantile backtest by Engle and Manganelli (2004) instead of the duration based

backtest by Christoffersen (2004)). This highlights the importance of the choice of a

particular backtest.

As a possible means to reduce model risk the usage of the model confidence set

procedure by Hansen et al. (2011) is proposed. This iterative procedure yields a set

of models that contains the best model with a given confidence. Narrowing down the

set of candidate models by applying the procedure to all models that have not been

rejected by the backtests leads to significant reductions in model risk, in particular for

the Value-at-Risk. Over the entire period, the average model risk is reduced to 0.127 %

for the Value-at-Risk and 0.089 % for the Expected Shortfall.

Summing up, the paper provides new empirical insights on the contribution of the

modeling of the marginals and the multivariate dependence structure on the model risk

of copula GARCH models. The findings are of particular importance for practitioners

and highlight the need to especially pay attention to the modeling of the multivariate

dependence structure.

1.5 Estimating the relation between digitalization and

the market value of insurers

Chapter 5 studies the relation between digitalization and the market value of US insur-

ance companies.3 Therefore, a new measure of digitalization is proposed. The measure

3The corresponding paper was published in Fritzsch et al. (2021).
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is based on the distribution of (latent) topics in the annual reports of US insurers that

is extracted via the Latent Dirichlet Allocation.

The Latent Dirichlet Allocation is a probabilistic model that has only recently been

introduced to the finance literature with Huang et al. (2018) being one of the first

applications in this field. The Latent Dirichlet Allocation yields a finite set of com-

mon topics that best reflect a collection of documents. In contrast to commonly used

word list approaches where the lists have to be provided by the researcher, these top-

ics and corresponding word distributions arise endogenously from the data. That is,

the underlying machine learning algorithm determines the words that are most suitable

to discriminate between documents and topics in an unsupervised fashion. Applying

the model to a specific document yields a vector of topic loadings that represent how

intensively each topic is discussed in the report and serve as a low-dimensional rep-

resentation of the document (cf. Blei et al., 2003). The topic distribution inside each

report is then compared to the topic distribution within a reference document on dig-

italization (Bohnert et al., 2019) via the Kullback Leibler divergence to proxy for the

extent to which insurers digitalize.

This digitalization measure and its relation to the market value of US insurers is

subsequently analyzed in an empirical study on 86 publicly-listed US insurance com-

panies between 2006 and 2015 available via Thomson Reuters Datastream. The results

from a multivariate ordinary least squares model including firm and time fixed effects

suggest that an increase in the digitalization measure is strongly related to an increasing

market value and market-to-book value of US insurance companies. That is, market

participants expect more digitalized insurance companies to exhibit a higher future

profitability and consequently firm value. More detailed, an increase in the digitaliza-

tion measure by one standard deviation is associated with an increase of the market

value by about 7.48 % and of the market-to-book value by about 8.04 % in the sub-

sequent year. The estimation results are robust to different specifications of the Latent

Dirichlet Allocation (the number of topics) and the sentiment in which the annual re-

ports are written. Furthermore, the results neither depend on the choice of the reference
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document nor the particular calculation of the digitalization measure.

There are some limitations to the approach outlined in the paper. First, the La-

tent Dirichlet Allocation model requires some assumptions, most notably the bag of

words assumption, that might be considered problematic. However, while there exists

a variety of extensions to the original model addressing some of its shortcomings, the

question which topic model to use when being confronted with a new set of texts and a

new task is still an open question in topic modeling (Blei, 2012). Second, the proposed

approach has limitations in discriminating between digitalization and mere innovation

because these two concepts are closely related to each other. Finally, the regression re-

sults might be subject to endogeneity due to reverse causality. Consequently, a causal

link cannot be established unequivocally.

The rise of machine learning methods in the field of textual analysis in combination

with massive increases in computational power provides researchers and practitioners

with powerful tools for gaining new insights from large amounts of textual data. In

this sense, the proposed approach can be seen as a first step towards a new empirical

analysis of the impact of digitalization in the insurance sector and beyond.
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Chapter 2

Conditional Quantile Estimation via

Leveraging Optimal Quantization

2.1 Introduction

It is standard to analyze the statistical relationship between dependent and explaining

variables via the conditional mean function. For this purpose, many methods have

been introduced with the (linear) ordinary least squares estimator still being the most

frequently used one. Machine learning algorithms are, in this regression context, also

typically concerned about estimating conditional means or closely related quantities.

However, the conditional mean only models the average relationship between variables

and there are many problems where more information about the conditional distribu-

tion of a (scalar-valued) random variable Y given that a random vector of covariates X

assumes a particular value are needed. This is the application domain of quantile re-

gression, which provides a more complete picture of conditional distributions. Indeed,

conditional quantiles (e.g., median or quartiles) can capture heteroskedasticity, con-

ditional asymmetry, and can also yield conditional prediction intervals and reference

curves (hypersurfaces for multivariate covariates). Furthermore, conditional quantiles

are more robust to outliers and censored data. These favorable features have led to a

widespread use of quantile regression in many different areas, in particular in finance.
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Quantile regression was introduced in the seminal paper by Koenker and Bassett

(1978) expanding the ordinary least squares estimator to linear quantile regression. In

this paper, we introduce a novel non-parametric estimator called leveraging estima-

tor. Therefore, we rely on two methods from the field of machine learning: optimal

quantization via the Competitive Learning Vector Quantization (CLVQ) algorithm by

Kohonen (1982, 1989) for grouping similar observations and leveraging for combin-

ing an ensemble of estimators to a stronger estimator. Optimal quantization is about

replacing a continuous random variable by another random variable that assumes only

finitely many values such that some quantization error is minimized. The quantization

of the covariates yields groups of observations for which the empirical quantiles of the

response variable can be calculated. This is essentially the estimator introduced by

Charlier et al. (2015b).

We propose to construct an ensemble of these estimators by iteratively combining

the ensemble members such that in each step the performance of the aggregated es-

timator is improved. This concept is called leveraging.4 Furthermore, we propose a

data-driven procedure for selecting the hyperparameters of the algorithm and discuss it

in detail. We provide convergence results for the proposed estimator and compare it to

the base estimator and other competitors in an extensive simulation study. In the case

of univariate covariates, we find that the proposed estimator produces smooth quantile

curves that adapt well to the true conditional quantile curves of the underlying data

generating model and yields integrated squared errors (ISEs) that are very competitive

among the considered algorithms. The estimator generalizes naturally to multivariate

covariates. We extend the simulation study to consider up to four dimensional covari-

ates and again yield competitive ISEs.

In an empirical study, we apply the leveraging estimator to one day ahead Value-

at-Risk (VaR) and Expected Shortfall (ES) forecasts to study the associated estima-

tion risk in the broad US equity market across time. Therefore, we compute VaR

4The concept of leveraging is very similar to boosting and the terms are often used interchangeably, see
Section 2.3 for more details.
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and ES estimates for each constituent of the S&P Composite 1500 Index via various

GARCH(1,1)-type models based on log-returns from January 2000 until March 2021.

For a given point in time and a given VaR or ES model, we then derive conditional

quantile curves of the (parametric) risk estimates conditional on their non-parametric

counterparts obtained via historical simulation. Subsequently, estimation risk is quan-

tified as the average interquartile range (iqr) of the conditional quantiles. Additionally,

the procedure yields non-parametric confidence bands for VaR and ES forecasts at the

stock level. There is substantial variation in estimation risk over time. Estimation

risk is especially high in the aftermath of the bursting dotcom bubble, during the great

financial crisis, and during the 2020 stock market crash. Additionally, we find that

among the considered GARCH-type models the GARCH model exhibits the lowest

estimation risk for both VaR and ES, while the EGARCH model is associated with

the highest estimation risk. Furthermore, the results suggest that estimation risk is in

general higher for the ES than for the VaR. When determining the estimation risk of

the GARCH model by conditioning on realized volatility (RV) instead of historical

simulation ES/VaR we obtain similar values for the ES and somewhat lower values for

the VaR.

The paper is related to a growing body of literature on the estimation of conditional

quantiles. Starting with the introduction of the linear quantile estimator by Koenker

and Bassett (1978) there has been a lot of research on quantile regression. Several

extensions to the simple linear model have been proposed, e.g., via quantile smoothing

splines (Koenker et al., 1994, Koenker and Mizera, 2004), additive models (Koenker,

2005, 2011), and local linear quantile regression (Fan et al., 1994, Yu and Jones, 1998).

Further approaches (among many others) include semiparametric quantile regression

(Heagerty and Pepe, 1999), quadratic programming based estimators (Takeuchi et al.,

2006), kernel estimators (Li and Racine, 2008, Li et al., 2013), non-crossing estimators

(Dette and Volgushev, 2008), single-index quantile regression (Wu et al., 2010), local

quantile regression (Spokoiny et al., 2013), copula based estimators (Noh et al., 2015,

Kraus and Czado, 2017), and methods for time series (e.g., Chen et al., 2009, Xiao
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and Koenker, 2009). For a more complete coverage of (earlier) methods see also the

monograph by Koenker (2005).

In the machine learning context, Bhattacharya and Gangopadhyay (1990) introduce

nearest-neighbor estimators while Hwang and Shim (2005), Meinshausen (2006), and

Zheng (2012) propose estimators based on support vector machines, random forests,

and gradient boosting, respectively. More recently, Charlier et al. (2015b,a) derive an

estimator based on the concept of optimal quantization via the CLVQ algorithm and

Rothfuss et al. (2019) propose neural network based estimators.

Predicting conditional quantiles of a random variable given that some covariates as-

sume a particular value has found numerous applications, in particular in finance. For

example, Bouyé and Salmon (2009) study dependencies in the foreign exchange mar-

ket, Spokoiny et al. (2013) analyze tail dependence in the Hong Kong stock market,

and Adrian and Brunnermeier (2016) introduce a measure of systemic risk, the CoVaR,

that is calculated from the conditional loss distribution of one financial institution con-

ditional on other institutions being under distress.

As in the empirical application in this paper we analyze estimation risk of GARCH-

type models, this paper is also related to the literature on estimation risk in risk models.

Interestingly, although there is a lot of research on different modeling issues, only lit-

tle is known about the uncertainty of VaR and ES predictors. There are some papers

that focus on how uncertainty in risk estimates influences the accuracy of VaR and ES

backtests (e.g., Escanciano and Olmo, 2010, Lönnbark, 2013), coverage levels of VaR

(Figlewski, 2003), or how VaR estimators should be corrected for estimation errors

to avoid underestimation of the portfolio risk (Lönnbark, 2010). However, this pa-

per aims to directly quantify estimation risk in a key figure and to provide confidence

bands. Early research in this direction includes work by Jorion (1996) laying out the

statistical methodology for analyzing estimation errors in VaR models, and Christof-

fersen and Gonçalves (2005) and Chan et al. (2007) providing confidence bands around

point VaR and ES forecasts. Further studies in this vein include Gao and Song (2008),

Lan et al. (2010), and Kabaila and Mainzer (2018). However, all these studies hinge
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on either Monte Carlo simulations, distributional assumptions on VaR or ES, or some

other kind of parametric method towards measuring estimation risk. This paper pro-

poses a different approach that is based on the cross-section of risk estimates at a given

point in time.

The paper makes two main contributions. First, we introduce a novel estimator of

conditional quantiles that yields competitive quantile estimates and generalizes natu-

rally to multiple dimensions. In an extensive simulation study, we illustrate the added

value of leveraging an ensemble of quantization-based estimators. Second, in an em-

pirical application we study the estimation risk of various GARCH-type models in the

US equity market via a non-parametric approach that does not rely on Monte Carlo

simulations and provide confidence bands for single stocks.

The remainder of the paper is organized as follows. Section 2.2 introduces the con-

cept of optimal quantization along with the CLVQ algorithm. In Section 2.3, we derive

the proposed estimator and discuss the effect and the data-driven choice of the em-

ployed hyperparameters in Section 2.4. In Section 2.5, an extensive simulation study

for both univariate and multivariate covariates is performed. Subsequently, the useful-

ness of the estimator is studied in an empirical application in Section 2.6. Section 2.7

concludes.

2.2 Optimal quantization

In this section we introduce the concept of Lp-optimal quantization of random vari-

ables and the related concept of Voronoi tessellations along with basic existence and

convergence results. Furthermore, we present a stochastic gradient algorithm for per-

forming optimal quantization in the finite sample case. Optimal quantization addresses

the problem of finding the (in some way) best discrete approximation of a continuous

random variable X. That is, for N ∈ N one aims to replace X by another random

variable X̃N that assumes at most N pairwise distinct values and minimizes some er-

ror functional. The concept of Lp-optimal quantization is not new but has been barely
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used in statistics (Charlier et al., 2015b). A first extensive treatment of the topic can be

found in Zador (1964).

We start by introducing some notation. Let X denote a d-dimensional random vari-

able with distribution PX on the probability space (Ω,A, P). Let further p ≥ 1 be such

that the Euclidean norm of X is in Lp. That is, we require ||X||p < ∞, where

||X||p :=
( ∫
Ω

|X|pdP
)1/p

(2.1)

with | · | denoting the Euclidean norm on Rd. For N ∈ N the aim of optimal quantization

is to find a random variable X̃N assuming at most N pairwise distinct values such that

the Lp-norm quantization error ||X − X̃N ||p is minimized. This problem is equivalent to

finding a set of points ΓN = {ξ1, ξ2, . . . , ξN} ⊂ R
d which we refer to as quantizers5 such

that the Lp-norm quantization error ||X − Pro jΓN (X)||p is minimized, where Pro jΓN (X)

is defined as the projection of X on the nearest point (in the Euclidean norm) of the

N-grid ΓN . In the sequel we will denote such a grid simply as optimal N-grid.

Each grid ΓN gives rise to a Voronoi tessellation C = C(ΓN) of Rd. As the concept

of a Voronoi tessellation is crucial for an intuitive understanding of the quantization

method employed in this paper we provide a formal definition. We say C = (C j)N
j=1 is

a Voronoi tessellation of the N-grid ΓN = {ξ1, . . . , ξN} ⊂ R
d if and only if (C j)N

j=1 is a

Borel partition satisfying

C j ⊂
{
x ∈ Rd

∣∣∣ |ξ j − x| = min
1≤i≤N

|ξi − x|
}

for all 1 ≤ j ≤ N.

The projection Pro jΓN (X) of X on the N-grid ΓN can than be expressed in terms of the

Voronoi tessellation C = (C j)N
j=1 as

Pro jΓN (X) =
N∑

j=1

ξ jIC j(X), (2.2)

5In the literature the term quantizer is also sometimes used to denote the map of X to its quantized
version X̃. However, in this paper we restrict the usage of the term to the points in the optimal N-grid.
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where IC j denotes the indicator function of the set C j (Bally et al., 2005).

The existence of an optimal N-grid is ensured by Abaya and Wise (1984) under the

assumption that the distribution PX is continuous. Even though an optimal N-grid ΓN

might not be unique,6 the convergence of the sequence
(
||Pro jΓN (X)− X||p

)
N∈N towards

zero can easily be established as a consequence of Lebesgue’s dominated convergence

theorem, see the Appendix for details. For results on the rate of convergence we refer

to Graf and Luschgy (2002).

Although existence of an optimal N-grid is guaranteed for continuous distributions,

we are still left with the problem of actually finding an optimal N-grid. Closed form

solutions only exist in very specific situations, therefore we rely on a stochastic gra-

dient algorithm for determining a grid based on a finite sample of observations. The

algorithm can be specified for arbitrary p ≥ 1. However, in the sequel we focus on the

most common case p = 2 for which convergence results are much more satisfactory

than for arbitrary p ≥ 1, see Pagès (1998) for more details. Restricting to p = 2 leads

to the CLVQ algorithm, also known as Kohonen algorithm with 0 neighbors, which

has emerged in the mid-1980s as the degenerate version of self-organizing algorithms

(Kohonen, 1982, 1989, Bouton and Pagès, 1997, Pagès and Printems, 2003). The algo-

rithm can be understood as a special case of an artificial neural network where weight

vectors are adjusted based on competitive learning (Grossberg, 1976, 1987). CLVQ

tries to represent the feature space by a set of N so-called prototypes. These prototypes

are determined iteratively according to the following intuition. An input vector is pre-

sented to all N neurons to determine the neuron with the minimum distortion between

its weight and the input vector. For the winning neuron the weight is then adjusted

towards the input vector (Ahalt et al., 1990). More formally, the algorithm proceeds as

follows: Let (x j) j∈N ⊂ R
d be observations generated independently from the distribu-

tion PX. The initial N-grid is defined as the first N input vectors with pairwise distinct

6Let for example ΓN be an optimal N-grid for a two-dimensional random variable X following a multi-
variate normal distribution with expectation 0 and Σ being equal to the identical matrix. Rotating ΓN

around (0, 0) by an arbitrary angle again yields an optimal N-grid for X.
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entries. At iteration t ∈ N the algorithm is presented a new input vector xt
7 and the

current grid is updated according to

ξ(t+1)
j :=


ξ(t)

j − δt(ξ
(t)
j − xt), if |ξ(t)

j − xt| = min1≤i≤N |ξ
(t)
i − xt|

ξ(t)
j , otherwise,

∀1 ≤ j ≤ N, (2.3)

where | · | denotes the Euclidean norm and (δt)t∈N the learning rate (Bouton and Pagès,

1997). At each point in time, only one prototype of the current grid is updated to better

represent the observed data where the degree of adaptation is governed by the learning

rate. Typically, the learning rate is reduced monotonously to zero during the learning

process. The grids provided by the CLVQ algorithm are based on a finite sample

of observations and are therefore most likely not optimal in the Lp sense. However,

Pagès (1998) provides results for the convergence of the grids provided by the CLVQ

algorithm to optimal grids with the number of iterations going to infinity.8 We further

refer to Charlier et al. (2015b) for a discussion of these results.

2.3 Conditional quantiles through leveraging optimal

quantization

In this section we propose a new non-parametric estimator for conditional quantiles

called leveraging estimator. Therefore we combine the concept of optimal quantiza-

tion from the previous section with a machine learning approach called leveraging.

Leveraging is an ensemble method very similar to boosting that ”combine[s] simple

’rules’ to form an ensemble such that the performance of the single ensemble member

is improved” (Meir and Rätsch, 2003, p. 118). Following this approach, we update

the proposed estimator in an iterative manner. Therefore, at each iteration step data

7For notational convenience, after making use of N input vectors for defining the initial grid we discard
the remaining indexes and start counting at 1 again.

8To make use of convergence results for the CLVQ algorithm we assume that the learning rate δt is a
(0, 1)-valued sequence satisfying

∑∞
t=1 δt = ∞ and

∑∞
t=1 δ

2
t < ∞. A natural choice is δt =

1
t (Bally et al.,

2005).
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weights are readjusted to give more weight to observations for which the current es-

timator produces a high estimation error, and less weight to observations associated

with a low estimation error.9

In Section 2.3.2 we introduce an estimator based on the whole distribution of X.

This is, however, infeasible in practice. Therefore, based on this infeasible estimator

we derive an estimator for the finite sample case in Section 2.3.3. We start with some

notation.

2.3.1 Notation

In order to introduce the leveraging estimator we first define the conditional quantile

function qα(·). Let therefore (X,Y) denote a (d + 1)-dimensional random variable on

the probability space (Ω,A, P), where Y is a scalar response and X is a d-dimensional

random vector of covariates. For α ∈ (0, 1) and x ∈ S X with S x denoting the support

of X we set

qα(x) := inf{y ∈ R| F(y|x) ≥ α}, (2.4)

where F(·|x) denotes the conditional cumulative distribution function of Y given X = x.

Throughout the section, we fix λ ∈ (0, 1), γ ∈ [λ, 1), p ≥ 1, α ∈ (0, 1) and N ∈ N

with ⌈N · γ⌉ < N.10 To ensure that all integrals are finite we assume Y ∈ L1 and to

guarantee the existence of an Lp-optimal N-grid we further assume that the Euclidean

norm of X is in Lp (see Equation (2.1)) and that the distribution PX of X is continuous

(cf. Abaya and Wise, 1984). We denote the proposed estimator of the conditional

quantile function with q̃α.

9Although leveraging and boosting are very similar concepts, we follow Duffy and Helmbold (1999)
and restrict the usage of the term boosting to algorithms for which a so-called PAC-property can be
proved to hold and use the term leveraging for all other related ensemble learning approaches. The
concept of probably approximately correct (PAC) learning has been introduced by Valiant (1984) and
guarantees, loosely speaking, that weak learners, each only performing slightly better than random, can
indeed be aggregated to an arbitrarily good ensemble estimator (Kearns et al., 1994). However, as the
concepts of boosting and leveraging are very similar to each other in the literature both terms are often
used interchangeably.

10The effect of the hyperparameters N, λ, and γ as well as the data-driven selection of these parameters
is discussed in detail in Section 2.4.
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2.3.2 Infeasible estimator in the full sample case

Initialization

We start by defining the first estimator q̃(0)
α . Let therefore Γ(0)

N = {ξ
(0)
1 , ξ(0)

2 , . . . , ξ(0)
N } ⊂ R

d

denote an optimal N-grid for X.11Let X̃(0) be defined as

X̃(0) := Pro j
Γ

(0)
N

(X(0)),

where Pro j
Γ

(0)
N

denotes the projection of X on the N-grid Γ(0)
N . That is, for ω ∈ Ω we

derive X̃(0)(ω) ∈ Rd from X(0)(ω) by replacing the latter value with the ξ j ∈ Γ
(0)
N nearest

to it in the Euclidean norm, see Equation (2.2). Consequently X̃(0)(Ω) ⊆ Γ(0)
N is fulfilled.

It is well known (see, e.g., the seminal paper by Koenker and Bassett, 1978) that for

x ∈ S X the following identity holds:

qα(x) = arg min
a∈R

E
(
ρα(Y − a)

∣∣∣ X = x
)
, (2.5)

where the check-function ρα : R→ [0,∞), z 7→ ρα(z) is given by

ρα(z) :=


−(1 − α)z for z ≤ 0,

αz for z > 0.
(2.6)

Building on this identity, we define the first base estimator q̃(0)
α as

q̃(0)
α (x) = q̃(0)

α,N(x) := arg min
a∈R

E
(
ρα(Y − a)

∣∣∣ X̃(0) = x̃
)
, (2.7)

where x̃ ∈ Γ(0)
N denotes the projection of x ∈ Rd on the N-grid Γ(0)

N . Note that the base

learner q̃(0)
α is piecewise constant and the same as the (non bootstrapped) estimator by

Charlier et al. (2015b).
11For keeping track of the current iteration step, we add a superscript in brackets to most of the variables

and begin with the initialization as step 0. However, to make notation less heavy, we will sometimes
drop this superscript as well as other possible sub- and superscripts when it is clear from context which
variable is referenced.
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The first iteration step

Following the leveraging approach, we proceed by iteratively learning new estimators

and aggregating them to a stronger estimator while stage-wise reducing the value of an

appropriate cost function. Typically, a leveraging algorithm readjusts the data weights

at each stage in such a way that data examples associated with a higher approximation

error in the previous step are given more weight while at the same time weights for

data points associated with a lower approximation error are decreased. This forces fu-

ture base learners to focus more on previously misclassified examples. As not all weak

learners can be adapted to directly include weights, Freund and Shapire (1996) rely on

resampling the data based on the weights for correctly and incorrectly classified exam-

ples. Inspired by this strategy, our approach translates the regression error associated

with each Voronoi cell into new N-grids as described in the following.

For each Voronoi cell of the Voronoi tessellation associated with the optimal N-grid

Γ
(0)
N = {ξ

(0)
1 , ξ(0)

2 , . . . , ξ(0)
N }we want to quantify the regression error of q̃(0)

α inside that cell.

Because we do not know the true conditional quantile function qα, we cannot directly

compare it with q̃(0)
α . Instead, we rely on the previously introduced check-function ρα

to quantify the regression error inside each Voronoi cell. Therefore, we define

M j = M(1)
j,α := E

[
ρα(Y − q̃(0)

α ◦ X)
∣∣∣X̃(0) = ξ(0)

j
]
, 1 ≤ j ≤ N. (2.8)

We continue by choosing the λ-proportion of Voronoi cells with the highest regression

error according to Equation (2.8) and define the index set I(1) ⊆ {1, . . . ,N} by requiring

that #I(1) = Nλ := ⌈N · λ⌉ and M j ≥ Mk for all j ∈ I(1) and k ∈ {1, . . . ,N} \ I(1). We

now want the algorithm to focus more on the data in the Voronoi cells corresponding

to I(1) and reduce ”weight” for the data corresponding to the remaining Voronoi cells.

Instead of actually changing any weights, our ”re-weighting scheme” follows a strategy

similar to that in Freund and Shapire (1996). However, we do not resample more data

from the Voronoi cells corresponding to I(1). Instead, we introduce a new grid for

approximating these data examples more accurately. Therefore, we introduce a new
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grid based on more than the previously used #I(1) quantizers. The actual number of

quantizers employed depends on the value of γ.

Formally, we define the set A(1) of data examples belonging to the Voronoi cells

corresponding to I(1) as A(1) :=
⋃

j∈I(1){X̃(0) = ξ j} ∈ A. Making use of the increased

number of quantizers Nγ := ⌈N · γ⌉ ≥ Nλ, we introduce Γ(1)
Nγ

as the optimal Nγ-grid

for the restriction X∣∣∣A(1)
of X to A(1). Analogously, based on the number of remaining

quantizers N − Nγ, we define Γ(1)
N−Nγ

as the optimal (N − Nγ)-grid for X∣∣∣Ω\A(1)
. That

is, instead of calculating an optimal N-grid for all data examples, we calculate two

separate grids: one for approximating the data from the Voronoi cells exhibiting high

approximation errors and one for the remaining Voronoi cells associated with lower

approximation errors. By using more quantizers for the first grid, we increase weight

on the data with higher approximation errors and reduce weight for the remaining data.

Combining these two grids yields Γ(1)
N := Γ(1)

Nγ
∪Γ

(1)
N−Nγ

. The number of quantizers in the

combined grid Γ(1)
N has not increased which is important to avoid overfitting. Note that

the new grid is not necessarily Lp-optimal for X any longer.

Based on the N-grid Γ(1)
N we introduce the new base learner q̄(1)

α analogously to Equa-

tion (2.7) as

q̄(1)
α (x) := arg min

a∈R
E
[
ρα(Y − a)|X̃(1) = x̃(1)], (2.9)

where X̃(1) respectively x̃(1) denotes the projection of X respectively x ∈ Rd on the

current N-grid Γ(1)
N . Following the leveraging approach, we aggregate the new base

learner q̄(1)
α and the preceding estimator q̃(0)

α to yield a stronger estimator q̃(1)
α . This is

done by setting

q̃(1)
α := β(1)

opt · q̄
(1)
α + (1 − β(1)

opt) · q̃
(0)
α

with β(1)
opt ∈ [0, 1], that is, q̃(1)

α is defined as a convex combination of q̄(1)
α and q̃(0)

α . We

choose β(1)
opt ∈ [0, 1] such that the check-loss

∫
Ω
ρα
(
Y − (β · q̄(1)

α + (1 − β) · q̃(0)
α ) ◦ X

)
dP is
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minimized.12 Consequently, we have

∫
Ω

ρα
(
Y − q̃(1)

α ◦ X
)
dP ≤

∫
Ω

ρα
(
Y − q̃(0)

α ◦ X
)
dP. (2.10)

That is, the overall error of the conditional quantile estimator q̃(0)
α as measured by the

right hand side of Inequality (2.10) is reduced and a stronger estimator q̃(1)
α is formed.

This finishes the first iteration step.

The following iteration steps

The next iteration step is performed analogously to the first iteration step. By replacing

Γ
(1)
N with Γ(0)

N and q̃(1)
α with q̃(0)

α we obtain a new N-grid Γ(2)
N , base learner q̄(2)

α , and

β(2)
opt := arg minβ∈[0,1]

∫
Ω
ρα
(
Y − (β · q̄(2)

α + (1 − β) · q̃(1)
α ) ◦ X

)
dP. This yields the further

improved estimator

q̃(2)
α := β(2)

opt · q̄
(2)
α + (1 − β(2)

opt) · q̃
(1)
α .

Proceeding in this manner, in the k’th iteration step we have a sequence of estimators(
q̃( j)
α

)k
j=0 as well as a sequence of check-losses

(
I( j))k

j=0 :=
( ∫
Ω

ρα
(
Y − q̃( j)

α ◦ X
)
dP
)k

j=0
(2.11)

for which I(0) ≥ I(1) ≥ I(2) · · · ≥ I(k) ≥ 0 holds by construction. That is, each iteration

step reduces the overall error (measured by the check-function) associated with the

conditional quantile estimator q̃( j)
α of the previous step and provides a stronger estima-

tor q̃( j+1)
α . We stop iterating when

I( j)

I( j+1) < 1 + tol

12As by construction, q̄(1)
α and q̃(0)

α only assume finitely many values, it holds that supx1,x2∈Rd

∣∣∣q̄(1)
α (x1) −

q̃(0)
α (x2)

∣∣∣ < ∞. Therefore, the function [0, 1] → [0,∞), β 7→
∫
Ω
ρα
(
Y − (β · q̄(1)

α + (1 − β) · q̃(0)
α ) ◦ X

)
dP

is continuous in β and attains a minimum.
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holds for a previously specified number s of successive j’s and a tolerance tol > 0.13

Let κ denote the final number of iteration steps.14 We set

q̃α = q̃α,N := q̃(κ)
α . (2.12)

Based on results obtained in Charlier et al. (2015b) one can show the following for

arbitrary p ≥ 1:

Theorem 1 Fix α, λ, γ ∈ (0, 1). Then under Assumptions A.3 and A.4 we have

sup
x∈S X

∣∣∣q̃α,N(x) − qα(x)
∣∣∣→ 0 as N → ∞.

For the assumptions and a proof of the theorem see the Appendix.

Usually, we do not know the true distribution of X and Y which is why the present

procedure is not feasible in practice. In the next section we therefore adapt the algo-

rithm to the finite sample case.

2.3.3 The proposed estimator in the finite sample case

Let S be a sample of n ∈ N data points (x j, y j)n
j=1 ⊂ R

d+1, where the (x j, y j) are gen-

erated independently at random from the joint distribution of (X,Y). As previously

discussed, we focus on the CLVQ algorithm, that is p = 2, for determining empiri-

cal N-grids as this is the most common case and convergence results are much more

satisfactory. However, generalizing our procedure to arbitrary p ≥ 1 is straightfor-

ward.15 By replacing some of the previous expressions with their sample counterparts,

13Note that e.g. for β( j+1)
opt = 0 the ratio I( j)

I( j+1) is equal to 1 < 1 + tol although in the next iteration step
I( j+1)

I( j+2) > 1+ tol is still possible. The algorithm should therefore only stop after the ratio has fallen below
1 + tol for several successive iteration steps. This motivates a choice of s > 1. In case I( j) = 0 for
some j ∈ N, the iteration process is stopped, too.

14Note that the algorithm always comes to a halt after a finite number of iterations. This is due to the
fact that because of Identity (2.5) we have I ≤ I(k) with I :=

∫
Ω
ρα(Y − qα ◦ X)dP and qα denoting the

true conditional quantile function. One can now show by complete induction that I ≤ I(k) ≤ I(0)

(1+tol)⌊k/s⌋

is fulfilled as long as the stopping criterion is not met. As Y ∈ L1 we have I(0) < ∞. The case I = 0 is
not relevant in our context because this would imply that Y is a deterministic function of X PX-a.e.

15For more details on the stochastic gradient algorithm for determining empirical N-grids for arbitrary
p ≥ 1 see, e.g., Pagès (1998) and Charlier et al. (2015b).
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we obtain the finite sample quantile estimator q̂α(x) of the conditional quantile function

qα(x).

Initialization

By applying the CLVQ algorithm from Section 2.2 to the sample x1, . . . , xn, we obtain

the initial N-grid Γ̂(0)
N = Γ̂

(0)
N,n.16 For x ∈ Rd we define

q̂(0)
α (x) = q̂(0)

α,N,n(x) := arg min
a∈R

n∑
j=1

ρα(y j − a)I{x̂ j}(x̂),

where x̂ j := Pro j
Γ̂

(0)
N

(x j), x̂ := Pro j
Γ̂

(0)
N

(x), ρα denotes the previously introduced check-

function, and I{x̂ j}(·) is the indicator function of the set {x̂ j}. In practice, we do not

determine q̂(0)
α (x) as arg mina∈R but instead we simply compute it as the sample quantile

of the y j’s for which the x̂ j’s equal x̂. That is, the initial estimator q̂(0)
α is constant in

each Voronoi cell from the Voronoi tessellation corresponding to Γ̂(0)
N .

Iteration

Let Γ̂(0)
N be given by Γ̂(0)

N = {ξ̂
(0)
1 , ξ̂(0)

2 , . . . , ξ̂(0)
N }. Analogously to Equation (2.8) we quan-

tify the regression error in each Voronoi cell via

M̂ j = M̂(1)
j,α :=

1∑n
i=1 I{ξ̂(0)

j }
(x̂i)

n∑
i=1

ρα
(
yi − q̂(0)

α (xi)
)
I
{ξ̂(0)

j }
(x̂i),

where the notation is as above. As I
{ξ̂(0)

j }
(x̂i) = 1 if x̂i = ξ̂(0)

j and 0 otherwise, M̂ j is

simply the average regression error measured by the check-function for the observa-

tions belonging to the Voronoi cell corresponding to the j’th quantizer ξ̂(0)
j . Based on

the M̂ j’s we identify the Voronoi cells with the highest regression error and choose

Î(1) ⊆ {1, . . . ,N} such that #Î(1) = Nλ := ⌈N · λ⌉ and M̂ j ≥ M̂k for all j ∈ Î(1) and

k ∈ {1, . . . ,N} \ Î(1).

We now compute a new grid Γ̂(1)
Nγ

by applying the CLVQ algorithm to the data points

16Again, for notational convenience we will sometimes drop the superscript determining the current
iteration step when it is clear from the context which variable is referenced.
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belonging to the set
{
x ∈ {x1, . . . , xn}

∣∣∣Pro j
Γ̂

(0)
N

(x) ∈ {ξ̂ j| j ∈ Î(1)}
}

containing all ob-

servations inside the Voronoi cells from the index set Î(1). As we have pointed out

previously, by approximating data examples associated with higher regression errors

with more quantizers (Nγ ≥ Nλ) we increase weight on these data examples. Inversely,

we reduce weight for the remaining data points by computing the (N − Nγ)-grid Γ̂(1)
N−Nγ

for the data points corresponding to the Voronoi cells associated with a lower regres-

sion error. We set

Γ̂
(1)
N := Γ̂(1)

Nγ
∪ Γ̂

(1)
N−Nγ

.

This leads to the estimator

q̄(1)
α (x) = q̄(1)

α,N,n(x) := arg min
a∈R

n∑
j=1

ρα(y j − a)I{x̂ j}(x̂),

where x̂ j := Pro j
Γ̂

(1)
N

(x j), x̂ := Pro j
Γ̂

(1)
N

(x), and the rest of the notation is as above. We

aggregate the new base learner q̄(1)
α and the preceding estimator q̂(0)

α to form a stronger

estimator q̂(1)
α . We do so by setting

q̂(1)
α := β(1)

opt · q̄
(1)
α + (1 − β(1)

opt) · q̂
(0)
α

with β(1)
opt := arg minβ∈[0,1]

∑n
j=1 ρα

(
y j − (β · q̄(1)

α (x j) + (1 − β) · q̂(0)
α (x j))

)
. That is,

we introduce q̂(1)
α as a convex combination of q̄(1)

α and q̂(0)
α that minimizes the em-

pirical check-loss.17 We define the average overall error associated with q̂(1)
α as

Î(1) := 1
n

∑n
j=1 ρα

(
y j − q̂(1)

α (x j)
)
.

The following iteration steps

The next iteration step is performed analogously to the first one. By using Γ̂(1)
N instead

of Γ̂(0)
N and q̂(1)

α instead of q̂(0)
α we obtain a new N-grid Γ̂(2)

N , base learner q̄(2)
α , parameter

β(2)
opt, and finally the new estimator q̂(2)

α := β(2)
opt · q̄

(2)
α + (1 − β(2)

opt) · q̂
(1)
α . Proceeding in this

17In practice we approximate βopt via grid search. That is, we search exhaustively through a finite,
manually specified set of reasonable values for β. Note that the exact choice of β does not have an
influence on the consistency results.
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manner, in the k’th iteration step we obtain a sequence of estimators
(
q̂( j)
α

)k
j=0 as well as

a sequence of empirical check-losses
(
Î( j))k

j=0 :=
(

1
n

∑n
i=1 ρα

(
yi − q̂( j)

α (xi)
))k

j=0
for which

Î(0) ≥ Î(1) ≥ Î(2) · · · ≥ Î(k) ≥ 0 holds by construction. That is, in each iteration step we

further reduce the check-loss of the conditional quantile estimator q̂( j)
α of the previous

stage and form a stronger estimator q̂( j+1)
α . We stop iterating when

I( j)

I( j+1) < 1 + tol

is fulfilled for a number s of successive j’s and a tolerance tol > 0, or when a previously

specified maximum number of iteration steps is reached.18 For κ denoting the final

number of iteration steps, we set

q̂α = q̂α,N,n := q̂(κ)
α . (2.13)

One can now show the following:

Theorem 2 Fix α, λ, γ ∈ (0, 1), and x ∈ S X. Given that the grids are obtained in the

quadratic case (p = 2), we have under Assumptions A.3, A.4, A.8, and A.9:

p − lim
N→∞

p − lim
n→∞

|q̂α,N,n(x) − qα(x)| = 0.

For the assumptions and a proof of the theorem see the Appendix. For empirical results

concerning the convergence of the estimator on simulated datasets we refer to Section

2.5.2.

18Throughout the paper, we choose 30 as the maximum number of iterations and s = 5. This offers a
good compromise between the accuracy and smoothness of the quantile estimates and the runtime of
the algorithm. Note that this choice has no influence on the convergence results. For completeness,
we further note that the estimation procedure is also stopped in case I( j) = 0 for some j ∈ N.
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2.4 The hyperparameters N, λ, and γ

2.4.1 Effect of the hyperparameters on the estimates

The quantile estimates rely crucially on the choice of the hyperparameters N, λ, and

γ. These parameters are set before training and control the learning process. The

parameter N has an influence on how well the estimator adapts to the distribution of X,

whereas λ and γ determine how well the estimator adapts to changes in the conditional

distribution of Y .

In the three panels of Figure 2.1 we provide quantile estimates for

α = 0.05, 0.25, 0.5, 0.75, 0.95 based on 1500 data points sampled randomly accord-

ing to modelM3 (see Section 2.5.2). All differences between the three panels are due

to the choice of hyperparameters. In Panels A and B we fix λ = γ = 0.5 and vary the

number of quantizers (N = 30 and N = 15, respectively). There is a bias-variance

trade-off in the choice of the parameter N. While the third bell-shaped curve from

modelM3 is captured in Panel A, overfitting is evident especially in the edges of the

interval [−2, 2]. While overfitting issues can be mitigated by reducing the number of

quantizers to 15 in Panel B, in particular the third bell-shaped curve from modelM3 is

no longer captured as variability is reduced. Thus, N mainly behaves as a smoothing

parameter.

Because the leveraging estimator is based on a quantization of X, the estimator yields

a good adaptation to the distribution of X. However, quantizing with respect to X does

not take into account the conditional distribution of Y and especially not the variability

of the associated conditional quantile curves. As one can clearly see in Figure 2.1,

variability of the quantile curves is high in the middle of the interval [−2, 2] and low

in the edges. Capturing these effects requires more quantizers in the middle of [−2, 2]

and fewer in the edges. As X is uniformly distributed in [−2, 2], so are the quantizers

(approximately). In Panels 2.1(a) and 2.1(b) we set λ = γ and consequently did not

increase weight for data examples associated with a higher regression error. Thus,
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Figure 2.1: Estimated conditional quantile curves for different values of the
hyperparameters N, λ, and γ

This figure shows quantile curves estimated by the proposed leveraging estimator for quantile
levels α = 0.05 (blue), 0.25 (green), 0.5 (red), 0.75 (green), and 0.95 (blue). The lighter
quantile curves correspond to the population ones. The data examples (n = 1500) are
generated according to modelM3 (see Section 2.5.2). In Panel 2.1(a) estimation is performed
with the number of quantizers N being equal to 30 and λ = γ = 0.5, in Panel 2.1(b) estimation
is realized with N = 15 and again λ = γ = 0.5. In the last Panel 2.1(c) however, learning is
performed based on 15 quantizers and λ = 0.3, γ = 0.5. That is, in each iteration step data
examples associated with a higher estimation error gain more weight in the next iteration step.
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there is no adaptation to the conditional distribution of Y and especially not to areas of

higher or lower variability of the quantile curves. In this case, our iterative procedure

works less like a leveraging and more like a bagging approach (Breiman, 1996).

In contrast to the two previous panels, in Panel 2.1(c) we allow λ to be different

from γ. Specifically, we set λ = 0.3 and λ = 0.5 (and N = 15). That is, in each itera-

tion step we identify the 5 = ⌈N · λ⌉ Voronoi cells with the highest regression error19

and approximate the data points associated with these Voronoi cells with 8 = ⌈N · γ⌉

quantizers in the next iteration step. Analogously, the data examples corresponding to

the remaining 10 quantizers associated with a lower approximation error are approxi-

mated with only 7 quantizers in the next iteration step. As desired, data examples in

areas with a higher variability of the conditional quantile function are approximated

with more quantizers while we use less quantizers in the edges of the interval [−2, 2].

This leads to a better approximation of the true quantile curves. Especially, we are able

to capture the third bell-shaped curve from modelM3 while at the same time reducing

variability of our estimator in areas where the true quantile curves are constant. The

next section is concerned with the data-driven choice of the hyperparameters.

2.4.2 Data-driven hyperparameter selection

The choice of the hyperparameters is critical for the estimation process. One usually

determines the parameters in such a way that some error function is minimized. Nat-

urally, we would like to minimize
∫

S X
e
(
qα(x) − q̂α(x)

)
dPX(x), where e(·) denotes an

appropriate error function. As we normally do not know the true quantile curve qα(·),

this approach is not feasible in practice. Instead, we make use of Identity (2.5), stating

that for all x ∈ S x we have qα(x) = arg mina∈R E
(
ρα(Y − a)|X = x)

)
and consequently

∫
Ω

ρα(Y − q̂α ◦ X)dP ≥
∫
Ω

ρα(Y − qα ◦ X)dP. (2.14)

19See Section 2.3.3 for how the regression error is calculated.
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In the case of risk measures like the quantile based Value-at-Risk this translates into

the more general concept of elicitability.20 It is therefore a natural choice to try to

minimize the left handside of Inequality (2.14), or more specifically the corresponding

sample expression
1
n

n∑
j=1

ρα
(
y j − q̂α(x j)

)
, (2.15)

where ρα(·) denotes the check-function and
(
x j, y j
)n

j=1 is as before.

Simply selecting hyperparameters that minimize the quantity in (2.15) would lead

to serious overfitting issues as the minimum would be reached when the number of

quantizers N is equal to the size of the sample n. In this case we would simply ob-

tain q̂α(x j) = y j, j = 1, . . . , n. To mitigate the overfitting problem we rely on cross-

validation, a very popular method for parameter selection and assessment of the gen-

eralization performance for a great variety algorithms (Picard and Cook, 1984, Zhang,

1993, Yang, 2007) which is by now the standard in the literature (Hastie et al., 2017).

The key idea is to partition the data into complementary subsets and perform training

in one (the training set) and calculation of the estimation error in another subset (the

validation set). In our case, this implies computing the estimator q̂α based on data from

the training set and then calculating the check-loss as defined in (2.15) by using only

the data points from the validation set. To consider more than one possible partition of

the dataset and to use each data point exactly once in the validation step, we rely on

k-fold cross-validation, where k is usually set to 5 or 10 (Breiman and Spector, 1992,

Hastie et al., 2017). To perform k-fold cross-validation, one randomly partitions the

original data into k equal sized complementary subsamples. Each of the k subsamples

then serves once as the validation set whereas the remaining k− 1 subsamples are used

as the training set.

The check-loss is calculated for each of the validation sets, leading to k error esti-

mates which are subsequently averaged to a single error estimate, say Ê(N, λ, γ). This

20Generally speaking, a risk measure is elicitable if it minimizes the expected value of a so-called
scoring function, see Gneiting (2011) for a comprehensive literature review on elicitability as well as
Frongillo and Ian A. Kash (2015), Fissler et al. (2016), Ziegel (2016), Nolde and Ziegel (2017) for
more recent advances in the field.
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procedure ensures that we make use of each data point for both training and validation

and that training and validation sets are independent of each other. A special case is

leave-one-out cross-validation where k is set to n. However, this approach is not fea-

sible in our setting because of the computational burden related to each training and

validation step. We therefore choose k = 5 throughout the paper.21

At the core of our data-driven hyperparameter selection procedure, we try to find

a tuple (Nopt, λopt, γopt) such that the empirical error Ê(Nopt, λopt, γopt) is minimized.

However, we do not minimize the error over all possible combinations of N, λ, and γ, as

this would be computationally infeasible and the regression error is not very sensitive

to small variations in the parameters. Instead, we perform a grid search, that is, we only

consider a finite subset of reasonable parameter combinations.22 Extensive pre-tests

suggest that the selection of the parameter N can be performed separately from (λ, γ),

increasing the computational efficiency. This is illustrated in Figure 2.2. Throughout

the paper, we therefore first calculate N based on λ = γ = 0.5 and subsequently

determine the optimal values for λ and γ.

Furthermore, we slightly adapt the estimation procedure from Section 2.3.3 to avoid

the quantile crossing problem (cf. Bassett and Koenker, 1982). One possibility to deal

with this problem is the rearrangement procedure introduced by Chernozhukov et al.

(2010). However, we propose a different solution to this problem, which arises nat-

urally from our estimation procedure. Instead of performing the iterative procedure

separately for each confidence level α, at each iteration step we jointly calculate the

quantile estimates based on the same N-grid. As the conditional quantiles at each iter-

21In each iteration step, the quantile estimates inside a particular Voronoi cell are based on the empirical
quantiles of the y j’s corresponding to the cell. Therefore, the average number of observations per
quantizer, that is the ratio n/N has an influence on the range of the quantile estimates, especially for
small values of this ratio. This is because when calculating sample quantiles the largest (smallest)
value is usually considered to correspond to the 100 % (0 %) quantile. We therefore increase the
training sample consisting of only 80 % of the original data points (k = 5) to 100 % by resampling
from the training sample. Note that training and validation set stay independent of each other.

22Based on pre-tests, we consider the values λ, γ ∈ {0.3, 0.35, 0.4, 0.45, 0.5} throughout all calculations
in the paper. Because our leveraging approach is based on giving data examples that have performed
poorly in the previous iteration more weight in the next one, we only consider tuples (λ, γ) with λ ≤ γ.
Reasonable values for N are chosen depending on the specific model and the size of the random
sample. For more details we refer to Section 2.5.
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ation step are essentially calculated as empirical quantiles inside a particular Voronoi

cell, this ensures monotonicity of the quantile estimates in α. Furthermore, we choose

βopt such that the average check-loss over all values of α is minimized. Analogously,

we calculate the errors M̂ j associated with each Voronoi cell of the current grid as an

average over the various confidence levels. This procedure guarantees that the quan-

tile crossing problem is avoided. Additionally, this approach provides the possibility

to calculate quantile curves for multiple values of α with nearly no increase in the

computational effort. To stay consistent with this approach, the hyperparameters N, λ,

and γ have to be chosen the same for all confidence levels α. This is achieved by de-

termining the parameters based on the average of the cross-validation errors over the

confidence levels. Figure 2.3 illustrates that one obtains very similar estimates for N

when considering each α level separately and when considering all levels jointly. The

figure further demonstrates that α = 0.5 contributes stronger to the average check error

than, e.g., α = 0.05, that is, the conditional median estimate has a stronger influence

on the parameter selection than the 5 % conditional quantile.23

2.5 Simulation study

In this section we compare the proposed leveraging estimator with some competitors in

the field of conditional quantile estimation. Thereby we aim to give a more complete

picture on the strengths and weaknesses of the leveraging estimator and to provide

more detailed information on how to employ the algorithm. Furthermore, we inves-

tigate the behavior of the algorithm both when the dimension of the covariates and

when the number of observations increases. In one dimension, we compare the shapes

of the estimated quantile curves to each other as in practice it is often favorable to ob-

tain smooth curves. The analysis of the regression accuracy is based on the integrated

23In various pre-tests we observed that the median has a smoothing effect on the parameter selection and
helps to mitigate overfitting issues. Of course, one could re-weight every quantile level to guarantee
an equal contribution to the average check-error. However, a further analysis of this aspect is beyond
the scope of this paper.
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Figure 2.2: Selection of the optimal number of quantizers N depending on λ and γ

These panels illustrate the data-driven choice of the hyperparameters for the proposed
leveraging estimator, see Section 2.4.2. In Panel 2.2(a), the optimal number of quantizers is
determined separately for each tuple (λ, γ) with λ, γ ∈ {0.3, 0.35, 0.4, 0.45, 0.5} and λ ≤ γ. The
optimal value of N for each of the tuples is indicated by a vertical line. The dark blue line cor-
responds to the error associated to λ = γ = 0.5 as proposed in Section 2.4.2. The calculations
are performed based on a random sample of size n = 500 generated according to modelM1.
In the two panels, the check error denotes the sum of check-losses on a grid of uniformly dis-
tributed points in the interval [−2, 2] averaged over all values of α = 0.05, 0.25, 0.5, 0.75, 0.95.
We consider N = 4, 5, 6, ..., 19, 20, 22, 24, ..., 38, 40, 45, 50, ..., 95, 100 as possible values for
the number of quantizers. Panel 2.2(b) presents the same results as Panel 2.2(a) but as an
average over 50 random samples.
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squared error (ISE) defined as

IS E :=
1
M

M∑
m=1

(
q̂α(ξm) − qα(ξm)

)2
, (2.16)

where q̂α denotes an estimator for the conditional α-quantile function, qα is the true

conditional α-quantile function, and ξ1, . . . , ξM are equi-spaced points in the inter-

val [−2, 2] and [−3, 3], respectively (in the one-dimensional case). In the multi-

dimensional case of the simulation study, ξ1, . . . , ξM are given as equi-spaced points

in the hyper-cube [−2, 2]d, where d = 2, 3, 4 denotes the dimension.24 Note that this

approach of measuring the regression error is not feasible in practice as the true condi-

tional quantile functions are usually unknown.

24In the one-dimensional case we choose M = 400 for modelsM1 andM3 and M = 600 for modelM2.
In the multi-dimensional case we set M = 20d.
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Figure 2.3: Selection of the optimal number of quantizers N depending on α

The two panels illustrate the data-driven choice of the hyperparameters for the proposed lever-
aging estimator for different values of α, see Section 2.4.2. In Panel 2.3(a), the optimal number
of quantizers is determined separately for each level of α = 0.05 (blue), 0.25 (green), 0.5 (red),
0.75 (green), and 0.95 (blue). The optimal value for each of these confidence levels is indicated
by a vertical line. The dark blue line corresponds to the average error over all considered values
of α. The calculations are performed based on a random sample of size n = 500 generated
according to modelM1. In the two panels, the check error denotes the sum of check-losses on
a grid of uniformly distributed points in the interval [−2, 2]. All calculations are performed
based on λ = γ = 0.5. We consider N = 4, 5, 6, ..., 19, 20, 22, 24, ..., 38, 40, 45, 50, ..., 95, 100
as possible values for the number of quantizers. Panel 2.3(b) shows the same results as Panel
2.3(a) but as an average over 50 random samples.
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We employ the olvq1 method from the popular class R-package by Venables and

Ripley (2002) for an implementation of the CLVQ algorithm.25 For an efficient as-

signment of observations to the quantizers of a respective grid we rely on k-d trees

implemented in the get.knnx function from the FNN R-package by Beygelzimer et al.

(2019).

2.5.1 The competitors considered

The proposed leveraging estimator relies on the quantization estimator by Charlier

et al. (2015b) as base learner. In Charlier et al. (2015a), the authors compare their

quantization estimator to some classical competitors. To demonstrate the usefulness

25The optimized-learning-rate LVQ1 algorithm (OLVQ1) by Kohonen (1992) is actually a supervised
classification algorithm. However, performing this algorithm for only one class yields the CLVQ
algorithm from Section 2.2. We also refer to Kohonen (2001) for further information on the algorithm.
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of our leveraging approach we therefore include the quantization estimator along with

some estimators from this study, namely the smoothing splines estimator by Koenker

et al. (1994) and the kNN estimator by Bhattacharya and Gangopadhyay (1990).26 We

further consider another estimator that is based on ensemble learning, the xgboost es-

timator. The xgboost estimator is constructed based on the very popular and versatile

Extreme Gradient Boosting (XGBoost) algorithm due to Chen and Guestrin (2016).

As boosting and leveraging are very similar techniques, including the xgboost esti-

mator allows for a more comprehensive comparison. In the following we shortly in-

troduce the estimators. Let therefore α ∈ (0, 1) denote the quantile level of interest

and (x1, y1), . . . , (xn, yn) realizations chosen independently from the joint distribution

of (X,Y).

The quantization estimator q̂quant
α (x) is defined as

q̂quant
α (x) := arg min

a∈R

n∑
j=1

ρα(y j − a) · I{x̂}(x̂ j),

where x̂ and x̂ j denote the projection of x and x j on an (approximately) optimal L2-

grid obtained by the CLVQ algorithm, respectively, ρα(·) is the check-function from

Equation (2.6), and I{x̂}(·) denotes the indicator function of the set {x̂}. Note that this

is the same estimator as the base learner q̃(0)
α obtained in the initialization step, see

Section 2.3.3. To further improve the estimator, Charlier et al. (2015b) suggest to use a

bootstrapped version of the quantization estimator obtained by sampling B times with

replacement from the original sample and calculating B different optimal grids. The

bootstrapped estimator is then given as the average over the estimators obtained for

each of the B grids. For determining the optimal number N of quantizers Charlier

et al. (2015a) propose a method that is based on minimizing the sample equivalent

of the ISE. In the sequel, q̂quant
α will denote the bootstrapped version of the estimator

(B = 50) along with this parameter selection procedure. As the authors explicitly

26We do not consider the kernel estimators (local linear, local constant) by Yu and Jones (1998) in our
simulation study as the results in Charlier et al. (2015a) suggest that these estimators are inferior to
the before mentioned ones.
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suggest the estimator to be used for multivariate covariates, we consider this estimator

in the multivariate part of our simulation study, too.

The smoothing splines estimator q̂spline
α by Koenker et al. (1994) is defined as

q̂spline
α := arg min

g∈G

n∑
j=1

ρα
(
y j − g(x j)

)
+ λ
( ∫ 1

0
|g′′(x)|pdx

)1/p
(2.17)

with λ ≥ 0, p ≥ 1, and G denoting an appropriate functional space. There is a consid-

erable scope for the form of the roughness penalty. However, as in the original paper

the authors focus on the total variation of the first derivative of g, we also choose p = 1

in the penalty term. For this penalty and an appropriate choice G the authors conclude

that the estimator is piecewise linear with breakpoints x1, . . . , xn. As λ weights the

roughness penalty term, it works as a smoothing parameter. In the literature, there ex-

ist several methods for choosing an optimal value. In the sequel, we will determine λ

based on the AIC criterion, that is minimizing

AIC(λ) = ln
(1
n

n∑
j=1

ρα
(
y j − ĝλ(x j)

))
+

pλ
n
,

where ĝλ is the arg min from Equation (2.17) for a given λ and pλ denotes the effective

dimension of ĝλ, see Koenker and Mizera (2004) for details.27 Koenker and Mizera

(2004) generalize the estimator to the bivariate case by introducing triogram-based

splines. However, this estimator does not easily extend to dimensions greater than 2.

Therefore, we do not consider the spline based estimator in the multivariate part of the

simulation study.

The next competitor is the kNN estimator q̂kNN
α , where q̂kNN

α (x) = q̂kNN
α,k (x) is defined

as the empirical α-quantile of the y j’s corresponding to the k x j’s that are closest to x in

Euclidean distance. For more information on the estimator as well as for convergence

results we refer to Bhattacharya and Gangopadhyay (1990). The parameter k works

as a smoothing parameter with higher values of k leading to smoother estimates and

27We implement this estimator based on the rqss function from the quantreg R-package by Koenker
(2020). The optimal value of λ is determined separately for each considered confidence level.
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lower k values being prone to overfitting. Like for the leveraging estimator, we rely

on 5-fold cross-validation to determine the optimal value of k in a data-driven manner.

More exactly, for fixed k and each data point (x j, y j) in the validation set, we calculate

q̂kNN
α (x j) based on data from the test set only. We then calculate the regression error

based on the check-function and choose the k, for which the average error over all

points from the validation set and rounds of the 5-fold cross-validation is minimal.28

Finally, we introduce the xgboost estimator. The inclusion of the estimator in the

simulation study is motivated by the fact that the proposed estimator is based on the

ensemble technique leveraging, an approach very similar to the concept of boosting.

Both techniques share the same idea of combining simple estimators to an ensemble

that improves the performance of each ensemble member (Meir and Rätsch, 2003). A

very popular type of boosting is gradient boosting which is based on the view of boost-

ing as an optimization algorithm that minimizes a suitable cost function (cf. Breiman,

1998). In this manner, Zheng (2012) estimates conditional quantile functions by using

the check-function as the cost function to be minimized. More detailed, the author

performs gradient descent over the space of linear functions thereby obtaining a lin-

ear estimator. For this reason, we cannot directly build on this approach as in our

simulation study the quantile curves are highly non linear.

Instead, we rely on regression trees as weak learners in the gradient boosting frame-

work (Friedman et al., 2000, Friedman, 2001) in the form of the XGBoost algorithm, a

very powerful algorithm that has proved successful in many applied machine learning

and kaggle competitions. For the implementation of the q̂xgboost
α estimator we rely on

the xgboost R-package by Chen et al. (2020b). The package offers the possibility to

hand over user-defined cost functions. As the check-function is not differentiable in 0,

we replace it by a smoothed version.29 Apart from that, we use the default parameter

28In our simulation study, we consider multiple confidence levels α. To avoid quantile crossing, we
therefore choose the optimal k such that the average cross-validation error over all confidence levels is
minimized. This has the additional advantage that for each x we only have to determine the k nearest
neighbors once and can calculate the conditional quantiles simultaneously for all confidence levels.
This raises the computational efficiency of the algorithm and makes it one of the fastest among the
considered competitors.

29The check-function from Equation (2.6) can be rewritten as ρα(z) = zI(0,∞)(z) − (1 − α)z. We follow



2.5. SIMULATION STUDY 43

values of the package except for the parameter γ that we determine based on the 5-fold

cross-validation check-error value. The parameter γ works as a smoothing parameter

aiming to prevent overfitting. More exactly, γ is the minimum reduction in the loss-

function required to make a further partition on a leaf node of the tree.30 Although for

applying this algorithm to multivariate covariates only small changes have to be made,

we do not report results of this algorithm in the multivariate setting because of the poor

performance we observed in pre-tests.

Table 2.1: Parameters considered for the various estimators

This table summarizes the considered values in the parameter selection procedures of the al-
gorithms introduced in Sections 2.4.2 and 2.5.1. For the leveraging estimator we determine
the number of quantizers N as well as the parameters λ and γ. For the quantization estimator
one has to choose the number of quantizers, for the kNN estimator the number of neighbors,
for the smoothing splines estimator the smoothing parameter λ, and for the xgboost estimator
the parameter γ, see Sections 2.4.2 and 2.5.1 for details. We determined the sets of parameter
values for the different algorithms and models based on extensive pre-tests. Information on the
modelsM1,M2,M3 in the one-dimensional case (dim=1) can be found in Section 2.5.2 while
details on the model M′1 in the multi-dimensional case (dim=2, 3, 4) are provided in Section
2.5.3.

dim = 1 dim = 2, 3, 4

M1,M2,M3 M1,M2,M3 M′1
n = 500 n = 1500 n = 5000

leveraging
N 4, 6, 8, . . . , 38, 40 4, 6, 8, . . . , 48, 50 10, 20, 30, 50, 100, 150, . . . , 650, 700
λ, γ 0.3, 0.35, 0.4, 0.45, 0.5 0.3, 0.35, 0.4, 0.45, 0.5 0.3, 0.35, 0.4, 0.45, 0.5

quantization 4, 6, 8, . . . , 38, 40 4, 6, 8, . . . , 48, 50 10, 20, 30, 50, 100, 150, . . . , 650, 700
kNN 4, 6, 8, . . . , 38, 40 4, 6, 8, . . . , 48, 50 10, 20, 30, 50, 100, 150, . . . , 650, 700
smoothing splines 0, 0.025, . . . , 1.975, 2 0, 0.025, . . . , 1.975, 2
xgboost 1, 2, 3, . . . , 9, 10 1, 2, 3, . . . , 9, 10

Details on the considered parameters for each of the various estimators in the sim-

ulation study can be found in Table 2.1. The actual parameters for the leveraging

estimator chosen by the proposed hyperparameter selection procedure are provided in

Table A.1 in the Appendix.

Zheng (2012) and replace the indicator function by the cumulative distribution function of the standard
normal distribution.

30We also considered randomization of the second derivative of the smoothed check-function to force
additional partitions on leaf nodes of the tree. However, this approach did not improve the results in
pre-tests and is therefore not considered in the simulation study. Of course, more efforts can be made
in tuning other parameters of the algorithm. This is, however, beyond the scope of this paper.
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2.5.2 Analysis of the one-dimensional case

The models considered

In the one-dimensional setting, samples of sizes 500 and 1500 are generated according

to the three models

(M1) Y = X2
1 + ϵ1,

(M2) Y = sin(X2) + m(X2) · ϵ2, (2.18)

(M3) Y = ψ(X3) + ϵ3,

where ϵ1 and ϵ2 follow a standard normal distribution, and ϵ3 a χ2-distribution with

one degree of freedom. The function m(·) in model M2 is defined as m : [−3, 3] →

R, x 7→ 0.5 + 1.5 sin2(π2 x) and the function ψ in modelM3 is given as ψ : [−2, 2] →

R, x 7→ 20
(
0.5 · ϕ

(
10(x + 0.5)

)
+ 0.52 · ϕ

(
10x
)
+ 0.53 · ϕ

(
10(x − 0.5)

))
, where ϕ denotes

the standard normal density function. Consequently, we include both symmetric and

asymmetric as well as homoscedastic and heteroskedastic conditional distributions in

the simulation study.

We also consider different distributions for the covariate X. For the modelsM1 and

M3 we assume X1 and X3 to follow a continuous uniform distribution on the interval

[−2, 2] and for modelM2 we set X2 = 6Z − 3, where Z follows a beta distribution with

shape parameters (2, 2). For 1 ≤ j ≤ 3, X j and ϵ j are assumed to be stochastically

independent.31 A visualization of the three models including quantile curves for α =

0.05, 0.25, 0.5, 0.75, 0.95 can be found in Figure 2.4.

Analysis of the quantile curves and error statistics

The conditional quantile curves for the modelsM1,M2, andM3 and random samples

of sizes n = 500 and n = 1500 produced by the leveraging estimator as well as by the

31We adopted some of the models from Charlier et al. (2015a) with only slight changes. For further
simulation results, especially for other distributions of X1, X2, and X3, we refer the interested reader to
this paper.
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Figure 2.4: True quantile curves for the modelsM1,M2, andM3

The panels show random samples of size n = 500 generated according to the modelsM1,M2,
andM3, see Section 2.5.2. The curves are the true conditional quantile functions for α = 0.05
(blue), 0.25 (green), 0.5 (red), 0.75 (green), and 0.95 (blue).
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four competing estimators are presented in Figures 2.5, 2.6, 2.7, 2.8, A.1, and A.2.

The proposed estimator produces smooth curves that capture the conditional distri-

butions very well. For model M3 and a sample size of n = 500 (Panel 2.7(a)) we

observe some overfitting issues, especially for α = 0.95, due to the conditional χ2

distribution. However, these difficulties for α = 0.95 are shared by the competing al-

gorithms. When increasing the sample size to n = 1500 (Panel A.2(a)) the estimator

adapts quite well to the complex link function ψ (Equation (2.18)). It further detects
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Figure 2.5: Estimated conditional quantile curves for modelM1 and n = 500

The conditional quantile curves are estimated by the leveraging and four competing algorithms
(quantization, kNN, smoothing splines, and xgboost estimator), see Section 2.5.1 for details
on the estimators and Table A.2 for details on the employed parameters. The quantile curves
are estimated based on a random sample of size n = 500 generated according to modelM1.
In all panels, the quantile levels considered are α = 0.05 (blue), 0.25 (green), 0.5 (red), 0.75
(green), and 0.95 (blue). The more transparent quantile curves are the population ones.
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Figure 2.6: Estimated conditional quantile curves for modelM2 and n = 500

This figure presents the same plots as Figure 2.5 but for a random sample generated according
to modelM2.
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Figure 2.7: Estimated conditional quantile curves for modelM3 and n = 500

This figure presents the same plots as Figure 2.5 but for a random sample generated according
to modelM3.
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Figure 2.8: Estimated conditional quantile curves for modelM1 and n = 1500

This figure presents the same plots as Figure 2.5 but for a random sample of size n = 1500.
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the domains of the interval [−3, 3] where the link function is constant fairly well as

opposed to the kNN, smoothing splines, and xgboost estimator. This is due to the

leveraging approach that puts less weight (fewer quantizers) in the edges and more in

the middle of the interval [−3, 3].

The quantization estimator produces smooth quantile curves, too, but sometimes

shows signs of underfitting, see, e.g., Panels 2.6(b) and 2.7(b). One reason is that the

optimal number of quantizers is determined only based on the distribution of X, not

taking into account the conditional distribution of Y . Furthermore, the parameter se-

lection method by Charlier et al. (2015a) aims to minimize variation in the quantile

estimates favoring smaller numbers of quantizers. This is especially pronounced in

model M3, see Panels 2.7(b) and A.2(b). The kNN estimates are overall relatively

close to the true conditional quantile curves but the estimator is prone to overfitting.

Opposed to this, the smoothing splines estimator produces piecewise linear quantile

curves that capture the underlying link function quite well for models M1 and M2.

For modelM3 and some values of α however, the estimator completely misses the link

function, see Panel 2.7(d). The xgboost estimator produces piecewise constant esti-

mates due to its tree based nature and is therefore prone to underfitting (see, e.g., Panel

2.5(e)). Especially for α = 0.05 and α = 0.95, the xgboost estimator faces serious

difficulties, which is due to the fact that the gradient of the error function employed is

near zero for y values above the 5 % and below the 95 % quantile, respectively.32

We now compare the accuracy of the estimators by sampling 100 times from the

modelsM1,M2, andM3 with sample sizes n = 500 and n = 1500 and comparing the

ISE values. The results are illustrated in the boxplots 2.9, 2.10, and 2.11. The boxplots

confirm that the leveraging estimator performs well for all of the models, samples sizes,

and quantile levels and often provides the best results of all considered algorithms. It is

further evident from the plots that the interquartile range of the leveraging-based ISEs

is low, indicating that the estimation quality of the estimator is relatively stable. This

32In further numerical experiments we added some randomization to the gradient and the second deriva-
tive of the error function to overcome this issue. However, this did not lead to substantial improve-
ments.
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conclusion is supported by the fact that the leveraging estimator produces only few

outliers. Of course, compared to α = 0.5, ISEs increase for lower and higher values

of α as in these cases the estimates are based on fewer observations. However, these

increases are low compared to most of the competing algorithms. As expected, esti-

mation errors decrease when the sample size rises. Summarizing, the results confirm

that the leveraging estimator produces stable conditional quantile estimates of good

quality.

Figure 2.9: ISEs of the proposed and competing estimators for modelM1

The panels show boxplots of the ISEs for random samples of sizes n = 500 (top) and n = 1500
(bottom) generated according to modelM1. For each sample size, 100 independent repetitions
are performed yielding 100 ISE estimates for each estimator and α = 0.05, 0.25, 0.5, 0.75, 0.95.
We include the leveraging estimator (red), the quantization estimator (grey), the kNN estimator
(green), the smoothing splines estimator (blue), and the xgboost estimator (orange).
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The quantization estimator often provides good results, too, but has difficulties in

capturing the complex link function of modelM3. The estimates provided by the kNN

estimator produce a relatively large interquartile range between the ISE values with

frequent outliers. However, especially for modelsM2 andM3 the estimation accuracy
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Table 2.2: Error statistics and computation times in the one-dimensional case

This table summarizes error statistics and computation times for five estimators and three
models. The models M1,M2, and M3 are defined in Equation (2.18). The considered
algorithms are the leveraging, quantization, kNN, smoothing splines, and xgboost estimator,
see Section 2.5.1 for details. We report several error statistics: The mean integrated squared
error (MISE) is defined as the average of the ISEs (see Equation 2.16) over the quantiles
α = 0.05, 0.25, 0.5, 0.75, 0.95 and 100 random samples of sizes n = 500 (above) and
n = 1500 (below in brackets). Analogously, ME denotes the median squared error (per
random sample and quantile level) averaged over 100 random samples and the quantile levels
α = 0.05, 0.25, 0.5, 0.75, 0.95. With SD we denote the standard deviation of the ISEs averaged
over all values of α. With CPU we report the average computation time for estimating the
quantile curves in seconds. Calculations are performed on an Intel(R) Core(TM) i7-4770 CPU
with 3.4 GHz and 32 GB of RAM. Note that the reported times encompass the calculation of
the optimal parameter(s) for each of the estimators, see Sections 2.4.2 and 2.5.1. The lowest
values for each of the statistics are printed in bolt type.

leveraging quantization kNN smoothing
splines

xgboost

M1

MISE
0.0622 0.0714 0.2257 0.1630 0.3157
(0.0277) (0.0470) (0.1567) (0.0729) (0.1871)

ME
0.0274 0.0333 0.1165 0.0708 0.0813
(0.0119) (0.0216) (0.0801) (0.0313) (0.0576)

SD
0.0218 0.0624 0.1408 0.0598 0.1402
(0.0089) (0.0578) (0.1195) (0.0284) (0.0705)

CPU
37.6823 16.0802 3.2378 8.2016 111.4673
(106.0321) (44.0168) (20.5344) (15.7793) (121.9950)

M2

MISE
0.2514 0.4265 0.4334 0.5383 0.3201
(0.1283) (0.4293) (0.2334) (0.2838) (0.1866)

ME
0.0683 0.2190 0.1290 0.1653 0.1348
(0.0271) (0.2272) (0.0675) (0.0667) (0.0719)

SD
0.0770 0.0575 0.2847 0.2268 0.1978
(0.0466) (0.0454) (0.1772) (0.1500) (0.0594)

CPU
34.9473 17.9633 3.2264 8.1842 111.2531
(106.2039) (46.4797) (20.5632) (15.7689) (122.0514)

M3

MISE
0.3265 0.6187 1.0415 0.6797 1.0139
(0.1694) (0.6122) (0.9082) (0.3106) (0.6314)

ME
0.1638 0.0839 0.6890 0.2894 0.6539
(0.0771) (0.0458) (0.5639) (0.1288) (0.3306)

SD
0.1196 0.0932 0.2487 0.2522 0.5882
(0.0557) (0.0591) (0.2279) (0.0871) (0.2130)

CPU
36.3767 16.0995 3.1296 8.2248 109.8797
(108.5655) (44.0475) (20.1224) (15.8837) (122.7161)
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Figure 2.10: ISEs of the proposed and competing estimators for modelM2

This figure presents the same plots as Figure 2.9 but for modelM2.
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is competitive. The smoothing splines estimator produces stable and low ISE values

for models M1 and M3 but produces less satisfactory results for model M2. The

xgboost estimator has been included in the simulation study to provide a comparison

to an estimator based on boosting, a concept very similar to leveraging. However, the

estimator has difficulties with both model M1 and model M3 with problems being

more pronounced for high and low values of α.

We report averaged results in Table 2.2 and provide two efficiency measures. The

mean integrated squared error (MISE) is defined as the mean of the ISEs over all

100 repetitions and the five different values of α. The median error (ME) is obtained

by calculating the median of the summands in Equation (2.16) and averaging these

values over all 100 repetitions and five different α values. In terms of MISEs, the

leveraging estimator performs the best for all of the three models M1,M2, and M3

and sample sizes n = 500 and n = 1500. In terms of the ME the estimator produces
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Figure 2.11: ISEs of the proposed and competing estimators for modelM3

This figure presents the same plots as Figure 2.9 but for modelM3.
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either the best (models M1 and M2) or second best results (model M3) among the

considered estimators. The conclusions derived from the boxplots are in line with the

two efficiency measures.

We additionally report the standard deviation of the ISEs averaged over

α = 0.05, 0.25, 0.5, 0.75, 0.95. Again, the leveraging estimator provides either the low-

est or the second lowest deviations, indicating that it reliably produces good estimates.

However, these results come at the price of a higher computational burden. In Table 2.2

we also report the average computation time in seconds necessary for parameter selec-

tion and model estimation. The leveraging estimator requires approximately ten (five)

times the computation time of the fastest algorithm (kNN) for n = 500 (n = 1500).

However, most of the time is required for performing the parameter selection. When

computations have to be done repeatedly without the need to determine new parameters

every time, estimation could be performed much faster. Apart from this, by perform-
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ing the hyperparameter selection procedure in parallel, computation times could also

be reduced significantly. Another very appealing feature of the leveraging estimator is

that conditional quantile estimates for new values of x or additional values of α can be

calculated at almost no additional computational costs based on the already estimated

grids from each iteration step.

The proposed estimator also exhibits many attractive features for multivariate co-

variates. In Section 2.5.3 we therefore study the behavior of the leveraging and two

competing estimators for two-, three-, and four-dimensional covariates. Before, we

shortly present some empirical results on the estimation error for increasing sample

sizes (in one dimension).

Results for increasing sample sizes

To provide some anecdotal evidence on the convergence of the leveraging estima-

tor, we conduct an additional experiment. We generate random samples of sizes

n = 250, 500, 1000, 2500, 5000, 10000, 25000, 50000, 100000 according to modelsM1

andM3. For each sample size we perform 50 independent repetitions yielding 50 ISE

estimates for the proposed estimator and each α = 0.05, 0.25, 0.5, 0.75, 0.95. We con-

sider N = 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200 for the number of quantizers

and determine the optimal value via the hyperparameter selection procedure introduced

in Section 2.4.2. For simplicity, λ and γ are set to 0.5. Panels 2.12(a) and 2.12(c) re-

port the MISEs for modelsM1 andM3 and various sample sizes. Additionally, Panels

2.12(b) and 2.12(d) present the average number of quantizers per sample size.

In line with Theorem 2, Figure 2.12 demonstrates that MISEs decrease when both

the sample size n and the number of quantizers N increase. Furthermore, as N is cho-

sen according to the proposed hyperparameter selection procedure, this experiment

provides anecdotal evidence for the appropriateness of the parameter selection proce-

dure in finding suitable values of N given a random sample of size n.
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Figure 2.12: MISE and average number of quantizers depending on the sample size n

Panels 2.12(a) and 2.12(c) report the MISEs for random samples of sizes
n = 250, 500, 1000, 2500, 5000, 10000, 25000, 50000, 100000 generated according to
modelsM1 andM3. For each sample size, 50 independent repetitions are performed yielding
50 ISE estimates for the leveraging estimator and α = 0.05 (blue), 0.25 (green), 0.5 (red),
0.75 (green), and 0.95 (blue). The ISE values rely on the number of quantizers N which is
determined for each of the random samples based on the hyperparameter selection procedure
proposed in Section 2.4.2. We consider N = 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200 as
possible values, λ and γ are set to 0.5. Panels 2.12(b) and 2.12(d) report the average values of
the selected parameter N depending on the sample size n.
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2.5.3 Analysis of the multi-dimensional case

In many real world applications one wants to analyze the dependency of a one-

dimensional response variable on multiple covariates. As before, we are not interested

in modeling the mean of the response. Instead, we want to capture the conditional dis-

tribution by estimating conditional quantile curves. Luckily, the leveraging estimator

extends naturally to multiple covariates. In this section we therefore investigate the

behavior of the estimator as dimension grows from two to four.

The model and competitors considered

We extend modelM1 from Equation (2.18) by setting

(M′1) Y = |X|2 + ϵ, (2.19)

where again | · | denotes the Euclidean norm on Rd, ϵ is standard normally distributed

and statistically independent from X, and X follows a continuous uniform distribution

over the hypercube [−2, 2]d, with d = 2, 3, 4 denoting the dimension. By choosing

n = 5000 for the size of each random sample regardless of the dimension, we are

able to analyze the effect of an increase in the dimension on the estimators’ perfor-

mance. The set of parameters considered in the estimation process of the estimators is

reported in Table 2.1 while the parameters chosen for the leveraging estimator by the

hyperparameter selection procedure are provided in Table A.1 in the Appendix.

In this part of the simulation study we consider the quantization algorithm and the

kNN estimator as competing algorithms. We exclude the smoothing splines estimator,

as it cannot easily be extended to dimensions greater than two. We further exclude the

xgboost estimator because of the poor estimation results we observed in pre-tests. For

more details we refer to Section 2.5.1.
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Analysis of the error statistics

The estimation accuracy is measured in terms of the ISE for 50 random samples of

size 5000 generated independently according to model M′1. The results for two to

four dimensions and α = 0.05, 0.25, 0.5, 0.75, 0.95 are illustrated in boxplots 2.13(a),

2.13(b) and 2.13(c). In each of the dimensions, the leveraging estimator provides the

best results, which is especially pronounced for α = 0.05 and α = 0.95. The quanti-

zation estimator performs very well for two-dimensional covariates but fails for three-

and four-dimensional covariates.33 For two-dimensional covariates the kNN estimator

performs the worst with relatively high ISEs and a large interquartile range of ISE esti-

mates. Relatively to the competing estimators, the results improve in dimensions three

and four. In all dimensions we fixed the sample size n to 5000. As the volume of the

hypercubes from which observations for the covariates are generated increases with

the dimension, the curse of dimensionality leads to an increase of the average ISEs.

However, the proposed estimator still produces good results via adapting to the higher

dimension by choosing a larger number of quantizers and increasing the ratio γ/λ, see

Table A.1 for details. Additionally, the interquartile range of ISE estimates remains

relatively low, indicating that the leveraging estimator provides stable estimates.

We report results for the MISE and ME in Table 2.3. In all of the considered dimen-

sions, the leveraging estimator yields the lowest MISE and ME values. In dimensions

two and three the standard deviation of the ISEs is the lowest for the leveraging estima-

tor and is very close to that of the kNN estimator in dimension four. The good results

come at the price of higher computational costs. However, due to an efficient imple-

mentation of the leveraging estimator, the computation time is only slightly raised by

an increase of the dimension as opposed to the quantization and the kNN estimator. As

a consequence, the leveraging estimator requires only a little more computation time

than the kNN estimator. As we have pointed out previously, performing the hyperpa-

rameter selection in parallel could significantly reduce computation times.

33The inferior results in dimensions three and four are most likely due to the hyperparameter selection
procedure proposed in Charlier et al. (2015a) determining (too) small numbers of quantizers.
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Figure 2.13: ISEs of the proposed and competing estimators for modelM′1 and
multivariate covariates

The panels show boxplots of the ISEs for random samples of size n = 5000 for two-
dimensional (top), three-dimensional (middle), and four-dimensional (bottom) covariates
generated according to model M′1. For each dimension, 50 independent repetitions are
performed resulting in 50 ISE estimates for each estimator and α = 0.05, 0.25, 0.5, 0.75, 0.95.
The estimators are the leveraging estimator (red), the quantization estimator (grey), and the
kNN estimator (green), see Section 2.5.1 for details. For dimensions three and four, ISEs for
the quantization estimator are quite high. We therefore restrict the y-axis to lower values to
enable a more detailed comparison between the leveraging estimator and the kNN estimator.
Results for the quantization estimator in dimensions three and four are provided in Table 2.3.
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Table 2.3: Error statistics and computation times in the multi-dimensional case

This table summarizes error statistics and computation times for the proposed and two
competing estimators for two- to four-dimensional covariates. Therefore, 50 random
samples of size 5000 are generated according to model M′1, which is the natural gener-
alization of model M1 to the multi-dimensional case. We consider the quantization and
the kNN estimator as competing algorithms. We report some error statistics: The mean
integrated squared error (MISE) is defined as the average of the ISEs over the quantile levels
α = 0.05, 0.25, 0.5, 0.75, 0.95 and 50 random samples. Analogously, ME denotes the median
squared error (per random sample and quantile level) averaged over 50 random samples and
the quantile levels α = 0.05, 0.25, 0.5, 0.75, 0.95. With SD we denote the standard deviation of
the ISEs averaged over all values of α. CPU reports the average computation time in minutes
for estimating the quantile curves including the selection of the parameter(s). Calculations
are performed on an Intel(R) Core(TM) i7-4770 CPU with 3.4 GHz and 32 GB of RAM.
Note that the reported times encompass the calculations of the optimal parameters for each of
the estimators, see Sections 2.4.2 and 2.5.1. For the quantization estimator in three and four
dimensions we determined the computation time based on ten (three dimensions) and only
one (!) (four dimensions) repetitions of the implementation in the QuantifQuantile R-package
by Charlier et al. (2015c). The error statistics, however, are based on 50 repetitions of an
own implementation of the quantization estimator that provides the same results but is more
efficient in terms of the computation times. The lowest values for each of the statistics are
printed in bolt type.

leveraging quantization kNN

di
m
=

2 MISE 0.0529 0.0773 0.2781
ME 0.0223 0.0397 0.142
SD 0.0066 0.0164 0.1148
CPU 6.8759 228.19 2.156

di
m
=

3 MISE 0.2005 4.2899 0.6026
ME 0.0821 2.3169 0.3131
SD 0.0143 1.8172 0.0505
CPU 8.0403 477.82 2.5784

di
m
=

4 MISE 0.5844 8.2904 0.8187
ME 0.2506 4.4411 0.3715
SD 0.0383 0.1763 0.0159
CPU 9.3433 16384.30 8.1136

2.6 Empirical application

In this empirical study we apply the proposed leveraging estimator to one day ahead

VaR and ES forecasts. The forecasts are obtained by various GARCH-type models and

are thus subject to two types of uncertainty. First, the true data generating process for

the stock returns is unknown and might not be adequately reflected by the GARCH-



2.6. EMPIRICAL APPLICATION 61

type models giving rise to model risk. Secondly, the models require parameters that

have to be estimated from the data. This gives rise to estimation risk (cf. Lönnbark,

2013). In this empirical application we focus on the latter.

2.6.1 Data

The sample period is from January 2000 until March 2021. The stock price of all S&P

Composite 1500 Index constituents34 are retrieved from Datastream. Subsequently, we

calculate daily log-returns and remove outliers (returns with an absolute z-score above

10).35

The log-returns are used to produce one day ahead VaR and ES forecasts on the

99 % and 97.5 % confidence level, respectively.36 The predictions are obtained

from ARMA(1,1)-GARCH(1,1)-type models where the GARCH model by Bollerslev

(1986), the EGARCH model by Nelson (1991), the GJR-GARCH model by Glosten

et al. (1993), and the T-GARCH model by Zakoian (1994) are considered. These

models are all nested within the fGARCH model by Hentschel (1995). For details

on the models we refer to Bollerslev (2010) and the original papers. For the inno-

vations we assume a skewed Student-t distribution, which can account for skewness

and excess kurtosis in the data.37 The models are fitted via the ugarchfit method from

the rugarch R-package by Ghalanos (2020) over a moving window of 250 days cor-

responding to roughly one year of observations.38 The models yield one day ahead

mean and variance forecasts which are used to calculate the VaR as the 1 % quantile of

the corresponding skewed Student-t distribution while the ES is obtained via numeri-

cal integration (cf. Cardona et al., 2019).39 Additionally, we calculate non-parametric

34The index constituents are determined at the end of the sample period and held fixed over the whole
period.

35For a normal distribution, a z-score with absolute value above 10 corresponds to a probability < 10−16.
36These Var and ES levels are standard, see Basel Committee on Banking Supervision (2013, 2014).
37See Fernandez and Steel (1998) for details on the skewed Student-t distribution.
38We employ the “hybrid” solver that first uses the “solnp” solver and when failing to converge continues

with the “nlminb”, the “gosolnp”, and the “nloptr” solvers. More details are provided in the package
documentation.
All computations for the empirical application are performed on the Big-Data-Cluster Galaxy provided
by the University Computing Center at Leipzig University.

39We observe some extreme forecasts that are due to a failure in convergence, e.g., VaR and ES pre-



2.6. EMPIRICAL APPLICATION 62

estimates for VaR and ES via historical simulation, again over a moving window of

250 days. We compute the historical simulation VaR as the empirical 1 % quantile of

the return distribution and the historical simulation ES as the average of the returns

below the empirical 2.5 % quantile. For further analyses, we also include (annualized)

realized volatility (RV) as well as the third (skewness) and fourth moment (kurtosis)

of the empirical return distribution, again computed over a moving window.

We present summary statistics for the VaR and ES estimates obtained from the

GARCH-type models and via historical simulation in Table 2.4. We first calculate

summary statistics for the cross-section of risk estimates at a particular time point and

subsequently average these over the sample period. Consequently, the values can be

interpreted as average summary statistics of the cross-section of risk forecasts. While

on average the four GARCH-type models produce very similar risk forecasts, there are

noticeable differences in the range of predictions. For example, the ES forecasts by

the EGARCH model lie on average between -48.55 % and -0.31 % while the GARCH

model produces more moderate forecasts that on average assume values between -

40.14 % and -0.73 %. The non-parametric risk forecasts obtained via historical simu-

lation on average lie within an even closer range (between -33.73 % and -1.77 % for

the ES). Average risk estimates by historical simulation are, however, similar to the

GARCH-type models. While on average the absolute levels of VaR forecasts are lower

than that of the ES forecasts, differences among the models and historical simulation

are similar to the case of ES.

2.6.2 Deriving conditional quantiles

Computing VaR and ES estimates via historical simulation does not involve any pa-

rameters (other than the length of the moving window).40 Hence, by using these values

as a benchmark we can analyze the differences in parametric risk predictions (for a

dictions below −1099 for the EGARCH model. Of course, VaR and ES for stocks cannot fall below
-100 % which is why we remove all such predictions.

40To obtain completely non-parametric risk estimates we refrain from using weighted historical sim-
ulation (Boudoukh et al., 1998), filtered historical simulation (Barone-Adesi et al., 1998, 1999), or
similar approaches.
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Table 2.4: Average summary statistics for the cross-section of risk forecasts

This table reports average summary statistics for the cross-section of one day ahead forecasts
of 97.5 % ES and 99 % VaR by various models over the period December 2000 until March
2021. The values are obtained by first calculating summary statistics over the cross-section of
risk forecasts for the S&P Composite 1500 Index constituents at a particular date. These values
are subsequently averaged over the sample period. We report the minimum (min), median,
mean, maximum (max), and standard deviation (sd). For more details on the calculation of the
forecasts, see Section 2.6.1.

Summary statistics (in %)
min median mean max sd

model

97
.5

%
E

S

GARCH -40.1381 -5.6008 -6.3885 -0.7343 3.4025
EGARCH -48.5467 -5.5936 -6.4970 -0.3128 3.8506
GJR-GARCH -40.7828 -5.5297 -6.3174 -0.5847 3.4254
T-GARCH -45.3770 -5.6850 -6.4749 -0.5131 3.5411

historical simulation -33.7273 -5.7410 -6.4006 -1.7660 2.9420

99
%

Va
R

GARCH -35.6565 -5.2928 -5.9685 -0.6827 3.0288
EGARCH -42.5566 -5.2936 -6.0505 -0.2729 3.3697
GJR-GARCH -36.3738 -5.2400 -5.9233 -0.5252 3.0702
T-GARCH -39.2896 -5.3935 -6.0778 -0.4073 3.1508

historical simulation -33.4710 -5.4681 -6.0832 -1.5291 2.8058

given GARCH-type model at a given day) for stocks with very similar non-parametric

risk predictions. For this purpose, we condition the parametric risk forecasts on their

non-parametric counterparts and calculate conditional quantile curves via the proposed

leveraging estimator (for a given day, GARCH-type model, and risk measure (VaR or

ES)). In the hyperparameter selection procedure, we consider 1 %, 2 %, ..., 10 % of

the observations as the number of quantizers and otherwise use the same parameters as

in the simulation study. When considering multiple covariates we scale them to zero

mean and unit variance to ensure that all variables contribute equally to the compu-

tation of the respective grids. The quantile curves are estimated separately for each

GARCH-type model and risk measure on a daily basis.
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2.6.3 Results

Estimation risk

Exemplary conditional quantile curves obtained by the leveraging estimator are pre-

sented in Figure 2.14. The figure illustrates conditional quantile curves for one day

ahead ES forecasts by the GARCH model at two time points, before the 2020 stock

market crash due to the COVID-19 pandemic (January 2, 2020) and at its peak (March

16, 2020, “Black Monday II”). It is clear from the figure that the disagreement between

parametric GARCH risk forecasts of similar stocks (in terms of their non-parametric

historical simulation ES) are substantially larger at the second time point. To condense

this disagreement in a single figure and obtain a measure of estimation risk (for a given

model and the whole stock market) we compute the differences between the condi-

tional 75 % quantile and the 25 % quantile (the iqr) and average them over all stocks

at a given date. This yields a measure of estimation risk for the US stock market.

There is substantial variation in estimation risk over time. Figure 2.15 shows the

estimation risk for ES forecasts by the GARCH model over time. Estimation risk

is especially high in the aftermath of the bursting dotcom bubble, during the great

financial crisis, and during the 2020 stock market crash.41 Estimation risk can also be

determined on the stock level by evaluating the iqr at the historical simulation ES of a

particular stock.42

There are also differences in estimation risk between the four GARCH-type models

and the two risk measures, see Table 2.5. Average estimation risk for ES is higher than

that for VaR with all pairwise comparisons being significant at the 1 % level.43 This

41Estimation risk also rises when the level of the historical simulation ES is increased. This is because
the conditional quantile curves are in general wider for more extreme values of the non-parametric ES,
see Figure 2.14. However, when reproducing Figure 2.15 for a fixed level of non-parametric ES (by
evaluating the iqr at a constant value of non-parametric ES each time), the picture looks similar (not
included here for brevity). Consequently, varying levels of the non-parametric ES do not explain the
differences in estimation risk over time. We conclude that not only the level of risk itself rises during
times of financial turmoil but also the uncertainty regarding its estimation.

42We also refer to Figure 2.17 providing the 90 % confidence bands of ES forecasts for the apple stock.
Uncertainty about the estimation of risk forecasts corresponds to the width of the confidence band.

43Statistical significance is determined based on t-tests with standard errors corrected for serial cor-
relation and heteroskedasticity according to Newey and West (1987) with the automatic bandwidth
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Figure 2.14: Parametric vs. non-parametric risk forecasts

This figure compares one day ahead 97.5 % ES forecasts by a GARCH(1,1) model to the
corresponding risk forecasts obtained via historical simulation at two different time points
(before and at the peak (“Black Monday II”) of the 2020 stock market crash due to the
COVID-19 pandemic). Each point corresponds to a constituent of the S&P Composite 1500
Index. Additionally, the corresponding conditional quantile curves estimated by the leveraging
estimator for the 5 % (blue), 25 % (green), 50 % (red), 75 % (green), and 95 % (blue) quantile
level are included. For details on the calculation of the quantities, see Sections 2.6.1 and 2.6.2.
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is in line with Christoffersen and Gonçalves (2005), who find that ES predictions are

typically less accurate than VaR predictions. Among the four considered models, the

GARCH model exhibits the lowest average estimation risk (1.94 % for ES), followed

by the T-GARCH model (1.97 % for ES), the GJR-GARCH model (2.01 % for ES),

and the EGARCH model (2.23 % for ES). The order of the models is the same for the

VaR.44 Of course, the GARCH-type models assign more weight to recent observations

via some kind of exponential weighting scheme while historical simulation assumes

selection procedure described in Newey and West (1994).
44The estimation risk associated to the GARCH model is significantly lower at the one percent level

than that of all the other models in pairwise comparisons for both ES and VaR. The only exception is
the comparison between the GARCH and the T-GARCH model for ES. On the other hand, estimation
risk for the EGARCH model is significantly larger at the 1 % level than that of all the other models in
pairwise comparisons for both ES and VaR.
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Figure 2.15: Estimation risk of the GARCH model for the US equity market over time

This figure shows the daily estimation risk of one day ahead 97.5 % ES forecasts by a
GARCH(1,1) model for the constituents of the S&P Composite 1500 Index between Decem-
ber 2000 and March 2021. Estimation risk is calculated as the average interquartile range
of GARCH ES forecasts conditional on the corresponding forecasts obtained via historical
simulation. More detailed, at a given date the 75 % and the 25 % conditional quantile curves
of the parametric (GARCH) risk forecasts conditional on the non-parametric (historical
simulation) forecasts are calculated based on the constituents of the S&P Composite 1500
Index using the leveraging estimator (see Figure 2.14). Estimation risk at a particular day is
then computed as the difference between these two conditional quantiles averaged over all
index constituents.
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equal weights for all observations. However, all GARCH-type models in our study are

of order (1,1) such that this difference between GARCH-type models and historical

simulation cannot explain the differences in the average iqr between the GARCH-

type models. We conclude that the models indeed exhibit significant differences in

estimation risk.

So far, we have conditioned the parametric VaR and ES forecast on their non-

parametric counterparts obtained via historical simulation. In a further analysis for the

GARCH model we instead condition the parametric forecasts on the realized volatility

(RV) of the respective stock. This is done to study the robustness of our measure of

estimation risk with regard to the variable we condition on. To provide a more com-

plete picture we also consider different lengths of moving windows (20 and 250 days
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Table 2.5: Estimation risk of various GARCH-type models for the US equity market

This table compares the estimation risk for one day ahead forecast of 97.5 % ES and 99 %
VaR by various GARCH(1,1)-type models to each other. Estimation risk is measured in terms
of the interquartile range of the conditional quantiles of the parametric risk forecasts (by the
GARCH-type models) conditional on the corresponding non-parametric forecasts (obtained
via historical simulation). At a given date, conditional quantile curves are estimated by
the leveraging estimator for the cross section of risk estimates of the S&P Composite 1500
Index constituents. Subsequently, the associated interquartile ranges are averaged over all
constituents. This yields our measure of estimation risk. The table presents summary statistics
(minimum (min), median, mean, maximum (max), standard deviation (sd)) of the resulting
time series over the period December 2000 until March 2021.

Estimation risk (in %)
min median mean max sd

model

97
.5

%
E

S GARCH 0.9113 1.6098 1.9387 13.1087 0.9340
EGARCH 0.9681 1.7994 2.2323 12.8004 1.1648
GJR-GARCH 0.9502 1.6733 2.0054 15.3035 0.9961
T-GARCH 0.8916 1.5774 1.9668 11.5562 1.0007

99
%

Va
R GARCH 0.8243 1.4884 1.8041 12.7326 0.9119

EGARCH 0.9344 1.6749 2.0634 12.1411 1.0611
GJR-GARCH 0.8516 1.5628 1.8806 15.0015 0.9591
T-GARCH 0.8786 1.5051 1.8674 11.3164 0.9550

for the calculation of RV, 500 days for historical VaR and ES). Furthermore, we in-

clude skewness and kurtosis of a particular stock’s return distribution. The results are

presented in Table 2.6. The table provides summary statistics of the estimation risk for

one day ahead VaR and ES forecast by a GARCH model when conditioning on various

covariates. The baseline case is conditioning on the historical simulation VaR and ES

calculated over a moving window of 250 trading days, respectively.

For the ES, we observe that average iqr substantially increases when extending the

moving window to 500 trading days (from 1.94 % (250 days) to 2.13 % (500 days)).

This increase is not surprising as the GARCH model assigns more weight to recent ob-

servations while in the historical simulation all 500 observations of the longer moving

window enter into the calculation with equal weight. These differences in the weights

implicitly assigned to the observations manifest themselves in deviations between the

GARCH and historical simulation risk forecast, finally leading to higher values of our
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Table 2.6: Estimation risk of GARCH risk forecasts when conditioning on further
variables

This table provides summary statistics (minimum (min), median, mean, maximum (max), and
standard deviation (sd)) for the time series of estimation risk obtained by conditioning on var-
ious covariates. The quantities are calculated as in Table 2.5 but only for the GARCH(1,1)
model and when conditioning on further covariates. For comparison, we again include the
results obtained by conditioning on the non-parametric 97.5 % ES and 99 % VaR estimates
obtained via historical simulation over a moving window of 250 days (d). Realized volatility
(RV) is calculated as the standard deviation of daily log-returns, skewness and kurtosis denote
the standardized third and fourth moment of the empirical return distribution over a moving
window of 250 days.

Estimation risk (in %)
min median mean max sd

conditioning variable

97
.5

%
E

S ES (hist. simulation, 250 d) 0.9113 1.6098 1.9387 13.1087 0.9340
ES (hist. simulation, 500 d) 1.1189 1.8945 2.1272 14.5957 0.9360
RV (20 d) 0.9517 1.7777 1.9545 10.6529 0.6833
RV (250 d) 0.7694 1.6049 1.9237 14.3572 1.0109
RV, skewness, kurtosis (250 d) 0.8331 1.5857 1.9145 11.3020 0.9396

99
%

Va
R

VaR (hist. simulation, 250 d) 0.8243 1.4884 1.8041 12.7326 0.9119
VaR (hist. simulation, 500 d) 1.0045 1.6847 1.9395 13.8710 0.9019
RV (20 d) 0.8778 1.5523 1.7127 9.8173 0.6172
RV (250 d) 0.6874 1.3718 1.6885 13.3811 0.9498
RV, skewness, kurtosis (250 d) 0.7298 1.3709 1.6921 10.5958 0.8913

measure of estimation risk. This highlights that the absolute values of the measure

should not be interpreted on their own but rather in comparison over time or with

other models. However, when conditioning on RV over a 20 day or a 250 day mov-

ing window, or when conditioning jointly on RV, skewness, and kurtosis (over a 250

day moving window) the average level of estimation risk is relatively stable (values

between 1.91 % and 1.95 %) and similar to the baseline case (1.94 %).

For VaR, the average iqr also increases substantially when conditioning on the his-

torical simulation VaR obtained from a moving window of 500 trading days (from

1.80 % (250 days) to 1.94 % (500 days)). When instead conditioning on the RV over

a 20 day or a 250 day moving window, or when conditioning jointly on RV, skewness,

and kurtosis (over a 250 day moving window) the average level of estimation risk

varies only slightly (between 1.69 % and 1.71 %) but this time is considerably smaller
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than in the baseline case (1.80 %). Again, this highlights that the estimation risk mea-

sure should be interpreted in comparison over time or with other models and not on

its own. Finally, we find that regardless of the variable we condition on ES always

exhibits a higher estimation risk than VaR. Again, this is in line with Christoffersen

and Gonçalves (2005).

Confidence intervals

Instead of deriving a measure of estimation risk, the conditional quantile estimates can

directly be used to determine confidence intervals for the risk forecasts of a particular

stock at a particular day. Over time, this yields confidence bands. Figure 2.16 provides

average ES forecasts along with the average 90 % confidence band obtained from the

5 % and 95 % quantile of GARCH ES forecasts conditional on historical simulation

ES estimates averaged over all constituents of the S&P Composite 1500 Index.

Figure 2.17 illustrates risk forecasts along with the 90 % confidence band for a single

stock (Apple Inc.). Again, the confidence band is constructed from the conditional

5 % and 95 % quantile over time. The ES forecasts for the Apple stock lie outside

the confidence band several times.45 In these cases, the ES forecasts for the Apple

stock exceed the 95 % quantile or fall below the 5 % quantile of the risk forecasts for

comparable stocks (in terms of their non-parametric ES predictions). This might be an

indicator for erroneous risk forecasts for the Apple stock at these days. However, as

discussed previously, in GARCH-type models more recent observations obtain more

“weight” than earlier ones. Consequently, values outside the confidence band are most

probably a result of recent evolutions in the Apple stock price that are not reflected to

the same extent in the risk forecasts obtained via historical simulation. Either way, the

confidence bands can provide valuable signals that a particular risk forecast (at a given

45The conditional quantiles are determined over the cross-section of stocks at a particular day such that
the risk forecasts (VaR or ES) of 90 % of the stocks lie within their respective confidence interval.
However, for a single stock over the time dimension there is no guarantee that risk forecasts lie inside
the confidence band 90 % of the time (this is only fulfilled on average over all stocks). Indeed, the
ES forecasts for the Apple stock exceed the upper bound in 7.0 % and fall below the lower bound in
7.7 % of the cases.
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Figure 2.16: Average ES forecasts with average 90 % confidence band

This figure shows average one day ahead forecasts of 97.5 % ES obtained from a GARCH(1,1)
model for the constituents of the S&P Composite 1500 Index between December 2000 and
March 2021. The gray-shaded area is the average 90 % confidence band. More detailed, at
a particular date the upper (lower) boundary of the confidence interval is obtained by taking
the average of the 95 % (5 %) quantile of GARCH ES forecasts conditional on forecasts
obtained via historical simulation over all constituents of the S&P Composite 1500 Index
(see also Figure 2.14). The conditional quantile estimates are based on the leveraging estimator.
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day for a given stock) should be given special attention by carefully interpreting its

value or even reestimating it. At the same time, the width of the confidence interval at

a particular time point can provide information on the estimation risk for a particular

risk forecast.

2.7 Conclusion

This paper proposes a new estimator of conditional quantiles that is based on optimal

quantization and leveraging, two approaches from the field of machine learning. There-

fore, we build an ensemble of quantization-based estimators (Charlier et al., 2015b)

by iteratively combining the ensemble members such that the performance of the ag-

gregated estimator is improved in each step. This yields an estimator with variable
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Figure 2.17: ES forecasts with 90 % confidence band for the Apple stock

This figure provides the one day ahead GARCH(1,1) forecasts of the 97.5 % ES for the Apple
stock between December 2000 and March 2021 along with a 90 % confidence band. At a
particular date, the upper and lower boundary is obtained from the 95 % and 5 % quantile of
the ES (GARCH) forecasts of similar stocks (in terms of their non-parametric ES calculated
via historical simulation). More detailed, we estimate the 95 % and 5 % conditional quantile
curves of GARCH forecasts conditional on historical simulation forecasts with the leveraging
estimator in the cross section of all S&P Composite 1500 Index constituents. As at a particular
date the confidence interval is determined over the cross section of index constituents, ES
forecasts for the Apple stock can exceed (fall below) the upper (lower) boundary. For more
information, see Section 2.6.3.
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bandwidth that adapts both to the distribution of the covariates and of the response

variable. We introduce a data-driven procedure for determining the hyperparameters

that is based on the empirical check-loss calculated via cross-validation. Furthermore,

we provide convergence results for the proposed leveraging estimator.

In an extensive simulation study we compare the leveraging estimator to the

quantization-based estimator and various competitors. In the univariate case, the pro-

posed estimator produces smooth quantile curves that adapt well to the true curves,

even in the edges of the support of the covariate. The estimator generalizes naturally

to multiple dimensions. We study up to four-dimensional covariates and again yield

competitive ISEs.
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In an empirical study, we analyze the estimation risk associated with VaR and ES

models in the broad US equity market (S&P Composite 1500 Index constituents) based

on return data from January 2000 until March 2021. For this purpose, we apply the

leveraging estimator to VaR and ES forecasts obtained by various GARCH-type mod-

els and condition these estimates on their non-parametric counterparts obtained via

historical simulation. The estimation risk for a given model is defined as the average

iqr of the conditional quantile curves. This approach of non-parametrically determin-

ing estimation risk without relying on Monte Carlo methods is new to the literature. It

also yields non-parametric confidence bands for VaR and ES predictions at the stock

level. We find that there is substantial variation in estimation risk over time with espe-

cially high values during times of financial turmoil. Furthermore, the results suggest

that among the considered models the GARCH model exhibits the lowest estimation

risk while the EGARCH model is associated with the highest. In general, estimation

risk for ES is higher than for VaR, both across models and across different condi-

tioning variables. The results for ES are robust to conditioning on RV instead of the

non-parametric risk measures obtained via historical simulation while for the VaR we

obtain somewhat lower values of the average iqr when conditioning on the RV. This re-

liance on a non-parametric benchmark constitutes the main weakness of our approach

for measuring estimation risk. However, our proceeding provides a new approach for

capturing estimation risk from the cross-section of stock returns and illustrates the ap-

plicability of the proposed leveraging estimator.

The key features of the leveraging estimator, being non-parametric and applicable in

multiple dimensions, make it an interesting choice for many other applications. More

generally, conditional quantile estimation can be used to replace standard methods like

(conditional) portfolio sorts to use the available data more efficiently. Moreover, condi-

tional quantiles can provide valuable insights into the relationship between dependent

and explaining variables that go well beyond the conditional mean and therefore should

become a standard tool in empirical research.
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Chapter 3

Cross-Section of Option Returns and

the Volatility Risk Premium

3.1 Introduction

Volatility is the single most important characteristic of a stock driving the prices of

corresponding option contracts. Returns on stock options should thus carry a risk pre-

mium for changes in volatility. Likewise, any misestimation of an underlying stock’s

volatility and its dynamics should lead to a mispricing of options which traders can

exploit. Yet, despite its ubiquity in option pricing models, the role volatility and its

mispricing as well as volatility risk play for the cross-section of option returns remains

unclear: while some studies have found no evidence for the existence of a volatility

risk premium (see, e.g., Carr and Wu, 2009, Driessen et al., 2009), others have shown

that volatility risk as well as volatility itself significantly affect the cross-section of op-

tion returns (see, e.g., Bollerslev et al., 2009, Goyal and Saretto, 2009, Cao and Han,

2013, Cao et al., 2019, Hu and Jacobs, 2020).

In this paper, we empirically test for the existence of a volatility risk premium (VRP)

in the cross-section of option returns. We start our analysis by first documenting po-

tential biases in analyses of the volatility-return relation that arise when relying on

standard methods in asset pricing: portfolio sorts and cross-sectional regressions. As
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an alternative, we propose to use non-parametric methods from the field of machine

learning to estimate conditional quantile curves of implied stock option volatilities.

We condition on a number of characteristics that would otherwise cloud the effect of

implied volatility on option returns. Most importantly, we control for the stock’s real-

ized volatility and option moneyness. Doing so helps us to carve out the volatility risk

premium in the cross-section of option returns.

Using the cross-section of option returns for US equities between January 1996 and

June 2019, we find that call and put option portfolio returns exhibit a strong relation

with the volatility risk premium. We sort options on their implied volatility conditional

on their realized volatility. This yields portfolios with increasing deviations between

realized and implied volatilities with average levels of realized volatility remaining

constant. We use this to proxy for the volatility risk premium. A strategy that is long

(short) in high (low) deviations between realized and implied volatilities yields returns

that are both economically and statistically significant. This result holds for call and

put delta-hedged and raw option returns for both at the money (ATM) options and

options of arbitrary moneyness. For example, average monthly delta-hedged returns

of 1-month ATM options are 2.0 % for call and 1.7 % for put contracts with (monthly)

Sharpe ratios of 0.842 and 0.796, respectively.

By sorting options on their implied volatility conditional on realized volatility and

option moneyness, we can easily extend our trading strategy to options of arbitrary

moneyness while eliminating potential biases arising from systematic differences in

realized volatility or option moneyness (and thus option liquidity). Again, this yields

delta-hedged and raw option returns that are highly economically and statistically sig-

nificant. For example, average monthly delta-hedged returns from a long-short trading

strategy based on 1-month options of arbitrary moneyness are 2.4 % for call and 2.5 %

for put contracts with (monthly) Sharpe ratios of 0.816 and 0.844, respectively. Our

results are robust to controlling for further moments of the underlyings’ return dis-

tribution, alternative estimators of conditional quantiles, reasonable transaction costs,

different levels of trading volume, the expansion of the long-short portfolios to less
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extreme options, and the inclusion of options on dividend-paying stocks.

Why do we find such strong evidence for the existence of a VRP when results of pre-

vious empirical studies have been ambiguous at best? One possible answer lies in our

proposed use of non-parametric methods to form factor-mimicking portfolios based on

characteristics while conditioning on a set of control variables. The standard technique

in empirical finance for this purpose has been the sorting of portfolios on certain char-

acteristics of assets. It is frequently used to test the assumption of pricing models that

expected asset returns are a monotonic function in one or more idiosyncratic charac-

teristics. This common practice of forming uni- or multivariate fractiles dates back to

seminal papers on the cross-section of equity returns which, among others, include the

works of Basu (1977), Banz (1981), de Bondt and Thaler (1985), Jegadeesh (1990),

Fama and French (1992), and Jegadeesh and Titman (1993). Since then, portfolio sort-

ing has been a methodological mainstay in empirical asset pricing, because it does not

require the assumption of a linear relation between expected returns and characteris-

tics, and because differences in the returns on the top and bottom fractile portfolios are

easily interpreted as the profits from an implementable trading strategy. As intuitive

as it may be, however, portfolio sorting does not come without shortcomings. While

univariate portfolio sorts on one characteristic do not allow the economist to control for

other asset characteristics, multivariate (conditional) sorts quickly become unfeasible

for more than two characteristic-based factors due to the curse of dimensionality.

Our approach, in contrast, uses non-parametric methods from the field of machine

learning to estimate the conditional quantile curves of implied volatilities while at

the same time controlling for several characteristics. Thus it possesses several ap-

pealing features that should make it favorable to standard portfolio sorts and non-

/semiparametric regression methods alike. First, using machine learning algorithms

to estimate quantile curves allows for the data-efficient non-parametric modeling of

the multivariate distribution of asset returns and characteristics. In contrast to standard

(conditional) portfolio sorts, our method should alleviate at least in part the concern of

“empty portfolios” which eventually arises when sorting on too many characteristics
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(see, e.g., Goyal, 2012).

Second, as a remedy to the “empty portfolio” problem, many researchers have ad-

ditionally performed multivariate regressions to test whether a certain characteristic is

priced. While these cross-sectional regressions allow the inclusion of a large number

of covariates, they also suffer from two drawbacks that make them less appealing in our

setting. Standard as well as semiparametric regression methods (see, e.g., Connor and

Linton, 2007, Connor et al., 2012, Cattaneo et al., 2020) assume additive separability

between the explanatory variables in asset pricing models (in addition to a linear rela-

tion between characteristics and returns). Employing such standard models leads to a

severe bias in the measurement of the VRP due to the nonlinear nature of the relation

between implied and realized volatility. Moreover, results from cross-sectional regres-

sions only yield information on long-short strategies that involve trading in all secu-

rities with potentially highly varying portfolio weights. Our proposed non-parametric

approach circumvents both these problems: we make no assumption on the functional

form of the relation between implied and realized volatility, and our approach yields a

trading strategy that can easily be implemented.

Our paper is related to an increasing number of empirical studies on the relation

between option returns and characteristics of the underlying stocks.46 Coval and

Shumway (2001) were among the first to look at the cross-section of expected option

returns. Studying index options, they find that systematic stochastic volatility is priced

in option returns. In a related study, Driessen et al. (2009) show that correlation risk

is priced in both index and individual options but find no evidence for the existence

of a VRP. Conversely, using model-free estimates of implied volatilities, Bollerslev

et al. (2009) show in their study that stock returns include a VRP. Finally, Huang et al.

(2019) study the pricing of volatility of volatility risk in index options. All of the stud-

ies, however, do not test for the existence of a VRP in expected option returns and

usually concentrate on index options rather than options on individual equities.

46Recent studies on the pricing of stock and option characteristics in the cross-section of expected option
returns include, but are not limited to, the studies by Baele et al. (2019), Cao et al. (2019), Andreou
and Ghysels (2020), Eisdorfer et al. (2020), Cao et al. (2021).
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More recent studies have concentrated on the effects of volatility, volatility risk, and

volatility mispricing on the cross-section of expected option returns. In one of the first

studies in this field of research, Goyal and Saretto (2009) show that large differences

between realized and implied volatilities for at-the-money options are associated with

economically and statistically significant monthly returns. Their use of linear differ-

ences to proxy for potential volatility mispricing, however, ultimately leads to a port-

folio strategy that also (at least partially) invests in realized volatility. Our approach

to measure the volatility risk premium by the use of conditional quantile curves builds

on their study. After controlling for realized volatility and allowing for arbitrary mon-

eyness, our results confirm the initial findings by Goyal and Saretto (2009) and make

an even stronger case for the existence of a VRP. This is important and reassuring at

the same time, as more recent studies have shown that idiosyncratic (see Cao and Han,

2013) and realized volatility (see Hu and Jacobs, 2020) by themselves drive expected

option returns, questioning previous findings on the effect of volatility mispricing on

option returns.

Methodologically, our paper is related to a small but growing number of papers

that aim to improve standard methods in empirical asset pricing. For example, Pat-

ton and Timmermann (2010) were among the first to point out the shortcomings of

portfolio sorts and standard tests of monotonicity in asset pricing. Similarly, Connor

and Linton (2007), Connor et al. (2012), and Cattaneo et al. (2020) propose semi- and

non-parametric models as alternatives for portfolio sorts and cross-sectional regres-

sions. In contrast to our study, however, their models usually concentrate on nonlinear

relations between returns and characteristics, and not between covariates. Moreover,

none of these studies look at the cross-section of option returns. We complement this

field of research by proposing the use of conditional quantile curves as an alternative

to traditional portfolio sorts and applying it for the first time to expected option re-

turns. Finally, our paper is also related to a growing number of studies that propose the

use of machine learning algorithms in empirical asset pricing. For example, Moritz and

Zimmermann (2016) use tree-based conditional portfolio sorts and model-averaging to
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identify the most relevant factors of the famous “factor zoo” (cf. Cochrane, 2011) that

drive stock returns, while Gu et al. (2020) employ trees and neural networks to fore-

cast returns. Our work complements these studies by proposing the use of data-efficient

machine learning algorithms to form conditional portfolio sorts in high dimensions.

The rest of the paper is organized as follows. The next section 3.2 discusses the

measurement of the volatility risk premia in option returns as well as our methodology.

Section 3.3 presents our empirical study. We discuss robustness checks in Section 3.4.

Section 3.5 concludes.

3.2 Capturing the volatility risk premium

3.2.1 Volatility risk premium and volatility mispricing

We start our analysis by revisiting common definitions for the volatility risk premia of

individual stocks from the related literature. For example, Cao and Han (2013) define

the volatility risk premium of stock i in time period t as

VRPi,t = RVi,t − IVi,t (3.1)

where RVi,t is realized return volatility and IVi,t is the implied volatility of the stock

extracted from corresponding options (see also Jiang and Tian, 2005, Bollerslev et al.,

2009, Carr and Wu, 2009, Driessen et al., 2009). Similarly, Goyal and Saretto (2009)

consider the log difference

V MPi,t = log RVi,t − log IVi,t (3.2)

between realized (historical or current) and implied volatility and interpret large values

of V MPi,t as indicative of volatility mispricing.

From the definitions in Equations (3.1) and (3.2) it becomes clear that tests of the

existence of a VRP in option returns critically depend on whether one is able to con-
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trol for the level of realized volatility.47 To this end, previous studies have traditionally

relied on (conditional) portfolio sorts and cross-sectional regressions. However, con-

trolling for additional asset characteristics (such as realized volatility) via conditional

portfolio sorts quickly becomes infeasible due to the curse of dimensionality (Stone,

1980).48 Beyond that, portfolio sorts exhibit further shortcomings, some of which we

want to illustrate in the following Section 3.2.2. As a remedy, we advocate for re-

placing conditional portfolio sorts with conditional quantiles, of which we discuss the

details in Section 3.2.3.

3.2.2 Replacing portfolio sorts by conditional quantiles

To illustrate the potential weaknesses of conditional portfolio sorts, we simulate 200

observations (xi, yi) according to Y = 1
2 ·X+

1
10 ·X·ϵ, where ϵ denotes the standard normal

distribution and X follows a Beta(5, 5) distribution with X and ϵ being statistically

independent from each other. That is, we assume a linear relation between X and Y

with heteroskedastic errors. Figure 3.1 illustrates quintile portfolios from a conditional

double-sort of the data (first on x, then on y).

We first sort the observations into five portfolios according to their x-values, high-

lighted in Figure 3.1 as the strips bounded by the blue lines, and then sort observations

on y-values within each of those five portfolios, indicated by the areas between the

grey and dashed horizontal lines.49 Based on this double-sort, we next form long and

short portfolios of observations with low and high y-values, respectively, while at the

same time controlling for x. Within each of portfolio 1 to 5, we choose the observa-

tions corresponding to the y-values in the lower quintile for the long and in the upper

47The findings of Hu and Jacobs (2020) show that option raw returns are significantly affected by real-
ized volatility.

48For example, while sorting on one characteristic and controlling for another via a double-sort might
still be practicable, controlling for two or more covariates via triple-, quadruple-sorts etc. is almost
always not possible. Note that independent sorts are not suited to control for characteristics.

49To obtain portfolios of equal size, we assign the observations with x-values below the (unconditional)
empirical 20 % quantile of all xi’s into portfolio 1, observations between the 20 % and 40 % quantile
into portfolio 2, etc. In each of these five portfolios, we then sort on y according to the (unconditional)
empirical 20 %, 40 %, etc. quantile of all y-values within portfolio 1. This is subsequently repeated
for portfolios 2 to 5.
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Figure 3.1: Illustration of conditional portfolio sorts

This panel illustrates a conditional double-sort and derived conditional quantile curves based
on 200 simulated observations according to Y = 1

2 · X + 1
10 · X · ϵ where ϵ and X follow a

standard normal and a Beta(5, 5) distribution, respectively. We first sort observations into
5 bins based on their x-values (blue lines according to the 20 %, 40 %, 60 %, and 80 %
(unconditional) quantile of all x-values). Subsequently, in each bin we further sort on the
y-value. The dashed black and red lines mark the 20 % and 80 % quantile of y conditional on
each of the 5 bins. The grey lines mark the 40 %, 60 %, and 80 % quantiles. Observations in
the shaded areas are those that lie in the lower quintile in each of the five bins (i.e., below the
black dashed line) and in the upper quintile (i.e., above the red dashed line), respectively.
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quintile for the short portfolio, which are the observations that lie in the shaded areas

of Figure 3.1.

Figure 3.2 compares the quantile curves implied by this conditional double-sort sort

to the true quantiles of Y conditional on X. For example, combining the 20 % quantiles

of each of the five portfolios, we obtain a step function (black dashed line) which can

be understood as an approximation to the true conditional 20 % quantile curve of Y

given X (black solid line). The same holds for the conditional 80 % quantile curves

(red lines). It is evident from the figure that portfolio sorts provide a quite coarse

approximation to the true conditional quantile curves. As a consequence, the long and
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short portfolios derived from the double-sort exhibit systematic differences in x, which

we illustrate in Figure 3.3. The black dashes on the x-axis of Figure 3.3 correspond to

observations in the long portfolio while the red dashes correspond to observations in

the short portfolio. If controlling for x had been successful, the black and red dashes

would be mixed randomly along the x-axis, as this would indicate that x is no longer

directly influencing the long-short portfolio construction. However, there are various

clusters of red and black dashes with a clear trend of observations in the long portfolio

tending to lower and observations in the short portfolio tending to higher x-values.

That is, although long and short portfolios were build on a double-sort to control for

x, the results of a long (short) strategy that is low (high) in y might still be biased by

systematic differences in x.

One possibility to mitigate this bias is to simply increase the number of portfolios

and sort the x- and y-values into, e.g., 10 portfolios each yielding 100 double-sorted

portfolios. However, in such case, we still would approximate the true conditional

quantile curves (which are linear in this example) with piecewise constant step func-

tions, which is far from optimal. In addition, if we wanted to control for an additional

covariate z, we would be required to do a triple-sort leading to 1000 portfolios. How-

ever, this is infeasible based on only 200 observations as this would lead to a large

number of empty portfolios.

Based on the true conditional quantile function, as illustrated in Figure 3.2, we are

able to form long (short) portfolios with low (high) y-values while at the same time

perfectly controlling for x. Of course, in practice, we do not know the true conditional

quantile curves. Instead we have to estimate them based on the data at hand. However,

conditional portfolio sorts do not use the data efficiently when deriving conditional

quantile curves. This is highlighted in Figure 3.2, where the true quantile curves are

approximated with piecewise constant step functions requiring a large number of port-

folios to achieve an acceptable fit. As a consequence, one can usually control for only

one or at most two characteristics. As an alternative to portfolio sorts, there exist vari-

ous methods specifically designed for the estimation of conditional quantiles providing
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Figure 3.2: Comparison of double-sorts versus conditional quantile curves

This figure compares the 20 % and 80 % quantiles (black and red dashed line) of Y given X
according to a double-sort based on 200 simulated observations according to Y = 1

2 ·X+
1

10 ·X ·ϵ
where ϵ and X follow a standard normal and a Beta(5, 5) distribution, respectively, to the
true conditional quantile curves of Y given X. Note that the illustrative example is based on
simulated data for which the true conditional quantile curves are known. For example, the
20 % conditional quantile function is linear and given by q20%(x) = (0.5+ 0.1 · qnorm

20% ) · x where
qnorm

20% denotes the (unconditional) 20 % quantile of the standard normal distribution.
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a more data-efficient way of estimation without imposing restrictions on the functional

form of the quantile functions. In addition to the advantages mentioned above, this

allows for the inclusion of more control variables.50

50Of course, due to the curse of dimensionality the number of variables one can efficiently control for
with our non-parametric approach will still be limited to a low single figure in most applications.
However, our approach can be seen as a way of extending the applicability of portfolio sorts to control
for more covariates. For example, we later want to condition on options’ implied volatility as well
as realized volatility, moneyness, and skewness of the underlyings’ return distribution, which would
require the usage of quadruple sorts. This is infeasible for the major part of our option sample in the
empirical study, but we can easily consider these control variables within our proposed methodology.
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Figure 3.3: Long-short portfolio derived from using a double-sort to control for x

This figure illustrates limitations on forming a long-short portfolio via double-sorts that is
long (short) in low (high) values of y while controlling for x. The black and red dashed lines
are derived from conditional portfolio sorts (first on x, then on y) based on 200 simulated
observations according to Y = 1

2 · X + 1
10 · X · ϵ where ϵ and X follow a standard normal

and a Beta(5, 5) distribution, respectively. Securities corresponding to the observations below
(above) the black (red) dashed line enter into the long (short) portfolio.
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3.2.3 Estimation of conditional quantiles

For later reference, we now provide a brief introduction to the estimation of condi-

tional quantiles. It is standard practice to (linearly) approximate the conditional mean

function x 7→ E(Y |X = x). This is done by minimizing the squared errors. By instead

minimizing the absolute errors one can derive the conditional median function, i.e.,

the conditional 50 % quantile function. This result generalizes naturally to conditional

quantiles at arbitrary confidence levels. The conditional α quantile function is obtained

by minimizing the so-called check-loss of the residuals, where the check-function ρα
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is given as

ρα(z) :=


−(1 − α)z for z ≤ 0,

αz for z > 0.
(3.3)

That is, depending on the confidence level α, the residuals (deviations of observations

from the estimated conditional quantiles) enter into the error term that has to be mini-

mized asymmetrically with weights 1 − α and α, respectively. Building on this result

Koenker and Bassett (1978) introduce linear conditional quantile estimators. Since

the appearance of this seminal paper various other estimators have been proposed. In

particular, non-parametric estimators appear promising as they do not require to make

any assumptions about the functional form of the quantile curves, see, e.g., Kraus and

Czado (2017) and the references therein.51

The problem of estimating conditional quantiles non-parametrically has been ad-

dressed with different techniques. For example, Kraus and Czado (2017) propose an

estimator based on likelihood optimal D-vine copulas, in the following referred to as

the copula estimator. The estimator models multivariate dependencies based on so-

called pair-copula constructions.

Starting with the k-nearest neighbor (kNN) estimator, conditional quantile estima-

tion has also been addressed within the realm of (unsupervised) machine learning (see

Bhattacharya and Gangopadhyay, 1990). More recently, Charlier et al. (2015b) intro-

duced an estimator that is derived from the concept of optimal quantization. Loosely

speaking, this algorithm efficiently uses the data at hand by identifying clusters of

observations of covariates via unsupervised machine learning and deriving empirical

quantiles of the response variable within the clusters (see Charlier et al., 2015b,a, for

details). In the following we will refer to this estimator as the quantization estimator.

Building on the quantization estimator, we employ a new estimator by employing

a machine learning technique called leveraging. Leveraging is an ensemble technique

51Results from our empirical study highlight the necessity to account in particular for non-linear de-
pendencies between implied and realized volatility as well as heteroskedasticity. Note that while in
general we speak of conditional quantiles, in the case of conditioning on only one variable, we get
conditional quantile curves. Therefore, we will use these terms interchangeably.
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very similar to boosting52 which according to Meir and Rätsch (2003) “combine[s]

simple ’rules’ to form an ensemble such that the performance of the single ensemble

member is improved”. For this purpose we define our leveraging estimator in an itera-

tive manner such that in each iteration step we give more weight to those observations

for which the latest conditional quantile estimates produce a higher estimation error

and less weight to those observations associated with a lower estimation error. Errors

are calculated based on the check-function from Equation (3.3).53

We use the leveraging estimator for our main analysis but also include results for the

quantization and copula estimator as robustness checks.54 Results from the leveraging

estimator are based on our own implementation while for the quantization and the

copula estimator we rely on the QuantifQuantile and vinereg (with non-parametric

pair copulas) R-package by Charlier et al. (2015c) and Nagler (2020), respectively.

All computations were performed on the Big-Data-Cluster Galaxy provided by the

University Computing Center at Leipzig University.

3.3 Empirical study

As discussed above in Section 3.2.2, conditional quantile based portfolio sorts have

several advantages over simple (conditional) portfolio sorts. Therefore, we build on

this approach to study the VRP in the cross-section of options while controlling for the

level of realized volatility. We compare our results to those obtained by sorting on the

log-difference of RV and IV. In the construction of our data sample as well as in the

corresponding trading strategies we closely follow Goyal and Saretto (2009).

52As the concepts of boosting and leveraging are very similar both terms are often used interchangeably
in the literature. However, we follow Duffy and Helmbold (2002) and restrict usage of the term
boosting to algorithms proved to fulfill a so-called Probably Approximately Correct (PAC) learning -
property and use the term leveraging for all other related ensemble learning techniques.

53More details on the construction of the estimator along with an extensive simulation study can be
found in Chapter 2.

54Although there is a variety of conditional quantile estimators, the number of methods that can ac-
count for two or more covariates is substantially lower. In addition, our findings indicate that con-
ditional quantile curves in an equity option sample within our empirical study are best tackled by
non-parametric methods.
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3.3.1 Sample construction

The sample period is from January 1996 to June 2019. Data on US equities (includ-

ing prices, closing bid and ask quotes, and returns) are retrieved from the Center for

Research in Security Prices (CRSP). Option data are obtained from the OptionMetrics

IvyDB US database. The data include information on the entire US equity option mar-

ket (American options) covering in particular closing bid and ask quotes along with

option implied volatilities (IV) and greeks (delta, gamma, vega).55

For our main empirical analysis we focus on the cross-section of equity options

that are at the money (ATM) and one month away from expiration since they are the

most frequently traded ones (cf. Goyal and Saretto, 2009). In further analyses we also

include in the money and out of the money options. Every month, we form portfolios

based on information from the first trading day after monthly option expiration.56

To minimize the impact of recording errors, we apply several standard filters to the

data. Following Goyal and Saretto (2009) we exclude all observations with an ask

price lower than the bid price, a bid price equal to zero, or a bid-ask spread below the

minimum tick size.57 We further remove prices that violate arbitrage bounds. Follow-

ing Hu and Jacobs (2020), we exclude all call options where the ask price exceeds the

price of the underlying (S ) or where the ask price is below S − K with K denoting the

exercise price of the option. Additionally, we exclude all put options with a bid price

above the exercise price or a bid price below K − S . To avoid errors due to stock splits

and re-capitalizations, we remove all options for which the adjustment factor for the

exercise price does not coincide with the adjustment factor for the share price. In order

to eliminate options with no liquidity, we exclude options with zero open interest (cf.

55Implied volatility estimates as well as option greeks are derived from a binomial tree model based on
Cox et al. (1979) For further details we refer to the OptionMetrics IvyDB US reference manual.

56The expiration day for standard exchange-traded options is the third Friday of the expiration month or
the following Saturday.

57Before 2007, the minimum tick size is equal to $0.05 ($0.10) for options trading below (above) $3. On
January 26, 2007, the SEC introduced the industry wide Penny Pilot Program reducing the minimum
tick size for certain equities to $0.01 ($ 0.05). This program, today know as Penny Interval Program,
has subsequently been extended to cover more equities. For simplicity, we therefore consider a min-
imum tick size of $0.05 ($0.10) before January 26, 2007, and $0.01 ($0.05) for all options below
(above) $3 after January 26, 2007, respectively.
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Driessen et al., 2009). All equity options in our sample are American. We therefore

follow Hu and Jacobs (2020) and remove all options with an ex-dividend date during

the remaining life of the option contract to reduce the impact of early exercise.58 Fi-

nally, following Cont and da Fonseca (2002) we exclude all options with moneyness

values (defined as the ratio K/S ) outside of the interval [0.5, 1.5] to limit numerical

uncertainty in computing implied volatilities.

This constitutes our option sample for arbitrary moneyness consisting of 2,280,558

calls and 1,758,895 puts on 9,069 and 8,802 different stocks, respectively, over 282

points in time between January 1996 and June 2019. The number of option contracts

varies substantially over time. For example, the number of calls ranges between 1,206

(May 1996) and 16,054 (December 2017) with the number of contracts increasing over

time.

In our baseline analysis, we focus on ATM options. Therefore, for every month and

each underlying we select the call and put contracts that are closest to ATM but accord-

ing to Goyal and Saretto (2009) only consider options with moneyness values in the

interval [0.975, 1.025]. This constitutes our ATM option sample consisting of 267,147

calls and 244,892 puts. There is substantial variation in the number of option contracts

over time. For example, the number of calls in the ATM sample varies between 171

(June 1996) and 1683 (January 2018).

We complement our data sample with stock related characteristics. Following Goyal

and Saretto (2009), for each month and each stock we calculate the realized volatility

(RV) as the standard deviation of the realized daily stock returns over the preceding 12

months.59 Additionally, we include the third (skewness) and forth (kurtosis) moment

58We acknowledge that this controls for early exercise of calls while American puts might still exhibit
a premium (Goyal and Saretto, 2009, Barraclough and Whaley, 2012). However, there are several
studies arguing that the empirical implications of adjustments for early exercise are small, see, e.g.,
Boyer and Vorkink (2014).

59Volatility is highly mean-reverting. Therefore, large deviations between current realized volatility
(e.g., calculated over the current month) and the long-term average (calculated over a 12 month period)
are unlikely to persist. Therefore, we consider the 12 month RV to be a realistic estimate of volatility
over the remaining life of the respective options, see also Goyal and Saretto (2009) and the discussion
therein. Apart from this, building on the RV over the preceding 12 months allows us to compare the
results from our study to those obtained by Goyal and Saretto (2009).
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of the underlyings’ return distribution (over the most recent 12 months).

3.3.2 Summary statistics

We provide summary statistics for implied (IV) and realized volatility (RV) of ATM

calls and puts as well as calls and puts of arbitrary moneyness in Table 3.1. The

volatilities are annualized. We also include summary statistics for option greeks (delta,

gamma, vega) as well as skewness and kurtosis of the underlyings’ return distribution.

The means are obtained by first taking time-series averages of IV and RV for each

stock and then computing the cross-sectional averages of these average volatilities.

For the other statistics (median, minimum, maximum, standard deviation, skewness,

and kurtosis) we proceed analogously so that the provided statistics can be interpreted

as summary statistics of an average stock.

For ATM calls and puts, IV and RV are on average very close to each other. For

calls the average IV is 48.6 % compared to an average RV of 49.7 % while for puts

the average IV is 50.3 % and the average RV is 50.0 %. However, the distribution of

IV is more volatile than the distribution of RV. Additionally, IV is on average more

positively skewed and more leptokurtic than RV. The other variables are, on average,

very similar to each other, with the exception of options’ delta (0.536 for calls and -

0.465 for puts). For example, average values for call options are 0.212 (gamma), 3.476

(vega), 0.303 (skewness), and 10.669 (kurtosis).

The differences between ATM options and options of arbitrary moneyness are quite

substantial, especially for IV. First of all, the average level of IV is much higher (59.9 %

vs. 48.6 % for calls and 59.7 % vs. 50.0 % for puts). In addition, IV is on average

more volatile, more positively skewed, and more leptokurtic than in the case of ATM

options. This is due to the fact that implied volatilities are in general not constant for

different moneynesses (for a given underlying at a given date) but rather exhibit the

pattern of a volatility skew, smile, or smirk (see, e.g., Toft and Prucyk, 1997). The

variation of IV across moneyness highlights the necessity to control for moneyness
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Table 3.1: Summary statistics for the option samples

This table presents summary statistics for implied (IV) and realized volatilites (RV) of ATM
calls and puts as well as option contracts of arbitrary moneyness. All options are American
and have a maturity of one month. Our ATM sample consists of 267,147 calls and 244,892
puts while the sample of arbitrary moneyness is composed of 2,280,558 calls and 1,758,895
puts. The sample period is from January 1996 to June 2019. IVs and option greeks (delta,
gamma, vega) are retrieved from the OptionMetrics IvyDB US database and calculated based
on a binomial tree model (cf. Cox et al., 1979). The volatilities are annualized. Option un-
derlyings’ returns are retrieved from CRSP. Skewness (skew) and kurtosis (kurt) are computed
from realized returns over the most recent 12 months. Means are obtained by first taking the
time-series average of IV and RV for each stock and then computing the cross-sectional aver-
age of these average volatilities. For the other statistics (median, mininum (min), maximum
(max), standard deviation (sd), skewness (skew), and kurtosis (kurt)) we proceed analogously.

mean median min max sd skew kurt

AT
M

C
al

ls

IV 0.486 0.465 0.317 0.808 0.143 0.791 3.943
RV 0.497 0.477 0.365 0.750 0.123 0.684 3.386

delta 0.536 0.537 0.438 0.629 0.058 -0.094 2.360
gamma 0.212 0.198 0.117 0.397 0.087 0.687 3.506
vega 3.476 3.286 1.654 6.467 1.383 0.363 2.703
skew 0.303 0.290 -1.223 1.909 0.931 0.028 3.513
kurt 10.669 8.738 5.237 27.044 6.978 1.143 4.830

Pu
ts

IV 0.503 0.480 0.341 0.823 0.144 0.807 3.926
RV 0.500 0.479 0.369 0.748 0.124 0.680 3.352

delta -0.465 -0.463 -0.557 -0.381 0.055 -0.137 2.274
gamma 0.201 0.188 0.114 0.365 0.080 0.648 3.356
vega 3.513 3.322 1.705 6.473 1.405 0.359 2.678
skew 0.280 0.274 -1.213 1.836 0.936 0.021 3.401
kurt 10.695 8.880 5.286 26.337 6.950 1.116 4.684

A
rb

itr
ar

y
m

on
ey

ne
ss

C
al

ls

IV 0.599 0.551 0.281 1.455 0.224 1.356 6.274
RV 0.524 0.498 0.357 0.825 0.133 0.629 3.217

delta 0.585 0.606 0.128 0.968 0.272 -0.148 1.763
gamma 0.139 0.126 0.023 0.442 0.089 0.990 5.514
vega 2.301 2.090 0.274 6.347 1.354 0.519 3.214
skew 0.293 0.278 -1.582 2.406 0.977 0.119 4.261
kurt 10.953 8.664 4.694 33.465 7.535 1.400 6.300

Pu
ts

IV 0.597 0.563 0.330 1.210 0.188 1.001 4.752
RV 0.531 0.506 0.365 0.823 0.134 0.603 3.161

delta -0.405 -0.382 -0.808 -0.092 0.221 -0.222 1.921
gamma 0.153 0.139 0.051 0.403 0.078 0.950 5.106
vega 2.576 2.352 0.739 6.375 1.297 0.568 3.167
skew 0.282 0.272 -1.529 2.233 0.958 0.066 4.030
kurt 10.933 8.734 4.816 31.563 7.307 1.320 5.864
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when building portfolios for options of arbitrary moneyness. On average, the calls and

puts in our sample of arbitrary moneyness also exhibit a slightly higher RV then ATM

calls and puts. This is explained by the fact that at a given date, on average, about half

of the underlyings do not enter into the ATM sample because there is no corresponding

option contract with moneyness in the interval [0.975, 1.025]. These are stocks with a

higher RV. Due to the inclusion of out of the money as well as in the money options

into the sample of arbitrary moneyness, there are also substantial differences in option

greeks. For example, call options of arbitrary moneyness have an average delta of

0.585 (0.536 ATM), gamma of 0.139 (0.212 ATM), and vega of 2.301 (3.476 ATM).

3.3.3 Portfolio formation

Our portfolio formation is closely related to Goyal and Saretto (2009) who show that

ATM delta-hedged call returns and straddle returns increase as a function of the volatil-

ity risk premium (VRP), measured as the log-difference of RV and IV (see Hu and

Jacobs, 2020).60 Goyal and Saretto (2009) determine large deviations between RV and

IV based on their log-difference. The underlying assumption is that by applying the

transformation t : R2 → R : (RV, IV) 7→ log
(RV

IV

)
deviations between RV and IV of all

(ATM) options at a particular date can be adequately compared to each other. The trad-

ing strategy is then simply derived by investing long (short) in the options within the

lowest (highest) decile of the log-differences, i.e., low and large deviations are identi-

fied based on a one-dimensional portfolio sort. This strategy is subsequently shown to

earn a statistically and economically significant average monthly return.

Identifying options with large deviations between RV and IV is equivalent to deter-

60Goyal and Saretto (2009) argue that volatility is highly mean-reverting and therefore large deviations
of the current volatility from the long-term average are unlikely to persist. As IV incorporates expec-
tations on future volatility this implies that large deviations between RV (as long-term average) and IV
(as forecast on future volatility) are likely to reduce in magnitude. The authors conclude that options
with an IV much lower than the corresponding RV are cheap while options with a much higher IV
than RV are expensive. This raises the question how large deviations between RV and IV should be
quantified. Note that the authors do not take a clear stand on the question if their observed returns
are abnormal or arise as compensation for some aggregate risk. On the one hand the authors argue
that high deviations between RV and IV are indicative of option mispricing. On the other hand they
highlight that deviations between RV and IV will be more (less) pronounced for equities with higher
(lower) volatility of volatility.
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mining options where IV is particularly high or low given a particular level of RV. The

log-transformation can then be seen as an intriguingly simple approach that essentially

translates the two-dimensional problem of identifying value pairs (RV, IV) of options

where IV is abnormally high or low given their RV to a one-dimensional problem that

can be tackled by simple portfolio sorts. However, Goyal and Saretto (2009) report

that RV increases when proceeding from the first to the last decile, which is illus-

trated in Table 3.2. As a consequence, the proposed strategy is not only long (short) in

large (low) deviations between RV and IV but also long (short) in high (low) realized

volatility.

This is due to the implicit assumption of a linear relationship between RV and IV. As

an illustrative example we visualize the value pairs (RV, IV) of all ATM call options in

January 2010 along with the conditional quantile curves implied by the log-difference

of RV and IV in Figure 3.4.61 The red dashes (mostly on the left) and black dashes

(mostly on the right) on the x-axis illustrate that there are systematic differences in RV

between the long and the short portfolio.

As a further illustration we provide the conditional quantile curves implied by mea-

suring the VRP as the simple difference RV − IV according to Cao and Han (2013).

The main difference is that large deviations between RV and IV are no longer deter-

mined based on the relative deviation RV
IV in case of the log-differences, but rather by

their absolute deviation RV − IV . Consequently, the derived quantile curves are linear

and parallel to each other. Again, this causes systematic differences in RV between the

long and the short portfolio, which is illustrated in Figure 3.5.

These differences in realized volatility are problematic against the background of

the recent literature. For example, Cao and Han (2013) show that delta-hedged equity

option returns decrease when the underlying stock’s idiosyncratic volatility increases.

Furthermore, Hu and Jacobs (2020) find that (total) realized volatility drives raw option

61The long portfolio consists of those options fulfilling the inequality log RVi−log IVi ≥ q90% where q90%
is defined as the unconditional empirical 90 % quantile of the log-differences. Analogously, options
in the short portfolio fulfill log RVi − log IVi ≤ q10%. This is equivalent to requiring IVi ≤ RVi · e−q90%

in the long portfolio and IVi ≥ RVi · e−q10% in the short portfolio, i.e., the conditional quantile curves
are implicitly assumed to be linear functions in RV.
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Figure 3.4: Sorting options on the log difference of RV and IV

This figure shows the value pairs (RV, IV) of all ATM call options in our sample in January
2010. According to Goyal and Saretto (2009) options are sorted on the log-differences of RV
and IV into decile portfolios. Sorting on the log-differences (unconditionally) and choosing the
highest and lowest 10 % of the value pairs (RV, IV) is equivalent to requiring IVi ≤ RVi · e−q90%

in the long portfolio and IVi ≥ RVi · e−q10% in the short portfolio, where q10% and q90% denote
the (unconditional) empirical 10 % and 90 % quantiles of the log-differences of RV and IV,
respectively. This translates into the black and red dash-dotted straight lines in the scatter plot.
Consequently, options in decile 1 (red data points) constitute the short portfolio, while options
in decile 10 enter into the long portfolio (black data points). The red and black dashes on
the x-axis correspond to the value pairs (RV, IV) in the long and short portfolio and illustrate
that there are systematic differences in RV between the two portfolios. The faint dashed
lines correspond to the non-parametric 10 % (black) and 90 % (red) quantile curves of IV
conditional on RV.
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returns. In the light of these findings it is unclear to which extent the positive returns

of the long-short strategy (high minus low VRP) are attributable to differences in the

VRP or differences in the average level of RV. This complicates an interpretation of

the obtained returns.

As application of conditional quantile curves allows us to derive long (short) portfo-

lios with high (low) differences between RV and IV while controlling for RV. This is
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Figure 3.5: Sorting options on the difference of RV and IV

This figure shows the value pairs (RV, IV) of all ATM call options in our sample in January
2010. Sorting on the difference (unconditionally) and choosing the highest and lowest 10 %
of the value pairs is equivalent to requiring IVi ≤ RVi − q90% in the long portfolio and
IVi ≥ RVi − q10% in the short portfolio, where q10% and q90% denote the (unconditional)
empirical 10 % and 90 % quantiles of the differences of RV and IV, respectively. This translates
into the black and red dash-dotted straight lines in the scatter plot. We form a long-short
portfolio where options in decile 1 according to the difference of RV and IV (red data points)
constitute the short portfolio, while options in decile 10 enter into the long portfolio (black
data points). The red and black dashes on the x-axis correspond to the value pairs (RV, IV) in
the long and short portfolio and illustrate that there are systematic differences in RV between
the two portfolios. The faint dashed lines correspond to the non-parametric 10 % (black) and
90 % (red) quantile curves of IV conditional on RV.
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done by forming long (short) portfolios consisting of options with low (high) IV condi-

tional on their underlying’s RV.62 Furthermore, our non-parametric procedure enables

us to model the relation between RV and IV without making any assumptions about the

functional form, as can be seen in Figure 3.6, where we provide conditional quantile

62As long and short portfolios are formed on a fixed date based on the cross-section of ATM options with
maturity of one month, we automatically control for moneyness, maturity, and the risk-free interest
rate, too. In further analyses on our option sample of arbitrary moneyness we additionally control for
option moneyness.
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curves of IV given RV for ATM call options in January 2010.63 The Figure illustrates

that the conditional quantile curves are in fact non-linear. Furthermore, especially for

option with high RV, the gradients of the conditional quantile curves are lower than the

ones implied by the log-difference.

Figure 3.6: Sorting options on IV conditional on RV

This figure shows the value pairs (RV, IV) of all ATM call options in our sample in January
2010. Options are sorted according to IV conditional on RV into decile portfolios. Options in
decile 10 (red data points) constitute the short portfolio, while options in decile 1 enter into the
long portfolio (black data points). That is, the long (short) portfolio is constituted of the 10 %
of the options with the highest (lowest) IV conditional on RV. More exactly, for option i in the
long portfolio we require F(IVi|RVi) ≤ 10 % while options in the short portfolio have to fulfill
F(IVi|RVi) ≥ 90 %, where F(·|RVi) denotes the conditional cumulative distribution function
of implied volatility given a specific level of realized volatility (RVi). This translates into the
red and black dashed conditional quantile curves. The faint black and red dash-dotted lines
correspond to the log-difference of RV and IV and are included for comparison. The red and
black dashes on the x-axis correspond to the value pairs (RV, IV) in the long and short portfolio.
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Analogously to the trading strategy by Goyal and Saretto (2009), our short portfolio

63Our approach can easily be extended to control for more covariates. In Section 3.3.4 we also report
results for our option sample of arbitrary moneyness. To avoid confounding effects due to high or low
moneyness (“volatility skew”) we additionally condition on option moneyness. In Section 3.4.1 we
provide results when conditioning on further moments of the underlyings’ return distribution.



3.3. EMPIRICAL STUDY 95

is constituted of options with high IVs relative to the RVs of their underlyings. How-

ever, the criterion of choosing options in the lowest decile of log RV - log IV is replaced

by selecting options with IV above the conditional 90 % quantile given the RV of the

corresponding underlying. More precisely: for option i with realized volatility RVi and

implied volatility IVi being in the short portfolio, we require F(IVi|RVi)
!
≥ 90 % where

F(·|RVi) denotes the conditional cumulative distribution function of IV given a specific

level of realized volatility (RVi). Intuitively, our short portfolio is constituted of the

options where the value-pair (RV, IV) is above the 90 % conditional quantile curve

in Figure 3.6. Analogously, the long portfolio is constituted of the options below the

10 % conditional quantile curve.

Figure 3.6 illustrates that there is no systematic difference in the average RV be-

tween the short and long portfolio as visualized by the red and black dashes on the

x-axis. In comparison with Figure 3.4 it can further be seen that there are noteworthy

disagreements in which options enter into the short and long portfolios, especially for

options with a large RV.

While these figures reflect the relation between RV and IV on a particular date only,

Table 3.2 presents evidence that by employing conditional quantile curves systematic

differences in RV between the decile portfolios can be reduced significantly. The table

compares average values of IV and RV in the 10 decile portfolios obtained by sorting

ATM options on the log-difference between RV and IV to our approach of sorting

options according to their IV conditional on their RV.64 The comparison is done for

calls and puts separately. We further include option greeks (delta, gamma, vega) as

well as further moments of the underlyings’ return distribution (skewness, kurtosis) in

the table.65

Results for call and put options are very similar. For brevity, we therefore focus on

64Decile portfolios based on our conditional quantile approach are obtained by including options with
F(IV |RV) ≥ 90 % in the first portfolio, options with 80 % ≤ F(IV |RV) < 90 % in the second portfolio,
etc. The portfolios are equal-weighted. Note that we sort on the conditional IV in descending order to
obtain decile portfolios where the differences between RV and IV are increasing.

65Means are first calculated (equally weighted) for each month and each portfolio and are then averaged
over time.
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Table 3.2: Decile portfolios for ATM options

This table provides information on the average values of various covariates within decile
portfolios that are formed according to two approaches: This paper proposes sorting options
(in descending order) on their IV conditional on their underlyings’ RV into decile portfolios
to proxy for the Volatility Risk Premium (VRP). This yields portfolios where, on average, the
differences RV-IV increase monotonically while RV remains nearly constant. We compare
this to portfolios obtained by sorting options on the log-difference of RV and IV (according
to Goyal and Saretto, 2009). This yields portfolios that are monotonically increasing in the
average RV (due to an implicit linear assumption on the conditional quantile curves). Within
the decile portfolios, we provide means of IV, RV, option greeks (delta, gamma, vega) as well
as skewness (skew), and kurtosis (kurt) of option underlyings’ return distribution. The means
are calculated by first computing averages for each portfolio and each month and then taking
the time-series averages. Results are based on ATM call and put samples from January 1996
to June 2019.

Decile portfolios

1 2 3 4 5 6 7 8 9 10

C
al

ls

lo
g-

di
ff

er
en

ce
s

IV 0.438 0.423 0.417 0.413 0.410 0.410 0.411 0.413 0.414 0.418
RV 0.423 0.421 0.421 0.421 0.421 0.428 0.431 0.439 0.447 0.467
RV-IV -0.015 -0.002 0.004 0.008 0.011 0.018 0.020 0.026 0.033 0.049

delta 0.534 0.534 0.533 0.533 0.531 0.532 0.533 0.531 0.531 0.532
gamma 0.151 0.150 0.149 0.152 0.150 0.152 0.151 0.153 0.155 0.164
vega 4.857 4.941 5.037 4.983 4.986 4.921 4.956 4.952 4.861 4.753
skew 0.160 0.169 0.165 0.170 0.172 0.166 0.156 0.175 0.179 0.242
kurt 8.758 8.619 8.548 8.652 8.647 8.674 8.740 8.990 9.136 10.679

co
nd

.q
ua

nt
ile

s

IV 0.451 0.437 0.425 0.421 0.413 0.410 0.406 0.401 0.398 0.392
RV 0.438 0.438 0.432 0.432 0.428 0.430 0.428 0.427 0.431 0.434
RV-IV -0.013 0.001 0.007 0.011 0.015 0.020 0.022 0.026 0.033 0.042

delta 0.534 0.535 0.534 0.534 0.533 0.533 0.532 0.531 0.531 0.531
gamma 0.153 0.151 0.150 0.152 0.151 0.151 0.151 0.154 0.154 0.163
vega 4.770 4.840 4.957 4.865 4.947 4.981 4.991 4.923 5.094 4.987
skew 0.171 0.175 0.171 0.181 0.175 0.161 0.159 0.171 0.177 0.218
kurt 8.870 8.770 8.634 8.829 8.624 8.740 8.732 8.910 9.181 10.280

Pu
ts

lo
g-

di
ff

er
en

ce
s

IV 0.457 0.439 0.431 0.426 0.426 0.425 0.426 0.423 0.424 0.430
RV 0.430 0.427 0.426 0.426 0.430 0.433 0.438 0.440 0.450 0.475
RV-IV -0.027 -0.012 -0.005 0.000 0.004 0.008 0.012 0.017 0.026 0.045

delta -0.469 -0.470 -0.470 -0.470 -0.473 -0.473 -0.472 -0.472 -0.473 -0.473
gamma 0.146 0.143 0.145 0.145 0.145 0.145 0.146 0.148 0.148 0.154
vega 4.818 4.990 5.002 5.036 5.032 5.005 5.001 4.989 5.001 4.866
skew 0.170 0.161 0.163 0.163 0.183 0.167 0.147 0.161 0.169 0.228
kurt 8.850 8.716 8.577 8.529 8.478 8.683 8.921 8.773 9.283 11.018

co
nd

.q
ua

nt
ile

s

IV 0.475 0.457 0.442 0.438 0.427 0.427 0.420 0.415 0.408 0.399
RV 0.449 0.446 0.440 0.439 0.434 0.437 0.434 0.433 0.432 0.431
RV-IV -0.026 -0.011 -0.002 0.001 0.007 0.010 0.014 0.018 0.024 0.032

delta -0.470 -0.469 -0.469 -0.470 -0.471 -0.472 -0.471 -0.472 -0.474 -0.475
gamma 0.147 0.145 0.145 0.145 0.145 0.146 0.145 0.147 0.148 0.153
vega 4.702 4.853 4.901 4.920 4.973 5.014 5.091 5.011 5.112 5.150
skew 0.191 0.175 0.177 0.178 0.165 0.170 0.151 0.160 0.153 0.196
kurt 9.026 8.817 8.820 8.617 8.658 8.749 8.635 8.956 9.208 10.412



3.3. EMPIRICAL STUDY 97

the analysis of call results. Like Goyal and Saretto (2009) we find that when sorting

on log RV - log IV, IV decreases when proceeding from decile 1 to decile 10 by 2.0

percentage points while RV increases by 4.4 percentage points. Thus, the differences

in RV between decile 1 and 10 are more than double the corresponding differences in

IV. Furthermore, while the decile portfolios are (almost) monotonic in RV, there is no

clear pattern for IV. It is therefore unclear to which extent a corresponding long-short

strategy (decile 10 - decile 1) is driven by systematic differences in RV rather than

differences in the VRP.

In our approach, we control for RV when forming the decile portfolios by sorting op-

tion contracts on their IV conditional on their RV. This leads to average differences in

IV of nearly 6 percentage points that are by construction ensured to decrease monoton-

ically from decile 1 to decile 10. More importantly, differences in RV between decile

1 and 10 are very small (about 0.4 percentage points). Consequently, the influence

of different levels of RV on the returns from a long-short strategy is significantly re-

duced.66 For both strategies there is not much variation in option greeks (delta, gamma,

vega) across portfolios. However, for both strategies the returns of the underlyings in

portfolio 10 are more positively skewed and more leptokurtic than those in portfolio

1, with the differences being more pronounced in the portfolios formed on the log-

differences. For example, the average skewness in portfolio 10 is 0.218 compared to

0.171 in portfolio 1 for the approach based on conditional quantile curves (0.242 vs.

0.160 for portfolios 10 and 1 formed on the log-differences).67 To account for the fact

that results from our long-short strategy might be biased by systematic differences in

skewness and kurtosis, we control for these characteristics in a robustness check in

Section 3.4.1.

66For puts, the average difference in RV between decile 1 and 10 is a little bit higher (1.8 percentage
points). This might be due to the smaller size of our put option sample. However, this difference is
relatively small compared to the average difference in IV (7.6 percentage points). When turning to
the option sample of arbitrary moneyness (not covered in Table 3.2), the average differences in RV
between decile 1 and 10 are 1.1 percentage points for calls and 0.1 percentage points for puts.

67Eisdorfer et al. (2020) provide evidence that the nominal stock price level matters for option returns.
However, for both approaches (log-differences, conditional quantiles) we do not find much variation
in the average log stock price across the decile portfolios which is why we do not include the log stock
price in further analyses.
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3.3.4 Trading strategy

At the money option contracts

We start with a trading strategy based on ATM options only so that we are able to

compare the results of a trading strategy based on conditional quantile curves to those

obtained by sorting according to the criterion by Goyal and Saretto (2009). First of

all, in each of the 10 decile portfolios we calculate monthly returns from a raw option

strategy.68 While the portfolios themselves are formed every month on the first trading

day (typically a Monday) after the option expiration, we follow Goyal and Saretto

(2009) and start trading the day after (typically a Tuesday) to mitigate microstructure

biases. We use the mid-point of bid and ask quotes to proxy for the market price of

the option at the beginning of the monthly trade (cf., e.g., Coval and Shumway, 2001,

Driessen et al., 2009, Goyal and Saretto, 2009, Cao and Han, 2013, Hu and Jacobs,

2020). We hold all options until expiration.69 For an option expiring in the money, the

return is given by the terminal payoff divided by the price of the option contract minus

1. For an option that expires out of the money we set the return to −100 %.

In addition to raw option returns, we also calculate returns from a delta-hedged

strategy to reduce the directional exposure to the underlying stocks.70 Returns for

these trading strategies are calculated for calls and puts separately and based on equal-

weighted portfolios.

Results for both approaches (log-differences and conditional quantiles) are reported

in Table 3.3 (delta-hedged returns) and Table 3.4 (raw option returns). The tables pro-

vide summary statistics on the monthly returns in each of the decile portfolios (long

positions) as well as for a long-short strategy (high minus low VRP). The tables illus-

68Goyal and Saretto (2009) do not implement a raw option strategy but rather provide results for a delta-
hedged option strategy as well as for a strategy based on straddles (built of pairs of calls and puts with
the same exercise price).

69The issue of early exercise is discussed in Section 3.3.1.
70Delta-hedged option positions are formed by buying one option contract and buying (for puts) or short-

selling (for calls) delta shares of the underlying stock. We follow the conservative approach of Goyal
and Saretto (2009) and do not rebalance the portfolio during the holding period, see the discussion
ibidem.
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trate that returns in the portfolios sorted on the VRP increase (almost) monotonically

for both puts and calls in the delta-hedged and in the raw option strategy, respectively.

This is true for portfolios formed based on conditional quantile curves and portfolios

formed according to the log-difference of RV and IV.

Table 3.3: Delta-hedged returns of ATM options

This table provides summary statistics on monthly delta-hedged returns of decile portfolios for
ATM call and put options. Decile portfolios are formed by sorting on the log-difference of RV
and IV according to Goyal and Saretto (2009) and by sorting on options’ IV conditional on
their RV, respectively. We additionally provide returns from a long-short strategy, that is long
in decile 10 (highest) and short in decile 1 (lowest). We report the mean, standard deviation
(sd), minimum (min), maximum (max), and Sharpe ratio (SR) of the monthly returns. Since
the long-short strategy is a zero investment strategy, the Sharpe ratio is simply calculated as
the ratio between mean and standard deviation. We calculate the Sharpe ratios in the decile
portfolios accordingly for easy comparison. The sample period is from January 1996 to June
2019.

Decile portfolios

1 2 3 4 5 6 7 8 9 10 10-1

C
al

ls

lo
g-

di
ff

er
en

ce
s mean -0.015 -0.007 -0.006 -0.005 -0.003 -0.003 -0.002 -0.001 0.000 0.005 0.020

sd 0.027 0.026 0.026 0.028 0.029 0.028 0.029 0.029 0.030 0.032 0.025
min -0.078 -0.086 -0.073 -0.068 -0.069 -0.056 -0.081 -0.062 -0.069 -0.051 -0.045
max 0.150 0.171 0.203 0.184 0.187 0.191 0.192 0.186 0.194 0.196 0.161
SR -0.571 -0.257 -0.243 -0.188 -0.106 -0.102 -0.068 -0.046 0.015 0.142 0.786

co
nd

.q
ua

nt
. mean -0.016 -0.008 -0.006 -0.005 -0.002 -0.003 -0.001 0.000 0.001 0.003 0.020

sd 0.030 0.029 0.029 0.028 0.031 0.028 0.028 0.027 0.025 0.025 0.023
min -0.088 -0.076 -0.072 -0.070 -0.079 -0.071 -0.061 -0.060 -0.056 -0.038 -0.057
max 0.161 0.199 0.183 0.180 0.230 0.185 0.191 0.184 0.179 0.169 0.113
SR -0.541 -0.273 -0.209 -0.178 -0.073 -0.103 -0.047 -0.018 0.047 0.129 0.842

Pu
ts

lo
g-

di
ff

er
en

ce
s mean -0.012 -0.006 -0.004 -0.003 -0.001 0.000 0.000 0.001 0.002 0.003 0.015

sd 0.026 0.024 0.025 0.026 0.025 0.027 0.027 0.027 0.028 0.031 0.025
min -0.078 -0.065 -0.087 -0.078 -0.053 -0.064 -0.075 -0.088 -0.054 -0.057 -0.040
max 0.132 0.169 0.145 0.177 0.171 0.161 0.203 0.160 0.170 0.202 0.209
SR -0.477 -0.256 -0.166 -0.112 -0.058 0.002 -0.001 0.026 0.086 0.104 0.612

co
nd

.q
ua

nt
. mean -0.014 -0.007 -0.003 -0.003 -0.001 0.000 0.001 0.001 0.002 0.003 0.017

sd 0.028 0.027 0.027 0.026 0.026 0.026 0.026 0.025 0.025 0.025 0.021
min -0.078 -0.071 -0.075 -0.080 -0.066 -0.059 -0.061 -0.070 -0.053 -0.065 -0.058
max 0.147 0.172 0.193 0.161 0.190 0.162 0.181 0.142 0.161 0.155 0.081
SR -0.492 -0.265 -0.120 -0.120 -0.026 -0.016 0.020 0.043 0.085 0.130 0.796

A long-short delta-hedged strategy based on conditional quantile curves yields aver-

age monthly returns of 2.0 % for calls and 1.7 % for puts with a monthly Sharpe ratio

of 0.842 (2.917 annualized) and 0.796 (2.757 annualized), respectively. In compari-

son, the delta-hedged strategy based on the log-difference of RV and IV earns monthly

Sharpe ratios of 0.786 (calls) and 0.612 (puts). That is, we confirm the existence of a
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volatility risk premium in the cross-section of option returns and find an even higher

effect for delta-hedged returns when controlling for the level of realized volatility.

Table 3.4: Raw returns of ATM options

This table provides the same information on monthly returns from decile portfolios of ATM
options as Table 3.3 but for a raw option strategy.

Decile portfolios

1 2 3 4 5 6 7 8 9 10 10-1

C
al

ls

lo
g-

di
ff

er
en

ce
s mean 0.006 0.098 0.084 0.104 0.112 0.129 0.120 0.129 0.159 0.185 0.179

sd 0.512 0.591 0.566 0.622 0.646 0.648 0.657 0.659 0.681 0.687 0.413
min -0.919 -0.945 -0.998 -0.998 -0.987 -0.975 -1.000 -1.000 -0.990 -0.982 -1.307
max 2.407 1.951 1.836 2.009 2.106 2.175 2.206 2.441 2.751 2.792 2.317
SR 0.012 0.166 0.149 0.168 0.174 0.199 0.183 0.195 0.234 0.269 0.434

co
nd

.q
ua

nt
. mean -0.006 0.058 0.078 0.088 0.111 0.113 0.103 0.137 0.155 0.207 0.213

sd 0.511 0.544 0.568 0.597 0.643 0.634 0.643 0.670 0.676 0.687 0.407
min -0.918 -0.982 -0.980 -0.992 -0.989 -1.000 -1.000 -1.000 -1.000 -0.975 -0.721
max 2.375 1.674 1.737 1.786 2.322 2.093 2.294 2.819 2.157 2.475 1.885
SR -0.012 0.107 0.138 0.148 0.173 0.179 0.161 0.205 0.229 0.301 0.523

Pu
ts

lo
g-

di
ff

er
en

ce
s mean -0.187 -0.164 -0.143 -0.155 -0.103 -0.090 -0.076 -0.081 -0.062 -0.062 0.125

sd 0.615 0.695 0.756 0.767 0.791 0.815 0.841 0.801 0.827 0.838 0.419
min -0.980 -0.978 -0.987 -1.000 -0.974 -0.990 -0.951 -0.976 -0.979 -0.985 -1.184
max 3.825 4.728 4.338 4.980 4.971 4.575 5.665 4.699 4.665 4.827 1.635
SR -0.304 -0.235 -0.188 -0.202 -0.131 -0.111 -0.090 -0.101 -0.075 -0.074 0.298

co
nd

.q
ua

nt
. mean -0.176 -0.159 -0.122 -0.143 -0.105 -0.100 -0.087 -0.084 -0.077 -0.077 0.099

sd 0.600 0.661 0.740 0.743 0.800 0.788 0.838 0.810 0.850 0.888 0.467
min -0.965 -0.982 -0.964 -0.992 -0.976 -0.947 -0.976 -0.990 -0.990 -0.958 -1.295
max 3.794 4.017 5.054 4.481 5.425 4.738 5.136 4.439 5.013 5.054 2.741
SR -0.294 -0.240 -0.164 -0.192 -0.131 -0.127 -0.103 -0.103 -0.090 -0.087 0.212

Higher absolute returns can be earned with raw option strategies. A long-short strat-

egy based on conditional quantile curves yields average monthly returns of 21.3 %

(calls) and 9.9 % (puts) with Sharpe ratios of 0.523 and 0.212, respectively. All trad-

ing strategies based on conditional quantiles yield returns that are both economically

and statistically significant with t-statistics of at least 3.5. While for calls the Sharpe

ratio for a strategy based on conditional quantile curves is higher than for a strategy

based on the log-differences of RV and IV (0.523 vs. 0.434), the opposite is true for

puts (0.212 vs. 0.298).71 Except for delta-hedged call returns, the differences in the

Sharpe ratios are statistically significant at the 5 % level when testing according to

Ledoit and Wolf (2008). We attribute these differences between delta-hedged returns
71These differences are robust to the choice of the method for estimating conditional quantiles, see

Section 3.4.3.
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and raw option returns as well as between calls and puts to the systematic differences

in RV when sorting options on the log-difference of RV and IV. While we control for

the level of RV across the decile portfolios by using conditional quantile estimates,

the long-short strategy based on the log-differences is long (short) in high (low) RV

(see Table 3.2). This differing influence of RV on the returns from various strategies

highlights the importance of controlling for the influence of the level of RV when em-

pirically analyzing the VRP.

Options of arbitrary moneyness

So far, we have analyzed our sample of ATM calls and puts. As ATM calls (puts)

account for only 11.7 % (13.9 %) of all calls (puts) in our sample, we extend our

analysis to options with moneyness (defined as the ratio K/S ) between 0.5 and 1.5. In

doing so, we can analyze if there is still a volatility risk premium in the cross-section of

option returns when additionally including in the money and out of the money options.

Furthermore, this allows us to increase the number of observations by a factor of about

8. Finally, by requiring ATM options to have a moneyness in the interval [0.975, 1.025]

(see Section 3.3.1) we also exclude many underlyings from our analysis. This happens

when there are no options with appropriate moneyness available at a specific date. Not

restricting moneyness to the small interval [0.975, 1.025] therefore doubles the number

of underlyings available in our sample on average over all months. In particular, the

minimum number of different underlyings at a given day increases from 171 to 734

(for calls) and 105 to 387 (for puts). This facilitates controlling for further moments of

the underlyings’ return distribution, see Section 3.4.1.

Our approach of using conditional quantiles for deriving decile portfolios general-

izes naturally to options of arbitrary moneyness. Therefore, we form portfolios based

on extreme values of IV conditional on RV and options’ moneyness.72 We condition

72To put this into perspective: If one were to replicate this based on portfolio sorts, one would be required
to apply a conditional triple-sort to the data. This is something that is impracticable if not infeasible
against the background of only 826 put options at the beginning of our data sample. In Section 3.4.1
we additionally control for skewness and kurtosis in the underlyings’ return distributions. This would
be, at the latest, impossible to achieve with portfolio sorts.
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on options’ moneyness to avoid results from such a trading strategy to be biased by sys-

tematic differences in options’ moneyness (volatility skew, see, e.g., Toft and Prucyk

(1997)). Summary statistics for monthly delta-hedged and raw option returns for both

calls and puts are reported in Table 3.5. The results are in line with our previous find-

ings and confirm that the VRP is also priced in the cross-section of returns of options

with arbitrary moneyness. For example, a delta-hedged strategy that is long (short) in

options with a high (low) VRP yields an average monthly return of 2.4 % for calls and

2.5 % for puts with a monthly Sharpe ratio of 0.816 (calls) and 0.844 (puts), respec-

tively. The corresponding long-short raw option strategy exhibits an average monthly

return of 20.1 % for calls and 13.1 % for puts with a monthly Sharpe ratio of 0.390 and

0.217, respectively. All trading strategies yield returns that are both economically and

statistically significant with t-statistics above 3.6.

Table 3.5: Returns of the trading strategies for options with arbitrary moneyness

This table provides similar information on monthly delta-hedged as well as raw option
returns from decile portfolios to Tables 3.3 and 3.4 but for options with arbitrary moneyness.
Furthermore, decile portfolios are formed by sorting on options’ IV conditional on their RV
and their moneyness.

Decile portfolios

1 2 3 4 5 6 7 8 9 10 10-1

de
lta

-h
ed

ge
d

re
tu

rn
s

C
al

ls

mean -0.023 -0.014 -0.010 -0.008 -0.007 -0.005 -0.004 -0.004 -0.002 0.001 0.024
sd 0.032 0.030 0.029 0.029 0.029 0.029 0.030 0.030 0.029 0.032 0.030
min -0.117 -0.093 -0.105 -0.072 -0.067 -0.065 -0.065 -0.081 -0.061 -0.056 -0.078
max 0.186 0.178 0.178 0.182 0.194 0.192 0.192 0.223 0.226 0.271 0.290
SR -0.726 -0.469 -0.333 -0.285 -0.233 -0.163 -0.143 -0.119 -0.071 0.029 0.816

Pu
ts

mean -0.023 -0.013 -0.010 -0.008 -0.006 -0.005 -0.004 -0.003 -0.001 0.002 0.025
sd 0.032 0.038 0.036 0.036 0.036 0.036 0.035 0.034 0.036 0.039 0.029
min -0.103 -0.074 -0.083 -0.085 -0.069 -0.062 -0.067 -0.071 -0.057 -0.049 -0.084
max 0.245 0.308 0.341 0.308 0.326 0.299 0.284 0.286 0.334 0.356 0.250
SR -0.712 -0.333 -0.273 -0.213 -0.160 -0.134 -0.099 -0.087 -0.038 0.054 0.844

ra
w

re
tu

rn
s

C
al

ls

mean -0.059 -0.014 0.018 0.030 0.039 0.058 0.061 0.066 0.093 0.142 0.201
sd 0.411 0.444 0.476 0.498 0.524 0.559 0.576 0.600 0.635 0.726 0.515
min -0.855 -0.889 -0.950 -0.949 -0.961 -0.959 -0.963 -0.948 -0.945 -0.935 -1.429
max 1.384 1.477 1.723 2.047 2.321 2.847 3.562 4.246 4.242 5.699 4.871
SR -0.143 -0.032 0.037 0.060 0.075 0.104 0.105 0.110 0.147 0.196 0.390

Pu
ts

mean -0.232 -0.202 -0.194 -0.179 -0.181 -0.176 -0.166 -0.152 -0.139 -0.101 0.131
sd 0.596 0.750 0.795 0.835 0.862 0.885 0.906 0.888 0.957 1.030 0.603
min -0.919 -0.919 -0.959 -0.853 -0.929 -0.911 -0.942 -0.957 -0.941 -0.944 -1.634
max 4.801 6.321 7.279 7.175 7.429 7.135 6.847 6.002 6.918 6.872 4.643
SR -0.389 -0.269 -0.244 -0.214 -0.210 -0.199 -0.184 -0.171 -0.145 -0.098 0.217
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3.4 Robustness checks

3.4.1 Controlling for higher moments of the underlyings’ return

distribution

In our baseline analysis, we sort options into decile portfolios based on their IV con-

ditional on their RV. This allows us to identify large deviations between IV and RV to

study the VRP without potential biases arising from different levels in RV. However,

Table 3.2 indicates that after controlling for RV (the square root of the second moment

of the underlyings’ return distribution) via conditional quantiles there remain differ-

ences in the third (skewness) and fourth (kurtosis) moment of the underlyings’ return

distribution between the long (decile portfolio 10) and the short portfolio (decile port-

folio 1). These differences might potentially bias returns from a strategy exploiting the

VRP.

Fortunately, our approach of using conditional quantiles allows us to additionally

condition on the underlyings’ skewness and kurtosis. This is impossible via conditional

portfolio sorts as this would require a quadruple sort on IV, RV, skewness, and kurtosis

in our ATM option sample.73 Additionally controlling for moneyness in our sample of

arbitrary moneyness would even require a quintuple sort.

Summary statistics for the monthly returns from the delta-hedged and raw option

strategies for puts and calls are reported in Table 3.6 for the ATM option sample as

well as the sample of arbitrary moneyness. Skewness and kurtosis are calculated based

on the realized returns from the option contracts’ underlying over the most recent 12

months. The results are in line with our previous findings.

73This becomes even more apparent when considering the number of only 105 puts at the beginning
of our sample period in January 1996. This makes a conditional portfolio sort in 10 bins for each
variable (10, 000 bins in total) infeasible. Instead performing a portfolio sort based on only 5 bins
for each variable would still be infeasible (625 bins). Apart from this, it would be a very imprecise
approximation of the true conditional quantile curves (see the illustrative example in Figure 3.2).



3.4. ROBUSTNESS CHECKS 104

Table 3.6: Conditioning on higher moments of the underlyings’ return distribution

This table presents summary statistics on the monthly returns from long-short portfolios
based on the conditional 10 % and 90 % quantiles of option IV. In our baseline analysis,
we condition on the square root of the second moment (RV) of the underlyings’ return
distribution (and additionally on moneyness for the sample of arbitrary moneyness). In this
table, we additionally condition on the third (skewness) and fourth (kurtosis) moment of the
underlyings’ return distribution. Summary statistics for the monthly returns (mean, standard
deviation (sd), minimum (min), maximum (max), Sharpe ratio (SR)) are reported when
conditioning on skewness (skew) and kurtosis (kurt) separately and jointly, respectively. We
provide results for delta-hedged and raw option strategies for puts and calls for both ATM
options as well as options with arbitrary moneyness. The sample period is from January 1996
to June 2019.

mean sd min max SR

AT
M

D
el

ta
-h

ed
ge

d

C
al

ls skew 0.021 0.026 -0.088 0.104 0.802
kurt 0.021 0.025 -0.058 0.148 0.855
skew and kurt 0.021 0.025 -0.095 0.144 0.823

Pu
ts

skew 0.018 0.024 -0.093 0.124 0.752
kurt 0.018 0.021 -0.046 0.091 0.850
skew and kurt 0.018 0.023 -0.087 0.093 0.770

R
aw

re
tu

rn
s

C
al

ls skew 0.230 0.428 -0.982 1.954 0.537
kurt 0.227 0.435 -0.864 2.302 0.522
skew and kurt 0.232 0.421 -0.853 2.505 0.552

Pu
ts

skew 0.090 0.454 -0.751 2.812 0.197
kurt 0.101 0.466 -1.166 2.826 0.216
skew and kurt 0.081 0.456 -0.938 3.088 0.178

A
rb

itr
ar

y
m

on
ey

ne
ss

D
el

ta
-h

ed
ge

d

C
al

ls skew 0.025 0.030 -0.104 0.291 0.840
kurt 0.025 0.029 -0.090 0.275 0.864
skew and kurt 0.025 0.029 -0.094 0.252 0.863

Pu
ts

skew 0.026 0.028 -0.103 0.174 0.919
kurt 0.026 0.029 -0.101 0.221 0.902
skew and kurt 0.026 0.027 -0.086 0.150 0.951

R
aw

re
tu

rn
s

C
al

ls skew 0.213 0.505 -1.122 4.872 0.421
kurt 0.209 0.511 -1.171 4.565 0.408
skew and kurt 0.206 0.489 -0.975 4.419 0.422

Pu
ts

skew 0.143 0.571 -1.421 4.664 0.251
kurt 0.154 0.570 -1.280 4.144 0.270
skew and kurt 0.149 0.549 -1.335 4.487 0.272
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3.4.2 Transaction costs

Transaction costs in option markets can be quite large and might in part explain some

pricing anomalies such as put-call parity violations (see Goyal and Saretto (2009) and

the references therein). For example, in our ATM option sample the average bid-ask

spread relative to the mid-prices is 23.7 % for calls and 22.7 % for puts. We therefore

study limitations of investors in exploiting profits from the long-short strategies based

on the VRP.

So far, we assumed investors to trade options at their mid-point price. However, to

account for transaction costs, we recalculate returns from our strategies when incor-

porating bid-ask spreads. This not only concerns the option contracts but also the un-

derlying stocks. For the raw option strategy transaction costs in the underlying stocks

only occur at expiration as all equity options have to be delivered physically. In our

delta-hedged strategy, stock related transaction costs additionally arise at the beginning

of each monthly trading period.

As already mentioned, (quoted) bid-ask spreads can be quite high. However, al-

though effective bid-asks spreads are usually still quite high in absolute terms, there is

empirical evidence that they are small relative to the quoted spreads with ratios below

0.5 (see, e.g., Mayhew, 2002, de Fontnouvelle et al., 2003). We therefore recalculate

returns for our raw and delta-hedged option strategies based on an effective spread of

50% relative to the quoted spreads. For example, for an option contract with quoted bid

and ask equal to $2 and $3, respectively, we assume investors to buy at $2.75 and sell

at $2.25, that is, at an effective spread of $0.5 instead of the quoted spread of $1. To

provide a more complete picture, we also consider ratios between effective and quoted

spreads of 25 %, 75 %, and 100 %.

Average returns for raw and delta-hedged long-short strategies for puts and calls, re-

spectively, are reported in Table 3.7 along with their t-statistics. As expected, average

monthly returns decrease substantially when accounting for transaction costs. For ex-

ample, the average monthly return from the ATM delta-hedged call strategy decreases



3.4. ROBUSTNESS CHECKS 106

from 2.0 % when trading at the mid-point prices to 0.3 % when considering an effec-

tive spread of 50 %. However, average delta-hedged returns remain positive for calls

and puts both ATM as well as for arbitrary moneyness with t-statistics between 1.078

and 3.286. Nevertheless, while raw option returns are still positive after considering

transaction costs (50 % ratio of effective to quoted spreads) for calls (both ATM and for

arbitrary moneyness), raw option returns for puts are negative (both ATM and for arbi-

trary moneyness). When further increasing transaction costs to 75 % or even 100 % of

effective to quoted spreads, returns deteriorate further and are negative for all reported

strategies. However, when considering more moderate transaction costs like, e.g., Cao

and Han (2013) and Bali et al. (2021) (25 % ratio of effective to quoted spreads), the re-

turns of all trading strategies remain positive with t-statistics between 1.390 and 8.452.

Overall, the results illustrate that transaction costs can substantially reduce the returns

from our option portfolios, especially for the raw option trading strategies. Neverthe-

less, except for the raw option strategy for puts of arbitrary moneyness, we conclude

that the profits from our trading strategies are not eliminated at reasonable levels of

transaction costs (ratios of effective to quoted spreads of up to 50 %).

3.4.3 Other estimators of conditional quantiles

There are various methods for estimating conditional quantiles, see Section 3.2.3 for

details on the estimation of conditional quantiles in general and specific estimators in

particular. So far, we have employed the leveraging estimator to form decile portfolios

and subsequently calculate returns from a long-short strategy. To ensure that our results

are not driven by the specific choice of the estimator, we repeat our analyses based on

the quantization estimator due to Charlier et al. (2015b) and the copula estimator due

to Kraus and Czado (2017). Results on the returns from long-short strategies based on

the three different estimators are reported in Table 3.8. For illustrative purposes, we

also provide results obtained from a (conditional) double-sort (for ATM options) and
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Table 3.7: Returns after accounting for transaction costs

This table reports average monthly returns (along with their t-statistics) from our long-short
trading strategies when considering transaction costs. In our baseline analysis we assume
investors to buy and sell options at their mid-point price (MidP). This table reports results
when considering ratios of effective to quoted spreads of 25 %, 50 %, 75 %, and 100 %. Note
that we also take transaction costs for the underlying stocks into account as all equity options
in our sample have to be delivered physically at option exercise. Long-short portfolios are
formed based on the lowest and highest deciles of options’ IV conditional on their RV (for
ATM options) or conditional on RV and moneyness (for options of arbitrary moneyness). We
report average returns from the delta-hedged and raw option strategies separately for calls and
puts. Additionally, we consider the sample of ATM options as well as the sample of arbitrary
moneyness. The sample period is from January 1996 to June 2019.

MidP 25% 50% 75% 100%

AT
M

D
el

ta
-h

ed
ge

d

Calls
0.020 0.011 0.003 -0.006 -0.015

(14.131) (8.161) (1.874) (-4.707) (-11.218)

Puts 0.017 0.010 0.002 -0.005 -0.013
(13.364) (7.191) (1.772) (-3.815) (-9.350)

R
aw

Calls 0.213 0.114 0.021 -0.082 -0.277
(8.776) (4.937) (0.952) (-3.642) (-9.854)

Puts
0.099 0.036 -0.032 -0.109 -0.252

(3.565) (1.390) (-1.296) (-4.509) (-8.264)

A
rb

itr
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y
m
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ey

ne
ss

D
el

ta
-h

ed
ge

d

Calls
0.024 0.013 0.002 -0.010 -0.021

(13.700) (7.725) (1.078) (-5.810) (-12.638)

Puts 0.025 0.015 0.006 -0.004 -0.013
(14.178) (8.452) (3.286) (-2.136) (-7.678)

R
aw

Calls 0.201 0.113 0.026 -0.072 -0.238
(6.553) (4.003) (0.972) (-2.727) (-8.339)

Puts
0.131 0.063 -0.010 -0.091 -0.225

(3.644) (1.924) (-0.348) (-3.345) (-7.918)

triple-sort (for options of arbitrary moneyness) into 10 bins for each variable.74

The results are in line with our previous findings. In particular, all conclusions with

regard to the comparison between our approach of calculating the VRP while control-

ling for RV and the approach based on the log-difference of RV and IV remain valid,

see Section 3.3.4 for details. However, the variation between the different estimators

74As outlined in Section 3.2.2, portfolio sorts are inflexible with regard to the percentage of observa-
tions that are supposed to enter into the long and short portfolios, especially when the number of
observations is low or when sorting on multiple variables. For example, in our put sample of arbitrary
moneyness the percentage of observations entering into the long and short portfolios varies between
10.32 % and 18.62 % over all trading periods with a mean of 11.08 %. However, while conditional
portfolio sorts might still be feasible in this case (with limitations), controlling for further characteris-
tics as in Section 3.4.1 would be impossible.
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Table 3.8: Returns when using different estimators of conditional quantile curves

This table provides information on the monthly returns from long-short portfolios formed
based on the conditional 10 % and 90 % quantiles of options’ IV conditional on RV (for
ATM options) and conditional on RV and moneyness (for options of arbitrary moneyness).
Conditional quantiles are computed based on three different estimators. We compare our
baseline estimator (leveraging estimator) to the copula estimator by Kraus and Czado (2017)
and the quantization estimator by Charlier et al. (2015b). For illustrative purposes, we also
include results from a conditional double-sort (ATM) and triple-sort (arbitrary moneyness)
into 10 portfolios for each variable. We report the mean, standard deviation (sd), and Sharpe
ratio (SR) of monthly returns for the delta-hedged and raw option strategy separately for calls
and puts. The strategies are evaluated for ATM options and for options of arbitrary moneyness
between January 1996 and June 2019.

Leveraging Copula Quantization Portfolio sort

AT
M

D
el

ta
-h

ed
ge

d

C
al

ls mean 0.020 0.021 0.019 0.018
sd 0.023 0.025 0.022 0.022
SR 0.842 0.836 0.874 0.835

Pu
ts

mean 0.017 0.018 0.016 0.015
sd 0.021 0.022 0.020 0.020
SR 0.796 0.813 0.808 0.755

R
aw

re
tu

rn
s

C
al

ls mean 0.213 0.223 0.208 0.201
sd 0.407 0.447 0.408 0.414
SR 0.523 0.499 0.510 0.487

Pu
ts

mean 0.099 0.113 0.094 0.097
sd 0.467 0.483 0.446 0.432
SR 0.212 0.235 0.210 0.224

A
rb

itr
ar

y
m
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D
el

ta
-h

ed
ge

d

C
al

ls mean 0.024 0.026 0.023 0.023
sd 0.030 0.032 0.030 0.028
SR 0.816 0.796 0.786 0.803

Pu
ts

mean 0.025 0.023 0.028 0.022
sd 0.029 0.032 0.030 0.028
SR 0.844 0.730 0.955 0.786

R
aw

re
tu

rn
s

C
al

ls mean 0.201 0.221 0.190 0.197
sd 0.515 0.556 0.510 0.493
SR 0.390 0.398 0.372 0.399

Pu
ts

mean 0.131 0.147 0.198 0.114
sd 0.603 0.611 0.636 0.564
SR 0.217 0.241 0.312 0.202
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is higher for the trading strategies involving options of arbitrary moneyness, which is

mainly due to the quantization estimator.75

3.4.4 Including dividend-paying stocks

All equity options in our sample are American. In our baseline analysis we therefore

follow Hu and Jacobs (2020) and exclude all options with an ex-dividend date during

the remaining life of the contract. This is done to reduce the impact of early exercise,

as mentioned in Section 3.3.1. However, to show robustness of our results, we recal-

culate the returns of our option strategies when not excluding dividend-paying stocks.

This increases our ATM option sample to 326,224 calls and 299,924 puts while the

sample of arbitrary moneyness expands to 2,682,492 calls and 2,145,435 puts. Sum-

mary statistics on the monthly returns of delta-hedged and raw option strategies for

calls and puts both ATM and for arbitrary moneyness are reported in Table 3.9. The

results are in line with our previous findings.

3.4.5 Options with low and high trading volume

Our ATM option sample covers a vast number of stocks with listed options.76 How-

ever, most of these options only experience a small amount of trading volume.77 For

example, the median of the total volume of option contracts over all options at the be-

ginning of each monthly trade is on average 25.16 for the calls and 10.28 for the puts

with an average maximum of 27,774 and 26,849, respectively. While for heavily traded

options, bid and ask quotes by market makers might largely reflect the supply and de-

mand of actual investors, the data for rarely traded options might just mirror quotes

75In an unreported simulation study we find the leveraging and the copula estimator to be most appro-
priate. However, we include the quantization estimator to provide a more comprehensive picture.

76In this analysis, we only consider the ATM option sample. Sorting options on their trading volume in
our sample of arbitrary moneyness would otherwise lead to groups that differ systematically in their
moneyness as the trading volume of ATM options is usually the highest. These differences between
the groups could not be eliminated by conditioning on moneyness when computing the conditional
quantile curves as this approach can only control for differences in the moneyness within the groups.

77All options with zero open interest have already been excluded from our option samples. For more
details see Section 3.3.1.
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Table 3.9: Including options on dividend-paying stocks

In our baseline analyses, we exclude all options with an ex-dividend date during the remaining
life of the contract. This is done to reduce the impact of early exercise. In this table, we
present summary statistics (mean, standard deviation (sd), minimum (min), maximum (max),
and Sharpe ratio (SR)) of monthly returns that we obtain when we do not exclude options
on dividend-paying stocks. Long-short portfolios are formed based on the conditional 10 %
and 90 % quantiles of options’ IV conditional on RV (for ATM options) or conditional on RV
and moneyness (for the option sample of arbitrary moneyness). We report returns from the
delta-hedged and the raw option strategy separately for calls and puts. The ATM option sample
consists of 326,224 calls and 299,924 puts while the sample of arbitrary moneyness comprises
2,682,492 calls and 2,145,435 puts. The sample period is from January 1996 to June 2019.

mean sd min max SR

AT
M

Delta-hedged
Calls 0.019 0.022 -0.045 0.128 0.873
Puts 0.016 0.019 -0.042 0.075 0.830

Raw returns
Calls 0.205 0.419 -0.762 2.641 0.490
Puts 0.110 0.439 -0.855 2.649 0.251

A
rb

itr
ar

y

m
on

ey
ne

ss Delta-hedged
Calls 0.023 0.028 -0.070 0.271 0.816
Puts 0.023 0.027 -0.081 0.225 0.858

Raw returns
Calls 0.193 0.487 -1.131 4.432 0.395
Puts 0.139 0.572 -1.542 4.313 0.242

by market makers. We therefore analyze if the returns from our trading strategies dif-

fer when forming long-short portfolios separately based on a sample of options with

low and high trading volume, respectively. For this purpose, at the beginning of each

monthly trade, our ATM option sample is split into two groups of equal size according

to the options’ trading volume at that day. Conditional quantile curves of options’ IV

conditional on their RV are then calculated for each of the two groups separately.

Summary statistics for the returns from the strategies are provided in Table 3.10.

Except for the raw option put strategy, the average returns from all trading strategies

are very similar to the previously observed ones and statistically significantly greater

than zero at the 1 % level. Overall, we conclude that our findings are overall robust to

the options’ trading volume.
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Table 3.10: Returns for options with low and high trading volume

This table reports summary statistics on the monthly returns from our long-short trading
strategies applied to a sample of options with low and high trading volume, respectively.
Therefore, at the beginning of each monthly trade, our ATM option sample is split into
two groups of equal size according to the options’ trading volume. Subsequently, long and
short portfolios are derived separately for these two groups as before. We report the mean,
standard deviation (sd), minimum (min), maximum (max), and Sharpe ratio (SR) of the returns
from the delta-hedged and the raw option strategy separately for calls and puts. The ATM
option sample consists of 326,224 calls and 299,924 puts between January 1996 and June 2019.

mean sd min max SR

D
el

ta
-h

ed
ge

d

C
al

ls low volume 0.020 0.026 -0.060 0.103 0.772
high volume 0.020 0.035 -0.165 0.169 0.577

Pu
ts low volume 0.018 0.023 -0.049 0.115 0.767

high volume 0.015 0.027 -0.087 0.095 0.568

R
aw

re
tu

rn
s

C
al

ls low volume 0.199 0.489 -1.081 2.567 0.407
high volume 0.223 0.540 -1.775 2.530 0.412

Pu
ts low volume 0.128 0.491 -1.280 2.277 0.261

high volume 0.049 0.504 -1.438 2.340 0.097

3.4.6 Trading 50 % of the options

While at a particular date, all options are used to estimate the conditional 10 % and

90 % quantile curves, only 20 % of the options enter into the long-short portfolios.

In this section, we study the returns from a trading strategy that exploits not only the

most extreme options but instead trades 50 % of all options. Therefore, the long-short

portfolios are formed based on the 25 % and 75 % quantile of options’ IV conditional

on their RV (for ATM options) or conditional on RV and moneyness (for the option

sample of arbitrary moneyness).

Summary statistics of the returns from the delta-hedged and the raw option strategy

for both ATM calls and puts as well as options of arbitrary moneyness are provided in

Table 3.11. As expected, the average monthly returns when trading a larger fraction

of options are lower than in the original strategy.78 At the same time, the standard

78All mean returns are statistically significantly greater than zero at the 1 % level with t-statistics be-
tween 3.22 and 13.76.
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deviation of the monthly returns is also lower. Taken together, we observe Sharpe

ratios that are slightly lower than those of the original strategy except for the returns

from the ATM raw option put strategy where the Sharpe ratio is even higher than in

the original strategy. Summing up, the analysis shows that the high Sharpe ratios from

our proposed trading strategies are not due to outliers but can be realized in a much

broader sample.

Table 3.11: Returns when trading 50 % of the options

In our baseline strategy, only the most extreme 20 % of the options enter into the long-short
portfolios. The table presents summary statistics on the monthly returns from a strategy that
involves trading 50 % of the options. This trading strategy is based on the 25 % and 75 %
quantiles of options’ IV conditional on their RV (for ATM options) or conditional on RV and
moneyness (for the option sample of arbitrary moneyness). We report the mean, standard
deviation (sd), minimum (min), maximum (max), and Sharpe ratio (SR) of the returns from
the delta-hedged and the raw option strategy separately for calls and puts. The sample period
is from January 1996 to June 2019.

mean sd min max SR

AT
M

Delta-hedged
Calls 0.013 0.015 -0.044 0.079 0.820
Puts 0.012 0.015 -0.054 0.063 0.783

Raw returns
Calls 0.132 0.301 -0.632 1.300 0.440
Puts 0.082 0.327 -0.949 2.044 0.249

A
rb

itr
ar

y

m
on

ey
ne

ss Delta-hedged
Calls 0.016 0.021 -0.049 0.212 0.761
Puts 0.016 0.023 -0.098 0.179 0.678

Raw returns
Calls 0.135 0.360 -0.912 3.566 0.376
Puts 0.083 0.434 -1.071 3.592 0.192

3.5 Conclusion

In this paper, we find new evidence that delta-hedged equity option returns include

a volatility risk premium. We sort options on their implied volatility conditional on

their realized volatility to proxy for the volatility risk premium. A strategy that is

long (short) in high (low) deviations between realized and implied volatilities yields

returns that are both economically and statistically significant. This result holds for
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call and put delta-hedged and raw option returns for both at the money (ATM) options

and options of arbitrary moneyness. Changing the type of estimator of conditional

quantiles as well as controlling for additional characteristics of the underlying does

not affect our main finding.

The key to our main finding, and the difference to previous work, is our use of condi-

tional quantiles in contrast to standard portfolio sorts or regression techniques. Using

conditional quantiles estimated via non-parametric machine learning algorithms allows

us to capture the non-linear relation between implied and realized volatility while at

the same time controlling for characteristics that are known to affect stock volatility as

well as the cross-section of expected option returns. As our main result, we find that

previous work on the existence of a risk premium for volatility and volatility mispric-

ing were correct, but considerably underestimated the size of the effect. Exploiting the

estimated quantiles of implied volatility conditional on realized volatility and money-

ness leads to returns that are higher than those reported in previous work on similar

volatility strategies.

Our proposed use of conditional quantiles should be seen as a good compromise be-

tween standard portfolio sorts and non-parametric cross-sectional regressions. While

the former easily fail to control for more than two covariates, the latter do not come

with an easy interpretability in empirical asset pricing where one is interested in ready-

to-use trading strategies involving a reasonably small number of assets. While our

empirical study is concerned with the cross-section of option returns, our method is

sufficiently general and can easily be applied to other assets, most importantly stocks.
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Chapter 4

Marginals Versus Copulas: Which

Account for More Model Risk in

Multivariate Risk Forecasting?

4.1 Introduction

Financial institutions employ quantitative models in almost all aspects of their risk

management (e.g., for the pricing of derivatives, the modeling of credit risk portfolios,

or the forecasting of market risk measures). The increase in the multiplicity and the

complexity of these risk models is driven by both the occurrence of tail risks after the

Great Financial Crisis as well as the incentives set by the Basel II/III and Solvency II

regulations for institutions to develop and use internal quantitative models. However,

any risk measurement that does not rely on a standard approach prescribed by regu-

lators will require the risk manager to select a candidate risk model thus introducing

potential model risk. In this paper, we study such model risk for a class of promi-

nent models for multivariate risk forecasting: copula GARCH models. As our main

result, we find that copulas account for considerably more model risk than marginals

in multivariate models.

We study the model risk of multivariate risk models in a comprehensive empirical
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study using copula GARCH models. Our ultimate goals are to quantify model risk in

multivariate forecasts of portfolio Value-at-Risk (VaR) and Expected Shortfall (ES),

and to propose ways how to reduce model uncertainty. To achieve these goals, we

forecast the VaR and ES for a large number of portfolios using a variety of copula

GARCH models. The first question which we want to answer is whether the model

risk inherent in the forecasting of portfolio risk is caused by the candidate marginal or

copula models. For this, we analyze different groups of models in which we fix either

the marginals, the copula, or neither. We then propose the use of the model confidence

set procedure by Hansen et al. (2011) to narrow down the set of available models and

reduce model risk for copula GARCH risk models.

As our first main result, we find that model risk is economically significant for the

set of candidate multivariate models that we consider. For a portfolio with a value of

$100,000 and a holding period of 10 days, model risk can account for a mean absolute

deviation between the VaR (ES) forecasts by the candidate models of up to $2,678

($2,264). Interestingly, these high levels of model risk are almost completely due to

the choice of the copula with the choice of the marginal model having only a small ef-

fect on overall model uncertainty. Finally, and not surprisingly, periods of high market

volatility lead to a surge in model risk. We then propose the use of the model con-

fidence set procedure to narrow down the set of available models and reduce model

risk for copula GARCH risk models. Our proposed approach leads to a significant

improvement in the mean absolute deviation of one day ahead forecasts by our various

candidate risk models.

Our paper contributes to several strands in the literature on both model risk and mul-

tivariate risk forecasting. First, our paper complements several studies on the impor-

tance of moral risk in financial risk forecasting. In this field, early studies focused on

the choice of models for pricing option contracts. For example, Green and Figlewski

(1999) and later Hull and Suo (2002) show that model risk in the form of inaccurate

volatility forecasts and modeling errors in the implied volatility function can lead to

significant risk exposure for option writers. In a similar setting, Cont (2006) proposes
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a simple framework for quantifying model uncertainty in derivatives pricing. While

our paper relies on similar definitions of model risk, we do no restrict our study to

derivatives pricing but instead focus on the more general problem of studying model

risk in the context of market risk forecasting.79 After the Great Financial Crisis, in-

terest in the study of model risk surged again as the failure of market and credit risk

models to adequately capture tail risks was seen as a major driver of the global crisis.

In this strand of the literature, Alexander and Sarabia (2012) and Glasserman and Xu

(2014) both propose new methodologies for quantifying model risk with the former

concentrating on Value-at-Risk models and the latter studying credit and counterparty

risk. Similarly, Danielsson et al. (2016) study model risk of models used for forecast-

ing systemic risk. In contrast to these related studies, we focus on multivariate risk

models and disentangle the parts of model risk that are due to the separate modeling of

the marginal behavior and the dependence structure in copula models.80

Moreover, our study is also related to a large strand of literature on copula modeling

in quantitative risk management.81 In this field of research, the majority of studies have

been concerned with the model risk caused by the need of selecting the best parametric

copula family in a multivariate risk model (see, e.g., Kole et al., 2007, Savu and Trede,

2008, Genest et al., 2009, Dißmann et al., 2013). In addition, several recent papers

propose new copula models that are suitable for modeling dependence structures in

high-dimensional financial data (e.g., large market risk portfolios) (see, e.g., Aas et al.,

2009, Brechmann and Czado, 2013, Oh and Patton, 2017, 2018, Bassetti et al., 2018).

Finally, several papers have looked at the superiority of copula models over competing

one-dimensional or correlation-based risk models (see, e.g., Jondeau and Rockinger,

79It is interesting to see that the shortcomings of VaR-models were identified even as early as the mid
90s with Hendricks (1996) pointing our that even though “[...]virtually all of the approaches produce
accurate 95th percentile risk measures.” the models considered in his study did not sufficiently capture
extreme events.

80In this respect, our paper is related to the studies of Bernard and Vanduffel (2015) and Bernard et al.
(2020) who develop a framework to allocate model risk to the different assumptions inherent in a
risk model and try to incorporate information on the dependence of risks into the computation of risk
bounds.

81Other fields in which copulas have been applied include (among others) decision trees (see Wang and
Dyer, 2012), reliability modeling (see Wu, 2014), and systemic risk modeling (see, e.g., Jayech, 2016,
Calabrese et al., 2017, Calabrese and Osmetti, 2019).
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2006, Grundke and Polle, 2012, Weiß, 2013). Complementing these studies, our paper

analyzes the economic significance and the source of model risk in copula risk models.

As such, it is the first to quantify the extent to which model risk stemming from the

choice of a parametric copula can lead to significant additional risk exposure for risk

managers and investors.

The rest of the paper is structured as follows. In Section 4.2, we present the models

and backtests employed in our empirical study as well as a description of the model

confidence set. In Section 4.3, we shortly discuss the financial market data used in

our study. Sections 4.4 and 4.5 present our main results of the analysis of model risk

and the proposed use of the model confidence set procedure, respectively. Section 4.7

concludes.

4.2 Market risk models and model risk

This section provides details on the estimation of market risk via copula GARCH mod-

els, backtesting of the risk estimates as well as the calculation of model risk. In ad-

dition, we introduce the model confidence set (MCS) procedure due to Hansen et al.

(2011) yielding a set of models that contains the best model with a certain probability.

4.2.1 Multivariate estimation of market risk

As a consequence of the theorem by Sklar (1959), one can separate the modeling of

the marginals and the dependence of multivariate return series. This is usually done by

using GARCH-type models to filter the univariate time series while copulas are subse-

quently applied to model the dependence structure between different assets in a given

portfolio. We will now present the corresponding two step approach to multivariate

time series modeling in more detail.

We start with modeling the marginals as ARMA-GARCH-type processes with var-

ious error distributions. We consider not only the standard GARCH model by Boller-

slev (1986), but also employ the EGARCH model by Nelson (1991), GJR-GARCH
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model by Glosten et al. (1993), T-GARCH model by Zakoian (1994), and aPARCH

model by Ding et al. (1993). These models are all nested within the fGARCH model

by Hentschel (1995). We provide the specifications for an ARMA(p,q)-GARCH(r,s)

process in Section B.1.1 in more detail as this is a very popular representative of this

class of models. For the remaining models we refer to the reference guide by Bollerslev

(2010) as well as to the original papers.

We consider innovations following a normal distribution, a Student-t distribution, a

skewed Student-t distribution, and a generalized error distribution.82 Apart from the

normal distribution, these distributions are able to account for skewness and/or fat tails

in the data. Combining these four distributions with the five GARCH-type models

yields in total 20 different (univariate) specifications that we use to fit ARMA(1,1)-

GARCH(1,1)-type processes to the return series.83

In a second step, we apply copula dependence models to the GARCH filtered data

from the first step. Copulas are multivariate distributions with all marginals being uni-

formly distributed in the interval [0, 1]. For a d-dimensional distribution with distribu-

tion function F and marginals F1, . . . , Fd, the copula associated with F is a function

C : [0, 1]d → [0, 1] satisfying

F(x) = C
(
F1(x1), . . . , Fd(xd)

)
for x = (x1, . . . , xd) ∈ Rd.On the basis of the two step approach lies the fact that copulas

enable us to model the dependence structure of multivariate distributions separately

from the marginal distributions. This is a consequence of the theorem by Sklar (1959),

see Section B.1.2 for more details.

We consider various copula functions. We include the Gaussian and Student-t cop-

ulas because they are widely used in financial applications (cf. Cherubini et al., 2004,

McNeil et al., 2005). We additionally employ the Archimedean copulas Clayton, Gum-

82For details on the skewed Student-t distribution and the generalized error distribution we refer to
Fernandez and Steel (1998) and Nadarajah (2005).

83Estimation is performed based on the R-package rugarch by Ghalanos (2020).
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bel, Frank, and Joe copula. This gives us further possibilities to model multivariate

dependence as for example the Clayton copula allows for modeling a positive lower

tail dependence. For more details on copulas in general and the copulas used in this

paper we refer to the comprehensive books by by Joe (2001) and Nelsen (2006).

While the Gaussian and Student-t copulas can only model symmetric dependen-

cies using correlation matrices, Archimedean copulas typically have only one (like the

above mentioned copulas) or two parameters, which is very restrictive. So-called pair

copula constructions (also referred to as vine copulas) offer a very convenient possibil-

ity for a highly flexible modeling of the dependence structure. Originally introduced

by Joe (1996), further significant contributions have been made by Bedford and Cooke

(2001, 2002), and Kurowicka and Cooke (2006). Additionally, we include the Gaus-

sian mixture copula due to Tewari et al. (2011) that can capture multi-modal depen-

dencies as well as asymmetric and tail dependencies. Another very popular model is

the Dynamic Conditional Correlation (DCC) model due to Engle and Sheppard (2001)

and Engle (2002). Though not a copula model, the DCC model fits perfectly into our

framework. It allows for a two stage estimation of the model parameters where in a

first stage GARCH-type models are fitted to each of the univariate return series. The

conditional correlation matrix is derived in a second step to model the multivariate de-

pendence between the return series. In the following, we will therefore subsume all

models under the term copula GARCH models.84

For each combination of the considered copula and ARMA-GARCH-type models

we now proceed as follows to obtain one day ahead VaR and ES forecasts for a given

portfolio of K assets: First, we simulate 10,000 K-dimensional vectors of standardized

residuals from the fitted copula. Based on the parameters and ex-ante mean and vari-

84Estimation for the Gaussian, Student-t, Clayton, Gumbel, Frank, and Joe copula is performed based
on the copula R-package by Hofert et al. (2020). Inference for the vine copula is performed using the
VineCopula R-package by Nagler et al. (2019) considering the Gaussian, Student-t, Frank, Clayton,
Gumbel, and Joe copula (along with rotated and survival versions of the latter three copulas) as bivari-
ate building blocks of a regular vine copula. Selection of a particular bivariate copula is performed
based on the AIC value. We estimate a Gaussian mixture copula with three components (two for
capturing potentially fat tails, one for “regular” returns) employing the GMCM R-package by Bilgrau
et al. (2016). Inference for the DCC model is based on the rmgarch R-package by Ghalanos (2019)
assuming a multivariate Student-t distribution.
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ance forecasts from the ARMA and GARCH-type models that have already been fitted

to the univariate return series, we transform the simulated standardized residuals into

10,000 return forecasts for each of the portfolio constituents. We finally derive 10,000

portfolio returns and calculate the VaR as the sample quantile and the ES as the con-

ditional mean of the returns falling below this quantile (both values are subsequently

multiplied by (−1)). This procedure is repeated on a daily basis based on a moving

window of data. For more details we refer to Brechmann and Czado (2013), see also

Aas and Berg (2009), Ausin and Lopes (2010), and Nikoloulopoulos et al. (2012). One

important advantage of this approach is that copulas and marginals only have to be fit-

ted once to consider various portfolio weights. This is because the weights enter into

the procedure only at the end when calculating the portfolio returns.85

4.2.2 Backtests

Our aim is to analyze the risk associated with choosing an appropriate model from a

variety of valid candidate models, not to identify the optimal model for forecasting

VaR and ES estimates. Nonetheless, we backtest our risk forecasts before measuring

the model risk itself for the following reasons: First, in order to determine a set of

valid candidate models, we need to prevent our results from being biased by erroneous

risk forecasts due to misspecified models. Second, the approach of calculating model

risk after having applied backtests is also favorable from a more practical perspective.

The Basel III regulation requires banks to backtest their (internal) market risk models.

For banks, uncertainty on the model choice is, essentially, uncertainty on the choice of

models that have not been rejected by backtests. This is in line with our calculation of

model risk.

We measure the quality of the VaR estimates using the duration-based test of

Christoffersen (2004). The test follows a more general approach of independence

rather than focussing on the independence of VaR violations only. The test assumes

85We make use of this fact to include 100 portfolios with randomly generated portfolio weights to ensure
robustness of our results.
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that in the case of independent VaR violations, the time between violations must be

independent of the time to a previous violation. In simple terms, this means that the

probability that a VaR violation will occur in the next 10 days must be independent of

whether the last one occurred in the last 10 or 100 days.86 Christoffersen (2004) shows

that his duration-based test tends to reveal VaR methods that violate the independence

property in realistic situations more often and hence has better power properties than

former tests. For more details on the duration-based test we refer to B.1.3 as well as to

the original paper.87

Since the VaR has been replaced by the ES as the leading market risk measure in

regulatory requirements, the debate on suitable backtesting for the ES has also been

increasing in the literature. In view of the regulatory requirements and because the

VaR does not have to be issued by financial institutions, ideally a backtest should

only determine the quality of the ES model based on real data and the forecasts. In

practice, however, many backtests require additional input variables or assumptions.88

We evaluate ES estimates using a comparatively new test by Nolde and Ziegel (2017),

which is based on the concept of conditional calibration (CC). For a brief description

of the test, we refer to B.1.4 and the original paper. The CC test requires in its simple

version both VaR and ES forecasts.89 We find the use of a joint backtest of VaR and ES

predictions sensible for the following reasons: First, in line with Bayer and Dimitriadis

(2020b), we find that the ES is by definition closely related to the VaR and thus suitable

ES forecasts are based on adequate VaR estimations. Secondly, we apply the MCS

procedure at a later point of our analysis. This method is again based on functions

that require both VaR and ES forecasts. Consequently, the use of a joint VaR and ES

backtest is appropriate.90

86See Campbell (2007).
87In addition, we implement the dynamic quantile test of Engle and Manganelli (2004), which as a

conditional coverage test examines not only the number and independence of VaR hits but also the
independence of the estimators. The results can be found in Section 4.6.

88See Bayer and Dimitriadis (2020b).
89In the general version, volatility is also taken into account.
90As a supplement, we use the exceedance residual test of McNeil and Frey (2000), which is based

on the ES-specified residuals that exceed the VaR. A comprehensive description of the test can also
be found in Bayer and Dimitriadis (2020b). The exceedance residual test is a joint backtest as well,
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By using a joint backtest for the ES, it should be noted that this is a possible reason

why more models fail the backtest than in the case of the VaR. For this reason and

because different confidence levels are considered in the baseline case, we separate the

analysis of the VaR and the ES in terms of model risk.

4.2.3 Model risk

Financial risk cannot be measured directly, but only be estimated using statistical mod-

els. However, it is well known that distinct models may differ vastly in their risk

predictions (see, e.g., Danielsson et al., 2016). In the literature there are various ap-

proaches for defining model risk. A large part of research focuses on the factors that

control model risk within models such as the misspecification of the underlying theo-

retical models (Green and Figlewski, 1999) or assumptions made about unknown (or

unobservable) parameters, distributions, or other model specifications (e.g., Hull and

Suo, 2002, Alexander and Sarabia, 2012, Glasserman and Xu, 2014, Boucher et al.,

2014). However, we focus on a more general approach: With a variety of standard

VaR and ES models within the industry, uncertainty about the choice of such a model

creates model risk per se. Especially, our aim is not to identify an optimal model for

forecasting VaR or ES estimates, but to analyze the risk that emerges from the presence

of a large set of valid candidate models. Our notion of model risk as uncertainty on the

model choice itself in the presence of many possible alternative models is most closely

related to Cont (2006) and Danielsson et al. (2016).

We consider all VaR and ES models that are not rejected in the respective backtest

as viable candidates for measuring market risk. This leaves us with a large number of

models and corresponding risk forecasts for the same quantity. As a measure of model

risk, we quantify the level of disagreement between the individual estimates based on

the mean absolute deviation (mad), the standard deviation (sd), and the interquartile

range (iqr). The mean absolute and the standard deviation are intuitive and plausible

which is why the same reasons for use as for the conditional calibration test of Nolde and Ziegel
(2017) apply. The results can be found in Section 4.6.
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measures since both take into account how much the models deviate from the average

forecast. The iqr of an observation variable is the difference of its 75% and 25%

percentiles and consequently a measure of the maximum disagreement within the 50%

of observations around the median. We choose the mad as our main measure of model

risk for the following reasons: First, the mad is more robust against outliers than the sd.

Second, it can easily be interpreted in absolute terms relative to a given portfolio value

and reflects the deviation of a forecast by a randomly chosen model from the average

risk forecast. Finally, since our main analysis relies on forming different groups of

models, we need a measure of model risk that is as independent as possible from the

number of models within a particular group. For these reasons, we focus on the mad

to measure model risk and include the measures sd and iqr for robustness.91

4.2.4 Model confidence set

Researchers, practitioners, and regulators are often confronted with situations where

a variety of models for computing a specific estimate, e.g., for VaR or ES forecasts,

exist. Optimally, one would like to know which of the many available models is the

best. However, in many situations this question cannot be answered, especially when

the set of competing methods is large and the data are not sufficiently informative. Yet,

one can try to reduce the set of available models to a smaller set of alternatives. This

can be done by the model confidence set (MCS) procedure by Hansen et al. (2011).

The MCS procedure yields a set of models (the model confidence set) that contains

the best model with a certain probability. That is, the procedure does in general not

91Another measure to determine model risk is the risk ratio by Danielsson et al. (2016) that is defined
as the ratio of the highest to the lowest risk forecast within a set of candidate models. Disagreement
between models is therefore captured by a risk ratio greater than 1. We do not include the risk ratio
into our analysis for the following reasons: First, we want to focus on the average deviations of risk
forecasts whereas the risk ratio tends to capture the extreme, maximum possible deviations within a
set of candidate models. Moreover, the mad is more suitable in our context than the risk ratio, because
risk estimates by the latter can depend on the number of models. For example, let us assume we
have a group of models A with maximum maxA and minimum minA. For an arbitrary subgroup B of
group A, we have minB ≥ minA and maxB ≤ maxA. As a consequence, the risk ratio of group B is
smaller than (or equal to) the risk ratio of the larger group of models A. As our approach of studying
the importance of modeling the marginals and the multivariate dependence structure heavily relies on
building subgroups, this property could potentially bias our results.
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identify a best model nor does it assume that a particular model represents the true

data generating process. Instead, the MCS can be seen as an analogue to a confidence

interval that contains a parameter of interest with a specified probability. An important

advantage of the MCS procedure over methods that choose a single model is that it

accounts for the informativeness of the data at hand. When data are very informative

one may obtain a MCS that consists of only the best model. Less informative data,

on the other hand, may lead to a MCS containing several models as the data make it

hard to distinguish between models. Additionally, the MCS procedure allows for valid

statements about significance that are not hampered by multiple pairwise comparisons

(Hansen et al., 2011). These attractive features make it interesting to apply the MCS

procedure to our set of VaR and ES models. The MCS procedure might help in further

narrowing down the set of valid candidate models (after applying the backtests) such

that the remaining models exhibit a lower model risk.

The construction of the MCS procedure relies on an equivalence test, δM, and an

elimination rule, eM.92 First, the equivalence test is applied to the set of candidate

modelsM0. If equivalence is rejected at a given confidence level α, this implies that

the candidate models are not equally “good”. Thus, the elimination rule is applied to

remove a poorly performing model from the set M0. These two steps are repeated

until the equivalence test is not rejected for the first time. The remaining elements of

M0 are then considered as the model confidence set M̂1−α. As the same confidence

level α is used in each iteration for the equivalence test, the procedure guarantees that

limn→∞ P(M∗ ⊆ M̂∗1−α) ≥ 1 − α, whereM∗ denotes the true set of best models and n

is the number of observations per model. Additionally, the MCS procedure provides

p-values for each model that can be interpreted as the probability that the respective

model is among the best alternatives inM0. For more details on the procedure we refer

to Section B.1.5 and to the original paper.

In the MCS approach, models are evaluated based on a user-defined loss function.

92This short introduction to the MCS procedure is based on the original paper by Hansen et al. (2011)
and we refer to it for more details and proofs of the results.
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For evaluating the forecast accuracy of risk models it is natural to compare the forecasts

to the realized financial losses over a period of time. Nolde and Ziegel (2017) highlight

that for comparing different models’ risk forecasts elicitability of the risk measure is a

desirable property. Generally speaking, a risk measure is elicitable if it minimizes the

expected value of a scoring function.93 Elicitability is a property that has been proven

to be useful for forecast ranking, comparative backtesting, and for model selection

(Nolde and Ziegel, 2017).

As the VaR represents a quantile of a probability distribution (multiplied by -1) it

is well known to be elicitable (see, e.g., Koenker and Bassett, 1978). The associated

scoring function, the so-called check-function, is given by

LVaR(rt,VaRt
α, α) :=

(
rt − (−VaRt

α)
)
·
(
α − I(−∞,0)(rt − (−VaRt

α))
)
,

where rt and VaRt
α denote the realized return and the VaR forecast with coverage level

α (and confidence level 1− α) at day t and I(−∞,0) denotes the characteristic function of

the open interval (−∞, 0). We choose this scoring function as the loss function for the

VaR in the MCS framework.

As opposed to the VaR, the ES alone is not elicitable. Instead, Fissler et al. (2016)

show that ES and VaR are jointly elicitable, see also Acerbi and Székely (2014). There

is a growing body of literature building on this result, see, e.g., Fissler and Ziegel

(2016), Nolde and Ziegel (2017) for forecast comparisons and Patton et al. (2019),

Barendse et al. (2021), Bayer and Dimitriadis (2020b) for applications in a regression

procedure. As the ES is only jointly elicitable with the VaR, we choose a loss function

for the ES that is based on both VaR and ES forecasts as input into the MCS procedure.

This is consistent with the conditional calibration backtest introduced in Section 4.2.2

that is used to determine the set of candidate models for the ES. As Nolde and Ziegel

(2017) provide a joint scoring function for the VaR and the ES only in a general form,

93See Gneiting (2011) for a comprehensive literature review on elicitability as well as Frongillo and Ian
A. Kash (2015), Fissler et al. (2016), Ziegel (2016) for more recent advances in the field.
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we adopt the 0-homogeneous version introduced in Patton et al. (2019)

LES (VaRt
α, ES t

α, rt, α) :=
1

αES t
α

·I(−∞,0)(rt+VaRt
α) ·(−VaRt

α−rt)+
VaRt

α

ES t
α

+log(ES t
α)−1,

where the notation is as above.94 For an implementation of the MCS procedure we rely

on the R-package MCS by Catania and Bernardi (2017). For more details we refer to

Section 4.5.

4.3 Data

We form well diversified portfolios consisting of equity indices (developed and emerg-

ing markets), bond indices (governement, corporate, and high-yield bonds) as well

as commodity and real estate indices. Therefore, we retrieve the total return indices

(in US$) of the following set of indices from Datastream: Stoxx Europe 600, Dow

Jones Industrial Average, FTSE Developed Asia Pacific Index, MSCI Emerging Mar-

kets Index, S&P U.S. Treasury Bond Index, S&P 500 Investment Grade Corporate

Bond Index, S&P U.S. High Yield Corporate Bond Index, S&P Pan-Europe Devel-

oped Sovereign Bond Index, S&P GSCI, and Developed Markets Datastream Real Es-

tate Index. The sample period is January 2001 to December 2018. Next, we calculate

geometric returns that allow us to easily derive portfolio returns. For our main analysis

we focus on an equally weighted portfolio. This corresponds to a portfolio consisting

of 40% stocks, 40% bonds, 10% commodities, and 10% real estate. For robustness

we also consider portfolios based on random portfolio weights that were drawn from a

unit-simplex. Summary statistics on the equally weighted portfolio returns as well as

on the individual index returns can be found in Table 4.1.

We calculate daily VaR and ES estimates based on 180 different model specifications

of copula GARCH models, see Section 4.2.1 for details. Additionally, we derive risk

estimates from univariate GARCH-type models applied to the portfolio return series.

94Note that throughout the paper we regard VaR and ES estimates as positive values.
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Estimations are performed based on various confidence levels (99.9%, 99%, 97.5%,

and 95%)95 using a moving window of 500 days corresponding to approximately two

years of daily observations96and a forecast horizon of one day. We clean the risk

estimates from outliers that are due to convergence errors in fitting the copula GARCH

models.97

Subsequently, we perform VaR or ES backtests to determine the set of candidate

models that enter into the calculation of model risk on a daily basis. The backtests are

based on a confidence level of 99% in line with Basel Committee on Banking Super-

vision (2019) and a moving window of 500 days. Note that by employing a moving

window for the backtests, we avoid introducing a look-ahead bias into the selection of

the set of candidate models. In our main analysis, we rely on the duration-based VaR

backtest by Christoffersen (2004) and the conditional calibration ES backtest by Nolde

and Ziegel (2017), see Section 4.2.2 for details.98

Afterwards, we calculate model risk on a daily basis for the risk models that have

passed the respective backtest. Note that by using moving windows the composition of

the set of candidate models may vary over time. Since VaR and ES estimations as well

as backtests are performed based on a 500 day moving window in our baseline analysis,

we obtain daily model risk estimates from day 1001 onwards. This corresponds to the

time period from November 4, 2004 until December 31, 2018. We obtain model risk

estimates for both VaR and ES forecasts for various confidence levels and portfolio

weights. In our main analysis we focus on the model risk of risk forecasts for an

95In line with the Basel II and III market risk regulations we focus on the 99% VaR and the 97.5% ES.
96For robustness we also consider a moving window of 1000 days.
97We identify outliers based on the daily absolute changes of the risk forecasts. Therefore, we calculate

z-scores based on per model standard deviation and mean calculated over the first 500 risk estimates.
We then replace observations with a z-score above 25 with the value from the previous day. This
affects on average 0.17% of all risk estimates. Note that by this procedure we do not introduce a
look-ahead bias into our analysis.

98We use the rugarch R-package by Ghalanos (2020) for performing the duration-based backtest and the
esback R-package by Bayer and Dimitriadis (2020a) for the conditional calibration backtest (simple
version one-sided using Hommel’s correction). For comparison, we also run the backtests using a
moving window of 1000 days as well as a fixed window over the entire period. Additionally, we
perform the dynamic quantile test by Engle and Manganelli (2004) with the GAS R-package by David
Ardia et al. (2019) and the exceedance residual backtest by McNeil and Frey (2000) (one-sided) with
1000 bootstrap iterations implemented in the esback R-package by Bayer and Dimitriadis (2020a).
For more details see Section 4.6.
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equally weighted portfolio and the 99% VaR and 97.5% ES in line with the Basel II

and Basel III market risk regulations.99 Our main measure of model risk is the mean

absolute deviation (mad) of risk forecasts.

4.4 Analysis of model risk

4.4.1 All multivariate models

We start with an analysis of the model risk over time and different market conditions

of all multivariate VaR and ES models that passed the respective backtest.100 Figure

4.1 presents the daily model risk associated with one day ahead forecasts of the 99%

VaR and the 97.5% ES in terms of mad between November 4, 2004 and December

31, 2018. The figure reveals that model risk is normally quite moderate but increases

significantly during and after the global financial crisis. Summary statistics are pro-

vided in Table 4.2. Over the entire time period, model risk is on average about 0.165%

of the portfolio value for VaR forecasts and about 0.092% of the portfolio value for

ES forecasts. Model risk is quite volatile over time ranging from 0.075% to 0.847%

for the VaR and from 0.029% to 0.716% for the ES with a standard deviation of daily

model risk estimates of more than half of the average model risk.

Model risk is especially pronounced during times of financial turmoil. During the

years 2008-2009 (in the following referred to as the crisis period) the average model

risk is 0.286% of the portfolio value for the VaR and 0.145% for the ES. That is, the

average model risk more than doubles compared to the period before 2008 (the pre-

crisis period) with an average VaR of 0.119% and ES of 0.063 %.101 The maximum

99In the following, VaR will refer to the 99% VaR and ES will refer to the 97.5% ES unless specified
differently.

100We start with 180 different multivariate model specifications. After applying the backtests we are left
with on average 174 99% VaR 121 97.5% ES models.

101These differences between pre-crisis and crisis period are statistically significant at the 1% level
where statistical significance throughout the paper is determined based on t-tests with standard errors
corrected for serial correlation and heteroskedasticity according to Newey and West (1987) with the
automatic bandwidth selection procedure described in Newey and West (1994). Note that although
for robustness we include 100 randomly generated portfolio weights into the study, the portfolio boot-
strap procedure according to Danielsson et al. (2016) is not applicable in our setting. This is, because
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Table 4.2: Model risk and the great financial crisis

This table presents summary statistics for the time series of model risk associated with 99%
VaR and 97.5% ES forecasts for a well diversified portfolio. Model risk is measured in terms
of the mean absolute deviation (mad) of risk forecasts by various models from November 4,
2004 until December 31, 2018. With crisis we refer to the years 2008-2009 while pre-crisis
and after-crisis denote the period before and after, respectively. Model risk is calculated based
on all multivariate models that passed the respective backtest, see Section 4.2.2 for details.
We report model risk estimates for one day ahead risk forecasts in percent of the portfolio
value (first and second column) and in absolute terms (third and fourth column) for an equally
weighted portfolio. The results in absolute terms are based on a portfolio value of $100,000 and
a 10 day forecast horizon obtained by applying the square-root-of-time rule. We provide mini-
mum (Min), median, mean, maximum (Max), and standard deviation (SD) of the daily model
risk estimates. Further results for randomly generated portfolio weights as well as alternative
measures of model risk can be found in Tables 4.3 and 4.4.

Model risk (in %) Model risk (in $)
99% VaR 97.5% ES 99% VaR 97.5% ES

W
ho

le
pe

ri
od Min 0.075 0.029 237 92

Median 0.138 0.080 436 253
Mean 0.165 0.092 522 291
Max 0.847 0.716 2,678 2,264
SD 0.091 0.056 288 177

Pr
e-

cr
is

is

Min 0.081 0.029 256 92
Median 0.105 0.050 332 158
Mean 0.119 0.063 376 199
Max 0.280 0.207 885 655
SD 0.036 0.030 114 95

C
ri

si
s

Min 0.116 0.046 367 145
Median 0.241 0.108 762 342
Mean 0.286 0.145 904 459
Max 0.847 0.716 2,678 2,264
SD 0.139 0.101 440 319

Po
st

-c
ri

si
s Min 0.075 0.034 237 108

Median 0.138 0.082 436 259
Mean 0.155 0.090 490 285
Max 0.551 0.638 1,742 2,018
SD 0.064 0.037 202 117
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Figure 4.1: Daily model risk for all multivariate models

This figure shows the model risk associated with one day ahead 99% VaR and 97.5% ES
forecasts for a well diversified portfolio. Model risk is measured in terms of the mean absolute
deviation (mad) of one day ahead forecasts by various risk models. Values are calculated on
a daily basis between November 4, 2004 until December 31, 2018 in percent of the portfolio
value based on all multivariate models that passed the respective backtest, see Section 4.2.2
for details.

0.
0

0.
2

0.
4

0.
6

0.
8

Time

M
ad

 (
in

 %
)

2005 2007 2009 2011 2013 2015 2017

99% VaR
97.5% ES

model risk values are realized in Q4 2008 in the follow-up of the Lehman Brothers

bankruptcy on the peak of the financial crisis. The extraordinary impact of the financial

crisis on model risk is further highlighted by the fact that nearly all VaR model risk

values above the 99% quantile occurred in Q4 2008. The same is true for the majority

of the ES model risk values.102

These results can only partly be explained by an increase in volatility. On the one

the portfolio weights enter into the risk forecast after the GARCH models and copula functions are
fit.

102Further high model risk values occurred in particular in Q2 2009, Q3 2011, and Q3 2015. The
highest model risk value for the ES was realized on October 17, 2008, just two days after the Dow
Jones Industrial Average Index experienced its largest drop in relative terms since 1987. The highest
model risk value for the VaR was realized on October 29, 2008. Two days earlier, the Nikkei 225
Index lost more than 6.4% while the Hang Seng Index decreased by 12.7% while the consecutive day
world wide stock markets saw a huge rally in anticipation of rate cuts by central banks.
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hand we calculate VaR and ES forecasts based on conditional volatility estimates de-

rived from GARCH-type models. Consequently, whenever volatility is high, VaR and

ES forecasts will on average also show increased levels resulting in a higher model

risk. On the other hand, the average model risk in 2008-2009 is 140% higher than

in the pre-crisis period for the VaR while the average level of VaR estimates is only

113% higher. Similarly, the model risk for the ES in 2008-2009 is increased by 130%

while the average level of ES estimates is 119% higher. This disproportionately high

increase of model risk in periods of crisis might be due to the fact that all models treat

history and shocks quite differently such that a change in statistical regimes can be ex-

pected to lead to higher disagreements between risk forecasts (Danielsson et al., 2016).

Following the great financial crisis, model risk does not decrease to the pre-crisis level

(0.119% for the VaR and 0.063% for the ES) but remains elevated at 0.155% (VaR) and

0.090% (ES).103 The findings are robust to considering randomly generated portfolio

weights, see Table 4.3. Summary statistics for other measures of model risk (standard

deviation, interquartile range) are provided in Table 4.4.

Risk models are embedded within the Basel accords and play a central role in the

regulatory process to determine bank capital. That is, expensive decisions such as the

amount of capital held or portfolio allocations depend on the outputs of risk forecasting

models as input. We highlight this point by providing model risk estimates in absolute

terms in Table 4.2. These values can be interpreted as average deviations in regula-

tory capital to be held according to different models (at a particular day). We calculate

model risk estimates in $ by assuming a portfolio value of $100,000 and a holding pe-

riod of 10 days. Therefore, we multiply the mad values (as percentage of the portfolio

value) with $100,000 and
√

10.104 We thereby emphasize that differences in model

risk are not only statistically but also economically significant. This is also highlighted

103These differences between the pre-crisis and the after-crisis period are statistically significant at the
1% level.

104The square-root-of-time rule for scaling daily VaR forecasts is the industry standard although this
approach might lead to underestimation (Danielsson and Zigrand, 2006, Wang et al., 2011) or over-
estimation of the 10-day VaR (Diebold et al., 1997), see Kole et al. (2017). A detailed analysis on the
effects of different choices of temporal aggregation can be found ibid. For simplicity, we also rely on
the square-root-of-time rule for scaling ES forecasts.
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Table 4.3: Model risk for all multivariate models averaged over 100 random portfolios

This table provides the same results as Table 4.2 but for 100 random portfolios obtained by
drawing portfolio weights from a unit-simplex. Therefore, we first calculate summary statistics
for the time series of model risk for each of the portfolios. These statistics are then averaged
over all 100 portfolios. The results can thus be interpreted as summary statistics for the model
risk of an average portfolio.

Model risk (in %) Model risk (in $)
99% VaR 97.5% ES 99% VaR 97.5% ES

W
ho

le
pe

ri
od Min 0.065 0.034 206 106

Median 0.127 0.085 401 268
Mean 0.153 0.099 484 313
Max 0.813 0.763 2570 2413
SD 0.086 0.057 272 181

Pr
e-

cr
is

is

Min 0.069 0.037 218 118
Median 0.097 0.064 307 203
Mean 0.111 0.074 351 233
Max 0.281 0.233 890 735
SD 0.036 0.029 113 91

C
ri

si
s

Min 0.108 0.046 342 146
Median 0.221 0.114 697 361
Mean 0.267 0.153 843 483
Max 0.807 0.711 2551 2249
SD 0.133 0.105 420 331

Po
st

-c
ri

si
s Min 0.069 0.039 217 123

Median 0.127 0.087 401 276
Mean 0.143 0.096 451 303
Max 0.593 0.626 1876 1980
SD 0.060 0.039 189 123

by Figure 4.2 illustrating the extent of disparity between VaR forecasts. The average

model risk (mad) in absolute terms over the entire time period is $522 for the VaR and

$291 for the ES with maximum values of $2,678 (VaR) and $2,264 (ES).

Note that model risk of VaR and ES forecasts cannot directly be compared to each

other. This is due to the fact that risk forecasts entering into the calculation of model
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Table 4.4: Alternative measures of model risk

This table provides summary statistics for different measures of model risk for 99% VaR and
97.5% forecasts. Our baseline measure is the mean absolute deviation (mad). We additionally
include the standard deviation (sd) and interquartile range (iqr) of the risk forecasts by various
models in percent of the portfolio value, see Section 4.2.3 for more details. Model risk is
calculated for all multivariate models that passed the respective backtest. We provide minimum
(Min), median, mean, maximum (Max), and standard deviation (SD) of the daily model risk
estimates (according to the different model risk measures) over the period November 4, 2004
until December 31, 2018.

Model risk
Min Median Mean Max SD

Measure

Va
R mad (in %) 0.075 0.138 0.165 0.847 0.091

sd (in %) 0.088 0.161 0.195 0.992 0.108
iqr (in %) 0.130 0.269 0.325 1.631 0.180

E
S

mad (in %) 0.029 0.080 0.092 0.716 0.056
sd (in %) 0.037 0.099 0.117 0.867 0.072
iqr (in %) 0.040 0.133 0.152 1.399 0.094

risk are determined based on different backtests for the VaR and the ES. As a result,

on average 174 different model specifications enter into the model risk calculation for

the VaR and only 121 specifications into the model risk calculation for the ES. The

effect of choosing different backtests or no backtest at all are discussed in Section 4.6

in more detail.

When considering several confidence levels for VaR and ES forecasts we observe

that model risk for the 99.9% VaR (0.306%) is approximately twice as high as for the

99% VaR (0.165%) which again is twice as high as for the 95% VaR (0.085%). For the

99.9% ES (0.309%), 99% ES (0.142%), 97.5% ES (0.092%), and 95% ES (0.067%)

the proportions are similar, see Table 4.8 for more details.105 This rise in model risk

when increasing the underlying confidence level can, however, only partially be ex-

105All differences in pairwise comparisons of the same risk measure at different confidence levels are
statistically significant at the 1% level. Note that the backtests are performed separately for each
confidence level. However, when focusing on the model risk of either VaR or ES, differences in
the average percentage of models that passed the respective backtest are quite low. The average
percentage of models that passed the backtest is 99.3%, 97.6%, 96.7%, and 98.9% for the VaR and
60.7%, 67.2%, 75.5%, and 68.6% for the ES at the 95%, 97.5%, 99%, and 99.9% confidence level,
respectively.
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Figure 4.2: Potential portfolio value under financial distress

This figure illustrates the economic significance of model risk arising from the disparity
between different VaR forecasts. Here, we focus on the 99% VaR for a well diversified
portfolio ($100,000) and a 10 day holding period. We provide the portfolio value minus the
5th and the 95th percentile of VaR forecasts from all multivariate models that passed the
duration-based backtest by Christoffersen (2004) on a daily basis. This corresponds to the
potential portfolio value under financial distress according to the more (95th percentile) or
less (5th percentile) conservative VaR models. The sample period is November 4, 2004 until
December 31, 2018.
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plained by an increase in the absolute level of the risk forecasts as a consequence of

the higher confidence level. That is, even when relating the average model risk to the

average level of risk forecasts, model risk is more pronounced for higher confidence

levels. This can be seen when looking on the ratio of average model risk divided by

the average level of risk forecasts which is 0.208, 0.163, 0.142 and 0.126 for the VaR

and 0.201, 0.111, 0.086 and 0.075 for the ES at the 99.9%, 99%, 97.5% and 95%

confidence level, respectively. These results are not surprising as they mainly reflect

that the disagreements between different models in modeling the tails of the return

distributions increase when considering more extreme quantiles.
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4.4.2 Analysis of the subgroups

The VaR and ES estimates are obtained via copula GARCH models in a two step

procedure. Therefore, we turn to the question if a greater portion of model risk is

attributable to the statistical modeling of the univariate marginals (via GARCH-type

models) or to the estimation of the multivariate dependence structure (via copulas).

For this, we analyze different groups of models in which we fix either the marginals,

the copula, or neither.

Figure 4.3 provides the average model risk for the 99% VaR and the 97.5% ES for on

an equally weighted portfolio from November 4, 2004 to December 31, 2018 for four

different groups: Group 1 covers the average model risk across the sets of models in

which a copula is fixed while the marginal distribution is varied. Group 1 thus measures

the impact of choosing a specific GARCH-type model for the marginals. Analogously,

Group 2 captures the average model risk among sets of models with fixed marginal

distributions and varying copulas. Additionally, Group 3 measures the average model

risk of all multivariate and Group 4 of all univariate models. Table 4.5 presents the

corresponding descriptive statistics.

Considering the 99% VaR, average model risk for model sets with fixed copulas is

0.052% of the portfolio value. For sets with fixed marginal distributions, on the other

hand, model risk increases significantly and is three times higher with an average of

0.157% of the portfolio value. Consequently, model risk is higher when choosing a

copula function compared to choosing the marginal distribution. Higher model risk in

the choice of a copula function means that the risk forecasts in groups of models with

fixed marginal distribution and varying copula functions differ more from each other

than risk forecasts in groups where the marginal distributions vary while the copula is

held constant. In absolute terms, this translates into an average model risk in terms of

the mad of $164 to $498 for a portfolio with $100,000 in value and a holding period of

ten days. When focusing at the median of the model risk estimates, model risk is even

3.5 times higher when fixing the marginal distribution compared to fixing the copula
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Table 4.5: Summary statistics of average model risk for all groups

This table presents summary statistics for the time series of average model risk associated
with 99% VaR (Panel A) and 97.5% ES (Panel B) forecasts for a well diversified portfolio per
group. Model risk is measured in terms of the mean absolute deviation (mad) of risk forecasts
by various models within a model set from November 4, 2004 until December 31, 2018. All
models passed the respective backtest, see Section 4.2.2 for details. Group 1 (G1) includes
all model sets in which a copula function is fixed while varying the marginal distribution.
Group 2 (G2) contains analogously the model sets with fixed marginal distribution and varying
copula. Group 3 (G3) consists of all multivariate and Group 4 (G4) of all univariate models.
We report model risk estimates for one day ahead risk forecasts in percent of the portfolio
value (columns 1-5) and in absolute terms (column 6) for an equally weighted portfolio. The
results in absolute terms are based on a portfolio value of $100,000 and a 10 day forecast
horizon obtained by applying the square-root-of-time rule. We provide minimum (Min),
median, mean, maximum (Max), and standard deviation (SD) of the daily averaged model
risk estimates per group. Further results for randomly generated portfolio weights, various
VaR and ES confidence levels as well as alternative measures of model risk (Groups 1 and 2
only) can be found in Tables 4.6, 4.8, and 4.7. *** denotes a statistically significant increase
in average model risk at the 1% level compared to Group 1.

Panel A: 99% VaR
Average model risk (in %) Average model risk (in $)

Min Median Mean Max SD Mean

Group
G1: copula fixed 0.008 0.037 0.052 0.518 0.044 164
G2: marg. distr. fixed 0.073 0.130 0.157*** 0.803 0.084 498
G3: all multivariate 0.075 0.138 0.165 0.847 0.091 523
G4: all univariate 0.011 0.065 0.085 0.651 0.069 269

Panel B: 97.5% ES
Average model risk (in %) Average model risk (in $)

Min Median Mean Max SD Mean

Group
G1: copula fixed 0.012 0.042 0.058 0.640 0.049 184
G2: marg. distr. fixed 0.022 0.061 0.068*** 0.561 0.036 216
G3: all multivariate 0.029 0.080 0.092 0.716 0.056 290
G4: all univariate 0.013 0.070 0.090 0.672 0.070 285
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Figure 4.3: Average model risk for all groups

This figure shows the average model risk associated with one day ahead 99% VaR (first
panel) and 97.5% ES (second panel) forecasts for a well diversified portfolio per group.
Group 1 (G1) includes all model sets in which a copula function is fixed while varying the
marginal distribution. Group 2 (G2) contains analogously the model sets with fixed marginal
distribution and varying copula. Group 3 (G3) consists of all multivariate and Group 4 (G4) of
all univariate models. Model risk is measured in terms of the mean absolute deviation (mad)
of one day ahead forecasts by various risk models within a model set. Values are calculated
on a daily basis between November 4, 2004 until December 31, 2018 in percent of the port-
folio value based on all models that passed the respective backtest, see Section 4.2.2 for details.
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function.

The result of significant higher model risk due to the choice of a copula function is

robust when considering model risk of VaR forecasts with respect to randomly gen-

erated portfolio weights. Following Table 4.6, the average model risk of such model

sets with varying copulas is 0.142% of the portfolio in contrast to 0.057% when using

fixed copulas. Besides, the result is robust with respect to both the choice of a model

risk measure (see Table 4.7 and Figure B.2) and the confidence level (see Table 4.8 and

Figure B.3). Figure B.3 shows, in addition to the significant rise in model risk due to

the choice of a copula, that increasing the confidence level from 95% to 99.9% triples

the model risk, in case of model sets with fixed copula from 0.034% to 0.108% and for

fixed marginal distributions from 0.078% to 0.293%.

As stated before, we do not compare VaR and ES results to each other as the re-

sults depend on risk measure specific confidence levels as well as backtests and con-

sequently on different sets of models (see also Section 4.6). For the 97.5% ES, the

results show that the model risk for choosing a copula function is again significantly

higher than for choosing a marginal distribution. More detailed, the average model

risk is 0.068% (0.058 %) of the portfolio value for varying (fixed) copulas (see Table

4.5). For the ES, the finding that model risk for choosing a copula function is signifi-

cantly higher than for choosing a marginal distribution is again robust with respect to

the portfolio weighting (see Table 4.6), the measure of model risk (see Table 4.7 and

Figure B.2), and the confidence level (see Table 4.8 and Figure B.4). Only for a con-

fidence level of 95% the average model risk shows identical values of 0.045% of the

portfolio value for fixed and varying copulas. However, when considering the median,

the model sets with fixed marginal distributions exhibit a higher model risk (0.041%)

than the model sets with fixed copulas (0.033%). Again, increasing the confidence

level from 95% to 99.9% results in a higher model risk. Here, the model risk triples

for sets with fixed copulas (from 0.045% to 0.136%), while the model risk increases

sixfold for fixed marginal distributions (from 0.045% to 0.270%), see Table 4.8.

We illustrate the impact of the choice of the multivariate dependence structure or of
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Table 4.6: Summary statistics of average model risk for all groups over 100 random
portfolios

This table presents summary statistics for the time series of average model risk per group
associated with 99% VaR (Panel A) and 97.5% ES (Panel B) forecasts for 100 random
portfolios obtained by drawing portfolio weights from a unit-simplex. Therefore, we first
calculate summary statistics for the time series of model risk for each of the portfolios. These
statistics are then averaged over all 100 portfolios. The results can thus be interpreted as
summary statistics for the model risk of an average portfolio. Model risk is measured in terms
of the mean absolute deviation (mad) of risk forecasts by various models within a model set
from November 4, 2004 until December 31, 2018. All models passed the respective backtest,
see Section 4.2.2 for details. Group 1 (G1) includes all model sets in which a copula function
is fixed while varying the marginal distribution. Group 2 (G2) contains analogously the
model sets with fixed marginal distribution and varying copula. Group 3 (G3) consists of all
multivariate and Group 4 (G4) of all univariate models. We report model risk estimates for
one day ahead risk forecasts in percent of the portfolio value. We provide minimum (Min),
median, mean, maximum (Max) and standard deviation (SD) of the daily averaged model risk
estimates per group. *** denotes a statistically significant increase in average model risk at
the 1% level compared to Group 1.

Panel A: 99% VaR
Average model risk (mad in %)

Min Median Mean Max SD

Group
G1: copula fixed 0.013 0.041 0.057 0.588 0.048
G2: marg. distr. fixed 0.056 0.118 0.142*** 0.753 0.078
G3: all multivariate 0.065 0.127 0.153 0.813 0.086
G4: all univariate 0.012 0.066 0.087 0.751 0.071

Panel B: 97.5% ES
Average model risk (mad in %)

Min Median Mean Max SD

Group
G1: copula fixed 0.013 0.045 0.062 0.692 0.052
G2: marg. distr. fixed 0.024 0.069 0.075*** 0.485 0.035
G3: all multivariate 0.034 0.085 0.099 0.763 0.057
G4: all univariate 0.015 0.071 0.093 0.762 0.072
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Table 4.7: Summary statistics of average model risk for alternative model risk
measures (model sets with fixed and varying copula only)

This table presents summary statistics for the time series of average model risk associated with
99% VaR (Panel A) and 97.5% ES (Panel B) forecasts for a well diversified portfolio per group.
Model risk is captured by different measures based on risk forecasts by various models within a
model set from November 4, 2004 until December 31, 2018. All models passed the respective
backtest, see Section 4.2.2 for details. Our baseline measure is the mean absolute deviation
(mad). We additionally include the standard deviation (sd) and interquartile range (iqr), see
Section 4.2.3 for more details. Group 1 (G1) includes all model sets in which a copula function
is fixed while varying the marginal distribution. Group 2 (G2) contains analogously the model
sets with fixed marginal distribution and varying copula. We report model risk estimates for
one day ahead risk forecasts in percent of the portfolio value. We provide minimum (Min),
median, mean, maximum (Max) and standard deviation (SD) of the daily averaged model risk
estimates per group. *** (**) denotes a statistically significant increase in average model risk
at the 1% (5%) level compared to Group 1.

Panel A: 99% VaR
Average model risk (in %)

Min Median Mean Max SD

Group Measure
G1: Copula fixed mad 0.008 0.037 0.052 0.518 0.044
G1: Copula fixed sd 0.016 0.048 0.069 0.636 0.063
G1: Copula fixed iqr 0.011 0.057 0.075 0.869 0.060

G2: Marg. distr. fixed mad 0.073 0.130 0.157*** 0.803 0.084
G2: Marg. distr. fixed sd 0.089 0.158 0.191*** 0.975 0.101
G2: Marg. distr. fixed iqr 0.103 0.255 0.311*** 1.631 0.181

Panel B: 97.5% ES
Average model risk (in %)

Min Median Mean Max SD

Group Measure
G1: Copula fixed mad 0.012 0.042 0.058 0.640 0.049
G1: Copula fixed sd 0.015 0.055 0.077 0.734 0.067
G1: Copula fixed iqr 0.017 0.065 0.085 1.261 0.068

G2: Marg. distr. fixed mad 0.022 0.061 0.068*** 0.561 0.036
G2: Marg. distr. fixed sd 0.031 0.081 0.090*** 0.720 0.046
G2: Marg. distr. fixed iqr 0.023 0.080 0.094** 0.857 0.057
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the univariate marginals based on a portfolio with a value of $100,000 and the 99%

VaR. Figure 4.4 features the sets of models with fixed copula functions where the

model risk is induced by the choice of a model for the marginals. More detailed, at

a given date the 20th and 80th percentile of the risk estimates are subtracted from the

portfolio value to represent the potential portfolio value under financial distress (av-

eraged over the various copulas). Analogously, we illustrate the impact of the choice

of a copula model in Figure 4.5. The potential portfolio values in Figure 4.5 based on

the 20th and 80th percentile of risk estimates differ more widely from each other than

in Figure 4.4, illustrating that choosing a copula function generates higher model risk

than choosing a model for the marginals.

4.5 Model risk for models in the model confidence set

The MCS procedure by Hansen et al. (2011) yields a set of models that contains the

best model with a given confidence. That is, the MCS procedure does not assume a

particular model to be the true or best one. Instead, it yields a set of models that can

be seen as an analogue to a confidence interval for parameters, see Section 4.2.4 for

details. As in this paper we study the model risk of risk models that are valid ex-ante

and but provide differing forecasts, the MCS procedure fits perfectly into our study.

We apply the MCS procedure to the set of models that passed the (daily) backtests

to further narrow the set of candidate models.106 We then determine the model risk

corresponding to the models in the MCS to analyze if model risk can be reduced by

106To employ the MCS procedure outlined in Section 4.2.4 we use the MCS R-package by Catania and
Bernardi (2017). We mainly rely on the default parameters. In particular, we adopt the choice of
15% for the confidence level α. We use the test statistic TR, see Section B.1.5 for more details. The
MCS procedure is computationally very expensive, especially for our large set of up to 180 models.
We therefore employ the MCS procedure only every 20 days to the set of models that has not been
rejected by the respective backtest on that day. Computations are performed for all confidence levels
(95%, 97.5%, 99%, and 99.9%) based on a moving window of 500 days and 1000 bootstrapped
samples. We additionally employ the MCS procedure on a daily basis for the 99% VaR and the
97.5% ES estimates based on 100 bootstrapped samples. The results remain qualitatively unchanged.
Furthermore, we apply the MCS procedure not only to the equally weighted portfolio but also to
10 portfolios with randomly generated portfolio weights (again on a 20 day basis). The results stay
qualitatively the same. All computations are performed on the Big-Data-Cluster Galaxy provided by
the University Computing Center at Leipzig University.
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Figure 4.4: Potential portfolio value under financial distress based on the 99% VaR
for fixed copula functions

This figure illustrates the economic significance of model risk arising from the choice of
a model for the marginals. Here, we focus on the 99% VaR for model sets with fixed
copula functions and varying univariate marginal distributions for a well diversified portfolio
($100,000) and a 10 day holding period. We provide the portfolio value minus the 20th and
the 80th percentile of VaR forecasts from all models within each model set that passed the
duration-based backtest by Christoffersen (2004) on a daily basis. The values are averaged
over the various copula specifications. This corresponds to the potential portfolio value under
financial distress according to the more (80th percentile) or less (20th percentile) conservative
VaR models. The sample period is November 4, 2004 until December 31, 2018.
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these means.107

The main results are summarized in Table 4.9 which compares model risk values

before and after applying the MCS procedure in various periods of time. For the whole

period, model risk before applying the MCS procedure is on average 0.165% for the

VaR and 0.092% for the ES. These values are statistically significant reduced by 23% to

0.127% for the VaR and by 3% to 0.089% for the ES when considering only the models

107Note that opposed to Santos et al. (2013) our aim is not to determine the best VaR or ES model nor
to rank models by their forecasting accuracy. Instead we quantify the extent of non-conformity of the
risk forecasts.
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Figure 4.5: Potential portfolio value under financial distress based on the 99% VaR
for fixed marginal distributions

This figure illustrates the economic significance of model risk arising from the choice of the
copula function. Here, we focus on the 99% VaR for model sets with fixed univariate marginal
distribution and varying copula functions for a well diversified portfolio ($100,000) and a 10
day holding period. We provide the portfolio value minus the 20th and the 80th percentile of
VaR forecasts from all models within each model set that passed the duration-based backtest
by Christoffersen (2004) on a daily basis. The values are averaged over the various marginal
distributions. This corresponds to the potential portfolio value under financial distress
according to the more (80th percentile) or less (20th percentile) conservative VaR models. The
sample period is November 4, 2004 until December 31, 2018.

85
00

0
90

00
0

95
00

0
10

00
00

Time

P
ot

en
tia

l p
or

tfo
lio

 v
al

ue
 u

nd
er

 fi
na

nc
ia

l d
is

tr
es

s 
in

 $

2005 2007 2009 2011 2013 2015 2017

$100,000 minus 20th percentile of 99% VaR forecasts
$100,000 minus 80th percentile of 99% VaR forecasts

in the MCS.108 For both VaR and ES this approach reduces model risk not only in the

whole period but also in all sub-periods (pre-crisis, crisis, and post-crisis).109 The

reduction of model risk for ES is, however, very small with declines ranging between

2% and 5%. Opposed to this, we can achieve substantial reductions in VaR model risk

(8% in the pre-crisis, 25% in the crisis, and even 27% in the post-crisis period). A

graphical representation of the model risk of VaR forecasts before and after applying

the MCS procedure can be found in Figure 4.6.

108When considering other measures of model risk (sd and iqr) results are simlar and reductions range
between 20% and 30% for VaR and 1% and 3% for ES forecasts.

109All reductions are statistically significant at the 1% level.
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Table 4.9: Model risk before and after applying the MCS procedure

This table compares the model risk associated with one day ahead forecasts of the 99% VaR and
the 97.5% ES before and after applying the model confidence set (MCS) procedure by Hansen
et al. (2011). Details on the method and its implementation can be found in Sections 4.2.4 and
4.5, respectively. Model risk is measured in terms of the mean absolute deviation (mad) of risk
forecasts by various models in percent of the portfolio value. Model risk is calculated on a
daily basis from November 4, 2004 until December 31, 2018 for all multivariate models that
passed the respective backtest. The term crisis refers to the years 2008-2009 while pre-crisis
and after-crisis denote to the period before and after, respectively. We provide minimum (Min),
median, mean, maximum (Max) and standard deviation (SD) of the daily model risk estimates.
*** denotes statistically significant reductions of mean model risk at the 1% level by applying
the MCS procedure.

No MCS MCS

Model risk (in %) Model risk (in %)
99% VaR 97.5% ES 99% VaR 97.5% ES

W
ho

le
pe

ri
od Min 0.075 0.029 0.051 0.022

Median 0.138 0.080 0.106 0.078
Mean 0.165 0.092 0.127*** 0.089***
Max 0.847 0.716 0.696 0.703
SD 0.091 0.056 0.070 0.054

Pr
e-

cr
is

is

Min 0.081 0.029 0.069 0.022
Median 0.105 0.050 0.098 0.049
Mean 0.119 0.063 0.110*** 0.062***
Max 0.280 0.207 0.259 0.214
SD 0.036 0.030 0.034 0.030

C
ri

si
s

Min 0.116 0.046 0.087 0.045
Median 0.241 0.108 0.172 0.099
Mean 0.286 0.145 0.215*** 0.138***
Max 0.847 0.716 0.696 0.703
SD 0.139 0.101 0.120 0.097

Po
st

-c
ri

si
s Min 0.075 0.034 0.051 0.034

Median 0.138 0.082 0.099 0.081
Mean 0.155 0.090 0.113*** 0.088***
Max 0.551 0.638 0.569 0.647
SD 0.064 0.037 0.045 0.037
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Figure 4.6: Model risk of the VaR before and after applying the MCS procedure

This figure compares the model risk associated with one day ahead 99% VaR forecasts before
and after applying the MCS procedure by Hansen et al. (2011). Model risk is measured in
terms of the mean absolute deviation (mad) of risk forecasts by all multivariate VaR models
that passed the duration-based test by Christoffersen (2004) (no MCS). Subsequently, we apply
the MCS procedure to those models and recalculate model risk (MCS). Details on the method
and its implementation can be found in Sections 4.2.4 and 4.5, respectively. Values are given
in percent of the portfolio value between November 4, 2004 and December 31, 2018.
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The reduction of model risk that can be achieved corresponds largely to the percent-

age of models that is excluded by the MCS procedure additionally to the models that

have already been removed from the set of candidate models due to the backtests.110

On average, only 8% of ES models that have passed the respective backtest are ex-

cluded by the MCS procedure while the same is true for 21% of the VaR models.111

However, after applying the MCS procedure on average less ES models (62%) than

VaR models (77%) are left over. This is due to the fact that only those models that

110Note that the set of models that passed the backtests varies over time as the backtests are performed
based on a moving window.

111The difference in the percentages of VaR and ES models that are excluded via the MCS procedure can
partially be explained by the fact that the loss function for the ES in the MCS framework is closely
related to the conditional calibration backtest by Nolde and Ziegel (2017) while the same is not true
in case of the VaR, see Sections 4.2.2 and 4.2.4 for more details.
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have not been rejected in the respective backtest enter into the MCS procedure and a

lower fraction of ES models (67%) has not been rejected (97% for the VaR). While the

percentage of models excluded is relatively stable over time for ES models, it varies

for VaR models. In the pre-crisis period about 11% of VaR models are excluded (ad-

ditionally to the ones rejected by the backtest) while in the crisis and post-crisis period

24% and 23% are excluded, respectively. A graphical representation of the number of

models before and after applying the MCS procedure can be found in Figure 4.7. By

excluding those models that are inferior112 to the ones remaining in the MCS, model

risk in the post-crisis period can be reduced substantially to the level of the pre-crisis

period.

Figure 4.7: Number of VaR models before and after applying the MCS procedure

This figure shows the number of 99% VaR models before and after applying the MCS
procedure by Hansen et al. (2011), see Section 4.2.4. In both cases, only those models (out of
180) that were not rejected by the duration-based VaR backtest by Christoffersen (2004) enter
into the MCS procedure. The sample period is November 4, 2004 until December 31, 2018.
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112Comparisons between different models are based on loss functions, see Section 4.2.4 for details.
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4.6 Model risk and backtesting

In line with our notion of model risk as uncertainty on the model choice itself when

having to choose among many possible alternative models (cf. Cont, 2006, Danielsson

et al., 2016), we include many different risk forecasts into the calculation of our model

risk measure. We consider various GARCH-type models for the marginals and cop-

ula functions for the dependence structure yielding 180 different multivariate model

specifications. However, to prevent our results from being biased by erroneous risk

forecasts due to misspecified models, we first perform backtests to determine a set of

valid candidate models on a daily basis.

In our main analysis, we rely on the duration-based VaR backtest by Christoffersen

(2004) and the conditional calibration ES backtest by Nolde and Ziegel (2017). Table

4.10 provides summary statistics on the number of models passing these backtests from

November 4, 2004 until December 31, 2018.113 After having applied the backtest for

the 99% VaR, there remain on average 174 models while only 121 97.5% ES models

pass the ES backtest. This difference might be explained by the fact that the conditional

calibration test is a joint VaR and ES backtest while the duration-based VaR backtest

is not (see Section 4.2.2 for details). Figure 4.8 illustrates the number of VaR and ES

models that are not rejected by the backtests over time.

For robustness, we provide summary statistics on the number of models that enter

into the calculation of model risk when considering alternative backtests or when using

different specifications in Table 4.11.

When relying on the dynamic quantile test by Engle and Manganelli (2004), on

average 71 VaR models are not rejected while the same is true for 127 ES models in

the exceedance residual test by McNeil and Frey (2000). Using a moving window of

1000 days instead of 500 days reduces the average number of models to 145 for the

113The backtests are performed based on a moving window of 500 days and a confidence level of 99%.
For VaR and ES estimates themselves, we consider the confidence levels 95%, 97.5%, 99%, and
99.9%.
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Table 4.10: Summary statistics of market risk models passing the backtest

This table presents summary statistics on the number of multivariate market risk models
passing the respective backtest, see Section 4.2.2 for details. We consider VaR (Panel A)
and ES (Panel B) forecasts for a well diversified portfolio from November 4, 2004 until
December 31, 2018 and confidence levels (Conf. level) ranging from 95% to 99.9%. We
provide minimum (Min), median, mean, maximum (Max) and standard deviation (SD) of the
daily number of models.

Panel A: VaR
Models passing backtest

Min Median Mean Max SD

Conf. level
99.9% 137 180 178 180 5
99.0% 65 180 174 180 17
97.5% 89 180 176 180 11
95.0% 158 180 179 180 3

Panel B: ES
Models passing backtest

Min Median Mean Max SD

Conf. level
99.9% 45 113 123 180 46
99.0% 97 130 136 180 25
97.5% 63 120 121 179 27
95.0% 24 119 109 168 31

VaR and 82 for the ES while a fixed window spanning the entire sample period114 leads

on average to 113 VaR and 17 ES models. In the following, we focus on the impact of

different backtesting specifications on our model risk estimates.

4.6.1 All multivariate models

Summary statistics for our main measure of model risk (mad) are presented in Table

4.12. There, we compare the results of our main analysis to model risk estimates

114Note that the usage of a fixed window is not feasible in practice as it introduces a look-ahead-bias
into the evaluation of risk models. However, we include results to provide a more complete picture.
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Table 4.11: Summary statistics of market risk models passing alternative backtests

This table presents summary statistics on the number of multivariate market risk models
passing a set of backtesting alternatives. For our main analysis, we rely on the duration-based
VaR backtest by Christoffersen (2004) and the conditional calibration ES backtest by Nolde
and Ziegel (2017) with a moving window of 500 days (Baseline). For robustness, we
also consider the dynamic quantile VaR backtest by Engle and Manganelli (2004) and the
exceedance residual ES backtest by McNeil and Frey (2000) (Alternative backtests), for
more details we refer to Section 4.2.2. Additionally, we provide results when not applying
any backtest (No backtest) or when using the baseline backtest with a fixed window (Fixed
window) or a moving window of 1000 days (1000 days mov. window). We consider VaR
(Panel A) and ES (Panel B) forecasts for a well diversified portfolio from November 4, 2004
until December 31, 2018 and confidence levels (Conf. level) ranging from 95% to 99.9%. We
provide minimum (Min), median, mean, maximum (Max) and standard deviation (SD) of the
daily number of models.

Panel A: 99% VaR
Models passing backtest

Min Median Mean Max SD

Baseline 65 180 174 180 17
No backtest 180 180 180 180 0
Alternative backtest 0 65 71 160 42
Fixed window 113 113 113 113 0
1000 days mov. window 0 179 145 180 62

Panel B: 97.5% ES
Models passing backtest

Min Median Mean Max SD

Baseline 63 120 121 179 27
No backtest 180 180 180 180 0
Alternative backtest 99 119 127 180 21
Fixed window 17 17 17 17 0
1000 days mov. window 0 95 82 120 39
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Figure 4.8: Number of market risk models passing the backtest

This figure shows the daily number of multivariate market risk models passing the respective
backtest, see Section 4.2.2 for details. We consider risk forecasts associated with the one day
ahead 99% VaR and 97.5% ES for a well diversified portfolio from November 4, 2004 to
December 31, 2018.
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obtained by using no backtests or by employing alternative backtests. For robustness,

we also add results when using our main backtests with a fixed estimation window and

a moving window of 1000 days (instead of 500 days), respectively.

Over the entire sample period model risk (mad) for the 99% VaR is on average

0.165% when determining the set of candidate models via the duration-based back-

test.115 When calculating model risk based on all 180 risk forecasts (i.e., without em-

ploying a backtest), model risk for the VaR is on average slightly lower (0.156%).

When instead relying on the dynamic quantile test by Engle and Manganelli (2004),

average model risk is substantially lower (0.079%).116 Average model risk for the

115In our main analysis we rely on a moving estimation window of 500 days. When instead using a
moving window of 1000 days we obtain an average model risk of 0.202% and when building on a
fixed estimation window an average model risk of 0.129%. Note that although employing a fixed
estimation window substantially decreases average model risk, doing so introduces a look-ahead bias
to our model risk estimates and is therefore not feasible in practice.

116This can be explained by the fact that the dynamic quantile test on average rejects a larger fraction
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Table 4.12: Model risk and alternative backtests (all multivariate models)

This table provides summary statistics on the model risk associated with one day ahead fore-
casts of 99% VaR and 97.5% ES after having different (or differently specified) backtests. For
our main analysis, we rely on the duration-based VaR backtest by Christoffersen (2004) and the
conditional calibration ES backtest by Nolde and Ziegel (2017) with a moving window of 500
days (Baseline). For robustness, we also consider the dynamic quantile VaR backtest by Engle
and Manganelli (2004) and the exceedance residual ES backtest by McNeil and Frey (2000)
(Alternative backtests), for more details we refer to Section 4.2.2. Additionally, we provide
results when not applying any backtest (No backtest) or when using the baseline backtest with
a fixed window (Fixed window) or a moving window of 1000 days (1000 days mov. window).
Model risk is measured in terms of the mean absolute deviation (mad) of the risk forecasts
that passed the respective backtest on a daily basis from November 4, 2004 until December 31,
2018. We report model risk estimates in percent of the portfolio value (first and second column)
and in absolute terms (third and fourth column) for an equally weighted portfolio. The results
in absolute terms are based on a portfolio value of $100,000 and a 10 day forecast horizon. We
provide minimum (Min), median, mean, maximum (Max), and standard deviation (SD) of the
daily model risk estimates.

Model risk (in %) Model risk (in $)
99% VaR 97.5% ES 99% VaR 97.5% ES

B
as

el
in

e

Min 0.075 0.029 237 92
Median 0.138 0.080 436 253
Mean 0.165 0.092 522 291
Max 0.847 0.716 2,678 2,264
SD 0.091 0.056 288 177

N
o

ba
ck

te
st Min 0.056 0.058 177 183

Median 0.127 0.133 402 421
Mean 0.156 0.163 493 515
Max 0.847 0.876 2678 2770
SD 0.089 0.092 281 291

A
lte

rn
at

iv
e

ba
ck

te
st

s Min 0.000 0.032 0 101
Median 0.065 0.095 206 300
Mean 0.079 0.114 250 360
Max 0.672 0.864 2125 2732
SD 0.054 0.077 171 243

Fi
xe

d

w
in

do
w

Min 0.035 0.011 111 35
Median 0.097 0.068 307 215
Mean 0.129 0.078 408 247
Max 1.081 0.712 3418 2252
SD 0.103 0.049 326 155

10
00

da
ys

m
ov

.w
in

do
w Min 0.048 0.025 152 79

Median 0.170 0.072 538 228
Mean 0.202 0.091 639 288
Max 1.118 0.962 3535 3042
SD 0.113 0.067 357 212
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97.5% ES over the entire sample period is 0.092% in our main analysis117 (conditional

calibration backtest) and 0.163% when not using any backtest. For the exceedance

residual test by McNeil and Frey (2000) average model risk (0.114%) is higher than

model risk for the conditional calibration backtest, but still much lower than in the case

of not using any backtest.

4.6.2 The subgroups

Table 4.13 presents summary statistics of average model risk when using alternative

backtests or no backtest at all. Again, the focus is on the comparison of model sets with

fixed and model sets with varying copula function. For the 99% VaR we find that the

average model risk remains identical when we do not backtest. This is true for model

sets with fixed (0.052%) as well as for model sets with varying (0.157%) copula func-

tion and can be explained by the fact that the duration-based backtest by Christoffersen

(2004) rejects on average only about 3.3% of VaR market risk models. In contrast, the

conditional calibration backtest by Nolde and Ziegel (2017) rejects on average about

33% of models forecasting ES estimates. For model sets with fixed copula function, the

model risk is almost similar (deterioration of 0.003 percentage points) if no backtest is

performed. On the other hand, for model sets with varying copula and consequently

fixed marginal distribution, the average model risk is reduced from 0.164% to 0.068%.

In addition, Figure 4.9 shows that our main result of increasing model risk by choosing

a copula function is robust to no prior backtesting.

For the 99% VaR using the dynamic quantile test by Engle and Manganelli (2004),

the average model risk is almost not reduced for groups with fixed copula (from

0.052% to 0.051%) and more than three times reduced for groups with varying copula

(from 0.157% to 0.042%).118 In contrast to our baseline backtest, 60.6% of the market

of models (60.6%) than the duration-based backtest (3.3%). However, there are periods of time (in
total 14.0% of all days corresponding to roughly 2 years of our sample period) with none of the 180
models passing the dynamic quantile test, which is the main reason for not using this backtest in our
main analysis. Further details can be found in Table 4.11.

117When using a moving window of 1000 days (instead of 500 days in our main analysis), we obtain an
average model risk of 0.091%. For a fixed estimation window average model risk is 0.078%.

118When using a moving window of 1000 days (instead of 500 days in our main analysis), we obtain
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Table 4.13: Model risk and alternative backtests (model sets with fixed and varying
copula only)

This table presents summary statistics for the time series of average model risk per group
associated with 99% VaR (Panel A) and 97.5% ES (Panel B) forecasts for a well diversified
portfolio and a set of backtesting alternatives. For our main analysis, we rely on the duration-
based VaR backtest by Christoffersen (2004) and the conditional calibration ES backtest by
Nolde and Ziegel (2017) with a moving window of 500 days (Baseline). For robustness,
we also consider the dynamic quantile VaR backtest by Engle and Manganelli (2004) and
the exceedance residual ES backtest by McNeil and Frey (2000) (Alternative backtests), for
more details we refer to Section 4.2.2. Additionally, we provide results when not applying
any backtest (No backtest) or when using the baseline backtest with a fixed window (Fixed
window) or a moving window of 1000 days (1000 days mov. window). Model risk is measured
in terms of the mean absolute deviation (mad) of risk forecasts by various models within a
model set that passed the respective backtest on a daily basis from November 4, 2004 until
December 31, 2018. Group 1 (G1) includes all model sets in which a copula function is
fixed while varying the marginal distribution. Group 2 (G2) contains analogously the model
sets with fixed marginal distribution and varying copula. We report model risk estimates for
one day ahead risk forecasts in percent of the portfolio value. We provide minimum (Min),
median, mean, maximum (Max), and standard deviation (SD) of the daily averaged model risk
estimates per group.

Panel A: 99% VaR
Average model risk (in %)

Min Median Mean Max SD

Group

G1: Copula fixed

Baseline 0.008 0.037 0.052 0.518 0.044
No backtest 0.012 0.037 0.052 0.518 0.044
Alternative backtest 0.000 0.039 0.051 0.524 0.041
Fixed window 0.011 0.033 0.048 0.516 0.043
1000 days mov. window 0.014 0.040 0.053 0.518 0.041

G2: Marg. distr. fixed

Baseline 0.073 0.130 0.157 0.803 0.084
No backtest 0.075 0.130 0.157 0.803 0.084
Alternative backtest 0.000 0.038 0.042 0.439 0.024
Fixed window 0.058 0.103 0.126 0.717 0.072
1000 days mov. window 0.075 0.137 0.159 0.669 0.073

Panel B: 97.5% ES
Average model risk (in %)

Min Median Mean Max SD

Group

G1: Copula fixed

Baseline 0.012 0.042 0.058 0.640 0.049
No backtest 0.012 0.040 0.055 0.537 0.045
Alternative backtest 0.012 0.042 0.058 0.581 0.050
Fixed window 0.006 0.027 0.039 0.546 0.039
1000 days mov. window 0.017 0.047 0.065 0.640 0.053

G2: Marg. distr. fixed

Baseline 0.022 0.061 0.068 0.561 0.036
No backtest 0.080 0.137 0.164 0.835 0.087
Alternative backtest 0.029 0.069 0.077 0.561 0.045
Fixed window 0.003 0.029 0.034 0.423 0.026
1000 days mov. window 0.015 0.039 0.047 0.546 0.035
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Figure 4.9: Average model risk without applying backtests (model sets with fixed and
varying copula only)

This figure shows the average model risk associated with one day ahead 99% VaR (first panel)
and 97.5% ES (second panel) forecasts for a well diversified portfolio per group. Group 1
(G1) includes all model sets in which a copula function is fixed while varying the marginal
distribution. Group 2 (G2) contains analogously the model sets with fixed marginal distribution
and varying copula. Model risk is measured in terms of the mean absolute deviation (mad) of
one day ahead forecasts by various risk models within a model set. Values are calculated on
a daily basis between November 4, 2004 until December 31, 2018 in percent of the portfolio
value. In contrast to our baseline analysis, the models did not have to pass a backtest.
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risk models are discarded on average. When using the exceedance residual ES backtest

by McNeil and Frey (2000), average model risk for sets with fixed copulas is robust to

our baseline analysis (0.058%). The alternative ES backtest rejects 29.7% of market

risk models on average. For the group of model sets with fixed marginal distributions,

the alternative backtest leads to a slightly higher average model risk (0.077%) than our

baseline (0.068%). Again, the average model risk is reduced in comparison to no prior

backtest (0.164%).119 These results highlight that model risk depends on the choice

of the backtests, some of which are able to reduce average model risk (compared in

particular to using no backtest). As a consequence, employing backtests can be seen as

additional means for reducing model risk. A further analysis of the choice of backtests

with regard to model risk is, however, beyond the scope of this paper.

4.7 Conclusion

In this paper, we study the model risk inherent in copula GARCH models used for

forecasting financial risk. More precisely, we forecast the VaR and ES for a large num-

ber of portfolios using a variety of copula GARCH models. We then analyze different

groups of models in which we fix either the marginals, the copula, or neither in a com-

prehensive empirical study to identify the main source of model risk in multivariate

risk forecasting. As our first main result, we find that copula GARCH models come

with considerable model risk that is economically significant. Interestingly, and as our

second main result, we find that copulas account for considerably more model risk than

marginals in multivariate models with the choice of the marginal model having only a

small effect on overall model uncertainty. We then propose the use of the model confi-

dence set procedure to narrow down the set of available models and reduce model risk

for copula GARCH risk models using ready-to-use backtests for VaR and ES, respec-

an average model risk of 0.053% (0.159%) for model sets with fixed (varying) copula. For a fixed
estimation window average model risk is 0.048% (0.126%).

119When using a moving window of 1000 days (instead of 500 days in our main analysis), we obtain
an average model risk of 0.065% (0.047%) for model sets with fixed (varying) copula. For a fixed
estimation window average model risk is 0.039% (0.034%).
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tively. Our proposed approach leads to a significant improvement in the mean absolute

deviation of one day ahead forecasts by our various candidate risk models.

The findings of our analysis stress the importance of an adequate modeling of the

dependence structure inherent in financial portfolios. While the choice of marginal

models is not negligible, it is however of lesser importance than selecting the right

parametric copula model. In this respect, our findings are reassuring as the majority

of previous papers in this field have solely concentrated on copula modeling and have

relied on standard GARCH(1,1)-models for the marginals. Our quantification of the

degree of model risk caused by the large set of candidate parametric copula families,

however, shows that multivariate models include an economically significant amount

of model risk. Using the model confidence set approach seems to alleviate this danger

to some degree. Finally, our findings are of high relevance for supervisors in the bank-

ing and insurance sector as we illustrate the need for carefully checking the adequacy

of a multivariate copula-based risk model.
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Chapter 5

Estimating the Relation Between

Digitalization and the Market Value of

Insurers

5.1 Introduction

Digitalization has already massively transformed many industries. The insurance in-

dustry, however, has yet to take advantage of the full potential of digital technologies.

This becomes even more important as rising customer expectations, the effects of the

financial markets crisis, and the zero interest rate policy lead to an increased competi-

tive pressure. In general, there is no doubt on the strong impact digitalization will have

on the insurance ecosystem (see, e.g., Cappiello, 2020). It is considered to affect the

whole insurance value chain, from product development to pricing/underwriting, sales

and distribution, policy and claims management, and asset and risk management (Eling

and Lehmann, 2018). However, in contrast to other megatrends such as urbanization

or aging societies, the precise scope of digitalization is difficult to grasp. Although we

know that digitalization clearly manifests itself in cloud computing, Internet of Things,

mobile communication, blockchain technology, artificial intelligence, etc. (Schmidt,

2018), evidence on the question of how to measure digitalization and its relation to
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firm outcomes is still scarce (see, e.g., Scott et al., 2017, Bohnert et al., 2019, Hanelt

et al., 2020).

In this paper, we fill this gap by proposing a new method to measure digitalization in

the insurance sector. Our method exploits the prevalence of different topics in standard

annual reports. Based on the assumption that digitally innovative insurers report their

progress more extensively, Latent Dirichlet Allocation (LDA) helps to assess the im-

portance of digitalization for the particular insurance company. At the same time, the

method enables us to separate digitalization from mere firm innovation. In a second

step, we use our text-based measure on digitalization to investigate its relation with

the market valuation of a large set of publicly-listed US insurance companies. Finally,

we account for potential confounding issues related to the construction of the digital-

ization measure, the reference document used for LDA, and the sentiment in which

annual reports are written.

Our results provide first evidence for a positive association between digitalization

efforts and market valuation in the US insurance sector. We find that an increase in dig-

italization is strongly related to an increase in market value and market-to-book value

of US insurance companies. Put differently, market participants associate a more dig-

italized insurance company with higher future profitability and consequently a higher

firm value. Although LDA is by design subject to some discretion, we show that our

results are robust to several variations of our model parameters. Most importantly, our

findings are robust to different numbers of topics used to structure the annual reports

and to isolate digitalization from general innovation. Furthermore, the results do not

depend on the discretionary choice of the reference document and are not confounded

by annual reports’ sentiment.

The topic model LDA by Blei et al. (2003) has only recently been introduced to the

finance literature.120 In general, topic models can be used to analyze large datasets of

texts that are often unstructured (Roberts et al., 2016). These probabilistic models pro-

120One of the first applications of this approach in accounting and finance is due to Huang et al. (2018),
who study topical differences between conference calls and subsequent analyst reports.
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vide a finite set of common topics which optimally reflect a collection of documents.

By applying a topic model to a specific document, we obtain a vector of topic loadings

representing how intensively each topic is discussed in the respective document. One

of the main advantages of LDA over simple word-list approaches is that the topics and

corresponding word distributions arise endogenously from the data and do not have

to be specified by the researcher. That is, the underlying machine learning algorithm

determines the terms that are most important to discriminate between documents and

topics in an unsupervised fashion.

We then apply this powerful tool to the annual reports of 86 publicly-listed US

insurance companies available in Thomson Reuters Datastream from 2006 to 2015

and derive a distribution of topics for each of the annual reports. This yields a low-

dimensional representation of the document (cf. Blei et al., 2003) that we exploit to

construct our text-based measure of digitalization. For this purpose, we compare the

extent to which each topic is discussed in the respective report to a reference document

about digitalization in the insurance sector. Specifically, we use the paper by Bohnert

et al. (2019) since it is closely related to our work. To the best of our knowledge, it is

one of the few studies trying to establish an empirical relation between the expression

of a digital agenda and the market valuation of insurance companies.121 More exactly,

based on these topic distributions we calculate a measure of similarity between the dig-

italization document and the insurers’ annual reports using the Kullback Leibler (KL)

divergence (Kullback and Leibler, 1951). This measure is then used to proxy for the

extent of digitalization in our sample insurance companies.

Our paper is related to a growing body of literature on textual analysis and machine

learning in finance. Starting with Frazier et al. (1984), Antweiler and Frank (2004), and

Tetlock (2007), researchers have studied the effect of qualitative information on equity

valuations. More recent papers (e.g., Hanley and Hoberg, 2010, Jegadeesh and Wu,

2013, Hoberg et al., 2014, Hoberg and Maksimovic, 2015, Jegadeesh and Wu, 2017,

121However, we also consider further reference documents in the robustness checks, e.g., Cappiello
(2020) and Nicoletti (2016) as well as Bohnert et al. (2019) with the empirical study being removed.
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Ke et al., 2019) conduct text-based analyses to examine a wide variety of finance re-

search questions.122 Intriguingly, within the field of text analysis and machine learning,

LDA is becoming more and more popular (see, e.g., Goldsmith-Pinkham et al., 2016,

Ganglmair and Wardlaw, 2017, Hoberg and Lewis, 2017, Huang et al., 2018, Lopez-

Lira, 2019). Within this growing strand of literature, our paper is most closely related

to Bellstam et al. (2020) and Lowry et al. (2020), who derive topics based on LDA and

employ the KL divergence as a measure of similarity between probability distributions.

At the same time, our paper is related to a growing body of literature on the effect

of digitalization in the insurance sector. This literature is basically centered around the

impact of digitalization on the business model of insurers (see, e.g., Desyllas and Sako,

2013, Cappiello, 2020), new forms of online marketing and sales activities (Seitz,

2017), and the overall transformation of insurance companies (Barkur et al., 2007).

The various facets of digitalization such as Big Data, artificial intelligence, predictive

modelling, telematics, and Internet of Things are considered to have a tremendous im-

pact on the whole insurance value chain. In detail, product design and development,

underwriting/pricing, sales and distributions, as well as policy and claims management

are all subject to fundamental change in the future (see, e.g., Rayport and Sviokla,

1995, van Rossum et al., 2002, Meier and Stormer, 2012, Cappiello, 2020). Numerous

opportunities like a facilitated interaction with customers via mail, chatbots, and so-

cial media or cost reduction via automation and standardization of business processes

are challenged by few risks like the depersonalization of the insurer-customer relation-

ship (Cappiello, 2020). However, there is only little empirical evidence on the relation

between digitalization and the market valuation of insurance companies.123 Our work

contributes to the current literature on digitalization and firm valuation in several ways.

First, we propose a novel approach to quantify the impact of digitalization on the in-

surance sector that can also be applied in any other empirical studies based on textual

analyses. Second, by employing LDA, we overcome standard pitfalls that arise from

122An excellent review of this literature can be found in Loughran and McDonald (2016).
123One of the few empirical studies in this field, as mentioned above, is Bohnert et al. (2019).
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text mining approaches. In fact, we do not rely on dictionary methods where the pre-

cise word lists depend on the researchers’ discretion. Instead, the thematic structure

within our collection of annual reports is identified via an unsupervised machine learn-

ing algorithm. Finally, we add to the new strand of literature on LDA by making use

of the whole distribution of topics instead of just focusing on a particular topic. This

allows us to differentiate between digitalization and innovation based on a medium

number of topics. At the same time, our approach is less prone to topic splits (cf.

Bellstam et al., 2020).

The remainder of the paper is structured as follows. Section 5.2 explains in detail the

theoretical background of LDA and its implementation in the context of digitalization

in the insurance sector. In Section 5.3, we describe and analyze our data and present the

empirical strategy using multivariate OLS. Section 5.4 reports the estimation results

including alternative specifications based on different topic distributions, sentiment

subsamples, different calculations of our digitalization measure, and other reference

documents on digitalization. Finally, Section 5.5 summarizes and gives concluding

remarks.

5.2 Measuring digitalization using LDA

We use the LDA method due to Blei et al. (2003) as well as natural language process-

ing techniques to automatically analyze annual reports of insurance companies in the

United States. In LDA, unsupervised machine learning is used to obtain a finite set of

topics frequently discussed in the annual reports along with the fraction of time each

topic is covered in each of the reports. We use these information to derive a measure

of digitalization. While Sections 5.2.1 to 5.2.4 are optional and can be skipped by the

reader who is familiar with the techniques, the construction of our measure is described

beginning from Section 5.2.5.
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5.2.1 Data preprocessing

To obtain meaningful topics it is very important to preprocess the raw text data before

applying any model to them. This is done to reduce the vocabulary to a set of mean-

ingful words that are likely to provide information about the topics and concepts of

interest. This facilitates the derivation of meaningful topics that best fit the context of

the annual reports. The preprocessing steps we conduct are standard (cf. Hansen et al.,

2018, Lopez-Lira, 2019, Bellstam et al., 2020) and shortly outlined below.

After having extracted the plain text from the annual reports,124 we start by lowercas-

ing all letters. We then remove common stopwords, i.e., words that are commonly used

but do not bear a contextual meaning (e.g., “and”,“or”,“the”,“of”).125 We continue by

removing all one-letter words like “a” and “i” because these words are frequently used

to itemize lists (cf. Loughran and McDonald, 2016). We also exclude all numbers as

our focus is on a qualitative analysis of the annual reports. Additionally, we remove all

special characters and email addresses.

There are many different words that have the same meaning, e.g., “technological”

and “technology”, but might be treated differently by the topic modeling algorithm.

To avoid this we use a standard technique called stemming to derive groups of words

with a similar meaning. We rely on Porter’s algorithm (Porter, 1980) as the most

common algorithm for stemming English documents that has proven to be empirically

very effective (Manning et al., 2009). The algorithm essentially consists of five phases

of word reduction which are applied sequentially to a text corpus. Word reduction is

achieved by applying predefined rules, e.g., removing “ing” at the end of words. In

each of the phases there are different conventions on how to select rules. We use the

implementation of Porter’s algorithm readily available in the tm R-package (Feinerer

and Hornik, 2020).

Finally, we exclude all words that appear less than 25 times in the whole data set.

124We retrieved the plain text via the Xpdf extraction engine.
125We thank Bill McDonald for providing lists of common stopwords on his website https://sraf.
nd.edu/textual-analysis/resources/.

https://sraf.nd.edu/textual-analysis/resources/.
https://sraf.nd.edu/textual-analysis/resources/.
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These words are on average used about once every 30 annual reports and are therefore

very unlikely to contribute meaningfully to any of the discovered topics. Furthermore,

these words might be due to errors in parsing the PDF documents, e.g., a missing letter

or whitespace character. By removing those rarely used words we are able to reduce

noise in our derivation of topics and sparsity of the document term matrix, see Section

5.2.2.

We now have a list of meaningful words for every document. In the language of text

mining these collections of words are referred to as a text corpus. For further analyses

this text corpus is transformed into a document term matrix as outlined in the following

subsection.

5.2.2 Document term matrix

To apply the LDA methodology to the preprocessed text corpus we have to transform

it into a structure that can be utilized by a statistical model. We therefore make use of

the so-called bag of words approach. The underlying assumption is that the ordering of

the words in a text is negligible so that it can be represented by a vector of word counts.

That is, the bag of words approach is only concerned about how often specific words

occur in a document while the place of occurrence is not considered. Furthermore, the

specific ordering of the documents in a text corpus is assumed to be insignificant (Blei

et al., 2003). At the cost of losing the word ordering we gain the possibility to apply

powerful statistical models to our annual reports that are able to derive context not only

within a document but even across documents (cf. Bellstam et al., 2020). The repre-

sentation of documents as vectors of word counts is, however, not only fundamental

to topic modeling but lies on the basis of a variety of information retrieval algorithms

such as document scoring in a query, document classification and document clustering

(Manning et al., 2009).

By combining the individual vectors of word counts, we obtain a so-called document

term matrix, where each row corresponds to a specific document and each column to
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Figure 5.1: A simplified example of a document term matrix

This figure, adapted from Lopez-Lira (2019), shows a simplified example of a document term
matrix with 4 documents and 12 terms, see Section 5.2.2 for details. Before construction of
the matrix, stopwords are removed and words are stemmed. For more information on the
preprocessing steps we refer to Section 5.2.1.
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a specific word. A simplified example can be found in Figure 5.1. For our sample of

annual reports we obtain a matrix with 11,440 columns highlighting the importance of

the preprocessing steps especially in reducing the dimensionality of the document term

matrix. Document term matrices are typically very sparse because they contain the

counts of words being used across the whole sample of annual reports (cf. Hansen et al.,

2018). However, the whole vocabulary is not used in each individual report. Therefore,

even after removing some of the most rarely used words in the preprocessing steps, our

document term matrix only has 17 % non-zero entries. In this context, topic models

such as LDA can be understood as very powerful dimensionality reduction techniques.

5.2.3 LDA

Topic models can be used to analyze large datasets of texts that are often unstructured

(Roberts et al., 2016). They are probabilistic models that produce a finite set of com-
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mon topics that best represent a collection of documents whereby each topic itself can

be represented as a distribution over words. Each document typically covers multi-

ple topics. By applying a topic model to a specific document we obtain a vector of

topic loadings representing how intensively each topic is discussed in the respective

document. This yields essentially a probabilistic representation of the document.

In this paper we use LDA, a topic model developed by Blei et al. (2003).126 The un-

supervised machine learning algorithm LDA models each document in a text corpus as

a finite mixture over an underlying set of latent topics. The topics are derived from the

sets of words that group together in and across the annual reports. To derive the latent

structure (the discussed topics) from the observed data (the words) generative models

like LDA postulate a complex latent structure being responsible for the observed data.

By employing statistical inference this latent structure can then be recovered (Griffiths

and Steyvers, 2004). While the topics arise endogenously from the LDA algorithm, the

number of topics has to be specified in advance. The selection of an optimal number

of topics is discussed in Section 5.2.6.

Thinking of the documents as discrete distributions over topics which themselves

are distributions over words can be seen as a matrix factorization of the document term

matrix (Arun et al., 2010). That is, the document term matrix, containing per document

counts of specific words, is factorized in a matrix mapping topics to documents and a

matrix mapping words to topics. From this perspective, LDA can be understood as a

type of principal component analysis (cf. Blei, 2012) that reduces the dimensionality of

each document from a vector of thousands of words to a vector of the number of topics.

However, as in the LDA model topics are understood as probability distributions over

words, most of the information can be preserved in the factorized matrices.

More formally, LDA is a three-level hierarchical Bayesian model that relies on a

generative process for each document D in a text corpus. First, the length N of the

document is determined according to a Poisson distribution, then the parameter θ is

126Algorithms for topic modeling can be adapted to other kinds of discrete data and have been success-
fully applied to genetic data and social networks (cf. Blei, 2012).
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chosen from a Dirichlet distribution. This parameter governs the distribution of topics

in the document and is used to specify the particular topic zn from which an individual

word ωn is generated. More exactly, zn is chosen according to a multinomial distribu-

tion with parameter θ. Finally, a word ωn is drawn from the multinomial distribution

of the topic zn. This procedure is repeated for all words in a document and for all

documents in a text corpus.127 This is essentially a two-stage process. First, generate

a distribution over topics. Second, choose a specific topic from this distribution over

topics and generate a word from the corresponding distribution over words. The in-

tuition behind this is that a document usually covers multiple topics and that different

topics use certain words in different frequencies.128 A representation of the underlying

generative process in the language of graphical models can be found in Figure 5.2.

The parameters underlying the model can be determined for instance by variational

expectation-maximization (VEM) or Gibbs Sampling.129 We rely on the R-package

topicmodels that provides an interface to the C code by Blei et al. (2003) for estimating

a LDA model based on the VEM algorithm.

For our digitalization measure we make use of the fact that each document has its

individual distribution of topics providing a low dimensional representation of each

document. To infer topic loadings we are not restricted to the set of documents that we

have applied the LDA to. Instead, we are able to first derive the topics that are common

over all annual reports of the insurance companies in our sample by applying the LDA

algorithm only to these documents. Afterwards, we can utilize this set of topics as well

as the representation of the topics (probability distributions over words) to infer how

intensively these topics are discussed in previously unseen documents. These might

be for instance additional annual reports or in this paper the reference document on

digitalization.

The LDA model has many advantages, especially over simple dictionary methods.

127For all technical details see the original paper by Blei et al. (2003).
128Note that each topic consists of the same vocabulary. However, conditional on the topic, each word

occurs in a different frequency.
129An introduction to VEM and Gibbs Sampling can be found in Wainwright and Jordan (2008) and

Gelfand and Smith (1990), respectively.
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Figure 5.2: Graphical representation of LDA

This figure presents a graphical model of the LDA adapted from Blei et al. (2003). M is the
set of all documents in a collection. The inner rectangle represents the i’th document in the
collection where N denotes the number of words of the specific document. The j’th word in
this document is generated from the random topic z where the topic is chosen from the specific
topic distribution for that document specified by the parameter θ. The parameters α and β are
priors that control the sparsity of topics within a document and the sparsity of words within
a topic, respectively. Essentially, these parameters specify how much topics are needed to
describe a document and how much words are needed to describe a topic. For more details on
the LDA we refer to Section 5.2.3.

β

θα ω
N

M

First of all, there is no need to provide any lists of words as the underlying machine

learning algorithm determines the terms that are most important to discriminate be-

tween documents and topics in an unsupervised fashion. That is, the topics and cor-

responding word distributions arise endogenously from the data. Additionally, in con-

trast to the word list approach each topic derived via LDA consists of the same set of

words. However, the topics differ in the probabilities they assign to each word. The

possibility that multiple topics can be responsible for the words in a single document

gives a lot more flexibility in modeling textual data. It corresponds to the intuition that

the same word might be used in different contexts and thus also in different topics.

Hansen et al. (2018) give the example of the term “growth” being used to describe

economic activity while at the same time “wage growth” might appear in a context of
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inflationary pressure. By modeling the interaction between documents and topics with

the probabilistic generative process underlying the LDA model, one can account for

the usage of the same words in different contexts.

There are, however, also some disadvantages that are inherent to the LDA approach.

Like most other topic models, the LDA model is based on the bag of words approach,

i.e., the order of words within a document is not considered but only the number of

occurrences. Therefore, the context of specific words can only be derived based on

the words that frequently occur within the same document while the distance between

words is neglected. Nevertheless, although the exchangeability assumption behind the

bag of words approach is unrealistic, it is reasonable in a context of assessing the coarse

semantic structure of documents (see Blei, 2012). Another disadvantage is that, unlike

the topics themselves, the number of topics does not arise endogenously from the data

but has to be specified by the researcher in advance.130 Other potential weaknesses are

the exchangeability assumption on the documents within a collection and that relation-

ships between topics are not considered (see Blei et al., 2010). In an overall view of

the advantages and disadvantages, we are convinced that the LDA model as the “sim-

plest” (Blei, 2012) and ”most common topic model currently in use” (Lopez-Lira,

2019) is most appropriate in our context where we use the topics and corresponding

probabilities as a low dimensional representation of the documents.

5.2.4 Other text modeling methods

In this section, we will shortly discuss other methods for the analysis of textual data in

finance and insurance. Among the most common and simple approaches to automated

content analysis are dictionary methods, where a list of words related to a specific topic

is defined by the researcher. The prevalence of this topic in a document is then simply

derived based on the number of occurrences of the list entries. This approach can

of course be extended to account for multiple topics. Word lists are an intriguingly

simple approach to textual analysis. This comes, however, at the price of subjectivity

130The choice of the optimal number of topics is discussed in Section 5.2.6.
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as the words in the dictionary have to be specified by the researcher. Additionally, a

broad concept like digitalization can hardly be captured by just counting words like

“computer” or “IT” and providing a complete list of words poses a very complicated if

not impossible task for the researcher. Furthermore, in dictionary methods all entries

in a word list are assumed to be of equal importance.

A more sophisticated word list based approach is provided by the key word in con-

text (KWIC) concordances (see Gries and Newman, 2013) where not only the counts

of specific words but also the words in their direct proximity are considered. The main

advantage of this approach is that the immediate context in which words of interest are

used is taken into account. For example, Bohnert et al. (2019) employ this method to

analyze to which extent companies address digitalization in the context of external and

internal stakeholders. However, the main issue with dictionary based approaches that

lists of words have to be specified by the researchers is not resolved.131 Apart from

that, we do not study the context in which digitalization is addressed in companies but

rather the amount to which they digitalize making the LDA method more appropriate

in our study.

Topic models, with LDA being the most common one, provide another approach

to automated text analysis. An early and rather simple topic modeling method is La-

tent Semantic Analysis (LSA, Deerwester et al., 1990) that at its core is a principal

component analysis performing a singular value decomposition on the document term

matrix to extract the most informative dimensions. The probabilistic nature of LDA

and the flexibility that comes from it is an important distinguishing feature from this

dimensionality reduction technique. In fact, LDA was introduced to fix an issue with

a probabilistic extension of the LSA method (probabilistic LSA, Hofmann, 1999).

LDA can be used as a module in more complicated models to relax some of its

assumptions discussed in the previous section. For example, the topic model due

to Wallach (2006) generates words inside a topic conditional on the previous word

131Actually, by requiring not only to specify keywords but also additional lists of words to be analyzed
in the direct proximity of the words of interest and the maximum distance between words to be
considered, this method necessitates even more discretionary choices by the researcher.
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and Griffiths et al. (2005) propose a composite model combining LDA with a Hidden

Markov Model (HMM) to account for short-range dependencies between words. An-

other extension is the hierarchical LDA (hLDA) by Blei et al. (2010). It introduces a

hierarchy of topics by including the nested Chinese restaurant process in the genera-

tive model. However, the internal nodes of the resulting topic tree are not summaries

of their children, i.e., high probability words of a node do not necessarily coincide with

high probability words of its children making interpretation difficult. Additionally, as

in the LDA model, the number of topics still has to be specified by the researcher in

advance.132 In the structural topic model (STM) due to Roberts et al. (2016) covariates

external to the respective document can enter into the model to allow for interactions

between covariates and the topics. Grace (2019) uses this feature to analyze how topics

in the 10-Ks vary with information about the company as well as over SIC code sector

and time. However, as opposed to Grace (2019) we do not study how digitalization

evolves depending on exogenous variables. Instead, we analyze how digitalization af-

fects firm valuation. A summary of advantages and disadvantages of selected models

can be found in Table 5.1. Of course, there exist more extensions of the LDA model,133

see Blei (2012) for a review.

Overall, these extensions relax assumptions of the LDA model, allow for the in-

clusion of additional covariates or model relationships between the topics. However,

although some of these methods exhibit improved language modeling performance es-

pecially (which is especially important in language generation), this comes at the price

of an expanded parameter space and more complexity which can complicate interpre-

tation. From a more practical perspective, there exist implementations of LDA in many

different programming languages. Unfortunately, the same is not true for many of its

extensions. Finally, Blei (2012) argue that the bag of words assumption underlying

132The hLDA model should not be confused with the Hierarchical Dirichlet Process (HDP, Teh et al.,
2006) where the number of topics can be unbounded and learned from the data. However, in the
HDP model the term “hierarchical” refers to the generative process and not to the topics which are
flat clusterings.

133There even exist extensions to the computer vision field like the spatial LDA model by Wang and
Grimson (2007) that are able to account for the spatial and temporal dependence of “visual words”
in pictures and videos.
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Table 5.1: Advantages and disadvantages of selected text modeling methods

This table summarizes advantages and disadvantages of selected text modeling methods dis-
cussed in Sections 5.2.3 and 5.2.4. Of course the strengths and weaknesses of the models have
to be weighted against the background of the specific application.

Method Advantages Disadvantages

Word list
approach

• Simple

• Easy to interpret

• Context in which words appear is not con-
sidered

• Word lists depend on the researcher’s dis-
cretion

KWIC
concor-
dances

• Accounts for the context in which
words of interest are used

• Still simple and easy to interpret

• Requires the researcher to specify addi-
tional words to be studied in the proximity
of the words of interest

• Introduces more subjectivity than the word
list approach

LDA • “Simplest” (Blei, 2012) and “most
common topic model currently in use”
(Lopez-Lira, 2019)

• Dimensionality reduction technique
that provides low dimensional repre-
sentations of documents

• Accounts for the usage of the same
words in different contexts by allow-
ing multiple topics to be responsible
for the same word in a single docu-
ment

• Can be used to construct more compli-
cated models

• Implementations available in many
different programming languages

• Accounts for context only via words that
frequently occur in the same documents
while the order of words within a docu-
ment is neglected (bag of words approach)

• Number of topics must be specified by the
researcher

• Interpretation is more complicated than in
word list based approaches but easier than
in many other topic models

• Topics are assumed to be flat clusterings

• Higher computational effort, but feasible
on modern computers

hLDA • Provides a hierarchy of topics

• Topics are organized in a tree with
more general topics being located near
the root and more specialized topics
near the leaves

• Most disadvantages of LDA remain valid

• High probability words of a node do not
coincide with high probability words of its
children making interpretation difficult

• Generative process is more complex

• More hyperparameters have to be specified
by the researcher

STM • Covariates external to the respective
document can enter into the model

• Allows for interactions between co-
variates and topics

• Most disadvantages of LDA remain valid

• Expands the parameter space and the com-
plexity of the generative process

• Introduces subjectivity in the choice of co-
variates
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LDA is reasonable when uncovering the coarse thematic structure of documents on

which our measure of digitalization is build.

5.2.5 A text-based measure of digitalization

This section outlines how our measure of digitalization is derived from the annual

reports of US insurance companies. The construction of our text-based measure is

motivated by the approach of Bellstam et al. (2020).

By employing LDA we obtain 45 topics134 that best describe the distribution of

empirical word groupings across our sample of annual reports of US insurance com-

panies. As has been outlined before, LDA is a dimensionality reduction technique that

essentially reduces the dimension of a document from the number of different words

to the number of topics. The topics arise endogenously from the data based on an un-

supervised machine learning algorithm. As a result, we obtain a discrete probability

distribution over 45 topics for each of the reports. This distribution corresponds to

how intensively each topic is covered in the respective annual report. According to

Blei et al. (2003) “the topic probabilities provide an explicit representation of a docu-

ment.” We build on this low dimensional representation of our annual reports to derive

a text-based measure of digitalization.

Therefore, we compare the topic distribution of each annual report, i.e., the extent

to which each topic is covered in the respective report, to a reference document about

digitalization in the insurance sector (Bohnert et al., 2019)135. Although the reference

document about digitalization has not been presented to the LDA algorithm, the struc-

ture of the underlying generative process allows us to derive the distribution of the

previously identified 45 topics in the digitalization document. Based on the distribu-

tion of topics in the reference document and in the annual reports we can calculate a

measure of similarity between the digitalization document and the reports. The intu-

134The number of topics is a hyperparameter that has to be specified by the researcher in advance. The
optimal choice of the number of topics is discussed in Section 5.2.6.

135In Section 5.4.4 we also consider different documents about digitalization. The results remain quali-
tatively unchanged.
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ition behind this is that an annual report covering similar topics as the digitalization

document extensively is more likely about digitalization than an annual report that

discusses these topics only marginally.

We take a similar approach to Lowry et al. (2020) and Bellstam et al. (2020) and

quantify the similarity between different topic distributions based on the Kullback-

Leibler (KL) divergence (Kullback and Leibler, 1951). The KL divergence measures

how much information is lost when one uses the distribution of topics in a particular

report to proxy for the distribution of topics in the digitalization document. The reports

with a low KL divergence are therefore most likely discussing topics related to digital-

ization whereas the ones with a large divergence are not. This reasoning is supported

by Figure 5.3 where we present the KL divergence between our reference document on

digitalization and various other documents on digitalization (Cappiello, 2020, Bohn-

ert et al., 2019 with the empirical section being excluded, Eling and Lehmann, 2018,

Nicoletti, 2016 and the industry white papers by McKinsey, 2017 and Deloitte, 2016),

on innovation (Tidd and Bessant, 2018), and on financial statement analysis (Subra-

manyam, 2014). To provide additional robustness we also include three randomly

chosen papers from the oldest available issue in the public archive of The Journal of

Risk and Insurance (Grosen and Jørgensen, 2002, Doherty and Richter, 2002, Lee and

Yu, 2002) that are completely unrelated to the topic at hand. The analysis is based on

45 topics.

The mean KL divergences between the topic distributions of our reference docu-

ment on digitalization and some other documents on digitalization (Cappiello, 2020,

the paper by Bohnert et al., 2019 with the empirical section being removed, and the

book by Nicoletti, 2016) are the lowest. The KL divergence between our reference

document on digitalization and the document on innovation (Tidd and Bessant, 2018)

is also relatively low. This is not surprising as digitalization and innovation are related

concepts. However, while the higher level of dissimilarity between Deloitte (2016) and

our reference document on digitalization can be explained by the fact that this white

paper also covers the more general subjects disruption and innovation, the higher mean
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dissimilarity between our reference document on digitalization and McKinsey (2017)

and Eling and Lehmann (2018), respectively, illustrates that discriminating between

digitalization and innovation is difficult and has limitations.136 The KL divergence be-

tween the topic distributions in our reference document on digitalization and the doc-

ument on financial statement analysis by Subramanyam (2014) is quite large. That is,

even though the topics are derived from annual reports, the topic distributions are well

suited to differentiate between digitalization on the one and general finance language

on the other hand. To provide a more complete picture, we added three papers from

The Journal of Risk and Insurance covering completely unrelated topics. As expected,

we obtain very high KL divergences signaling a large dissimilarity.

For a specific annual report the text-based digitalization measure is calculated as

the reciprocal of the KL divergence between the topic distribution in the digitalization

document and the topic distribution in the particular annual report. We calculate the

reciprocal to obtain a measure that is high for more digitalized and low for less digital-

ized companies.137 For convenience, the measure is then linearly scaled to the interval

[0, 1], i.e., the observation with the lowest value of the digitalization value assumes the

value 0 while the observation with the highest digitalization value takes on the value

1.138 A summary of the whole process for deriving the measure of digitalization can

136When we base the analysis on the five most pronounced topics (out of 45) in Bohnert et al. (2019)
accounting for nearly 90 % of the paper, the mean KL divergences between our reference document
on digitalization and the other documents on digitalization are the lowest, followed by the document
on innovation and the remaining documents. However, to avoid the introduction of an additional
parameter (the number of the most prominent topics to consider), our main measure is based on the
whole topic distribution. Nevertheless, we include regression results for a digitalization measure
based on the five most prominent topics in Bohnert et al. (2019) in Table 5.8.

137The main measure in Bellstam et al. (2020) is based on a fourth-root transformation. For parsi-
mony, we do not further transform our measure. However, the empirical results remain qualitatively
unchanged when we replace our original measure by its fourth root.

138In the following we provide some exemplary excerpts from the annual reports within the top decile
of firm-year observations according to our text-based digitalization measure:

“Responding to higher customer expectations, we recently introduced our mobile app, which makes
it easier for our customers to find their nearest agent or repair shop from their mobile device, and a
new online environment for policyholders to manage their policies. We have also made improvements
to our online quoting interface to make the process of buying insurance easier.” (Infinity Property
and Casualty Corporation, annual report 2012)

“Expanding use of third-party data and analytics will identify profitable growth opportunities. With
the amount of consumer data available, tapping in to “Big Data” supports targeted marketing ef-
forts based on educator household characteristics. This is the initial step in a multi-year strategy to
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Figure 5.3: The topic distribution as a representation of a document

This figure compares the distribution of topics in our reference document on digitalization
(Bohnert et al., 2019) to various other documents on digitalization (Cappiello, 2020, Bohn-
ert et al., 2019 with the empirical section being excluded, Eling and Lehmann, 2018, Nico-
letti, 2016 and the white papers McKinsey, 2017 and Deloitte, 2016), on innovation (Tidd
and Bessant, 2018), on financial statement analysis (Subramanyam, 2014) as well as randomly
chosen papers from the oldest available issue in the public archive of The Journal of Risk and
Insurance (Grosen and Jørgensen, 2002, Doherty and Richter, 2002, Lee and Yu, 2002) cover-
ing unrelated subjects. The dissimilarity between the respective topic distributions is measured
by the KL divergence where more similar documents exhibit a lower KL divergence value. We
provide the means of 100 bootstrap samples that we obtain by repeatedly sampling 90 % of the
annual reports at random and applying the LDA method with 45 topics. Based on the topics
obtained in each bootstrap sample, we derive the distribution of topics in the various reference
documents that have not entered into the estimation process of the LDA. The bands provide
95 % confidence intervals for the mean computed based on the bootstrap samples.

Bohnert et al. (2019) vs. Lee and Yu (2002)

Bohnert et al. (2019) vs. Doherty and Richter (2002)

Bohnert et al. (2019) vs. Grosen and Jorgensen (2002)

Bohnert et al. (2019) vs. Subramanyam (2014)

Bohnert et al. (2019) vs. Deloitte (2016)

Bohnert et al. (2019) vs. McKinsey (2017)

Bohnert et al. (2019) vs. Eling and Lehmann (2018)

Bohnert et al. (2019) vs. Tidd and Bessant (2018)

Bohnert et al. (2019) vs. Nicoletti (2016)

Bohnert et al. (2019) vs. Bohnert et al. (2019) without emp. study

Bohnert et al. (2019) vs. Cappiello (2020)

0 2 4
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be found in Figure 5.4.

We depart from Bellstam et al. (2020) particularly by deriving our text-based mea-

sure of digitalization from the distribution of topics within each document while the

identify the most efficient ways to access preferred segments of the educator market.” (Horace Mann
Educators Corporation, annual report 2014)

“More than 23 million consumers have access to Rally, our online digital health portal. Users are
steadily advancing in selecting primary care physicians, making better use of urgent care over emer-
gency care and more readily adopting personal health and condition management programs.” (Unit-
edHealth Group, annual report 2015)
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Figure 5.4: Construction of the text-based measure of digitalization

This figure, freely adapted from Lopez-Lira (2019), shows the main steps to derive our
text-based measure of digitalization (see Section 5.2 for details). First, we preprocess the
annual reports of US insurance companies (removing stopwords, stemming, etc.) and construct
a document term matrix. Then, we employ LDA to derive a distribution over topics for each
of the reports. These topic distributions are subsequently used to calculate the measure of
digitalization.

Annual Reports Topic Distribution

Data 

Preprocessing
LDA

Topic 1

Topic 2

Topic 3

Topic 4

Digitalization

Measure

measure of innovation in Bellstam et al. (2020) is based on the loadings on a specific

topic (the “innovation topic”) across all documents. Bellstam et al. (2020) identify the

“innovation topic” by calculating the KL divergence between the distribution of words

in a reference document on innovation (Tidd and Bessant, 2018) and the distribution

of words in the topics derived via LDA. The topic with the lowest KL divergence is

assumed to be the “innovation topic” and the innovation measure is defined as the load-

ings on the innovation topic across documents. For illustrative purposes, we provide

a word cloud for the “digitalization topic”139 derived analogously to this approach but

based on the reference document on digitalization (Bohnert et al., 2019) in Figure 5.5.

We can, however, not simply apply this approach analogously to measure digital-

ization. When we replace the document on innovation by our reference document on

139Note that our proposed digitalization measure is not based on a specific topic (the “digitalization
topic”) and that the word cloud is provided for illustrative purposes only. Additionally, we want
to point out that when deriving topics via LDA, the same word appears in multiple topics. More
exactly, all topics obtained by a LDA consist of the same set of words. However, the topics differ
in the probabilities they assign to each word. It is therefore not surprising that (stemmed) words
like “compani”, “insur” or “financi” appear frequently in the “digitalization topic”. This does not
mean that these words are more influential in the “digitalization topic” but merely reflects the overall
commonality of these terms in the annual reports of US insurance companies.

The relative importance of single words can be better assessed based on the ratio between the fre-
quency of a particular word in the “digitalization topic” and the overall frequency across all reports.
To provide some examples, these ratios are smaller than 1 for “compani” (0.96), “insur” (0.90), and
“financi” (0.90). This illustrates that even though these terms appear frequently in the “digitalization
topic”, they are less frequently used than in the average annual report. On the contrary, terms like
“digit” (7.74), “mobil” (5.44), “internet” (5.06), and “autom” (5.13) occur clearly more often in the
“digitalization topic” than in the average annual report.
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Figure 5.5: Word cloud of the “digitalization topic”

This figure shows the 50 most frequent (stemmed) terms in the “digitalization topic”. This
topic is determined according to Bellstam et al. (2020). That is, the word distributions in
each topic obtained via a 45 topic LDA are compared to the word distribution in the reference
document on digitalization by Bohnert et al. (2019). We use the KL divergence as a measure
of similarity between these distributions and choose the topic with the lowest KL divergence as
the “digitalization topic”. Note that our proposed text-based digitalization measure is not based
on a specific topic (the “digitalization topic”). Instead, we derive our measure by exploiting
the whole topic distribution, see Section 5.2.5 for details. The word cloud is provided for
illustrative purposes only.
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digitalization we identify the same topic. That is, when adapting the approach by Bell-

stam et al. (2020), the “innovation topic” and the “digitalization topic” are identical.

Again, this is not surprising as innovation and digitalization are related topics. How-

ever, choosing the same topic as digitalization and innovation topic would imply both

measures to be defined as the loadings across documents on the same topic. Conse-

quently, the digitalization and the innovation measure would be identical. Of course,

one could simply increase the number of topics until the innovation and the digital-

ization topic are different.140 However, that causes another problem apart from adding

more complexity to the model. The vector of loadings of all documents on a specific

topic obtained via LDA is approximately orthogonal to the vector of loadings on any

140Even for 30 and 45 topics the digitalization and the innovation topic stay the same. The issue remains
when we identify the digitalization topic based on another reference document on digitalization (Cap-
piello, 2020).
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other topic. This stays true when the number of topics is increased (cf. Arun et al.,

2010). This means that even if one could identify different innovation and digitaliza-

tion topics, the innovation and the digitalization measures according to Bellstam et al.

(2020) would exhibit a correlation of approximately 0. This would, however, con-

tradict the intuition that innovation and digitalization are related concepts and would

essentially represent a measure of digitalization while controlling for innovation.

Another problem that arises from measuring a concept of interest based on a single

topic is the following: When increasing the number of topics, at some point a particular

topic might split into two aspects of the same concept. This is, for instance, observed

in Bellstam et al. (2020) in the case of 50 topics. The measures derived from the split

topics would again have a correlation of nearly 0. Consequently, a measure based on a

single topic might completely miss a part of the concept of interest. This problem does

not emerge with our measure based on the distribution of topics rather than words.

5.2.6 Optimal number of topics

While the topics and the topic loadings arise endogenously from the LDA algorithm,

the number of topics plays the role of a hyperparameter. In machine learning, this

is a parameter that controls the learning process and has to be specified in advance.

In contrast, the topic distributions within each document and the word distributions

within each topic are parameters that are derived by the unsupervised machine learning

algorithm via the training process. Therefore, prior to employing the LDA method, the

researcher has to provide the number of topics to be extracted from the documents by

the algorithm. On the one hand, the number of topics has to be sufficient to distinguish

between different themes in the document, but on the other hand should not be too high

to ensure interpretability of the topics (Lopez-Lira, 2019).

There exist several methods for determining the number of topics in a data driven

manner, e.g., approaches introduced by Griffiths and Steyvers (2004), Cao et al. (2009),

Arun et al. (2010), and Deveaud et al. (2014). These technical methods rely on differ-
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ent objective functions to be minimized or maximized to best describe the underlying

text corpus. Not surprisingly, these methods do not agree on the optimal number of

topics in our application. Furthermore, some of them suggest even more than 100 top-

ics whereby interpretability of the topics would be lost and overfitting issues might

arise. According to Blei (2012), “develop[ing] evaluation methods that match how

the algorithms are used”, particularly for determining the optimal number of topics,

is still an open direction for research in topic modeling. In contrast to the technical

methods for topic number selection, we do not intend to fully capture every aspect of

the documents. Instead, we employ LDA to measure the extent to which digitalization

is discussed in the reports. Although there is no clear guidance in the literature on how

to select the optimal number of topics as most researchers apply different rules based

on the task at hand, in many applications a number of topics between 10 and 50 seems

to be appropriate (see, e.g., Bao and Datta, 2014, Israelsen, 2014, Ganglmair and

Wardlaw, 2017, Bellstam et al., 2020, Weiss Hanley and Hoberg, 2019, Lopez-Lira,

2019).

Bellstam et al. (2020) use 15 topics to derive a text-based measure of innovation.

Digitalization can be understood as a more specific concept than the broader notion

of innovation. We therefore also consider 30 and 45 topics to resemble the thematic

structure of the collection of annual reports more granularly. As innovation and digi-

talization are related topics we choose the number of topics such that we are best able

to differentiate between these two concepts. Our measure of digitalization is based on

the distribution of topics within each annual report. This distribution of each particu-

lar report is compared to the topic distribution in a reference document on digitaliza-

tion (Bohnert et al., 2019). To differentiate between digitalization and innovation, we

choose the number of topics such that the mean dissimilarity between the topic dis-

tribution in the reference document on digitalization and the document on innovation

(Tidd and Bessant, 2018) is maximized. This leads to a number of 45 topics being

most appropriate for measuring digitalization even when we additionally analyze 60



5.2. MEASURING DIGITALIZATION USING LDA 182

topics.141 While Bellstam et al. (2020) rely on 15 topics to measure innovation, this

number is too low to sufficiently capture the thematic structure of the annual reports

in our sample in order to measure digitalization. This is manifested in the fact that

for 15 topics the mean KL divergence between the documents on digitalization is not

statistically significantly lower than the mean KL divergence between the document

on digitalization and innovation. It is therefore not surprising that we partly yield in-

significant results when including this measure based on 15 topics in our regression

framework. However, additional to our baseline measure derived from 45 topics we

also consider a measure obtained by a more parsimonious LDA based on 30 and even

15 topics in our regression framework, see Section 5.4.2.

5.2.7 Sentiment

Our text-based measure of digitalization as introduced in the previous sections does not

take sentiment into account. For a report covering digitalization in a rather negative

tone, our procedure might nevertheless assign a high value to the digitalization proxy

although this report is less likely to represent more digitalization efforts by the firm

(cf. Bellstam et al., 2020). This might induce measurement errors to our measure of

digitalization.

Sentiment is most frequently measured by counting the occurrence of specific “pos-

itive” or “negative” words see (see Henry and Leone, 2016). Of course, the drawbacks

related to word list based approaches (see Section 5.2.4) also apply in this case. First

of all, lists of positive and negative words have to be provided by the researcher. Sec-

ondly, the sentiment of specific words can depend on the context in which it is used.

For example, Loughran and McDonald (2011) find that more than 70 % of the nega-

141To ensure robust results, we calculate the similarity measure (KL divergence) based on 100 bootstrap
samples which are computed by a LDA with 15, 30, 45, and 60 topics based on 100 subsamples
obtained by repeatedly choosing 90 % of the reports at random. Based on the topics we derive for each
of these samples we can calculate the distribution of topics in the documents on digitalization and
innovation. We then compute the similarity measure between these topic distributions. The number
of topics is then selected based on the mean over the 100 bootstrap samples. These calculations are
computationally very expensive and were performed on the Big-Data-Cluster Galaxy provided by the
University Computing Center at Leipzig University.
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tive words in the Harvard Psychosociological Dictionary142 are typically not negative

in a financial context (e.g., board, capital or liability). We therefore use a dictionary

of positive and negative words provided by Loughran and McDonald (2011) and Bod-

naruk et al. (2015) that has been specifically adjusted for financial language.143 We

follow Bellstam et al. (2020) and measure sentiment as the difference between positive

and negative words divided by the total number of words. Of course, there are other

dictionaries as well as other methods to measure sentiment. For more details we refer

to Loughran and McDonald (2011) and Loughran and McDonald (2016).

To overcome potential measurement errors introduced by not considering sentiment,

we exclude all firm-year observations with sentiment below the 25 % quantile in a

robustness check (see Section 5.4.3). Note that the LDA is performed based on all

annual reports in our sample and firm-year observations are removed according to

sentiment after the construction of the digitalization measure. Consequently, topics

still arise endogenously from the data and are not affected by the word lists on which

measurement of sentiment is based on.

5.3 Financial data & empirical strategy

5.3.1 Sample construction

We start the construction of our sample by selecting all insurance companies in the US

with stock market data available in Thomson Reuters Datastream. We use market value

based measures due to their ability to capture short-term performance and long-term

prospects (Lubatkin and Shrieves, 1986, Allen, 1993). The focus on publicly-listed

US insurance companies is motivated by the strong distortionary effect different regu-

latory and accounting standards in different countries would have in our setting. Thus,

we collect annual reports for as many publicly-listed US insurers as possible. Annual

142The Harvard Psychosociological Dictionary, more specifically the Harvard-IV-4 TagNeg file, is a
commonly used source for word classifications.

143See Loughran and McDonald Sentiment Word Lists at https://sraf.nd.edu/

textual-analysis/resources.

https://sraf.nd.edu/textual-analysis/resources
https://sraf.nd.edu/textual-analysis/resources
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reports have already been subject to textual analysis (e.g., Li and Racine, 2008, Yekini

et al., 2016, Gatzert and Heidinger, 2020). In contrast to Bellstam et al. (2020), we pre-

fer annual reports over analyst reports since the former provide first-hand information

about a company’s status quo, current projects, and upcoming trends. Furthermore,

we consider digitalization issues to be less obvious to externals because digitalization

efforts are often aimed at improving internal procedures rather than developing new

insurance products.

We complement our data set with accounting data (i.e., total assets, ROA, total in-

vestment, solvency ratio, and current liquidity ratio) from Orbis Insurance Focus cov-

ering the period from 2006 to 2015. As will be described in the following Section

5.3.3, we lag all explanatory variables by one year. Thus, our initial sample consists of

86 insurance companies from 2006 to 2015 resulting in 748 observations in an unbal-

anced panel.

5.3.2 Summary statistics

Table 5.2 presents the summary statistics of the sample. Our first main measures of

interest, market value, exhibits mean and median values of $US 7.69 bn. and $US

2.33 bn. indicating a right-skewed distribution. We account for the skewness by tak-

ing the log of market value. The mean and median of the second dependent variable,

market-to-book value, are 1.25 and 1.10, respectively. Our main explanatory variable,

digitalization based on a 45 topic distribution, ranges between 0 and 1 with mean and

median of 0.15 and 0.05, respectively. Values of the digitalization measure close to 1

indicate a very digitalized insurance company whereas values close to 0 indicate the

opposite. Consequently, a mean value of 0.15 emphasizes that the insurance indus-

try on average has yet to take advantage of the full potential of digital technologies.

Companies that exhibit particularly high values of digitalization over time are Horace

Mann Educators, Argo, and Aflac, for instance. Their digitalization values continu-

ously rank among the top 10 %. In contrast, companies that digitalize comparatively
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little over time are MetLife, Enstar, or Alleghany. Here, digitalization appears to be

less pronounced in annual reports with values below 0.025. Statistical moments of the

three alternative digitalization measures based on 15, 30, and 60 topic distributions are

similar to those of our main digitalization measure.

Table 5.2: Summary statistics

This table presents summary statistics on all variables used in the multivariate OLS analyses.
The panel spans from 2007 to 2016. The following columns present the number of obser-
vations, mean, median, standard deviation, as well as minimum and maximum value. The
variable definitions and data sources are given in Appendix I.

Obs. Mean Median Std. Dev. Min Max
Market Value (bn.) 748 7.69 2.33 15.45 0.00 186.30

Market-to-Book 735 1.25 1.10 0.76 -0.79 8.52

Digitalization15,t-1 748 0.15 0.12 0.15 0.00 1.00

Digitalization30,t-1 748 0.16 0.07 0.18 0.00 1.00

Digitalization45,t-1 748 0.15 0.05 0.20 0.00 1.00

Digitalization60,t-1 748 0.19 0.08 0.22 0.00 1.00

Total Assetst-1 (bn.) 748 54.60 8.95 140.84 0.01 1048.36

ROAt-1 748 3.42 2.96 4.60 -36.37 20.23

Investmentt-1 (bn.) 748 32.78 5.84 87.85 0.00 806.04

Solvency R.t-1 748 25.69 25.73 13.08 1.92 69.46

Current R.t-1 748 93.40 92.12 34.09 3.42 289.77

Foreign Assets R.t-1 527 2.81 0.00 12.35 0.00 87.38

The time dimension of our digitalization variable is depicted in Figure 5.6 along with

the 10th and 90th percentiles indicating a high cross-sectional variation. At first sight,

the fairly stable annual mean values just below 0.2 with a peak above 0.2 in 2006

appear to be counterintuitive since one might expect digitalization to become more

important over time, especially in recent years. However, taking into consideration the

time span of our sample from 2006 to 2015 it rather covers what could be described as
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the first surge of digitalization. This first surge is characterized by improvements like

e-mail alerts or investments in online resources.144

Figure 5.6: Digitalization measure over time

This figure shows the mean of the digitalization measure (based on 45 topics) between 2006
and 2015 along with the 10th and 90th percentiles. For details on the construction of our text
based measure of digitalization we refer to Section 5.2.5.

2006 2008 2010 2012 2014

year

d
ig

it
a
liz

a
ti
o
n

0
.2

0
.4

0
.6

To get a better idea of what is causing this rather constant digitalization trend on

average, we next examine the average relative frequency of particular words related

to digitalization in the annual reports over time.145 The results presented in Figure 5.7
144In the following we provide exemplary excerpts from the 2006 annual reports of Aflac Inc. and

Principal Financial Group:

“In 2006, we also tested AflacAnywhereSM, a new technology that greatly improves communications
between headquarters and our sales force. AflacAnywhere enables sales associates and coordinators
to receive notification on important information via e-mail alert, text message on a cell phone or
PDA, or computer-generated voice message to any phone number.” (Aflac Inc., annual report 2006)

“For customers, we’ve invested in online resources, improved technology in our contact centers and
simplified communication materials.” (Principal Financial Group, annual report 2006)

145Note that our text based measure of digitalization is not based on particular words but on the distri-
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show that basic digital issues often expressed through terms stemming from “internet”,

“online”, and “web” are more prominent in the first years of our sample period. In the

last years of our sample period, one can recognize the beginning of a second surge of

digitalization expressed through terms stemming from “data”, “mobile”, or “digital”.

In between, the average value of the digitalization proxy decreases (see Figure 5.6)

which might be due to consequences of the financial crisis in 2007/2008 for the insur-

ance industry including regulatory issues. Taken together, we can infer that the rather

constant average trend of our measure is probably caused by the balancing effects of

different digital issues across time.

In addition to the variance of the digitalization measure across time, we also inves-

tigate its cross-sectional variation with respect to business line, size, profitability, and

market orientation. Table 5.3 presents the results of mean comparisons for life and

non-life, small and large, profitable and less profitable, and (inter-)national insurance

firms.

Classification into life and non-life stems from Thomson Reuters Datastream. Since

some insurers cover both business lines we excluded them from this comparison. The

mean values do not differ significantly which also applies to the median values (see

Figure 5.8(a)). There seems to be no significant difference in the extent of digitalization

across business lines.

In contrast, size seems to be of higher importance. A comparison of the first and

the fourth quartile of insurance companies with respect to size shows a significant dif-

ference (see Table 5.3). On average, large firms exhibit higher values of digitalization

(mean = 0.163) than small firms (mean = 0.093). However, comparing the median val-

ues in Figure 5.8(b) gives a different picture since median digitalization in the smallest

firms lies above the median digitalization of large firms. Hence, this evidence does

not support a clear positive relation between size and the extent of digitalization in an

insurance company. Furthermore, we do not find clear evidence that profitability af-

fects the extent of digitalization in a company. Although from Figure 5.8(c) one might

bution of topics in the annual reports. Figure 5.7 is provided for illustrative purposes only.
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Figure 5.7: Relative frequency of words related to digitalization

This figure presents the relative frequency of words related to digitalization in the annual
reports in our sample between 2006 and 2015. Note that our measure of digitalization is
derived from the distribution of topics within the annual reports (see Section 5.2.5).
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Table 5.3: Descriptive statistics (subsamples)

This table presents summary statistics on four characteristic variables of our sample: Sec-
tor/Business Line, Size, Profitability, and Market Orientation. The panel spans from 2007 to
2016. The following columns present the number of observations, mean, standard deviation,
as well as the difference in means including the p-value. The division into life and non-life
stems from Thomson Reuters Datastream. The subsample statistics for size and profitability
only consider the first (small) and fourth (large) quartile of the respective variable.

Sector Life Non-Life
Mean SD Mean SD Difference p-value

Digitalization45,t-1 0.156 0.196 0.140 0.204 0.016 (0.374)

Observations 159 494 653

Size Small Large
Mean SD Mean SD Difference p-value

Digitalization45,t-1 0.093 0.109 0.163 0.200 -0.070*** (0.000)

Observations 187 187 374

Profitability Small Large
Mean SD Mean SD Difference p-value

Digitalization45,t-1 0.132 0.202 0.162 0.179 -0.030 (0.132)

Observations 187 186 373

Orientation International National
Mean SD Mean SD Difference p-value

Digitalization45,t-1 0.123 0.167 0.163 0.215 0.031* (0.080)

Observations 197 551 677
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Figure 5.8: Digitalization distributions according to different criteria

This figure presents the digitalization measures of insurance companies included in our sample
with respect to five categories: business line (a), size (b), profitability (c), market orientation
(d), and geographical origin (e). Classification into business line, i.e., life and non-life, stems
from Thomson Reuters Datastream. We excluded insurers covering both business lines from
the comparison. Classification according to size (large vs. small) and profitability (high vs.
low) is made using the upper and lower quartile of companies with respect to total assets and
ROA, respectively. Market orientation (international vs. national) is assessed based on the
ratio of foreign assets to total assets. A positive ratio is considered to indicate an international
orientation of the firm. For the comparison of geographical origin we contrast the digitalization
measures of eight large European insurance companies, namely Allianz, Aviva, AXA, CNP,
Generali, Mapfre, Prudential, and Zurich with those of eight similarly large US insurance
companies, namely AIG, MetLife, Hartford, Lincoln National, Principal, Allstate, Ameriprise,
and Aflac.
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get the impression that the most profitable firms (top 25 %) exhibit higher values of

digitalization on average, there is no significant difference in means (see Table 5.3).

Digitalization might also be related to the market orientation of a company (national

vs. international). However, using the ratio of foreign assets to total assets from Thom-

son Reuters Datastream as a proxy for the market orientation of an insurer, we do not

find strong empirical evidence for such a relation. According to Table 5.3, the dif-

ference in means between the international and national insurance companies in our

sample is only weakly significant at the 10 percent level with national insurers exhibit-

ing a higher mean (0.163). However, the median values appear to be fairly equal (see

Figure 5.8(d)).

In a further illustrative example, we compare digitalization in the US insurance sec-

tor with the European insurance market. Therefore, we apply our LDA to the annual

reports of eight large European insurance companies, namely Allianz, Aviva, AXA,

CNP, Generali, Mapfre, Prudential, and Zurich. The choice of the European insurance

companies is motivated by their international focus as well as their size and hence rel-

evance for the European insurance sector. To maintain comparability, we also choose

a subsample of large US insurance companies for the descriptive analysis of the dig-

italization measures. These are AIG, MetLife, Hartford, Lincoln National, Principal,

Allstate, Ameriprise, and Aflac. The results are presented in Figure 5.8(e) and Table

5.4.

Although median values of the two groups are relatively similar, mean values differ

substantially. On average, large US insurance companies exhibit much higher values

of digitalization than their European counterparts. In detail, the mean digitalization

value of the eight large US insurance companies (0.129) is four times higher than

the one of the European insurance companies (0.030). This leads to the conclusion

that digitalization might be of higher importance for American insurance companies

whereas European insurers might lag behind.



5.3. FINANCIAL DATA & EMPIRICAL STRATEGY 192

Table 5.4: Summary statistics European vs. US subsample

This table presents summary statistics on the digitalization measure based on a LDA (45 topic
distribution) applied to the annual reports of eight large US and European insurance companies,
respectively. The annual reports cover the period from 2006 to 2015. The European insurance
companies are Allianz, Aviva, AXA, CNP, Generali, Mapfre, Prudential, and Zurich. The
US insurance companies are AIG, MetLife, Hartford, Lincoln National, Principal, Allstate,
Ameriprise, and Aflac. The companies are chosen on the basis of size and international focus
(for the European insurers). For further explanation see Section 5.3.2. The following columns
present the number of observations, mean, median, standard deviation, as well as minimum
and maximum value.

Obs. Mean Median Std. Dev. Min Max
DigitalizationEuropean 74 0.030 0.021 0.031 0.000 0.142

DigitalizationUS 80 0.129 0.014 0.195 0.000 0.730
Notes: Data from 2006 to 2015.

European Insurance Companies: Allianz, Aviva, AXA, CNP, Generali, Mapfre, Prudential, Zurich

US Insurance Companies: AIG, MetLife, Hartford, Lincoln National, Principal, Allstate, Ameriprise, Aflac

5.3.3 Empirical strategy

We analyze how digitalization of the business model is associated with the firm value of

an insurance company using panel data regressions. However, estimating the relation is

not straightforward due to issues of endogeneity. In fact, one could imagine that large

and profitable insurance companies have more capacities to invest in digitalization than

small insurers. This would lead to a situation in which digitalization not just affects

market valuation, but vice versa. As a result, our estimated coefficients would be biased

because of reverse causality. In addition, there is also a problem of omitted variable

bias. More specifically, other independent variables omitted in the regression are likely

to be correlated with both our proxies for market valuation and the main explanatory

variable digitalization. If they become part of the error term, the OLS assumption

of conditional mean independence will be violated resulting in biased estimates for

the effect of digitalization on market valuation. We address the potential endogeneity

by making use of two basic econometric means. First, we lag all our explanatory

variables by one year to make sure that they will not be affected by the current firm



5.4. ESTIMATION RESULTS 193

value and hence not be subject to estimation biases due to reverse causality. Second,

we add company and year fixed effects to the regressions to account for unobserved

heterogeneity across firms and time.146 In particular, we estimate the model:

FirmValuei,t = β0 + β1Digitalizationi,t−1 + β2Xi,t−1 + δt + ui + ϵi,t.

The index i represents a particular insurance company whereas index t denotes the

year. Firm value is approximated by the market value or the market-to-book value,

respectively. Digitalizationi,t−1 represents the digitalization measure derived from our

LDA. As already mentioned, we find 45 topics to maximize the mean dissimilarity

between the topic distribution in the reference document on digitalization and the doc-

ument on innovation, thus reflecting the digitalization approach most accurately. How-

ever, in subsequent robustness checks we also run the regression with digitalization

measures derived from 15 and 30 topic distributions. Xi,t−1 is a vector of control vari-

ables that are commonly used. In detail, we add the natural logarithm of total assets to

account for the size of an insurer, return on assets (ROA) to account for its profitability,

the natural logarithm of total investment, and the solvency as well as the current liquid-

ity ratio to account for the short- and long-term obligations of an insurance company.

5.4 Estimation results

5.4.1 Baseline estimation

Having laid out the estimation strategy to identify the relation between digitalization

and firm outcome, Table 5.5 presents the results of our main estimation using our

whole sample of insurance companies and a distribution over 45 topics to calculate

146Another method to address endogeneity is the use of instrumental variables. However, since empirical
evidence on the relation between firm value and digitalization is scarce, we were not able to find a
commonly accepted instrument in the literature. In separate regressions, we tried to instrument our
digitalization measure using dummy variables for the presence of a digital officer and a CEO change,
respectively. Unfortunately, both of them turned out to be invalid. Therefore, we leave the issue of
instrumentation up for future research.
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our digitalization measure. As already mentioned, we use two proxies for firm value,

i.e., market value and market-to-book value. Furthermore, we control for unobserved

heterogeneity using firm fixed effects (columns 1 to 4) and also time fixed effects (col-

umn 2 and column 4).147 In all specifications, the relation between digitalization and

market value and market-to-book value, respectively, is positive and statistically sig-

nificant. However, as already mentioned in Section 5.3.3, our estimated coefficients

might be subject to endogeneity. Consequently, establishing a causal link between dig-

italization and firm value is not possible unequivocally. The estimated coefficient for

digitalization in the OLS regression on market value including company fixed effects is

0.374. Hence, an increase in digitalization by one standard deviation is associated with

an increase in market value by about 7.48 % (0.20×0.374) in the subsequent year. Sim-

ilarly, an increase in digitalization by one standard deviation is related to an increase

in the market-to-book value by about 8.04 % (0.20×0.402) in the next year.148 The re-

lation becomes slightly weaker when we add time fixed effects but remains significant.

Our results provide evidence for a strong positive relation between digitalization and

firm valuation. Put differently, market participants might expect insurance companies

making progress in digitalization to attain higher future cashflows and become more

profitable. As a result, the market value and the market-to-book value increase.

5.4.2 Alternative number of topics

To check for the robustness of our main estimation results, we replace our main ex-

planatory variable by digitalization measures derived from LDA with different num-

bers of topics. The results are presented in Table 5.6. In detail, we use a 15 topic,

a 30 topic, and a 60 topic LDA model, respectively. The 15 topic model has already

147Pointing towards the R2 of each regression, it can be seen that the explanatory power of our estimation
equation is fairly high which is probably due to firm fixed effects. They obviously capture a lot of
variation in the data. Consequently, adding time fixed effects does not add much to the explanatory
power leading to the conclusion that time trends do not play an important role in our setting.

148Instead of considering an increase of the digitalization measure by one standard deviation, one could
also examine the effect of an increase from the first to the third quartile. Such an increase of about
0.1771 is associated with an increase in market value of approximately 6.62 % (0.1771× 0.374). For
the market-to-book value the increase is about 7.12 % (0.1771 × 0.402).
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Table 5.5: The relation between digitalization and firm valuation

This table presents the results of the panel regressions that examine the relation between dig-
italization based on a 45 topic distribution and firm value proxied by the log of market value
and market-to-book value (MtB), respectively. The topic distribution in each annual report has
been compared to the one in Bohnert et al. (2019). Column (1) and column (2) show the esti-
mation results for the OLS regressions using the log of market value as the dependent variable.
Column (3) and column (4) report the estimation results of market-to-book value as the depen-
dent variable. The panel has one observation for each company-year combination, and spans
the time period 2007-2016. We include company fixed effects in all specifications. Column (2)
and column (4) additionally include year fixed effects. Standard errors are reported in paren-
theses. In all specifications standard errors are robust to heteroskedasticity. Furthermore, the
model fit (R2) and test statistics for the joint significance of regressors (F-test) are reported at
the bottom of the table. *, **, and *** denote statistical significance at the 10, 5, and 1 percent
levels, respectively.

(1) (2) (3) (4)
Dependent Market Value Market Value MtB MtB

Digitalization45,t-1 0.374*** 0.238*** 0.402*** 0.188*
(0.091) (0.084) (0.135) (0.110)

Total Assetst-1 0.506** 0.207 0.901*** 0.726***
(0.231) (0.171) (0.255) (0.278)

ROAt-1 0.029*** 0.007 0.044*** 0.014*
(0.010) (0.008) (0.008) (0.007)

Investmentt-1 0.430** 0.590*** -0.597*** -0.348*
(0.208) (0.134) (0.201) (0.201)

Solvency Ratiot-1 0.037*** 0.035*** -0.028** -0.017*
(0.008) (0.005) (0.012) (0.010)

Current Ratiot-1 -0.009*** -0.009*** 0.012** 0.011**
(0.003) (0.002) (0.005) (0.005)

Company fe Yes Yes Yes Yes
Year fe No Yes No Yes
Observations 748 748 735 735
R2 0.97 0.98 0.60 0.71
F-Test 53.04 39.79 8.26 3.95
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been employed by Bellstam et al. (2020). However, in our context it rather serves as

a reference since a lower number of topics might blur the line we want to establish

between innovation in general and digitalization in particular.149 Taking this into ac-

count, it is not surprising that the statistical significance of the estimated coefficients

for the digitalization variable based on 15 topics (line 1) is not as strong as in Table 5.5.

Therefore, we can infer that a more granular topic distribution is necessary to capture

digitalization instead of general firm innovation. However, the estimated coefficient in

the model using firm fixed effects (column 1) is of the same magnitude.

In contrast to the 15 topic model specification, the estimated coefficients for our

models based on 30 and 60 topic distributions (line 2 and line 3) are predominantly

statistically significant. Especially OLS estimation results using firm fixed effects ex-

hibit estimation coefficients for the main explanatory variable that are similar to those

in our main estimations (Table 5.5). Hence, we can conclude that our main estimations

are robust to alternative calculations of the digitalization measure using different topic

distributions as long as the number of topics exceeds those used to capture general

innovation (see, e.g., Bellstam et al., 2020).

5.4.3 Sentiment analysis

As we argue in Section 5.2.7, a particular report with a high value of the digitalization

value is less likely to represent more digitalization by the firm when the report is written

in a negative or neutral tone. In a subsample analysis, we therefore only consider firm-

year observations with a sentiment above the 25 % quantile.

The results presented in Table 5.7 for market value and the market-to-book value,

respectively, are in line with those presented in Table 5.5 and Table 5.6. Again, there

is a positive and (highly) statistically significant relation between digitalization based

on a 45 topic distribution and market value and market-to-book value, respectively.

The estimated coefficients are of the same magnitude. According to this specification,

an increase in digitalization by one standard deviation is associated with an increase

149See Section 5.2.6 for details.
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in market value by about 7.62 % (0.20 × 0.381) in the model with firm fixed effects

(column 3). The estimated coefficients for the digitalization proxies based on 30 and

60 topic distributions are also similar to those reported in Table 5.6.

5.4.4 Alternative specifications and reference documents

In the last part of our empirical investigation, we control for potential confounding ef-

fects due to the construction of our digitalization measure or the choice of our reference

document. According to Bellstam et al. (2020), we consider a measure based on only

98 % of the annual reports with the longest 2 % of the reports being excluded.150 Fur-

thermore, we construct a measure based on the five most prominent topics (out of 45)

in Bohnert et al. (2019) representing nearly 90 % of the paper to account for potential

confounding effects by the less pronounced topics. Finally, we consider a fourth-root

transformation of the original measure.

The choice of Bohnert et al. (2019) as our main reference paper is motivated by its

particular focus on digitalization in the insurance sector. However, the paper contains

an empirical section which might complicate a proper analysis of the topic distribution.

As a robustness check, we therefore compare the topic distributions in our annual

reports to those in Bohnert et al. (2019) without the empirical section. Furthermore,

we choose another insurance-related paper (Cappiello, 2020) as well as a textbook

(Nicoletti, 2016) and a consultancy report (McKinsey, 2017) on digitalization in the

insurance sector to justify that our estimation results do not depend on the particular

choice of the reference document on digitalization.151

The results are presented in Table 5.8 for the market value as the dependent variable

and in Table 5.9 for the market-to-book ratio as the dependent variable. The estimated

coefficients (rows 1 to 7) are in line with those resulting from our baseline regression.

The relation between digitalization and firm value remains positive and statistically

150In Bellstam et al. (2020) all analyst reports with less than 100 words are dropped as well. However,
as all annual reports in our sample consist of more than 100 words (after preprocessing), we do not
exclude any short reports.

151We also compared our results to other insurance-related papers, e.g., Eling and Lehmann (2018). The
results are in line with our findings.
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significant. Furthermore, the results are in most cases robust to the inclusion of time

fixed effects (even columns).

5.5 Conclusion

Although there is ample evidence on the fundamental impact digitalization will have

on the business model of insurance companies, it is not yet clear whether it represents

“only” a megatrend insurance companies need to follow or powerful means to increase

their profitability. Unfortunately, the answer to that question is not straightforward

since digitalization is difficult both to quantify and to differentiate from general inno-

vation. In this study, we present a novel approach to tackle these two problems using

unsupervised machine learning algorithms.

In detail, we exploit the prevalence of different topics in insurers’ annual reports to

construct a text-based measure of digitalization. By employing LDA, we determine

the distribution over topics in each report and compare it to a reference document

on digitalization based on the KL divergence. We then use this measure of similarity

between the reports and the reference document to proxy for the extent of digitalization

in an insurance company.

The digitalization proxy is then used as main explanatory variable to investigate the

relation between digitalization and firm market valuation in a multivariate OLS model

including firm and time fixed effects. Our results show that digitalization efforts are

positively rewarded by market participants. An increase in digitalization is related to

an increase in the market value of the insurers in our sample. Put differently, mar-

ket participants expect efforts in digitalization to result in higher future profits. The

estimation results are robust to different specifications of the LDA model employing

other topic distributions or sentiment analysis. Furthermore, they neither depend on the

particular calculation of the digitalization measure nor the choice of the digitalization

reference document.

Of course, there are also limitations to our approach. A first limitation of this study
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concerns the assumptions of the LDA model, most notably the bag of words assump-

tion. There exist several extensions of the LDA model that address some of its short-

comings. However, the question which topic model to use when being confronted with

a new set of texts and a new task is still an open direction for topic modeling (Blei,

2012). Additionally, while we are doing our best in constructing a measure to discrim-

inate between digitalization and innovation, our approach has limitations in disentan-

gling both concepts because they are closely related to each other. A third limitation

concerns the question of causation between digitalization and firm market valuation.

The estimated effect of our digitalization measure might be subject to endogeneity is-

sues if larger or more profitable insurers implement digital systems quicker and more

extensively than their competitors simply because of greater capacities. Whereas de-

scriptive analyses of our sample do not provide clear evidence in favor of these chan-

nels, we refrain from interpreting our estimation results causally and instead consider

them as profound confirmation of a positive relation between digitalization and firm

market valuation. Establishing a causal link is an interesting avenue for future re-

search.

Digitalization is a complex concept that cannot easily be captured empirically. How-

ever, with the rise of machine learning algorithms in the field of textual analysis and

massive gains in computational power, the researcher is provided with a new set of

powerful tools to analyze large amounts of textual data and retrieve the underlying the-

matic structure. In this sense, our approach can be considered a first step towards a

new empirical analysis of the impact of digitalization not just in the insurance sector,

but also in any other sector that will be disrupted by digitalization. Moreover, it could

also be applied in various other settings where it is hard to retrieve empirical data due

to the indefinite subject of research, e.g., corporate sustainability/social responsibility

and its impact on corporate performance.
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Appendix A

Supplementary Material for Chapter 2

A.1 Proofs

In this section we proof Theorems 1 and 2 from Section 2.3. Therefore, we first in-

troduce some assumptions and establish auxiliary results needed to establish the theo-

rems. For the proof of Theorem 1 we fix an arbitrary p ≥ 1. For the proof of Theorem 2

however, we assume p = 2 as the theorem relies on assumptions about the convergence

of the empirical grids obtained by the CLVQ algorithm.

The following assumptions are adopted from Charlier et al. (2015b):

Assumption A.3 For the random variable (X,Y) on the probability space (Ω,A, P) we

have Y = f (X) + g(X) · ϵ, where the d-dimensional random variable of covariates X is

stochastically independent from the one-dimensional error term ϵ and f (·) : Rd → R

and g(·) : Rd → R+0 are Lipschitz continuous functions. We further assume that ||X||p <

∞, ||ϵ ||p < ∞, and that the distribution PX of X does not charge any hyperplane.

Assumption A.4 (i) The support S X of PX is compact. (ii) There exists a continuous

density fϵ : R→ R+0 of the distribution Pϵ with respect to the Lebesgue measure on R.

The following lemma gives an estimate of the quantization error of the grids intro-

duced in Section 2.3.2. As these grids are not necessarily Lp-optimal, the lemma and

the derived corollary are needed in order to proof Lemma A.7.
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Lemma A.5 Fix α, λ, γ ∈ (0, 1), and N ∈ N with ⌈N · γ⌉ < N. Let further ΓN ∈

{Γ
(0)
N , . . . ,Γ

(κN )
N } be one of the grids obtained in the κN iteration steps of the algorithm

proposed in Section 2.3.2. Then the following holds:

||Pro jΓN (X) − X||p ≤ ||Pro jΓ∗N′ (X) − X||p,

where N′ := min{⌈N · γ⌉,N − ⌈N · γ⌉} and Γ∗N′ denotes an Lp-optimal N′-grid for X.

Proof. If ΓN = Γ
(0)
N then by construction ΓN is an Lp-optimal N-grid for X and the

lemma follows from the fact that N > N′. Hereafter, we will therefore assume ΓN ∈

{Γ
(1)
N . . . Γ(κN )

N }.

By construction of the grids in Section 2.3.2 we have that ΓN = ΓA ∪ ΓΩ\A, where A is

a measurable set and ΓA is an Lp-optimal ⌈N · γ⌉-grid for the restriction X|A of X to A

and ΓΩ\A is an Lp-optimal N − ⌈N · γ⌉-grid for X|Ω\A. It follows:

∣∣∣∣∣∣Pro jΓN (X) − X
∣∣∣∣∣∣p

p
=

∫
A

∣∣∣Pro jΓA∪ΓΩ\A(X) − X
∣∣∣pdP +

∫
Ω\A

∣∣∣Pro jΓA∪ΓΩ\A(X) − X
∣∣∣pdP

≤

∫
A

∣∣∣Pro jΓA(X) − X
∣∣∣pdP +

∫
Ω\A

∣∣∣Pro jΓΩ\A(X) − X
∣∣∣pdP

≤

∫
A

∣∣∣Pro jΓ∗N′ (X) − X
∣∣∣pdP +

∫
Ω\A

∣∣∣Pro jΓ∗N′ (X) − X
∣∣∣pdP

=
∣∣∣∣∣∣Pro jΓ∗N′ (X) − X

∣∣∣∣∣∣p
p
.

Corollary A.6 With the notation and assumptions of Lemma A.5, the following holds:

sup
0≤k≤κN

∣∣∣∣∣∣Pro j(k)
ΓN

(X) − X
∣∣∣∣∣∣

p
→ 0 as N → ∞.

Proof. Let (ξ j) j∈N denote an everywhere dense sequence in Rd and set

Γ′N := {ξ1, . . . , ξN} for N ∈ N. It follows from Lebesgue’s dominated convergence

theorem that

||Pro jΓ′N (X) − X||p → 0 as N → ∞. (A.1)
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As Γ∗N is an Lp-optimal N-grid for X we have ||Pro jΓ∗N (X) − X||p ≤ ||Pro jΓ′N (X) − X||p.

Because of γ ∈ (0, 1), as N goes to ∞ so does N′ = min{⌈N · γ⌉,N − ⌈N · γ⌉}. The

corollary follows then directly from (A.1) and Lemma A.5.

The following lemma is adopted from Charlier et al. (2015b) with only slight changes:

Lemma A.7 Fix α ∈ (0, 1) and x ∈ S X. Let further
(
ΓN
)

N∈N denote a sequence of

N-grids such that ∣∣∣∣∣∣Pro jΓN (X) − X
∣∣∣∣∣∣

p
→ 0 as N → ∞.

For any N ∈ N let x̃N := Pro jΓN (x), X̃N := Pro jΓN (X), and

Cx,N :=
{
z ∈ S X : Pro jΓN (z) = x̃N

}
. Define Ga(x) := E

(
ρα(Y − a)|X = x

)
and the

corresponding quantity G̃a(x̃N) := E
(
ρα(Y −a)|X̃N = x̃N

)
. Then under Assumptions A.3

and A.4, the following holds:

(i) supx∈S X
|x − x̃N | → 0 as N → ∞,

(ii) supx∈S X
R(Cx,N)→ 0 as N → ∞, where R(Cx,N) is given as supz∈Cx,N

|z − x̃N |,

(iii) supx∈S X
supa∈R |G̃a(x̃N) −Ga(x)| → 0 as N → ∞,

(iv) supx∈S X
|mina∈R G̃a(x̃N) −mina∈RGa(x)| → 0 as N → ∞.

Proof. (i) follows from the fact that by assumption
(
ΓN
)

N∈N is a sequence of N-grids

such that ||Pro jΓN (X) − X||p → 0 as N → ∞, see the proof of Lemma A.2 in Charlier

et al. (2015b). The proofs of statements (ii) - (iv) can be adopted unchanged from

ibidem.

We are now able to proof Theorem 1.

Proof of Theorem 1. Choose an arbitrary ϵ > 0. By employing the iterative procedure



A.1. PROOFS 207

introduced in Section 2.3.2, we obtain for a sufficiently large152 N ∈ N the sequence

Γ
(0)
N ,Γ

(1)
N ,Γ

(2)
N , . . . ,Γ

(κN )
N ,

Γ
(0)
N+1,Γ

(1)
N+1,Γ

(2)
N+1, . . . ,Γ

(κN+1)
N+1 , (A.2)

. . .

of grids as well as the sequence of corresponding base estimators

q̄(0)
α,N :=q̃(0)

α,N , q̄(1)
α,N , q̄

(2)
α,N , . . . , q̄

(κN )
α,N ,

q̄(0)
α,N+1:=q̃(0)

α,N+1, q̄(1)
α,N+1, q̄

(2)
α,N+1, . . . , q̄

(κN+1)
α,N+1, (A.3)

. . . .

As by Corollary A.6 the sequence of grids in (A.2) meets the assumptions of Lemma

A.7, it follows from Charlier et al. (2015b)153 that Theorem 1 holds for the sequence

of estimators from (A.3) instead of the sequence (q̃α,N)N∈N. Consequently, there is an

M ∈ N such that for all N > M and k ∈ {0, 1, . . . , κN}

sup
x∈S X

∣∣∣q̄(k)
α,N(x) − qα(x)

∣∣∣ < ϵ (A.4)

is fulfilled. Now, we choose an arbitrary N > M. By construction q̃α = q̃α,N is given as

a convex combination of the base estimators q̄(0)
α,N , q̄

(1)
α,N , . . . , q̄

(κN )
α,N , say

q̃α =
κN∑
j=0

c jq̄
( j)
α,N ,

where c j ≥ 0, j = 0, . . . , κN and
∑κN

j=0 c j = 1. From Inequality (A.4) and the choice of

152In order that all the mathematical expressions in the iterative procedure in Section 2.3.2 are defined,
⌈N · γ⌉ < N is required.

153See the proof of Theorem 3.2 in conjunction with Lemma A.7 of that paper.
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N > M follows

sup
x∈S X

∣∣∣q̃α,N(x) − qα(x)
∣∣∣ = sup

x∈S X

∣∣∣ κN∑
j=0

c j(q̄
( j)
α,N(x) − qα(x))

∣∣∣
≤ sup

x∈S X

κN∑
j=0

c j

∣∣∣q̄( j)
α,N(x) − qα(x)

∣∣∣
≤

κN∑
j=0

c j sup
x∈S X

∣∣∣q̄( j)
α,N(x − qα(x))

∣∣∣
< ϵ.

This completes the proof of Theorem 1.

In order to prove Theorem 2 we need the following two additional assumptions:

Assumption A.8 The distribution PX is absolutely continuous with respect to the

Lebesgue measure on Rd.

Assumption A.9 For N ∈ N, n >> N, and λ, γ ∈ (0, 1) fixed, we assume that the

number of iteration steps in the finite sample case equals almost surely the number

of iteration steps κN in the full sample case and that the empirical quantization of X

almost surely converges to the population one at each iteration step 0 ≤ j ≤ κN , that is

Pro j
Γ̂

( j)
N,n

(X)→ Pro j
Γ

( j)
N

(X) a.s. as n→ ∞.

The assumption concerning the number of iteration steps is unproblematic as Theorems

1 and 2 are independent of the number of iterations. Consequently, one could simply fix

the number ex-ante. The strong assumption on the convergence of the involved grids at

each iteration step, however, is necessary to proof Lemma A.10. Convergence results

for the CLVQ algorithm justifying the assumption that the empirical quantization of X

almost surely converges to the population one can be found in Pagès (1998, Theorem

27 et seq.) along with a discussion of those results in Charlier et al. (2015a).

We can now proof the following lemma:
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Lemma A.10 Fix α, λ, γ ∈ (0, 1), and x ∈ S X. Given that the grids are obtained in the

quadratic case (p = 2), we have under Assumptions A.3, A.4 (i), A.8, and A.9:

p − lim
N→∞

p − lim
n→∞

∣∣∣q̂α,N,n(x) − q̃α,N(x)
∣∣∣ = 0, (A.5)

where q̃α,N and q̂α,N,n denote the estimators introduced in Sections 2.3.2 and 2.3.3,

respectively.

Proof of Lemma A.10. For N ∈ N and n >> N there exists by construction a

representation

q̂α,N,n(x) =
κN∑
j=0

c j,N,nq̄( j)
n,N(x),

where the c j,N,n are random variables satisfying c j,N,n ≥ 0 and
∑κN

j=0 c j,N,n = I, that is,

q̂α,N,n is a (pointwise) convex combination of the estimators obtained in each iteration

step, see Section 2.3.3. Analogously (see Section 2.3.2) we obtain q̃α,N(x) as a (point-

wise) convex combination, too, say

q̃α,N(x) =
κN∑
j=0

c′j,N q̄′( j)
N (x).

It follows:

0 ≤
∣∣∣ κN∑

j=0

c j,N,nq̄( j)
n,N(x) −

κN∑
j=0

c′j,N q̄′( j)
N (x)

∣∣∣
≤
∣∣∣ κN∑

j=0

c j,N,n(q̄( j)
n,N(x) − q̄′( j)

N (x))
∣∣∣︸                              ︷︷                              ︸

=:T1

+
∣∣∣ κN∑

j=0

(c j,N,n − c′j,N)q̄′( j)
N (x)

∣∣∣︸                         ︷︷                         ︸
=:T2

.
(A.6)

It follows from Charlier et al. (2015b)154 that under Assumptions A.3, A.4 (i), A.8, and

A.9 we have

p − lim
n→∞

T1 = 0. (A.7)

154See the proof of Theorem 4.1 therein.
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Because
∑κN

j=0(c j,N,n − c′j,N) = 0, we have

T2 =
∣∣∣ κN∑

j=0

(c j,N,n − c′j,N)(q̄′( j)
N (x) − q̄′(0)

N (x))
∣∣∣

≤

κN∑
j=0

∣∣∣c j,N,n − c′j,N
∣∣∣ max

j∈{1,...,κN }

∣∣∣q̄′( j)
N (x) − q̄′(0)

N (x)
∣∣∣

≤ 2 · max
j∈{1,...,κN }

∣∣∣q̄′( j)
N (x) − q̄′(0)

N (x)
∣∣∣.

(A.8)

It follows from the proof of Theorem 1 that p − lim
N→∞

max j∈{1,...,κN }

∣∣∣q̄′( j)
N (x)− q̄′(0)

N (x)
∣∣∣ = 0.

Because of Inequality (A.8) we therefore have

p − lim
N→∞

p − lim
n→∞

T2 = 0.

By combining this result with (A.6) and (A.7) we obtain

0 ≤ p − lim
N→∞

p − lim
n→∞

∣∣∣ κN∑
j=0

c j,N,nq̄( j)
n,N(x) −

κN∑
j=0

c′j,N q̄′( j)
N (x)

∣∣∣ ≤ p − lim
N→∞

p − lim
n→∞

T1 + T2 = 0.

This completes the proof.

We can now proof Theorem 2.

Proof of Theorem 2. We have by the triangle inequality

0 ≤ |q̂α,N,n(x) − qα(x)| ≤ |q̂α,N,n(x) − q̃α,N(x)| + |q̃α,N(x) − qα(x)|.

As the convergence in Theorem 1 in particular implies convergence in probability, we

have

p − lim
N→∞

p − lim
n→∞

|q̃α,N(x) − qα(x)| = p − lim
N→∞

|q̃α,N(x) − qα(x)| = 0.

The theorem now follows from Lemma A.10.
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A.2 Additional figures and tables

Table A.1: Hyperparameters for the leveraging estimator chosen by 5-fold
cross-validation

This table reports the number of quantizers N as well as the ratio γ/λ chosen via 5-fold
cross-validation. The values are averaged over 100 random samples in the one-dimensional
and 50 random samples in the multi-dimensional case. The results are reported for random
samples of sizes 500 and 1500 for the univariate models M1,M2, and M3 and for random
samples of size 5000 for the multivariate modelM′1. Instead of reporting the parameters λ and
γ separately, we include the ratio γ/λ. The ratio describes how much the ”weight” for data
examples associated with a high approximation error is increased in the next iteration step, see
Section 2.3.3 for details.

dim = 1

modelM1 modelM2 modelM3
n = 500 n = 1500 n = 500 n = 1500 n = 500 n = 1500

N 12.28 16.74 10.70 17.32 21.66 33.88
γ/λ 1.20 1.20 1.10 1.03 1.18 1.15

dim = 2 dim = 3 dim = 4

modelM′1 modelM′1 modelM′1
n = 5000 n = 5000 n = 5000

N 147.00 367.00 564.00
γ/λ 1.35 1.56 1.60
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Figure A.1: Estimated conditional quantile curves for modelM2 and n = 1500

This figure presents the same plots as Figure 2.5 but for a random sample of size n = 1500
generated according to modelM2.
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Figure A.2: Estimated conditional quantile curves for modelM3 and n = 1500

This figure presents the same plots as Figure 2.5 but for a random sample of size n = 1500
generated according to modelM3.
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Table A.2: Parameters associated with the quantile plots

The parameters in the table correspond to Figures 2.5, 2.6, 2.7, 2.8, A.1, and A.2. For the
leveraging estimator the parameters are presented in the order N, λ, γ. For the quantiza-
tion estimator we report the number of quantizers, for the kNN estimator the number of
neighbors, for the smoothing splines estimator the values of the smoothing parameter λ (for
α = 0.05, 0.25, 0.5, 0.75, 0.95), and for the xgboost estimator the parameter gamma. For
details on the parameter selection procedures see Sections 2.4.1 and 2.5.1.

modelM1 modelM2 modelM3

n = 500 n = 1500 n = 500 n = 1500 n = 500 n = 1500

leveraging 10, 0.35, 0.5 16, 0.3, 0.5 14, 0.3, 0.4 20, 0.5, 0.5 22, 0.35, 0.5 24, 0.3, 0.5
quantization 18 40 6 10 8 10
kNN 28 62 46 66 32 58
smoothing
splines

0.3, 0.4, 0.8,
1, 0.3

0.3, 0.3, 0.3,
0.4, 0.3

0.3, 0.3, 0.5,
0.8, 0.3

0.3, 0.3, 0.5,
0.3, 0.3

0.3, 0.4, 0.3,
0.3, 0.3

0.3, 0.4, 0.3,
0.3, 0.3

xgboost 2 3 1.5 2.5 1 2
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Appendix B

Supplementary Material for Chapter 4

B.1 Theoretical foundations

B.1.1 ARMA-GARCH process

In an ARMA(p,q)-GARCH(r,s) process, the conditional mean of a (univariate) time

series is modeled by the ARMA part while the conditional volatility is captured by

the GARCH part. With ARMA(p,q) we denote a model with p autoregressive and q

moving average terms. More formally, we have the following specification

rt = µ +

p∑
j=1

ϕ jrt− j +

q∑
j=1

θ jϵt− j + ϵt,

where rτ, τ = t − p, . . . , t are observations from the time series and ϕ j, j = 1, . . . , p,

θ j, j = 1, . . . , q, and µ denote parameters. The Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) model by Bollerslev (1986) extends the ARCH model

due to Engle (1982) by including lags of the conditional variances. More exactly, the

variance equation according to the GARCH(r,s) model at time t is given by

σ2
t = ω +

r∑
j=1

β jσ
2
t− j +

s∑
j=1

α jϵ
2
t− j,
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where σ2
τ, τ = t − r, . . . , t denotes the conditional variance, α j, j = 1, . . . , s,

β j, j = 1, . . . , r, and ω are parameters and all ϵt are of the form ϵt = ztσt where zt

is an iid process with zero mean and unit variance. The parameters must fulfill some

conditions in order to guarantee that the GARCH conditional variance estimates are

always positive, see Nelson and Cao (1992) for details. In case of the GARCH(1,1)

model, forecasts can be calculated as

σ2
t+h|t = σ

2 + (α + β)h−1(σ2
t+1 − σ

2),

where h > 2 denotes the horizon of the forecasts and σ2 denotes the unconditional

variance given by σ2 = ω
1−α−β (see Bollerslev, 2010).155

B.1.2 Sklar’s theorem

The popularity of copulas in multivariate dependence modeling is due to the theorem

by Sklar (1959). Loosely speaking the theorem states that modeling of the marginals

and of the multivariate dependence can be separated by means of copulas functions.

Theorem B.11 (Sklar’s theorem) Let X = (X1, . . . , Xd) ∼ F be a d-dimensional ran-

dom variable with marginal distributions F j, j = 1, . . . , d. We then have

F(x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
,

where C denotes some appropriate d-dimensional copula. If the multivariate distribu-

tion function F is absolutely continuous and the marginal distributions F1, . . . , Fd are

strictly increasing continuous, we have

f (x1, . . . , xd) =
( d∏

j=1

f j(x j)
)
· c
(
F1(x1), . . . , Fd(xd)

)
with the small letters denoting the corresponding probability density functions.
155Conditional variance estimates for the GARCH(1,1) model are positive almost surely given that ω >

0, α ≥ 0 and β ≥ 0. The model is covariance stationary provided that α + β < 1.
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The second part of the theorem highlights that the joint distribution of the random

variable X can be modeled separately in terms of a “marginal term”
∏d

j=1 f j(x j) and a

“dependence term” c
(
F1(x1), . . . , Fd(xd)

)
. The marginal term is based on information

from the (univariate) marginals alone and does not contain any information about the

multivariate dependence. On the other hand, the random variables F1(X1), . . . , Fd(Xd)

are all uniformly distributed in the interval [0, 1] and therefore do not contain any

information on the marginals. For more details we refer to the books by Joe (2001)

and Nelsen (2006).

B.1.3 Duration-based backtest

The duration-based VaR backtest by Christoffersen (2004), as the name implies, is

based on the duration of days between VaR violations. The hit sequence of VaRt

violations is defined as

It =


1, if rt < −VaRt(p)

0, else

where rt is a time series of daily ex-post portfolio returns and VaRt(p) a time series of

ex-ante VaR forecasts with a coverage rate p. The time in days between two VaR vio-

lations is called the no-hit duration Di = ti − ti−1 where ti denotes the day of violation

number i. The null hypothesis of the test is then: If the VaR model is correctly specified

for coverage rate p, the no-hit duration or in other words the conditional expected dura-

tion between VaR violations should have no memory and a mean duration of 1/p days.

Thus, under the null hypothesis the no-hit duration follows the exponential distribution

fexp(D; p) = p exp(−pD)

whereas the alternative that allows for duration dependence follows a Weibull distribu-

tion

fW(D; a, b) = abbDb−1exp(−(aD)b).
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The tested null hypothesis of independence is then defined as

H0,ind : b = 1.

For a detailed derivation of the no-memory property in terms of the discrete probability

distribution and its hazard function, please see Christoffersen (2004).

B.1.4 Conditional calibration backtest

Nolde and Ziegel (2017) introduce a conditional calibration (CC) test and show that

well-known traditional backtests can be unified within the concept of CC. The CC

test comes in two versions: The simple version used in our analysis requires only risk

forecasts (VaR and ES), whereas the general version additionally needs information

on conditional volatility. Following Nolde and Ziegel (2017), P0 defines the class of

Borel-probability distributions on R. P1 ⊆ P0 denotes the class of all distributions

with finite mean whereas PV ⊂ P0 describes distributions with unique quantiles. The

chosen identification function for the pair (VaRν, ES ν) for the level ν ∈ (0, 1) is

V(x1, x2, r) =
 1 − ν − I(0,∞)(r − x1)

x1 − x2 −
1

1−ν I(0,∞)(r − x1)(x1 − r)


with respect to P1 ∩ PV , where I(0,∞) denotes the characteristic function of the open

interval (0,∞). We further follow the notation of Nolde and Ziegel (2017) and define

Θ = (ρ1, ..., ρk) as the identifiable functional with identification function V with re-

spect to P. A series of negated log-returns defined as {rt}t∈N is adapted to the filtration

F = {Ft}t∈N. Let {xt}t∈N be a sequence of predictions of Θ that are Ft−1-measurable.

All conditional distributions L(rt|Ft−1) and all unconditional distributions L(rt) are as-

sumed to belong toP almost surely. The sequence of predictions {xt}t∈N is conditionally

calibrated for Θ if

E(V(xt, rt)|Ft−1) = 0 almost surely,∀t ∈ N.
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The null hypothesis of the traditional backtest for CC considers this requirement: The

sequence of predictions {xt}t∈N is conditionally calibrated for Θ. The requirement for

the expected value is equivalent to E(h
′

tV(xt, rt)) = 0 for all Ft−1-measurable Rk-valued

functions ht. Nolde and Ziegel (2017) consider a F -predictable sequence {ht}t∈N of

q × k-matrices ht called test functions to construct a Wald-type test statistic. For the

simple version of the CC test, ht equals the identity matrix. For more information

on the Wald-type test statistic as well as a complete derivation of the CC test in both

versions, please refer to the original paper.

B.1.5 Model confidence set procedure

In this section we more formally introduce the MCS procedure outlined in Section

4.2.4. Let therefore M0 denote the set of candidate models, M∗ the true set of best

models, and M̂∗1−α the model confidence set at confidence level α. We further assume

that M0 consists of a finite number m0 of models. Based on an evaluation criterion

(the loss function) one can calculate the losses Li,t that are associated with model i at

time t. In the case of a VaR forecast, e.g., one might compare the risk forecast VaRi,t
α of

model i at time t with the actual realized return rt by setting Li,t := L(VaRi,t
α , rt) where

L denotes an appropriate loss function. For i, j ∈ M0 one then defines the relative

performance variable

di j,t := Li,t − L j,t

as well as the expected value of the performance variable

µi j := E(di j,t).

The alternatives inM0 are now ranked based on their expected loss. That is, model i

is preferred over model j if µi j < 0. The MCS is now constructed based on a sequence

of significance tests

H0,M : µi j = 0 for all i, j ∈ M,



B.1. THEORETICAL FOUNDATIONS 220

with M ⊆ M0. If H0,M can be rejected, the elimination rule is applied to remove a

model fromM that is inferior to the remaining ones. The model confidence set is then

defined as any subset ofM0 that contains all best models with a given probability 1−α.

More shortly, the MCS procedure can be summarized in the following algorithmic

form (see Hansen et al., 2011):

Step 0: SetM :=M0.

Step 1: Test the null hypothesis H0,M based on the equivalence test δM at the confi-

dence level α.

Step 2: If H0,M is not rejected, set M̂∗1−α :=M, otherwise use the elimination rule eM

to eliminate a model fromM and repeat the procedure from step 1.

Hansen et al. (2011) provide two t-statistics for the hypothesis test in step 1. We

opt for the statistic ti j that is also used in the test for comparing two forecasts (see

Diebold and Mariano, 1995, West, 1996). We therefore define the sample loss statistic

d̄i j := 1
n

∑n
t=1 di j,t and set

ti j :=
d̄i j√
ˆvar(d̄i j)

,

where ˆvar(d̄i j) denotes an estimate of var(d̄i j). The final test statistic is then defined as

TR,M := max
i, j∈M
|ti j|.

The asymptotic distribution of TR,M is non-standard and derived via a bootstrapping

scheme, see Hansen et al. (2011) for details. The natural elimination rule correspond-

ing to the test statistic TR,M is eR,M := arg maxi∈M sup j∈M ti j because the corresponding

model is such that teR,M j = TR,M is fulfilled for some j ∈ M. Removing model eR,M

will therefore reduce (or at least not increase) the test statistic TR,M.
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B.2 Figures

Figure B.1: Potential portfolio value under financial distress according to the 97.5%
ES

This figure illustrates the economic significance of model risk arising from the disparity
between different ES models. Here, we focus on the 97.5% ES for a well diversified portfolio
($100,000) and a 10 day holding period between November 4, 2004 and December 31, 2018.
We provide the portfolio value minus the 5th and the 95th percentile of ES forecasts from
all multivariate models that passed the conditional calibration backtest by Nolde and Ziegel
(2017) on a daily basis. This corresponds to the potential portfolio value under financial
distress according to the more (95th percentile) or less (5th percentile) conservative ES models.
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Figure B.2: Average model risk for alternative model risk measures (model sets with
fixed and varying copula only)

This figure shows the average model risk associated with one day ahead 99% VaR (Subfigures
1, 3, and 5) and 97.5% ES (Subfigures 2, 4, and 6) forecasts for a well diversified portfolio
per group. Group 1 (G1) includes all model sets in which a copula function is fixed while
varying the marginal distribution. Group 2 (G2) contains analogously the model sets with
fixed marginal distribution and varying copula. Model risk is captured by different measures
of one day ahead forecasts by various risk models within a model set. Our baseline measure
is the mean absolute deviation (mad). We additionally include the standard deviation (sd) and
interquartile range (iqr), see Section 4.2.3 for more details. Values are calculated on a daily
basis between November 4, 2004 until December 31, 2018 in percent of the portfolio value
based on all models that passed the respective backtest, see Section 4.2.2 for details.
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Figure B.3: Average model risk for all groups under various VaR confidence levels

This figure shows the average model risk associated with one day ahead VaR forecasts for a
well diversified portfolio and a confidence level of 99.9%, 99%, 97.5%, and 95% (Subfigures
1-4) per group. Group 1 (G1) includes all model sets in which a copula function is fixed while
varying the marginal distribution. Group 2 (G2) contains analogously the model sets with
fixed marginal distribution and varying copula. Group 3 (G3) consists of all multivariate and
Group 4 (G4) of all univariate models. Model risk is measured in terms of the mean absolute
deviation (mad) of one day ahead forecasts by various risk models within a model set. Values
are calculated on a daily basis between November 4, 2004 until December 31, 2018 in percent
of the portfolio value based on all models that passed the respective backtest, see Section 4.2.2
for details.
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Figure B.4: Average model risk for all groups under various ES confidence levels

This figure shows the average model risk associated with one day ahead ES forecasts for a
well diversified portfolio and a confidence level of 99.9%, 99%, 97.5%, and 95% (Subfigures
1-4) per group. Group 1 (G1) includes all model sets in which a copula function is fixed while
varying the marginal distribution. Group 2 (G2) contains analogously the model sets with
fixed marginal distribution and varying copula. Group 3 (G3) consists of all multivariate and
Group 4 (G4) of all univariate models. Model risk is measured in terms of the mean absolute
deviation (mad) of one day ahead forecasts by various risk models within a model set. Values
are calculated on a daily basis between November 4, 2004 until December 31, 2018 in percent
of the portfolio value based on all models that passed the respective backtest, see Section 4.2.2
for details.
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Appendix C

Supplementary Material for Chapter 5

Table C.1: Variable definitions and data sources.

The appendix presents definitions for the dependent and independent variables that are used
in the empirical study and that have not been calculated using the LDA. Capital market data
are retrieved from Thomson Reuters Datastream and accounting data are retrieved from Orbis
Insurance Focus. All accounting data are collected in U.S. Dollar.

Variable Description Source

Capital market data
Market value Natural logarithm of the share price

multiplied by the number of ordinary
shares in issue.

Thomson Reuters Datastream

Market-to-book value Market value of common equity di-
vided by the balance sheet value of
common equity in the company.

Thomson Reuters Datastream

Accounting data
Total assets Natural logarithm of an insurer’s total

assets at fiscal year end.
Orbis Insurance Focus

ROA Return on Assets defined as net income
over total assets (in %).

Orbis Insurance Focus

Total investment Natural logarithm of an insurer’s total
amount of money invested into capital.

Orbis Insurance Focus

Solvency ratio Net assets divided by net premiums
written (in %).

Orbis Insurance Focus

Current ratio Current assets divided by current liabil-
ities (in %).

Orbis Insurance Focus

Foreign assets ratio Foreign assets divided by total assets
(in %).

Thomson Reuters Datastream
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Appendix D

Publication Details

This cumulative dissertation comprises four independent research papers that were

written with the co-authors Gregor Weiß, Felix Irresberger, Maike Timphus, and

Philipp Scharner. This appendix provides publication details and a short description

of the papers.



227

Paper 1 (Chapter 2):

Conditional Quantile Estimation via Leveraging Optimal Quantization

Author:

Simon Fritzsch

Abstract:

This paper proposes a new non-parametric estimator of conditional quantiles that is

obtained by leveraging an ensemble of quantization-based estimators. The data-driven

choice of the hyperparameters of the associated algorithm is discussed in detail and the

added value of the new estimator is illustrated in an extensive simulation study. The

estimator yields smooth quantile curves (in one dimension), extends well to multiple

dimensions, and is competitive in terms of integrated squared errors. In an empirical

application, the estimator is used to quantify the estimation risk of Value-at-Risk and

Expected Shortfall forecasts by various GARCH-type models and to provide confi-

dence bands. Among the considered models, the GARCH model exhibits the lowest

estimation risk and the EGARCH model the highest, while in general estimation risk

for Expected Shortfall is higher than for Value-at-Risk.

Publication details:

Working paper
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Paper 2 (Chapter 3):

Cross-Section of Option Returns and the Volatility Risk Premium

Authors:

Simon Fritzsch, Felix Irresberger, Gregor Weiß

Abstract:

This paper presents a robust new finding that delta-hedged and raw equity option re-

turns include a volatility risk premium. To separate volatility risk premia from con-

founding effects, we estimate conditional quantile curves of implied volatilities using

machine learning. We find that a zero-cost trading strategy that is long (short) in the

portfolio with low (high) implied volatility – conditional on the options’ moneyness

and realized volatility – produces an economically and statistically significant aver-

age monthly return. Using conditional quantile curves not only helps in distinguishing

volatility risk premia from other effects, most notably realized volatility, it also leads

to returns that are higher than those reported in previous work on similar volatility

strategies.

Publication details:

Working paper
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Paper 3 (Chapter 4):

Marginals Versus Copulas: Which Account for More Model Risk in Multivariate

Risk Forecasting?

Authors:

Simon Fritzsch, Maike Timphus, Gregor Weiß

Abstract:

Copulas. We study the model risk of multivariate risk models in a comprehensive

empirical study on copula GARCH models used for forecasting Value-at-Risk and

Expected Shortfall. To determine whether model risk inherent in the forecasting of

portfolio risk is caused by the candidate marginal or copula models, we analyze dif-

ferent groups of models in which we fix either the marginals, the copula, or neither.

Model risk is economically significant, is especially high during periods of crisis, and

is almost completely due to the choice of the copula. We then propose the use of the

model confidence set procedure to narrow down the set of available models and reduce

model risk for copula GARCH risk models. Our proposed approach leads to a signif-

icant improvement in the mean absolute deviation of one day ahead forecasts by our

various candidate risk models.

Publication details:

Working paper
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Paper 4 (Chapter 5):

Estimating the Relation Between Digitalization and the Market Value of Insurers

Authors:

Simon Fritzsch, Philipp Scharner, Gregor Weiß

Abstract:

We analyze the relation between digitalization and the market value of US insurance

companies. To create a text-based measure that captures the extent to which insurers

digitalize, we apply an unsupervised machine learning algorithm – Latent Dirichlet

Allocation – to their annual reports. We show that an increase in digitalization is

associated with an increase in market valuations in the insurance sector. In detail, cap-

ital market participants seem to reward digitalization efforts of an insurer in the form

of higher absolute market capitalizations and market-to-book ratios. Additionally, we

provide evidence that the positive relation between digitalization and market valuations

is robust to sentiment in the annual reports and the choice of the reference document

on digitalization, both being issues of particular importance in text-based analyses.

Publication details:

Fritzsch, S., P. Scharner, and G. Weiß (2021): “Estimating the relation between digital-

ization and the market value of insurers,” Journal of Risk and Insurance, 88, 529–567.
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